Subextension and Approximation of Negative Plurisubharmonic Functions

URBAN CEGRELL & LISA HED

1. Introduction

We denote by $PSH^{-}(\Omega)$ the class of negative plurisubharmonic functions defined on the domain Ω in \mathbb{C}^n . Here a *domain* is an open, bounded, and connected set. A domain Ω in \mathbb{C}^n is called *hyperconvex* if there exists a negative exhaustion function for Ω —that is, a function $\psi \in PSH^{-}(\Omega)$ such that

$$\{z \in \Omega : \psi(z) < c\} \subset \subset \Omega \quad \forall c < 0.$$

We say that a function $v \in PSH^{-}(\Omega)$ is in the class $\mathcal{F}(\Omega)$ if there is a decreasing sequence of functions $v_j \in \mathcal{E}_0(\Omega)$ such that $\lim v_j = v$ and $\sup_j \int (dd^c v_j)^n < +\infty$. Here $\mathcal{E}_0(\Omega)$ is the class of bounded plurisubharmonic functions u such that $\lim_{z\to\xi} u(z) = 0$ for all $\xi \in \partial\Omega$ and $\int_{\Omega} (dd^c u)^n < +\infty$. The class $\mathcal{E}(\Omega)$ contains functions in PSH⁻(Ω) that are locally in $\mathcal{F}(\Omega)$. See [C1; C2] for further properties of this and related classes.

The purpose of this paper is to study approximation of functions in $\mathcal{F}(\Omega)$ by functions in $\mathcal{F}(\Omega_j)$, where Ω and Ω_j are hyperconvex domains such that $\Omega \subset \subset \Omega_{j+1} \subset \subset \Omega_j$ for all *j*. We generalize Benelkourchi's work [Be]. For this we will use subextensions, which are discussed in Section 2. Let $u \in \mathcal{F}(\Omega)$ and let u_j be the (largest) subextension of *u* to Ω_j ; that is, $u_j = \sup\{\varphi \in PSH^-(\Omega_j) : \varphi|_{\Omega} \leq u\}$. Then $\{u_j\}$ is an increasing sequence and it follows from Theorem 2.2 that $u_j \in \mathcal{F}(\Omega_j)$. The problem is to show that $(\lim_j u_j)^* = u$, which is true for all $u \in \mathcal{F}(\Omega)$ if it is true for one single function $u \in \mathcal{F}(\Omega)$, $u \neq 0$. This is the main result of the paper and will be discussed in Section 3. It is a great pleasure for us to thank Anders Fällström for many useful discussions.

2. Subextension

The purpose of this section is to devise a method to approximate functions by functions defined on strictly larger domains. Let Ω and $\hat{\Omega}$ be hyperconvex domains, $\Omega \subset \subset \hat{\Omega}$. If $u \in \mathcal{F}(\Omega)$ then we define the (largest) subextension of u to $\hat{\Omega}$ as

$$\hat{u}(z) = \sup\{\varphi(z) : \varphi \in \mathsf{PSH}^{-}(\hat{\Omega}), \varphi|_{\Omega} \le u\}$$

By a result of Cegrell and Zeriahi [CZ] we know that the set $\{\varphi(z) : \varphi \in PSH^{-}(\hat{\Omega}), \varphi|_{\Omega} \leq u\}$ is not empty when $u \in \mathcal{F}(\Omega)$.

Received August 23, 2007. Revision received March 26, 2008.

LEMMA 2.1. Let Ω and $\hat{\Omega}$ be hyperconvex domains such that $\Omega \subset \subset \hat{\Omega}$. If $u \in \mathcal{E}_0(\Omega) \cap C(\bar{\Omega})$ then $\hat{u} \in \mathcal{E}_0(\hat{\Omega})$, $\operatorname{supp}(dd^c \hat{u})^n \subset \subset \Omega$, and $(dd^c \hat{u})^n \leq \chi_{\Omega}(dd^c u)^n$ on $\hat{\Omega}$.

Proof. It is clear that $\hat{u} \in \mathcal{E}_0(\hat{\Omega})$. By the definition of \hat{u} , $(dd^c \hat{u})^n = 0$ near $\hat{\Omega} \setminus \Omega$ and so the support supp $(dd^c \hat{u})^n \subset \Omega$. The same argument gives us that $(dd^c \hat{u})^n = 0$ on the open set $\{z \in \Omega : \hat{u}(z) < u(z)\}$, so $(dd^c \hat{u})^n \leq (dd^c u)^n$ there. We now need to show that the same is true on the set $A = \{z \in \Omega : u(z) = \hat{u}(z)\}$. Take a compact set $K \subset A$. Then, since $K \subset \{\hat{u} > u - \varepsilon\}$,

$$\int_{K} (dd^{c}\hat{u})^{n} = \int_{K} \chi_{\{\hat{u}>u-\varepsilon\}} (dd^{c}\hat{u})^{n}$$
$$= \int_{K} \chi_{\{\hat{u}>u-\varepsilon\}} (dd^{c} \max\{\hat{u}, u-\varepsilon\})^{n}$$
$$\leq \int_{K} (dd^{c} \max\{\hat{u}, u-\varepsilon\})^{n}.$$

Because $\max{\{\hat{u}, u - \varepsilon\}} \nearrow u$ when $\varepsilon \to 0$, it follows that the measure $(dd^c \max{\{\hat{u}, u - \varepsilon\}})^n$ converges to $(dd^c u)^n$ in the weak* topology. The characteristic function χ_K is upper semicontinuous, so we can approximate χ_K with a decreasing sequence of continuous functions φ_j that are bounded from above. Then Lebesgue's dominated convergence theorem gives us that

$$\limsup_{\varepsilon \to 0} \int_{\Omega} \chi_{K} (dd^{c} \max\{\hat{u}, u - \varepsilon\})^{n}$$

=
$$\lim_{\varepsilon \to 0} \sup_{\sigma} \left[\lim_{j \to 0} \int_{\Omega} \varphi_{j} (dd^{c} \max\{\hat{u}, u - \varepsilon\})^{n} \right]$$

$$\leq \limsup_{\varepsilon \to 0} \int_{\Omega} \varphi_{j} (dd^{c} \max\{\hat{u}, u - \varepsilon\})^{n} = \int_{\Omega} \varphi_{j} (dd^{c} u)^{n}$$

for every fixed $j \in \mathbb{N}$. Since $\int_{\Omega} \varphi_j (dd^c u)^n \searrow \int_{\Omega} \chi_K (dd^c u)^n$, the proof is complete.

This lemma was proved by Pham Hoang Hiep in [P], but here we give a more detailed proof. In [P], Pham also proved the next theorem.

THEOREM 2.2. Let Ω and $\hat{\Omega}$ be hyperconvex domains such that $\Omega \subset \subset \hat{\Omega}$. If $u \in \mathcal{F}(\Omega)$, then $\hat{u} \in \mathcal{F}(\hat{\Omega})$ and $(dd^c \hat{u})^n \leq \chi_{\Omega}(dd^c u)^n$ on $\hat{\Omega}$.

Proof. Since $u \in \mathcal{F}(\Omega)$, we know from Theorem 2.1 in Cegrell [C2] that there is a decreasing sequence $u_j \in \mathcal{E}_0(\Omega) \cap C(\overline{\Omega})$ with $j \in \mathbb{N}$ and $u_j \to u$. Let

$$\hat{u}_j = \sup\{v \in \mathrm{PSH}(\hat{\Omega}) : v|_{\Omega} \le u_j|_{\Omega}\}.$$

Then $\hat{u}_j \searrow \hat{u}$ and $\hat{u}_j \in \mathcal{E}_0(\hat{\Omega})$ so $\hat{u} \in \mathcal{F}(\hat{\Omega})$. From Lemma 2.1 we know that $(dd^c \hat{u}_j)^n \le \chi_{\Omega} (dd^c u_j)^n$ on $\hat{\Omega}$. To prove that $(dd^c \hat{u})^n \le \chi_{\Omega} (dd^c u)^n$ on $\hat{\Omega}$ it remains to show that $\chi_{\Omega} (dd^c u_j)^n$ converges to $\chi_{\Omega} (dd^c u)^n$ on $\hat{\Omega}$ in the weak* topology. We want to show that $(dd^c u)^n$ does not put any mass on $\partial\Omega$ —in

other words, that $\int_{\Omega} (dd^c u)^n \ge \lim_j \int_{\Omega} (dd^c u_j)^n$. Take a constant A such that $\lim_j \int_{\Omega} (dd^c u_j)^n > A$. Since $(dd^c u_j)^n$ is increasing there exists a $k \in \mathbb{N}$ such that $\int_{\Omega} (dd^c u_j)^n > A$ if $j \ge k$. Choose $h \in \mathcal{E}_0(\Omega)$ with $h \ge -1$ such that $\int_{\Omega} -h(dd^c u_k)^n > A$. Then $\int_{\Omega} -h(dd^c u_j)^n > A$ when $j \ge k$ and

$$\begin{split} \int_{\Omega} (dd^c u)^n &= \int_{\Omega} (1+h) (dd^c u)^n - \int_{\Omega} h (dd^c u)^n \\ &= \int_{\Omega} (1+h) (dd^c u)^n + \lim_j \int_{\Omega} -h (dd^c u_j)^n \\ &> \int_{\Omega} (1+h) (dd^c u)^n + A > A. \end{split}$$

This shows that $\int_{\Omega} (dd^c u)^n \ge \lim_j \int_{\Omega} (dd^c u_j)^n$, which finishes the proof.

3. Approximation

In this section we come to the main result of this paper. We will use subextensions as already described to approximate functions in $\mathcal{F}(\Omega)$ by functions in $\mathcal{F}(\Omega_j)$. We need the sufficient condition that one single function ($\neq 0$) in the class $\mathcal{N}(\Omega)$ can be approximated by functions in $\mathcal{N}(\Omega_j)$. We will start by defining the class \mathcal{N} .

Let Ω be a hyperconvex domain and let Ω^j be a fundamental sequence of strictly pseudoconvex domains; that is, $\Omega^j \subset \Omega^{j+1} \subset \Omega$ for every j and $\bigcup \Omega^j = \Omega$. Let $u \in \mathcal{E}$ and let

$$u^{j} = \sup\{\varphi \in \mathsf{PSH}(\Omega) : \varphi|_{C\Omega^{j}} \le u|_{C\Omega^{j}}\}.$$

Then $u \leq u^j \leq u^{j+1}$, so $u^j \in \mathcal{E}$ and $\tilde{u} = (\lim u^j)^* \in \mathcal{E}$. Let the class $\mathcal{N}(\Omega)$ be the class of all functions $u \in \mathcal{E}(\Omega)$ such that $\tilde{u} = 0$. Note that $\mathcal{E}_0 \subset \mathcal{F} \subset \mathcal{N}$.

In the proof of Theorem 3.5 we will need the class of functions $\mathcal{F}(\tilde{u})$. A plurisubharmonic function u defined on Ω belongs to the class $\mathcal{F}(\tilde{u}) (= \mathcal{F}(\Omega, \tilde{u}))$ if there exists a function $\varphi \in \mathcal{F}(\Omega)$ such that

$$\tilde{u} \ge u \ge \varphi + \tilde{u}.$$

Note that $\mathcal{F}(0) = \mathcal{F}$. For more details about the class $\mathcal{F}(\tilde{u})$ see [C4].

THEOREM 3.1. Assume that $\Omega \subset \Omega_{j+1} \subset \Omega_j$ are hyperconvex domains and that there exist a function $0 > v \in \mathcal{N}(\Omega)$ and a sequence $v_j \in \mathcal{N}(\Omega_j)$ such that $v_j \to v$ a.e. on Ω . Then, for every function $u \in \mathcal{F}(\Omega)$ there is an increasing sequence of functions $u_j \in \mathcal{F}(\Omega_j)$ such that $\lim u_j = u$ a.e. on Ω .

In the next corollary we must assume that the sequence $\{\Omega_j\}$ is a Stein neighborhood basis—in other words, that $\overline{\Omega} = \bigcap \Omega_j$, where Ω_j is pseudoconvex.

COROLLARY 3.2. Let Ω be a hyperconvex domain with C^1 -boundary and with a Stein neighborhood basis $\{\Omega_j\}$. Then for every function $u \in \mathcal{F}(\Omega)$ there is an increasing sequence $u_j \in \mathcal{F}(\Omega_j)$ such that $\lim u_j = u$ a.e. on Ω . Before proving Theorem 3.1 and Corollary 3.2 we need some other results. We start by defining the relative Monge–Ampère capacity defined by Bedford and Taylor [BT]. If $K \subset \Omega$ is a compact set then the Monge–Ampère capacity of *K* relative Ω is defined as

$$\operatorname{cap}(K,\Omega) = \sup\left\{\int_{K} (dd^{c}v)^{n} : v \in \operatorname{PSH}(\Omega), \ -1 \le v \le 0\right\}.$$

If $u_{K,\Omega}$ is the relative extremal function defined by

$$u_{K,\Omega}(z) = \sup\{v(z) : v \in \text{PSH}(\Omega), v|_K \le -1, v|_\Omega < 0\}$$

and if

$$u_{K,\Omega}^*(z) = \limsup_{\xi \to z} u_{K,\Omega}(\xi)$$

is the upper semicontinuous regularization, then Bedford and Taylor proved that

$$\operatorname{cap}(K,\Omega) = \int_{\Omega} (dd^{c} u_{K,\Omega}^{*})^{n} = \int_{K} (dd^{c} u_{K,\Omega}^{*})^{n}$$

In [Be], Benelkourchi gave a new characterization of the class $\mathcal{F}(\Omega)$ in terms of the relative Monge–Ampère capacity. For the reader's convenience we include the whole proof.

THEOREM 3.3. Let Ω be a hyperconvex domain. A function $\varphi \in PSH^{-}(\Omega)$ is in $\mathcal{F}(\Omega)$ if and only if

$$\limsup_{s\to 0} s^n \operatorname{cap}(\{z \in \Omega : \varphi \le -s\}, \Omega) < +\infty.$$

Proof. Let $\varphi \in \mathcal{F}(\Omega)$; then there is a decreasing sequence of functions $\varphi_j \in \mathcal{E}_0(\Omega)$ such that $\varphi_j \searrow \varphi$. For a fixed *j* we have that $h^*_{\{\varphi_j \le -s\},\Omega} \ge \varphi_j/s$, where $h_{\{\varphi_j \le -s\},\Omega}$ is the relative extremal function. Since both functions are in $\mathcal{E}_0(\Omega)$, integration by parts yields

$$\int_{\Omega} (dd^c h^*_{\{\varphi_j \leq -s\}, \Omega})^n \leq \int_{\Omega} \left(dd^c \frac{\varphi_j}{s} \right)^n$$

and hence

$$s^n \operatorname{cap}(\{\varphi_j \leq -s\}, \Omega) \leq \int_{\Omega} (dd^c \varphi_j)^n$$

Because $\sup_j \int_{\Omega} (dd^c \varphi_j)^n < +\infty$, we obtain

$$\limsup_{s \to 0} s^n \operatorname{cap}(\{z \in \Omega : \varphi(z) \le -s\}, \Omega) < +\infty$$

Now assume that $\varphi \in PSH^{-}(\Omega)$ and that

$$\limsup_{s \to 0} s^n \operatorname{cap}(\{z \in \Omega : \varphi(z) \le -s\}, \Omega) < +\infty$$

By [C2] there is a decreasing sequence of functions $\varphi_j \in \mathcal{E}_0 \cap C(\overline{\Omega})$ such that $\varphi_j \searrow \varphi$ when $j \to \infty$. It remains to show that $\sup_j \int_{\Omega} (dd^c \varphi_j)^n < +\infty$. Take s > 0 fixed. Then

$$\begin{split} \frac{1}{s^n} \int_{\{\varphi_j \le -s\}} (dd^c \varphi_j)^n \\ &= \int_{\{\varphi_j/s \le -1\}} \left(dd^c \frac{\varphi_j}{s} \right)^n \\ &= \int_{\Omega} \left(dd^c \frac{\varphi_j}{s} \right)^n - \int_{\{\varphi_j/s > -1\}} \left(dd^c \frac{\varphi_j}{s} \right)^n \\ &= \int_{\Omega} \left(dd^c \max\left\{ \frac{\varphi_j}{s}, -1 \right\} \right)^n - \int_{\{\varphi_j/s > -1\}} \left(dd^c \max\left\{ \frac{\varphi_j}{s}, -1 \right\} \right)^n \\ &= \int_{\{\varphi_j/s \le -1\}} \left(dd^c \max\left\{ \frac{\varphi_j}{s}, -1 \right\} \right)^n \le \operatorname{cap}(\{\varphi_j \le -s\}, \Omega). \end{split}$$

Hence

$$\int_{\{\varphi_j \le -s\}} (dd^c \varphi_j)^n \le s^n \operatorname{cap}(\{\varphi_j \le -s\}, \Omega) \quad \forall s > 0$$

and then

$$\int_{\Omega} (dd^{c} \varphi_{j})^{n} \leq \limsup_{s \to 0} s^{n} \operatorname{cap}(\{\varphi \leq -s\}, \Omega) < +\infty$$

for all *j*, and $\varphi \in \mathcal{F}(\Omega)$ by the definition.

THEOREM 3.4. Let Ω be a hyperconvex domain. If $u, v \in \mathcal{F}(\Omega)$ then $(dd^c u)^n = (dd^c v)^n$, and if $u \leq v$ then u = v.

Proof. By [C3] there is a strictly plurisubharmonic exhaustion function $\psi \in \mathcal{E}_0 \cap C^{\infty}(\Omega)$ for Ω . We would like to show that

$$\int d(u-v) \wedge d^{c}(u-v) \wedge (dd^{c}\psi)^{n-1} = 0$$

since then (u - v) is constant. Since both u and v belong to $\mathcal{F}(\Omega)$ it would then follow that u would be equal to v. We will use induction to show this. Using $(dd^c u)^n = (dd^c v)^n$ and $u \le v$, it is easy to see that $0 = \int d(u - v) \wedge d^c(u - v) \wedge (dd^c u)^a \wedge (dd^c v)^b \wedge dd^c \psi$ when a + b = n - 2. Assume that $0 = \int d(u - v) \wedge d^c(u - v) \wedge (dd^c u)^a \wedge (dd^c v)^b \wedge (dd^c \psi)^p$ when a + b = n - 1 - p. Then, since $\psi \in \mathcal{E}_0 \cap C^{\infty}(\Omega)$, via Stokes's theorem and Hölder's inequality we have for a + b = n - 2 - p that

$$0 \leq \int d(u-v) \wedge d^{c}(u-v) \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p+1}$$
$$= \int -(u-v) dd^{c}(u-v) \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p+1}$$
$$= \int -\psi (dd^{c}(u-v))^{2} \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p} =$$

$$= \int d\psi \wedge d^{c}(u-v) \wedge dd^{c}(u-v) \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p}$$

$$\leq \left| \int d\psi \wedge d^{c}(u-v) \wedge dd^{c}u \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p} \right|$$

$$+ \left| \int d\psi \wedge d^{c}(u-v) \wedge dd^{c}v \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p} \right|$$

$$\leq \left[\int d\psi \wedge d^{c}\psi \wedge (dd^{c}u)^{a+1} \wedge (dd^{c}v)^{b} \wedge (dd^{c}\psi)^{p} \right]^{1/2}$$

$$+ \left[\int d\psi \wedge d^{c}\psi \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b+1} \wedge (dd^{c}\psi)^{p} \right]^{1/2}$$

$$+ \left[\int d\psi \wedge d^{c}\psi \wedge (dd^{c}u)^{a} \wedge (dd^{c}v)^{b+1} \wedge (dd^{c}\psi)^{p} \right]^{1/2} = 0.$$

REMARK 1. Theorem 3.4 follows from [NP, Prop. 3.4] but here we give a more detailed version of the proof in [C4].

THEOREM 3.5. Assume that $\Omega \subset \Omega_{j+1} \subset \Omega_j$ are hyperconvex domains and that there exist a function $0 > v \in \mathcal{N}(\Omega)$ and a sequence of functions $v_j \in \mathcal{N}(\Omega_j)$ such that $\lim v_j = v$ a.e. on Ω . Then $\operatorname{cap}(K, \Omega) = \lim_{j \to +\infty} \operatorname{cap}(K, \Omega_j)$ for every compact subset K of Ω .

Before proving this theorem we observe that, if we have a sequence $v_j \in \mathcal{N}(\Omega_j)$ that converges to some $v \in \mathcal{N}(\Omega)$ ($v \neq 0$) a.e. in Ω , then we can assume that our sequence $\{v_j\}$ is increasing. We can create functions $v^j = (\sup_{j \leq k} v_k)^*$ that will be in $\mathcal{N}(\Omega)$ (since $v^j \geq v$) and $v^j \searrow v$ a.e. on Ω . Observe that $(\sup_{k \geq j} v_k)^* = (\sup_{k \geq j} v_k)$ a.e. on Ω . Choose $j_0 \in \mathbb{N}$ such that $v_j \neq 0$ for all $j > j_0$. Now let $v'_s = \sup_{j_0 \leq p \leq s} v_p$; then $v'_s \in \mathcal{N}(\Omega_s)$ since $v'_s \geq v_s$. We see that $v'_s \nearrow v^{j_0} = (\sup_{j_0 \leq k} v_k)^*$ a.e. on Ω and that $v^{j_0} < 0$.

We will also need the following result, which was proved in [C4].

THEOREM 3.6. Suppose $u \in \mathcal{E}$ with $\int_{\Omega} (dd^c u)^n < +\infty$. Then $u \in \mathcal{F}(\tilde{u})$.

Proof of Theorem 3.5. Assume that there exist a function $0 > v \in \mathcal{N}(\Omega)$ and an increasing sequence of functions $v_j \in \mathcal{N}(\Omega_j)$ such that $\lim v_j = v$ a.e. on Ω . Let $K \subset \subset \Omega$ and let $h_{K,\Omega}$ be the relative extremal function for K in Ω . Then $h_{K,\Omega}^* \in \mathcal{E}_0(\Omega) \cap C(\overline{\Omega})$ with $-1 \leq h_{K,\Omega}^* \leq 0$ and $\operatorname{supp}(dd^c h_{K,\Omega}^*)^n \subset K$. Put

$$h_j(z) = \sup\{\varphi(z) : \varphi \in \mathrm{PSH}^-(\Omega_j), \varphi|_{\Omega} \le h_{K,\Omega}^*\}.$$

By Lemma 2.1, $h_j \in \mathcal{E}_0(\Omega_j)$ and $(dd^c h_j)^n \leq \chi_\Omega(dd^c h_{K,\Omega}^*)^n$ on Ω_j . Multiplying v and the v_j by a positive constant, we can assume that v < -1 near K so

that $v_j \leq h_{K,\Omega}^*$ on Ω . Then $v_j \leq h_j$ and so, if we define $f = (\lim h_j)^*$, then $v \leq f$ and $f \in \mathcal{N}(\Omega)$. Because of the construction, $f \leq h_{K,\Omega}^*$ and $(dd^c f)^n \leq (dd^c h_{K,\Omega}^*)^n$. It follows that $\int (dd^c f)^n \leq \int (dd^c h_{K,\Omega}^*)^n < +\infty$ and, by Theorem 3.6, $f \in \mathcal{F}$. But since $f \leq h_{K,\Omega}^*$ it follows from integration by parts (see [C2]) that $\int (dd^c f)^n \geq \int (dd^c h_{K,\Omega}^*)^n$, so we get $\int (dd^c f)^n = \int (dd^c h_{K,\Omega}^*)^n$. Therefore, $(dd^c f)^n = (dd^c h_{K,\Omega}^*)^n$ and so, by Theorem 3.4, $f = h_{K,\Omega}^*$. Then, since h_j is an increasing sequence, we know that the measure $(dd^c h_j)^n$ converges to $(dd^c h_{K,\Omega}^*)^n$ in the weak* topology. But $\operatorname{supp}(dd^c h_j)^n \subset K$ and $\operatorname{supp}(dd^c h_{K,\Omega}^*)^n \subset K$, so

$$\int_{K} (dd^{c}h_{j})^{n} \to \int_{K} (dd^{c}h_{K,\Omega}^{*})^{n}.$$

By the definition of the capacity $\operatorname{cap}(K, \Omega_j) \ge \int_K (dd^c h_j)^n$, the result now follows.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let $u \in \mathcal{F}(\Omega)$ and let $u_j = \sup\{\varphi \in PSH^-(\Omega_j) : \varphi|_{\Omega} \le u\}$; that is, u_j is the subextension of u to Ω_j considered in Section 2. Then $\{u_j\}$ will be an increasing sequence and $u_j \in \mathcal{F}(\Omega_j)$ by Theorem 2.2. It remains to show that $v = (\lim u_j)^* \in \mathcal{F}(\Omega)$ and that v = u. Suppose that s > 0 and that K is a compact subset of $\{z \in \Omega : v(z) \le -s\}$. Theorem 3.5 and the proof of Theorem 3.3 give us that

$$s^{n} \operatorname{cap}(K, \Omega) = s^{n} \lim_{j \to \infty} \operatorname{cap}(K, \Omega_{j}) \leq s^{n} \lim_{j \to \infty} \operatorname{cap}(\{z \in \Omega : v(z) \leq -s\}, \Omega_{j})$$
$$\leq s^{n} \lim_{j \to \infty} \operatorname{cap}(\{z \in \Omega_{j} : u_{j}(z) \leq -s\}, \Omega_{j})$$
$$\leq \lim_{j \to \infty} \int_{\Omega_{j}} (dd^{c}u_{j})^{n} \leq \int_{\Omega} (dd^{c}u)^{n}.$$

Hence $s^n \operatorname{cap}(\{v \le -s\}, \Omega) \le \int_{\Omega} (dd^c u)^n$ for all s > 0 and so, by Theorem 3.3, $v = (\lim u_j)^* \in \mathcal{F}(\Omega)$. We know by the construction that $v \le u$, so integration by parts yields $\int_{\Omega} (dd^c u)^n \le \int_{\Omega} (dd^c v)^n$. But Theorem 2.2 gives that $(dd^c v)^n \le (dd^c u)^n$ and hence $(dd^c v)^n = (dd^c u)^n$. It follows now from Theorem 3.4 that v = u, which finishes the proof.

Using Theorem 3.1 we now prove Corollary 3.2.

Proof of Corollary 3.2. Because $\{\Omega_j\}$ is a Stein neighborhood basis, we can assume that the Ω_j are hyperconvex. Take a closed ball $B \subset \Omega$. Then the relative extremal function $h_{B,\Omega} \in \mathcal{E}_0(\Omega) \cap C(\overline{\Omega})$. Fornæss and Wiegerinck showed in [FW] that $h_{B,\Omega}$ can be approximated by functions $u_i \in \text{PSH}(\overline{\Omega}) \cap C^{\infty}(\overline{\Omega})$ uniformly on $\overline{\Omega}$. Take $\varepsilon > 0$; then there exists an N > 0 such that $\sup_{\overline{\Omega}} |h_{B,\Omega} - u_i| < \varepsilon$ if i > N. Since Ω_j is a Stein neighborhood basis for Ω , we can take a large j such that $u_i \in \text{PSH}(\Omega_i) \cap C^{\infty}(\Omega_j)$. Let

$$h_k(z) = \sup\{\varphi(z) : \varphi \in \mathrm{PSH}^-(\Omega_k), \varphi|_{\Omega} \le h_{B,\Omega}\}.$$

Then $\{h_k\}$ is an increasing sequence and $h_k \in \mathcal{E}_0(\Omega_k)$ by Theorem 2.1. We know that $u_i - \varepsilon < h_{B,\Omega}$ on Ω , so $h_k \ge u_i - \varepsilon$ for k > j. Thus $\lim h_k = h_{B,\Omega}$ and, given Theorem 3.1, we can approximate every function in $\mathcal{F}(\Omega)$ by functions in $\mathcal{F}(\Omega_j)$.

REMARK 2. In the assumptions for Theorem 3.1 we assume that $\Omega \subset \subset \Omega_{j+1} \subset \subset \Omega_j$ and that there exist a function $0 > v \in \mathcal{N}(\Omega)$ and a sequence $v_j \in \mathcal{N}(\Omega_j)$ such that $v_j \to v$ a.e. in Ω . A natural question is whether these two assumptions imply that $\overline{\Omega} = (\bigcap \Omega_j)$. Clearly it cannot be the case that $\Omega \subset \subset (\bigcap \Omega_j)^\circ$, since then $\{v_j\}$ would be a uniformly upper bounded family of plurisubharmonic functions on $(\bigcap \Omega_j)^\circ$. Then we could take a compact set K such that $\Omega \subset K \subset (\bigcap \Omega_j)^\circ$ and we could find a subsequence of $\{v_j\}$ that converges to a plurisubharmonic function v_0 on K. Since $v_j \to v$ a.e. on Ω , we know that $v = v_0|_{\Omega}$. But since $0 > v_0 \in \text{PSH}(K)$ we have $v_0 < c < 0$ on $\partial\Omega$, and from $v \in \mathcal{N}(\Omega)$ it follows that $\lim \sup_{z \to \xi} v(z) = 0$ for all $\xi \in \partial\Omega$. This gives us a contradiction.

REMARK 3. Note that a strictly pseudoconvex domain Ω with C^2 -boundary has a Stein neighborhood basis. Then, by Corollary 3.2, every function $u \in \mathcal{F}(\Omega)$, where Ω is such a domain, can be approximated by an increasing sequence of functions $u_i \in \mathcal{F}(\Omega_i)$.

REMARK 4. Polydiscs are examples of nonsmooth domains satisfying the conditions of Theorem 3.1.

REMARK 5. Note that the existence of a Stein neighborhood basis does not imply that Ω is hyperconvex; see [V] for a counterexample. Starting with the unit disc in \mathbb{C} and then removing the origin and a sequence of closed discs with decreasing radius and centers tending to the origin, Vâjâitu [V] constructed a "swiss cheese" domain that is fat (i.e., $\overline{\Omega}^{\circ} = \Omega$) and has a Stein neighborhood basis but that is not hyperconvex.

References

- [Be] S. Benelkourchi, A note on the approximation of plurisubharmonic functions, C. R. Math. Acad. Sci. Paris Sér. I Math. 342 (2006), 647–650.
- [BT] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40.
- [C1] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217.
- [C2] —, *The general definition of the complex Monge–Ampère operator*, Ann. Inst. Fourier (Grenoble) 54 (2004), 159–179.
- [C3] ——, Approximation of plurisubharmonic functions in hyperconvex domains, Complex analysis and digital geometry (Proceedings of the Kiselmanfest), Acta Univ. Upsaliensis (to appear).
- [C4] —, A general Dirichlet problem for the Complex Monge–Ampère operator, Ann. Polon. Math. 94 (2008), 131–147.
- [CZ] U. Cegrell and A. Zeriahi, Subextension of plurisubharmonic functions with bounded Monge–Ampère mass, C. R. Math. Acad. Sci. Paris Sér. I Math. 336 (2003), 305–308.

- [FW] J. E. Fornæss and J. Wiegerinck, Approximation of plurisubharmonic functions, Ark. Mat. 27 (1989), 257–272.
- [NP] V. K. Nguyen and H. H. Pham, A comparison principle for the complex Monge-Ampère operator in Cegrell's classes and applications, Trans. Amer. Math. Soc. (to appear).
 - [P] H. H. Pham, Pluripolar sets and the subextension in Cegrell's classes, Complex Var. Elliptic Equ. 53 (2008), 675–684.
 - [V] V. Vâjâitu, On locally hyperconvex morphisms, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 823–828.

U. Cegrell
Department of Mathematics and Mathematical Statistics
Umeå University
87 Umeå
Sweden

L. Hed Department of Mathematics and Mathematical Statistics Umeå University 87 Umeå Sweden

urban.cegrell@math.umu.se

lisa.hed@math.umu.se