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The Möbius Geometry of Hypersurfaces

Michael Bolt

1. Introduction

Suppose r is a defining function for a twice differentiable hypersurfaceM 2n−1 ⊂
C
n near p ∈M. In complex form, the Taylor expansion for r is given by

r(p + t) = r(p)+ 2 Real
n∑
j=1

∂r

∂zj
(p)tj + Lr,p(t, t̄ )+ RealQr,p(t, t)+ o(|t |2),

where t = (t1, . . . , tn),

Lr,p(s, t̄ ) =
n∑

j,k=1

∂ 2r

∂zj∂z̄k
(p)sj t̄k ,

and

Qr,p(s, t) =
n∑

j,k=1

∂ 2r

∂zj∂zk
(p)sj tk.

It is a familiar fact in several complex variables that the hermitian quadratic form
Lr,p is invariant under biholomorphism. (Restricted to the complex tangent space,
this is exactly the Levi form.) It is less familiar that the non-hermitian form Qr,p
is invariant under Möbius transformation when restricted to the complex tangent
space. This is established in Section 2.

Our main result is the following.

Theorem 1. Suppose that M 2n−1 ⊂ C
n is a non–Levi-flat, three times differen-

tiable hypersurface and that, for all p ∈M,

Qr,p(s, s) = 0 for s = (s1, . . . , sn) with
n∑
j=1

∂r

∂zj
(p)sj = 0. (1)

ThenM is contained in a hermitian quadric surface in C
n.

Condition (1) is independent of the choice of defining function.
The proof of Theorem 1 uses the structural equations for a hypersurface and is

similar to a proof the author used for an earlier characterization of the Bochner–
Martinelli kernel [2]. An earlier analytic proof of Theorem 1 that requires the
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hypersurface to be eight times differentiable was given by Detraz and Trépreau [4].
They also characterized the situation for Levi-flat hypersurfaces as follows.

Proposition 1 [4]. Suppose that M 2n−1 ⊂ C
n is twice differentiable and Levi-

flat and that, for all p ∈M,

Qr,p(s, s) = 0 for s = (s1, . . . , sn) with
n∑
j=1

∂r

∂zj
(p)sj = 0.

ThenM is foliated by (the germs of ) complex hyperplanes.

As applications of Theorem 1, we will prove the following local versions of results
obtained by the author in [3]. The first application also extends a result proved
by Boas [1] and Wegner [8] to the case of a weighted measure. In our usage, the
weights will be positive, twice differentiable functions.

Theorem 2. Let M 2n−1 ⊂ C
n be a non–Levi-flat, three times differentiable

hypersurface. Then there is a positive measure on M for which the Bochner–
Martinelli transform is self-adjoint if and only if M is contained in a hermitian
quadric surface.

For the Levi-flat case, only two derivatives are needed, andM must be foliated by
complex hyperplanes as follows from the Detraz and Trépreau result.

Theorem 3. Let M 2n−1 ⊂ C
n be a three times differentiable, lineally con-

vex hypersurface. Then there is a positive measure on M for which the Leray–
Aı̌zenberg transform is self-adjoint if and only if M is contained in the Möbius
image of a sphere.

(The Leray–Aı̌zenberg transform is the integral operator whose kernel is con-
structed using the supporting hyperplanes.)

It would be an interesting problem to estimate the norms of the Bochner–
Martinelli transform and the Leray–Aı̌zenberg transform in terms of invariant
quantities derived from the quadratic forms L andQ.

The author thanks David E. Barrett for many helpful conversations during the
preparation of this paper.

2. Möbius Invariance of the Second Fundamental Form

In this section we establish the biholomorphic invariance of L and the additional
Möbius invariance of Q when restricted to the complex tangent space. We also
demonstrate that the vanishing ofQ on the complex tangent space is independent
of the choice of defining function.

By a Möbius transformation on C
n we mean that, after embedding C

n in CP
n

in the usual way, the transformation acts linearly in the homogeneous coordinates.
Alternatively, a Möbius transformation is a fractional linear transformation.
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Definition. A Möbius transformation is a functionF = (f1, . . . , fn) : C
n → C

n

where fj = gj/gn+1,

gj(z) = aj,1z1 + · · · + aj,nzn + aj,n+1,

and det(aj,k)j,k=1,...,n+1 = 1.

The condition det(aj,k) = 1 acts only as a normalization. Indeed, if det(aj,k) 
= 0
then one can divide the rows of (aj,k) by an appropriate constant in order to make
det(aj,k) = 1. This has no affect on the transformation itself. Under composi-
tion, Möbius transformations form a group that acts on C

n and is isomorphic to
SLn+1(C).

The complex tangent space at p consists of those vectors s = (s1, . . . , sn) for
which

∑
j(∂r/∂zj )(p)sj = 0. This subspace of the tangent space is independent

of the choice of defining function.

Proposition 2. Suppose that M 2n−1 ⊂ C
n is twice differentiable near p ∈M

and that w = F(z) is biholomorphic in a neighborhood U of p. Let r ∈ C2(U)

be a defining function forM near p. ThenM ′ = F(M ∩U) is twice differentiable
and has defining function r  F −1, and

Lr,p(s, t̄ ) = LrF −1,F(p)(F
′(p)s,F ′(p)t) (2)

for all s, t ∈ C
n. In addition, if F is a Möbius transformation and if s and t are in

the complex tangent space ofM, then

Qr,p(s, t) = QrF −1,F(p)(F
′(p)s,F ′(p)t). (3)

Proof. Suppose that F = (f1, . . . , fn). Then a direct computation shows that (2)
is valid:

Lr,p(s, t̄ ) =
∑
j,k

∂ 2((r  F −1)  F )
∂zj∂z̄k

sj t̄k =
∑
j,k,l,m

∂ 2(r  F −1)

∂wl∂w̄m

(
∂fl

∂zj
sj

)(
∂fm

∂zk
t̄k

)
,

where the partial derivatives are evaluated at p or F(p) as appropriate. The right-
hand side of this equation is exactly LrF −1,F(p)(F

′(p)s,F ′(p)t).
Likewise, working with the left-hand side of (3) yields

Qr,p(s, t) =
∑
j,k

∂ 2((r  F −1)  F )
∂zj∂zk

sj tk

=
∑
j,k,l,m

∂ 2(r  F −1)

∂wl∂wm

(
∂fl

∂zj
sj

)(
∂fm

∂zk
tk

)
+
∑
j,k,l

∂(r  F −1)

∂wl

∂ 2fl

∂zj∂zk
sj tk ,

where the partial derivatives are evaluated at p or F(p) as appropriate. The first
summation on the right-hand side of this equation isQrF −1,F(p)(F

′(p)s,F ′(p)t).
Hence we need only check that, for a Möbius transformation F and for vectors s
and t in the complex tangent space,∑

j,k,l

∂(r  F −1)

∂wl

∂ 2fl

∂zj∂zk
sj tk = 0.
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So suppose fj = gj/gn+1 (1 ≤ j ≤ n), gj(z) = aj,1z1 + · · · + aj,nzn + aj,n+1

(1 ≤ j ≤ n + 1), and det(aj,k) = 1. A straightforward computation then shows
that∑
j,k,l

∂(r  F −1)

∂wl

∂ 2fl

∂zj∂zk
sj tk

=
∑
j,k,l

∂(r  F −1)

∂wl

(
−al,j an+1,k

g2
n+1

− al,k an+1,j

g2
n+1

+ 2gl
an+1,j an+1,k

g3
n+1

)
sj tk. (4)

Moreover, since s and t are in the complex tangent space, we have∑
j

∂r

∂zj
sj =

∑
j,l

∂(r  F −1)

∂wl

∂fl

∂zj
sj =

∑
j,l

∂(r  F −1)

∂wl

(
al,j

gn+1
− gl

an+1,j

g2
n+1

)
sj = 0

and∑
k

∂r

∂zk
tk =

∑
k,l

∂(r  F −1)

∂wl

∂fl

∂zk
tk =

∑
k,l

∂(r  F −1)

∂wl

(
al,k

gn+1
− gl an+1,k

g2
n+1

)
tk = 0.

Using these last identities along with (4), we conclude that∑
j,k,l

∂(r  F −1)

∂wl

∂ 2fl

∂zj∂zk
sj tk

= −
(∑

j

∂r

∂zj
sj

)∑
k

an+1,k

gn+1
tk −

∑
j

an+1,j

gn+1
sj

(∑
k

∂r

∂zk
tk

)
= 0.

Thus the proposition is proved.

Proposition 3. Let r and r̃ be defining functions for a twice differentiable hyper-
surface M 2n−1 ⊂ C

n with r̃ = h · r for a twice differentiable function h > 0.
Then Qr̃,p(s, t) = h ·Qr,p(s, t) for vectors s and t in the complex tangent space.
In particular, ifQr,p(s, t) = 0 then alsoQr̃,p(s, t) = 0.

Proof. This follows readily from the calculation

Qh·r,p(s, t) =
n∑

j,k=1

∂ 2(h · r)
∂zj∂zk

sj tk

=
n∑

j,k=1

(
∂ 2h

∂zj∂zk
r + ∂h

∂zj

∂r

∂zk
+ ∂h

∂zk

∂r

∂zj
+ h ∂ 2r

∂zj∂zk

)
sj tk.

The first terms in the sum vanish because r = 0 on M, and the second and third
terms vanish because, respectively, t and s are in the complex tangent space. The
remaining terms are exactly h ·Qr,p(s, t).

3. Normalization

Proposition 4. Suppose that a twice differentiable hypersurface M 2n−1 ⊂ C
n

has defining function r with nonzero gradient and that, at a fixed p ∈M,
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n∑
j,k=1

∂ 2r

∂zj∂zk
(p)sj sk = 0 for s = (s1, . . . , sn) with

n∑
j=1

∂r

∂zj
(p)sj = 0.

Then there are a Möbius transformation F with F(p) = 0 and εj ∈ {−1, 0, +1}
such thatM ′ = F(M) can be defined by

r ′(z) = 1

2
(zn + z̄n)+

n−1∑
j=1

εj |zj |2 + o(|z|2). (5)

Proof. To begin, we use a preliminary Möbius transformation (composed of a
translation and rotation); this allows us to assume that p = 0 and that M can be
defined by

r(z) = 1

2
(zn + z̄n)+

n∑
j,k=1

bj,k zj z̄k + Real
n∑
j=1

cj zj zn + o(|z|2).

Here bj,k ∈ C with bj,k = b̄k,j for 1 ≤ j, k ≤ n, and cj ∈ C for 1 ≤ j ≤ n. In this
situation, the hypothesis of the proposition is that rjk(0) = 0 for 1 ≤ j, k < n, so
there are no zj zk terms that appear in r for 1 ≤ j, k < n. (We reiterate that the
hypothesis of the theorem is preserved by Möbius transformation and is indepen-
dent of the choice of defining function.)

We need to identify a further Möbius transformation F so that F(0) = 0 and
the surface M ′ = F(M) can be defined as in (5). We mention that subscripts on
defining functions will always refer to partial derivatives.

Before doing so, we multiply the defining function r by the positive function

h(z) = 1 − 2 Real(2b1,nz1 + · · · + 2bn−1,nzn−1 + bn,nzn)+ o(|z|)
and continue to call the new defining function r. This has the effect of eliminating
the zj z̄n and z̄j zn terms while introducing possibly new constants cj . The same
surfaceM is then defined more economically by

r(z) = 1

2
(zn + z̄n)+

n−1∑
j,k=1

bj,k zj z̄k + Real
n∑
j=1

cj zj zn + o(|z|2). (6)

We now proceed to identify the transformationF so that (5) holds for r ′ = r  F −1.

To do this, suppose that F −1 = (f1, . . . , fn) where fj = gj/gn+1 (1 ≤ j ≤ n)

and gj(z) = aj,1z1 + · · · + aj,nzn + aj,n+1 (1 ≤ j ≤ n + 1). To make F(0) = 0,
it is necessary that aj,n+1 = 0 for j ≤ n. We choose the normalization an+1,n+1 =
1 rather than the usual normalization det(aj,k) = 1. This does not affect the set of
transformations, but it does simplify the subsequent computations. Then, evalu-
ated at 0, we find

∂fl

∂zj
= ∂gl

∂zj

1

gn+1
− ∂gn+1

∂zj

gl

g2
n+1

= al,j − an+1,j al,n+1 = al,j ,

where in the last step we used al,n+1 = 0. It follows that, when evaluated at 0,

∂(r  F −1)

∂zj
=

n∑
l=1

∂r

∂zl

∂fl

∂zj
= 1

2

∂fn

∂zj
= an,j

2
.
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So for F (and therefore F −1) to preserve the tangent plane at 0, it is necessary that
an,j = 0 for j < n. Again, for simplicity we specify that an,n = 1. We have then
specified the (n + 1)th column and the nth row of the (n + 1) × (n + 1) matrix
(aj,k). In particular,

aj,n+1 = 0 if j ≤ n,

an+1,n+1 = 1,

an,j = 0 if j < n,

an,n = 1.

With these choices, the first-order expansion of r  F −1 is still as claimed in (5).
To normalize the hermitian quadratic terms, notice first that

∂ 2(r  F −1)

∂zj∂z̄k
=

n∑
l,m=1

∂ 2r

∂zl∂z̄m

∂fl

∂zj

∂fm

∂zk
=

n∑
l,m=1

∂ 2r

∂zl∂z̄m
al,j am,k. (7)

In particular, since already an,j = 0 for j < n, it follows that if 1 ≤ j, k < n then

∂ 2(r  F −1)

∂zj∂z̄k
=

n−1∑
l,m=1

∂ 2r

∂zl∂z̄m
al,j am,k.

We can then choose an invertible submatrix (aj,k)j,k=1,...,n−1 such that (r F −1)jj̄ =
εj for 1 ≤ j < n (where εj ∈ {−1, 0, +1}) and (r  F −1)jk̄ = 0 otherwise. In fact,
the submatrix is the composition of a unitary transformation and an invertible di-
agonal matrix.

We next determine conditions on the constants aj,n, 1 ≤ j < n, so that on the
right-hand side of (5) there will still be no terms zj z̄n, 1 ≤ j < n. From (7)
this means

∂ 2(r  F −1)

∂zj∂z̄n
=

n−1∑
l=1

al,j

( n∑
m=1

∂ 2r

∂zl∂z̄m
am,n

)
= 0 for 1 ≤ j < n (8)

because an,j = 0 for 1 ≤ j < n. If (aj,k )j,k=1,...,n−1 is the inverse of the subma-
trix (aj,k)j,k=1,...,n−1 then, after multiplying (8) by aj,k and summing on 1 ≤ j <
n, we find the equivalent condition

n∑
m=1

∂ 2r

∂zk∂z̄m
am,n =

n−1∑
m=1

∂ 2r

∂zk∂z̄m
am,n = 0 for 1 ≤ k < n. (9)

(The first equality in (9) uses (6).) We choose am,n = 0 form < n. Notice also—
from (7) and (6) and from our existing choices—that

∂ 2(r  F −1)

∂zn∂z̄n
=

n∑
l,m=1

∂ 2r

∂zl∂z̄m
al,nam,n = ∂ 2r

∂zn∂z̄n
= 0.

So far, then, we have chosen constants so that the hermitian terms on the right-hand
side of (5) are as claimed.
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We still have to determine constants an+1,j for1 ≤ j ≤ n such that (r F −1)nj =
0 when these partials are evaluated at 0. To do this, notice that the second-order
partial derivatives of the gj are identically zero. So evaluated at 0, we find

∂ 2fl

∂zj∂zk
= − ∂gl

∂zj

∂gn+1

∂zk

1

g2
n+1

− ∂gn+1

∂zj

∂gl

∂zk

1

g2
n+1

+ ∂gn+1

∂zj

∂gn+1

∂zk

2gl
g3
n+1

= −al,j an+1,k − an+1,j al,k.

Because we have just chosen al,n = 0 for l < n, we also find that

∂ 2(r  F −1)

∂zn∂zj
=

n∑
l,m=1

∂ 2r

∂zl∂zm

∂fl

∂zn

∂fm

∂zj
+

n∑
m=1

∂r

∂zm

∂ 2fm

∂zn∂zj

=
n∑
m=1

∂ 2r

∂zn∂zm

∂fn

∂zn

∂fm

∂zj
+ 1

2

∂ 2fn

∂zn∂zj

=
n−1∑
m=1

cm

2
am,j + cnan,j − 1

2
(an+1,j + an+1,nan,j ).

In particular, when j = n,

∂ 2(r  F −1)

∂zn∂zn
=

n−1∑
m=1

cm

2
am,n + cnan,n − 1

2
(an+1,n + an+1,nan,n) = cn − an+1,n.

So to make (r  F −1)nn = 0, we choose an+1,n = cn. Furthermore, if 1 ≤
j < n then

∂ 2(r  F −1)

∂zn∂zj
=

n−1∑
m=1

cm

2
am,j − 1

2
an+1,j ,

where we have used an,j = 0. Hence, to make (r  F −1)nj = 0 we also choose

an+1,j =
n−1∑
m=1

cmam,j .

The constants on the right-hand side of this equation are already determined.

4. Restatement of the Vanishing Condition

Our proof of Theorem 1 uses classical differential geometry. We use the following
notation, much of which is used in the book by Hicks [6], for instance.

The coordinates (z1, . . . , zn) ∈ C
n correspond with coordinates (x1, . . . , x2n) ∈

R
2n according to zj = xj + ixj+n. Under this identification, the real Euclidean

space inherits a complex structure J : T R
2n → T R

2n that corresponds with mul-
tiplication by i = √−1 and is given by J(∂xj ) = ∂xj+n , J(∂xj+n) = −∂xj . This
structure preserves the Euclidean inner product 〈·, ·〉 on T R

2n. In fact, J ∗ = −J
and J 2 = −I. The real tangent space ofM is denoted by TM. Then the complex
tangent space is the subspace HM = TM ∩ J(TM).
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Let N be a unit normal vector on M. The direction orthogonal to HM in TM
is then JN. For X ∈ TM, let d = dX be the Riemannian connection that M in-
herits as a submanifold of R

n. This connection is naturally symmetric and metric,
so [X,Y ] = dXY − dYX for X,Y ∈ TM and X〈Y,Z〉 = 〈dXY,Z〉 + 〈Y, dXZ〉 for
X,Y,Z ∈ TM. The complex structure and the Riemannian connection commute
with one another.

The Weingarten map is the operator S : TM → TM given by X ∈ TM →
S(X) = dXN. This operator is self-adjoint. Connected to S is the second fun-
damental form, which is the symmetric bilinear form b(X,Y ) = 〈SX,Y 〉 =
〈dXN,Y 〉. The main structural equation for a hypersurface in Euclidean space
is the Codazzi equation; it says that, for X,Y,Z ∈ TM,

〈dXSY − dY SX,Z〉 = 〈S [X,Y ],Z〉.
These equations are the compatibility conditions between the induced metric and
the second fundamental form for a surface in Euclidean space.

The following lemma shows how to express the vanishing ofQ in this geomet-
ric context.

Lemma 1. Suppose that M 2n−1 ⊂ C
n is twice differentiable and that, for all

p ∈M,

Qr,p(s, s) = 0 for s = (s1, . . . , sn) with
n∑
j=1

∂r

∂zj
(p)sj = 0. (10)

Then b(X, JX) = 0 and b(X,X) = b(JX, JX) for all X ∈HM.
Proof. We may assume the defining function is normalized so that |∇r| ≡ 2.
In complex notation, N = (r 1̄, . . . , rn̄). (The subscripts indicate taking antiholo-
morphic partial derivatives; the factor of 2 arises from ∂z̄j = 1

2 (∂xj + i∂xj+n).)
Suppose also that X = (s1, . . . , sn) ∈ HM. Then JX = (is1, . . . , isn) and, using
the centered dot to represent the complex dot product, we find

b(X, JX) = 〈dXN, JX〉
= Real[dXN · JX]

= Real

( n∑
j=1

(sj∂zj + s̄j∂z̄j )(r 1̄, . . . , rn̄) · (−is̄1, . . . , −is̄n)
)

= Real

( n∑
j,k=1

−irjk̄ sj s̄k − irj̄ k̄ s̄j s̄k
)

= Imag

( n∑
j,k=1

−rjk sj sk
)

= 0.

For the second claim, replace X by X + JX ∈HM. Then
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0 = b(X + JX, J(X + JX))
= b(X + JX, JX −X)
= b(X, JX)− b(X,X)+ b(JX, JX)− b(JX,X)

= −b(X,X)+ b(JX, JX).

This proves the lemma.

We mention that Hermann [5] proved an analogous result for the Levi form; namely,
L(X,Y ) = b(X,Y )+ b(JX, JY ) for X,Y ∈HM.

5. Proof in Dimension Two

In complex dimension two, the vanishing condition says that the second funda-
mental form forM 3 ⊂ C

2 can be given by the 3 × 3 matrix of real functions(
α β γ

β λ 0
γ 0 λ

)
.

The rows and columns correspond to the vectors JN, X, and JX, respectively,
where X ∈ HM. These vectors can be assumed to have unit length. The Wein-
garten map is then given by

S(JN ) = αJN + βX + γJX,

S(X) = βJN + λX,

S(JX) = γJN + λJX.
We chooseX (and therefore JX) as in the following lemma. Then the connection
onM can be described quite simply in terms of the second fundamental form.

Lemma 2. Suppose M 3 ⊂ C
2 is defined by r = r(z1, z2), which is normal-

ized so that |∇r| ≡ 2. In complex notation, N = (r 1̄, r 2̄) and JN = (ir 1̄, ir 2̄).

The complex tangent space is spanned by X = (r2, −r1) and JX = (ir2, −ir1).
Furthermore, if Y ∈ TM then 〈dYX, JX〉 = −〈JN, dYN 〉. In particular :

〈dJNX, JX〉 = −α,

〈dXX, JX〉 = −β,

〈dJXX, JX〉 = −γ ;
and dXJX = −λJN + βX and dJXX = λJN − γJX.
Proof. Again using the dot to represent the complex dot product, we find

〈dYX, JX〉 = Real[Y(X) · JX] = Real[Y(r2, −r1) · (−ir 2̄ , ir 1̄)]

= −Real[Y(r2, r1) · (ir 2̄ , ir 1̄)]

= −Real[(ir 1̄, ir 2̄) · Y(r1, r2)]

= −Real[JN · Y(N )] = −〈JN, dYN 〉.
The remaining claims are special cases of this fact.
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Using Lemma 2, the Codazzi equation, and the symmetry of the connection, we
now prove the following lemma.

Lemma 3. Suppose M 3 ⊂ C
2 is three times differentiable and has second fun-

damental form as described previously. If λ 
= 0, then

X(β) = −3βγ,

JX(γ ) = +3βγ,

X(γ ) = −αλ+ λ2 + 2β2 − γ 2,

JX(β) = +αλ− λ2 + β2 − 2γ 2,

X(α) = −αγ + 2γλ,

JX(α) = +αβ − 2βλ,

X(λ) = −3γλ,

JX(λ) = +3βλ.

Before giving the proof, we make a few extra remarks about simplifying inner
products. For instance, in the proof we use repeatedly the derivation property of
d and the orthonormality of X, JX, JN. As an example,

〈dX(αJN ),X〉 = X(α)〈JN,X〉 + α〈dXJN,X〉
= X(α) · 0 + α〈dXJN,X〉 = α〈dXJN,X〉.

We also use the fact that J commutes with d and is antisymmetric. So

〈dXJN,X〉 = 〈JdXN,X〉 = −〈dXN, JX〉 = −〈S(X), JX〉 = 0

and, in particular, 〈dX(αJN ),X〉 = α · 0 = 0, as is used in part (a) of the proof.
Some expressions are simplified by combining the metric property of d with the

antisymmetry of J. For instance, in part (c) we use

〈dJNX, JN 〉 = 〈X, −dJNJN 〉 = 〈X, −JdJNN 〉 = 〈JX, dJNN 〉 = γ,

the first identity coming from JN〈X, JN 〉 = 0 = 〈dJNX, JN 〉 + 〈X, dJNJN 〉.
One more kind of simplification uses the fact that J preserves the inner product.
(This also follows from J ∗ = −J and J 2 = −I.) For instance, in part (c) we use

〈dXJN, JX〉 = 〈JdXN, JX〉 = 〈dXN,X〉 = λ.
We are now set for the proof.

Proof of Lemma 3. We begin by applying the Codazzi equation to all combina-
tions of tangent vectors. In particular, we apply the identity

〈dXSY − dY SX,Z〉 = 〈dXY − dYX, SZ〉
to combinations of vectors X,Y,Z taken from among the special tangent vec-
tors X, JX, JN for the surface M 3. (This reformulated statement of the Codazzi
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equation follows from the statement in the previous section after using the sym-
metry of the second fundamental form and the symmetry of the connection.)

(a) X, JN, X:

〈dXS(JN )− dJNS(X),X〉
= 〈dX(αJN + βX + γJX)− dJN(βJN + λX),X〉
= α〈dXJN,X〉 +X(β)+ γ 〈dXJX,X〉 − β〈dJNJN,X〉 − JN(λ)
= α · 0 +X(β)+ γβ + βγ − JN(λ)

and

〈dXJN − dJNX, S(X)〉 = 〈dXJN − dJNX,βJN + λX〉
= β · 0 + λ〈dXJN,X〉 − β〈dJNX, JN 〉 − λ · 0

= λ · 0 − βγ
so that X(β) = JN(λ)− 3βγ.

(b) JX, JN, JX:

〈dJXS(JN )− dJNS(JX), JX〉
= 〈dJX(αJN + βX + γJX)− dJN(γJN + λJX), JX〉
= α〈dJXN,X〉 + β〈dJXX, JX〉 + JX(γ )− γ 〈dJNN,X〉 − JN(λ)
= α · 0 − βγ + JX(γ )− γβ − JN(λ)

and

〈dJXJN − dJNJX, S(JX)〉 = 〈dJXJN − dJNJX, γJN + λJX〉
= γ · 0 + λ〈dJXN,X〉 − γ 〈dJNX,N 〉 − λ · 0

= λ · 0 + γβ
so that JX(γ ) = JN(λ)+ 3βγ.

(c) X, JN, JX:

〈dXS(JN )− dJNS(X), JX〉
= 〈dX(αJN + βX + γJX)− dJN(βJN + λX), JX〉
= α〈dXN,X〉 + β〈dXX, JX〉 +X(γ )− β〈dJNN,X〉 − λ〈dJNX, JX〉
= αλ− β2 +X(γ )− β2 + αλ

and

〈dXJN − dJNX, S(JX)〉
= 〈dXJN − dJNX, γJN + λJX〉
= γ · 0 + λ〈dXN,X〉 − γ 〈dJNX, JN 〉 − λ〈dJNX, JX〉 = λ2 − γ 2 + αλ

so that X(γ ) = −αλ+ λ2 + 2β2 − γ 2.
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(d) JX, JN, X:

〈dJXS(JN )− dJNS(JX),X〉
= 〈dJX(αJN + βX + γJX)− dJN(γJN + λJX),X〉
= α〈dJXJN,X〉 + JX(β)+ γ 〈dJXJX,X〉

− γ 〈dJNJN,X〉 − λ〈dJNJX,X〉
= −αλ+ JX(β)+ γ 2 + γ 2 − αλ

and

〈dJXJN − dJNJX, S(X)〉
= 〈dJXJN − dJNJX,βJN + λX〉
= β · 0 + λ〈dJXJN,X〉 − β〈dJNX,N 〉 − λ〈dJNJX,X〉
= −λ2 + β2 − αλ

so that JX(β) = αλ− λ2 + β2 − 2γ 2.

(e) X, JN, JN :

〈dXS(JN )− dJNS(X), JN 〉
= 〈dX(αJN + βX + γJX)− dJN(βJN + λX), JN 〉
= X(α)+ β〈dXX, JN 〉 + γ 〈dXX,N 〉 − JN(β)− λ〈dJNX, JN 〉
= X(α)+ β · 0 − γλ− JN(β)− λγ

and

〈dXJN − dJNX, S(JN )〉
= 〈dXJN − dJNX,αJN + βX + γJX〉
= α · 0 + β〈dXJN,X〉 + γ 〈dXN,X〉 − α〈dJNX, JN 〉

− β · 0 − γ 〈dJNX, JX〉
= β · 0 + γλ− αγ + γα

so that X(α) = JN(β)+ 3γλ.

(f ) JX, JN, JN :

〈dJXS(JN )− dJNS(JX), JN 〉
= 〈dJX(αJN + βX + γJX)− dJN(γJN + λJX), JN 〉
= JX(α)+ β〈dJXX, JN 〉 + γ 〈dJXX,N 〉 − JN(γ )− λ〈dJNX,N 〉
= JX(α)+ βλ+ γ · 0 − JN(γ )+ βλ

and

〈dJXJN − dJNJX, S(JN )〉
= 〈dJXJN − dJNJX,αJN + βX + γJX〉
= α · 0 + β〈dJXJN,X〉 + γ 〈dJXN,X〉 − α〈dJNX,N 〉

− β〈dJNJX,X〉 − γ · 0

= −βλ+ γ · 0 + αβ − αβ
so that JX(α) = JN(γ )− 3βλ.
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(g) X, JX, JX:

〈dXS(JX)− dJXS(X), JX〉
= 〈dX(γJN + λJX)− dJX(βJN + λX), JX〉
= γ 〈dXN,X〉 +X(λ)− β〈dJXN,X〉 − λ〈dJXX, JX〉
= γλ+X(λ)− β · 0 + λγ

and

〈dXJX − dJXX, S(JX)〉
= 〈dXJX − dJXX, γJN + λJX〉
= γ 〈dXX,N 〉 + λ · 0 − γ 〈dJXX, JN 〉 − λ〈dJXX, JX〉
= −γλ− γλ+ λγ

so that X(λ) = −3γλ.

(h) X, JX, X:

〈dXS(JX)− dJXS(X),X〉
= 〈dX(γJN + λJX)− dJX(βJN + λX),X〉
= γ 〈dXJN,X〉 + λ〈dXJX,X〉 − β〈dJXJN,X〉 − JX(λ)
= γ · 0 + βλ+ βλ− JX(λ)

and

〈dXJX − dJXX, S(X)〉 = 〈dXJX − dJXX,βJN + λX〉
= β〈dXX,N 〉 + λ〈dXJX,X〉 − β〈dJXX, JN 〉 − λ · 0

= −βλ+ βλ− βλ
so that JX(λ) = 3βλ.

So far we have established the following eight equalities:

X(β) = JN(λ)− 3βγ,

JX(γ ) = JN(λ)+ 3βγ,

X(γ ) = −αλ+ λ2 + 2β2 − γ 2,

JX(β) = +αλ− λ2 + β2 − 2γ 2,

X(α) = JN(β)+ 3γλ,

JX(α) = JN(γ )− 3βλ,

X(λ) = −3γλ,

JX(λ) = +3βλ.

The lemma will be proved as soon as we verify

(i) JN(λ) = 0,
(ii) X(α) = −αγ + 2γλ, and

(iii) JX(α) = αβ − 2βλ.
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For this we use the symmetry of the connection. In particular, we apply the iden-
tity dXJX− dJXX = [X, JX] to each of λ, β, and γ. Alternatively, Lemma 2 says
−2λJN+βX+γJX = [X, JX].We also use the identities that have been proved
already.

Proof of (i). Applying the identity to λ, we find

(−2λJN + βX + γJX)(λ) = −2λJN(λ)+ β(−3γλ)+ γ (3βλ) = −2λJN(λ)

and

X(JX(λ))− JX(X(λ))
= X(3βλ)− JX(−3γλ)

= 3[(JN(λ)− 3βγ )λ+ β(−3γλ)] + 3[(JN(λ)+ 3βγ )λ+ γ (3βλ)]
= 6λJN(λ),

so 8λJN(λ) = 0. Since λ 
= 0, this proves (i).

Proof of (ii). Applying the identity to β, we find

(−2λJN + βX + γJX)(β)
= −2λ(X(α)− 3γλ)+ β(−3βγ )+ γ (αλ− λ2 + β2 − 2γ 2)

= −2λX(α)+ γαλ+ 5γλ2 − 2β2γ − 2γ 3

and

X(JX(β))− JX(X(β))
= X(αλ− λ2 + β2 − 2γ 2)− JX(−3βγ )

= λX(α)+ (α − 2λ)X(λ)+ 2βX(β)− 4γX(γ )+ 3βJX(γ )+ 3γJX(β)

= λX(α)+ (α − 2λ)(−3γλ)+ 2β(−3βγ )− 4γ (−αλ+ λ2 + 2β2 − γ 2)

+ 3β(3βγ )+ 3γ (αλ− λ2 + β2 − 2γ 2)

= λX(α)+ 4αγλ− γλ2 − 2γ 3 − 2β2γ,

so 3λX(α) = −3αγλ+ 6γλ2 and X(α) = −αγ + 2γλ. This proves (ii).

Proof of (iii). Finally, applying the identity to γ, we find

(−2λJN + βX + γJX)(γ )
= −2λ(JX(α)+ 3βλ)+ β(−αλ+ λ2 + 2β2 − γ 2)+ γ (3βγ )
= −2λJX(α)− βαλ− 5βλ2 + 2β3 + 2βγ 2

and
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X(JX(γ ))− JX(X(γ ))
= X(3βγ )− JX(−αλ+ λ2 + 2β2 − γ 2)

= 3βX(γ )+ 3γX(β)+ λJX(α)+ (α − 2λ)JX(λ)

− 4βJX(β)+ 2γJX(γ )

= 3β(−αλ+ λ2 + 2β2 − γ 2)+ 3γ (−3βγ )

+ λJX(α)+ (α − 2λ)(3βλ)− 4β(αλ− λ2 + β2 − 2γ 2)+ 2γ (3βγ )

= λJX(α)− 4αβλ+ βλ2 + 2β3 + 2βγ 2

so that 3λJX(α) = 3αβλ− 6βλ2 and JX(α) = αβ − 2βλ. This proves (iii).

Lemma 4. Let M 3 ⊂ C
2 be as previously described. If λ 
= 0 and α + λ 
= 0,

then

1 = β2 + γ 2 − αλ
(α + λ)2

is constant onM.

Proof. Using Lemma 2, [X, JX] = −2λJN + βX + γJX. So to prove that 1 is
constant onM, it is enough to show that X(1) = 0 and JX(1) = 0.

To show that X(1) = 0, first notice that

X(β2 + γ 2 − αλ)
= 2βX(β)+ 2γX(γ )− λX(α)− αX(λ)
= 2β(−3βγ )+ 2γ (−αλ+ λ2 + 2β2 − γ 2)− λ(−αγ + 2γλ)− α(−3γλ)

= −2γ (β2 + γ 2 − αλ).
It follows that

X(1) = −2γ (β2 + γ 2 − αλ)
(α + λ)2 − 2(β2 + γ 2 − αλ)X(α)+X(λ)

(α + λ)3

= −2(β2 + γ 2 − αλ)
(α + λ)3 (γ (α + λ)+ (−αγ + 2γλ)+ (−3γλ)) = 0.

Likewise, to show that JX(1) = 0, observe that

JX(β2 + γ 2 − αλ)
= 2βJX(β)+ 2γJX(γ )− λJX(α)− αJX(λ)
= 2β(αλ− λ2 + β2 − 2γ 2)+ 2γ (3βγ )− λ(αβ − 2βλ)− α(3βλ)
= 2β(β2 + γ 2 − αλ).

It follows that
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JX(1) = 2β(β2 + γ 2 − αλ)
(α + λ)2 − 2(β2 + γ 2 − αλ)JX(α)+ JX(λ)

(α + λ)3

= 2(β2 + γ 2 − αλ)
(α + λ)3 (β(α + λ)− (αβ − 2βλ)− (3βλ)) = 0.

Thus the lemma is proved.

Completion of the proof in dimension two. Here we prove Theorem 1 in the case
n = 2. To do this, normalize the surface so that it can be defined near p = 0 by
r(z) = 1

2 (z2 + z̄2)+ εz1z̄1 + o(|z|2) for ε = ±1. Then perform a further Möbius
transformation

F(z1, z2) =
(

z1

z2 − ε ,
εz2 + 1

z2 − ε
)

so thatM ′ = F −1(M) is defined by r ′(z) = ε|z1|2 +ε|z2|2 −ε+o(|(z1, z2 +ε)|2)
and is therefore osculated to second order by the unit sphere at p ′ = (0, −ε). This
means that α = λ = 1 and β = γ = 0 at p ′, so1 = − 1

4 at p ′. By Lemma 4,1 =
− 1

4 on all ofM ′. We have

β2 + γ 2 − αλ
(α + λ)2 = −1

4
⇐⇒ β2 + γ 2 = αλ− 1

4
(α + λ)2

⇐⇒ β2 + γ 2 = −1

4
(α − λ)2.

The left-hand side of the last identity is nonnegative and the right-hand side is non-
positive, so both sides must be zero on M ′. In particular, α ≡ λ and β ≡ γ ≡ 0
onM ′, soM ′ is everywhere umbilic. It then follows thatM ′ is spherical (see e.g.
[6, p. 36]). Since the Möbius image of a sphere is a hermitian quadric, the lemma
is proved.

6. Proof in Higher Dimensions

The proof in higher dimensions involves slices of complex dimension two. We
first show that ifM 2n−1 ⊂ C

n is a hypersurface that satisfies condition (1), then a
nontrivial intersection ofM 2n−1 with a two-dimensional vector space is a surface
that also satisfies condition (1).

Suppose the vector space is spanned by ζ, η ∈ C
n. IfM is defined by r(z), then

the surface of intersectionMζ,η ⊂ C
2 can be defined by rζ,η(w) = r(w1ζ +w2η).

The complex tangent space is spanned by (s1, s2) = (−∑k rkηk ,
∑

k rkζk
)
. To

verify condition (1) forMζ,η, one shows first the identity

2∑
j,k=1

∂ 2rζ,η

∂wj∂wk
sj sk =

n∑
j,k=1

∂ 2r

∂zj∂zk
tj tk (11)

for tj = −ζj∑ l rlηl + ηj
∑

l rlζl . (We omit the details.) One sees readily that
t = (t1, . . . , tn) is in the complex tangent space ofM, since



The Möbius Geometry of Hypersurfaces 619

∑
j

rj tj =
∑
j

rj

(
−ζj

∑
k

rkηk + ηj
∑
k

rkζk

)
= 0.

The right-hand side of (11) is zero because condition (1) holds on M. It follows
that condition (1) holds onMζ,η as well.

We finish the proof of Theorem 1 as follows. By Proposition 4, one can use a
Möbius transformation to normalizeM 2n−1 ⊂ C

n so that it has defining function

r(z) = 1

2
(zn + z̄n)+

n−1∑
j=1

εj |zj |2 + o(|z|2)

for z near 0 ∈M and εj ∈ {−1, 0, +1}. (Notice that r is not uniquely determined, but
the second-order information does identify a unique quadric.) Under condition (1),
we must show that the o(|z|2) terms can be taken to be zero. If en = (0, . . . , 0,1)
then it will be enough to check that, for a dense set of ζ = (ζ1, . . . , ζn−1, 0) ∈
S 2n−3 × {0}, the surface Mζ,en is hermitian quadric. In particular, a dense sub-
set ofM is then contained in the quadric obtained by truncating the o(|z|2) terms
from r(z).

Given the result of Section 5, we now need only check that there is a dense set
of ζ ∈ S 2n−3 × {0} for whichMζ,en is non–Levi-flat. This is easy, sinceMζ,en has
defining function

rζ,en(w) = 1

2
(w2 + w̄2)+ |w1|2

∑
j

εj |ζj |2 + o(|w|2).

Since M is non–Levi-flat, not all of the εj are zero and so
∑
j εj |ζj |2 
= 0 except

for a set of codimension one. Evidently this set is dense, so the theorem is proved.

7. Proof of Theorems 2 and 3

We remark that the Bochner–Martinelli and Leray–Aı̌zenberg kernels are special
cases of Cauchy–Fantappiè kernels. See Range [7] for a nice treatment of this
larger topic.

We first prove the following proposition.

Proposition 5. SupposeM 2n−1 ⊂ C
n is three times differentiable, is non–Levi-

flat, and has unit normal vector Nw at w ∈M. Then there is a twice differentiable
function h > 0 onM with

h(w)Nw · (w̄ − z̄) = h(z)N̄z · (z− w) for all w, z∈M (12)

if and only ifM is contained in a hermitian quadric surface in C
n.

(The dot product means to sum the products of the complex coordinates.)

Proof. Assuming (12), choose a defining function r such that |∇r(w)| = 2h(w).
Then h(w)N̄w = (r1(w), . . . , rn(w)), where the subscripts refer to the holomor-
phic partial derivatives of r (i.e., rj = ∂r/∂wj and rj̄ = ∂r/∂w̄j ).
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Then (12) can be written as∑
j

rj̄ (w)(w̄j − z̄j ) =
∑
j

rj(z)(zj − wj) for all w, z∈M. (13)

Furthermore, using the Taylor expansions

rj̄ (w) = rj̄ (z)+
∑
k

[rj̄k(z)(wk − zk)+ rj̄ k̄(z)(w̄k − z̄k)] + o(|w − z|)

and

r(w) = r(z)+
∑
j

[rj(z)(wj − zj )+ rj̄ (z)(w̄j − z̄j )]

+ Real
∑
j,k

rjk(z)(wj − zj )(wk − zk)

+
∑
j,k

rjk̄(z)(wj − zj )(w̄k − z̄k)+ o(|w − z|2)

along with r(w) = 0 = r(z) for w, z∈M, one can replace (13) for w, z∈M by

i
∑
j,k

Imag[rjk(z)(wj − zj )(wk − zk)] + o(|w − z|2) = 0.

Considering just the quadratic terms and taking the limit as w approaches z, one
sees that this implies

Imag
∑
j,k

rjk(z)sj sk = 0 for all s = (s1, . . . , sn)∈ TMz. (14)

In particular, if s ∈HMz, then applying (14) to both s ∈ TMz and
√
is ∈ TMz gives∑

j,k rjk(z)sj sk = 0. So (1) holds, andM is contained in a hermitian quadric.
The reverse direction (that M contained in a hermitian quadric implies (12)) is

trivial, so we omit the proof.

Theorems 2 and 3 follow from the proposition in a manner identical to the situa-
tion for the corresponding theorems in the global case [3]. For completeness, we
outline the proofs here as well.

Proof of Theorem 2. The Bochner–Martinelli kernel is defined by

K(z,w) = (n− 1)!

2πn
Nw · (w̄ − z̄)

|w − z|2n for w ∈M, z 
= w.
If dσE is Euclidean surface measure, then the Bochner–Martinelli transform is the
operator f → Kf defined for f ∈L2(M) by

Kf(z) = lim
ε↓0

∫
w∈M,|z−w|>ε

f(w)K(z,w) dσE.

By the Calderón–Zygmund theory of singular integrals, the limit exists for almost
all z∈M, and K is bounded on L2(M). Furthermore, the L2(M) adjoint of K has
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kernel K(w, z), and K is self-adjoint in L2(M) if and only if K(z,w) = K(w, z)
for all z,w ∈M, z 
= w.

If one replaces Euclidean measure with the weighted measure h−1dσE for some
twice differentiable function h > 0 on the boundary, then with respect to the new
measure the transform has kernel h(w)K(z,w). Furthermore, K is self-adjoint if
and only if h(w)K(z,w) ≡ h(z)K(w, z). This holds precisely when (12) is satis-
fied. So Theorem 2 follows from Proposition 5.

Proof of Theorem 3. A lineally convex hypersurface is one for which the complex
tangent space never intersects the domain itself; so if T cw(M) = {w + v ∈ C

n :∑
j rj(w)vj = 0}, then T cw(M) ⊂ C

n \M for all w ∈M.
For this kind of hypersurface, the Leray–Aı̌zenberg transform is the operator

defined for f ∈L2(M) by

Cf(z) =
(

1

2πi

)n ∫
w∈M

f(w)
∂r(w) ∧ (∂̄∂r(w))n−1(∑

rj(w)(wj − zj )
)n for z /∈M,

where the derivatives in the denominator refer to the holomorphic derivatives of
r; that is, rj = ∂r/∂wj . Similarly, rj̄ = ∂r/∂w̄j .

Given the convexity condition, i−n∂r(w) ∧ (∂̄∂r(w))n−1 is a positive multiple
of Euclidean surface measure.

Furthermore, if
(∑

rj(w)(wj − zj )
)n = (∑

rj̄ (z)(z̄j − w̄j )
)n

for all w, z∈M,
then

∑
rj(w)(wj − zj ) = ∑

rj̄ (z)(z̄j − w̄j ) for all w, z∈M. This can be proved
via a simple argument using Taylor expansions.

From the kernel, then, we find that C is self-adjoint with respect to weighted
measure on the boundary if and only if there is a twice differentiable function
h > 0 such that

h(w)
∑
j

rj(w)(wj − zj ) = h(z)
∑
j

rj̄ (z)(z̄j − w̄j ) for all w, z∈M.

The vector (r 1̄(w), . . . , rn̄(w)) is a multiple of the normal vector Nw and so, after
taking conjugates, this is the same condition as (12) for a possibly different func-
tion h. Hence Theorem 3 also follows from Proposition 5.
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