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1. Introduction

Let L be the infinitesimal generator of an analytic semigroup on L2(Rn) with suit-
able upper bounds on its heat kernels, and suppose L has a bounded holomorphic
functional calculus on L2(Rn). In this paper, we introduce and develop a new
function space VMOL of vanishing mean oscillation associated with the opera-
tor L. Using the theory of tent spaces and the Littlewood–Paley theory, we prove
that a Hardy space H1

L of Auscher, Duong, and McIntosh introduced in [ADMc]
is the dual of our new VMOL∗ in which L∗ is the adjoint operator of L. We also
give an equivalent characterization of the space VMOL in the context of the theory
of tent spaces.

A locally integrable function f on Rn is said to be in BMO(Rn), the space of
bounded mean oscillation, if

‖f ‖BMO = sup
B

|B|−1
∫
B

|f(x) − fB | dx < ∞, (1.1)

where the supremum is taken over all balls B in Rn and where fB stands for the
mean of f over B; that is,

fB = |B|−1
∫
B

f(x) dx.

The quotient space of BMO(Rn) with this seminorm over the constant functions is
a Banach space. The space of BMO functions was introduced by John and Niren-
berg [JN].

According to Sarason [Sa], a function f of BMO(Rn) that satisfies the limiting
condition
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lim
a→0

(
sup

B :rB≤a

|B|−1
∫
B

|f(x) − fB | dx
)

= 0 (1.2)

is said to be of vanishing mean oscillation on Rn. The subspace of BMO(Rn) con-
sisting of the functions of vanishing mean oscillation is denoted by VMO(Rn),
and we endow VMO(Rn) with the norm of BMO(Rn). See [Sa] for several alter-
native characterizations of functions in VMO(Rn).

The famous result of Fefferman and Stein [FS] identified BMO(Rn) with the
dual of the Hardy space H1(Rn). In [CW, Sec. 4], Coifman and Weiss introduced
a modified version of VMO(Rn), denoted by CMO(Rn), the space of functions of
the closure in the BMO norm of the space C0(Rn) of continuous functions with
compact support. They then proved that the spaceH1(Rn) is the dual of CMO(Rn).

See [B; BCrSi; U] for characterizations of functions in CMO(Rn) and relations
among BMO(Rn), VMO(Rn), CMO(Rn), L∞(Rn), and local spaces.

Recently, a BMOL(Rn) space associated with an operator L was introduced and
studied in [DY1]. Roughly speaking, if L is the infinitesimal generator of an ana-
lytic semigroup {e−tL}t≥0 on L2 with kernel pt(x, y) (which decays fast enough),
then we can view Ptf = e−tLf as an average version of f (at the scale t) and use
the quantity

PtBf(x) =
∫

Rn

ptB (x, y)f(y) dy (1.3)

to replace the mean value fB in our definition (1.1) of the classical BMO space,
where tB is scaled to the radius of the ball B. We then say that a function f (with
suitable bounds on growth) is in BMOL(Rn) if

sup
B

|B|−1
∫
B

|f(x) − PtBf(x)| dx < ∞.

In [DY2], Duong and Yan characterized the space of BMOL(Rn) functions as the
dual of a new Hardy space H1

L∗(Rn) of Auscher, Duong, and McIntosh [ADMc]
associated with the adjoint operator L∗ of L. This gives a generalization of the
duality of H1(Rn) and BMO(Rn) of Fefferman and Stein [FS]. Indeed, a valid
choice of e−tL is the Poisson integral of f defined by

e−t
√�f(x) =

∫
Rn

pt(x − y)f(y) dy, t > 0,

where pt(x − y) = cnt/(t
2 + |x − y|2)(n+1)/2. For this choice of e−tL, the spaces

H1√�(Rn) and BMO√�(Rn) coincide with the classical Hardy space and BMO
space, respectively.

This paper continues a line of study in [ADMc; DY1; DY2] to introduce and
develop a new function space VMOL(Rn), of vanishing mean oscillation associ-
ated with operators, that generalizes the classical VMO space. We will say that
a function f of BMOL(Rn) is in VMOL(Rn) if it satisfies the limiting conditions
γ1(f ) = γ2(f ) = γ3(f ) = 0, where:
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γ1(f ) = lim
a→0

[
sup

B :rB≤a

(
|B|−1

∫
B

|f(x) − PtBf(x)|2 dx

)1/2]
;

γ2(f ) = lim
a→∞

[
sup

B :rB≥a

(
|B|−1

∫
B

|f(x) − PtBf(x)|2 dx

)1/2]
;

γ3(f ) = lim
a→∞

[
sup

B⊂B(0,a)c

(
|B|−1

∫
B

|f(x) − PtBf(x)|2 dx

)1/2]
.

See Section 3.2. With the choice Ptf = pt ∗ f , where pt is the Poisson ker-
nel, the classical space CMO(Rn) (of Coifman and Weiss) coincides with our
VMO√�(Rn)) space. We also give an equivalent characterization of VMOL space
in the context of the theory of tent spaces initiated by Coifman, Meyer, and Stein
in [CMS1; CMS2]; see Propositions 3.3 and 3.6.

The main purpose of Section 4 is to prove our main result, Theorem 4.1, which
gives a generalization of Coifman andWeiss’s [CW] result on the duality ofH1(Rn)

and CMO(Rn) spaces. We will show that if L has a bounded holomorphic func-
tional calculus on L2 and if the kernel pt(x, y) of the operator Pt in (1.3) satisfies
an upper bound of Poisson type, then the dual of our new space VMOL∗(Rn) is
the Hardy space H1

L(R
n), where L∗ denotes the adjoint operator of L. We then

give applications to large classes of differential operators such as the Schrödinger
operators and second-order elliptic operators of divergence form.

Throughout this paper, c will denote (possibly different) constants that are in-
dependent of the essential variables.

2. Preliminaries

2.1. Holomorphic Functional Calculi of Operators

We first give some preliminary definitions of holomorphic functional calculi as in-
troduced by McIntosh [Mc]. Let 0 ≤ ω < ν < π. We define the closed sector in
the complex plane C as

Sω = {z∈C : |arg z| ≤ ω} ∪ {0}
and denote the interior of Sω by S 0

ω.

We employ the following subspaces of the space H(S 0
ν ) of all holomorphic

functions on S 0
ν :

H∞(S 0
ν ) = {b ∈H(S 0

ν ) : ‖b‖∞ < ∞},
where ‖b‖∞ = sup{|b(z)| : z∈ S 0

ν }, and

�(S 0
ν ) = {ψ ∈H(S 0

ν ) : ∃s > 0, |ψ(z)| ≤ c|z|s(1+ |z|2s)−1}.
Let 0 ≤ ω < π. A closed operator L in L2(Rn) is said to be of type ω if σ(L) ⊂
Sω and if, for each ν > ω, there exists a constant cν such that

‖(L − λI )−1‖ ≤ cν |λ|−1, λ /∈ Sν.
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If L is of type ω and ψ ∈�(S 0
ν ), then we define ψ(L)∈L(L2, L2) by

ψ(L) = 1

2πi

∫
$

(L − λI )−1ψ(λ) dλ, (2.1)

where $ is the contour {ξ = re±iθ : r ≥ 0} parameterized clockwise around Sω

and ω < θ < ν. Clearly, this integral is absolutely convergent in L(L2, L2), and
it is straightforward to show, using Cauchy’s theorem, that the definition is inde-
pendent of the choice of θ ∈ (ω, ν). If, in addition, L is one-to-one and has dense
range and if b ∈H∞(S 0

ν ), then b(L) can be defined by

b(L) = [ψ(L)]−1(bψ)(L),

where ψ(z) = z(1 + z)−2. It can be shown that b(L) is a well-defined linear op-
erator in L2(Rn). We say that L has a bounded H∞ calculus in L2 if there exists
cν,2 > 0 such that b(L)∈L(L2, L2) and, for b ∈H∞(S 0

ν ),

‖b(L)‖ ≤ cν,2‖b‖∞.

For a detailed study of operators that have holomorphic functional calculi, see
[Mc].

2.2. Assumptions and Notation

Assume that the operator L, acting on L2(Rn), is one-to-one. Suppose L is a lin-
ear operator of type ω on L2(Rn) with ω < π/2; then L generates a holomorphic
semigroup e−zL, 0 ≤ |Arg(z)| < π/2 −ω. Assume the following two conditions.

Assumption A. The holomorphic semigroup e−zL, |Arg(z)| < π/2 − ω, is rep-
resented by a kernel pz(x, y) that satisfies an upper bound

|pz(x, y)| ≤ cθh|z|(x, y)

for x, y ∈Rn; |Arg(z)| < π/2 − θ for θ > ω, and ht is given by

ht(x, y) = t−n/ms

( |x − y|
t1/m

)
, (2.2)

in which m is a fixed positive constant and s is a positive, bounded, decreasing
function satisfying

lim
r→∞ r n+εs(r) = 0 (2.3)

for some ε > 0.

Assumption B. The operator L has a bounded H∞-calculus in L2(Rn). That is,
there exists a cν,2 > 0 such that b(L)∈L(L2, L2) and, for b ∈H∞(S 0

ν ),

‖b(L)‖2,2 ≤ cν,2‖b‖∞.

We now give some consequences of Assumptions A and B that will be useful in
the sequel.

First, if {e−tL}t≥0 is a bounded analytic semigroup on L2(Rn) whose kernel
pt(x, y) satisfies the estimate (2.2) then, for all k ∈ N, the time derivatives of pt

satisfy
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∂t k
(x, y)

∣∣∣∣ ≤ ct−(n+km)/ms

( |x − y|
t1/m

)
(2.4)

for all t > 0 and almost all x, y ∈Rn. For each k ∈N, the function s might depend
on k but always satisfies (2.3). See [O, Thm. 6.17].

Second, L has a bounded H∞-calculus in L2(Rn) if and only if, for any nonzero
function ψ ∈�(S 0

ν ), L satisfies the square function estimate and its reverse,

c1‖f ‖2 ≤
(∫ ∞

0
‖ψt(L)f ‖2

2
1

t
dt

)1/2

≤ c2‖f ‖2, (2.5)

for some 0 < c1 ≤ c2 < ∞, where ψt(ξ) = ψ(tξ). Note that different choices of
ν > ω and ψ ∈�(S 0

ν ) lead to equivalent quadratic norms of f. See [Mc].
As noted in [Mc], positive self-adjoint operators satisfy the quadratic estimate

(2.5). So do normal operators with spectra in a sector as well as maximal accre-
tive operators. For definitions of these classes of operators, we refer the reader
to [Yo].

We now define the class of functions upon which the operators e−tL act. For
any β > 0, a function f ∈L2

loc(R
n) is said to be a function of β-type if f satisfies(∫

Rn

|f(x)|2
1+ |x|n+β

dx

)1/2

≤ c < ∞. (2.6)

We denote by Mβ the collection of all functions of β-type. If f ∈ Mβ , then the
norm of f in Mβ is denoted by

‖f ‖Mβ
= inf{c ≥ 0 : (2.6) holds}.

It is easy to see that Mβ is a Banach space under the norm ‖f ‖Mβ
. For any given

operator L, we let -(L) = sup{ε > 0 : (2.3) holds} and define

M =
{ M-(L) if -(L) < ∞,⋃

β :0<β<∞ Mβ if -(L) = ∞.

Note that if L is the Laplacian � on Rn, then -(�) = ∞. When L = √�, we
have -

(√� ) = 1.
For any (x, t)∈Rn × (0,+∞) and f ∈M, we define

Ptf(x) = e−tLf(x) =
∫

Rn

pt(x, y)f(y) dy (2.7)

and

Qtf(x) = tLe−tLf(x) =
∫

Rn

−t

(
d

dt
pt(x, y)

)
f(y) dy. (2.8)

It follows from the estimate (2.4) that the operators Ptf and Qtf are well-defined.
Moreover, the operator Qt has the following properties.

(i) For any t1, t2 > 0 and almost all x ∈Rn,

Qt1Qt2 f(x) = t1t2

(
d 2Pt

dt 2

∣∣∣
t=t1+t2

f

)
(x).
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(ii) The kernel qtm(x, y) of Qtm satisfies

|qtm(x, y)| ≤ ct−ns

( |x − y|
t

)
, (2.9)

where the function s satisfies condition (2.3).

3. The Spaces VMOL Associated with Operators

In this section, we assume that L is an operator satisfying assumptions A and B
of Section 2.2. The aim of this section is to introduce and study a new function
space VMOL of vanishing mean oscillation, associated with an operator L, that
generalizes the classical VMO spaces.

3.1. The Function Space BMOL(Rn)

Following [DY1], we say that f ∈ M is of bounded mean oscillation associated
with an operator L (abbreviated as BMOL) if

sup
B

|B|−1
∫
B

|f(x) − PtBf(x)| dx = ‖f ‖BMOL
< ∞, (3.1)

where the supremum is taken over all balls in Rn and where tB = r m
B for rB the ra-

dius of the ball B of Rn. The class of functions of BMOL(Rn) modulo KL, where

KL = {f ∈M : Ptf(x) = f(x) for almost all x ∈Rn and all t > 0}, (3.2)

is a Banach space with the norm ‖f ‖BMOL
defined as in (3.1). We refer to [DY2,

Sec. 6] for a discussion of the dimensions of KL when L is a second-order elliptic
operator of divergence form or a Schrödinger operator.

We now list two important properties of the spaces BMOL(Rn). For the proofs,
we refer the reader to Sections 2 and 3 of [DY1].

First, under the extra condition that L satisfies a conservation property of the
semigroup Pt(1) = 1for every t > 0, it can be verified that BMO(Rn) is a subspace
of BMOL(Rn). Moreover, the spaces BMO(Rn), BMO�(Rn), and BMO√�(Rn)

coincide, and their norms are equivalent.
Second, we note that a variant of the John–Nirenberg inequality holds for func-

tions in BMOL(Rn). That is, there exist positive constants c1 and c2 such that, for
every ball B and α > 0,

|{x ∈B : |f(x) − Pr m
B
f(x)| > α}| ≤ c1|B| exp

{
− c2α

‖f ‖BMOL

}
.

This and (3.1) imply that, for any f ∈ BMOL(Rn) and 1 ≤ p < ∞, the norms

‖f ‖p,BMOL
= sup

B

(
|B|−1

∫
B

|f(x) − Pr m
B
f(x)|p dx

)1/p

(3.3)

with different choices of p are all equivalent.
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3.2. The Spaces VMOL Associated with Operators

Let us introduce a new function space VMOL(Rn) associated with the semigroup
{e−tL}t>0.

Definition 3.1. We say that a function f ∈ BMOL(Rn) is in VMOL, the space of
functions of vanishing mean oscillation associated with the semigroup {e−tL}t>0,
if it satisfies the limiting conditions γ1(f ) = γ2(f ) = γ3(f ) = 0, where

γ1(f ) = lim
a→0

[
sup

B :rB≤a

(
|B|−1

∫
B

|f(x) − P m
rB
f(x)|2 dx

)1/2]
,

γ2(f ) = lim
a→∞

[
sup

B :rB≥a

(
|B|−1

∫
B

|f(x) − P m
rB
f(x)|2 dx

)1/2]
,

γ3(f ) = lim
a→∞

[
sup

B⊂B(0,a)c

(
|B|−1

∫
B

|f(x) − P m
rB
f(x)|2 dx

)1/2]
;

we endow VMOL(Rn) with the norm of BMOL(Rn).

Note that if L is the Laplacian � on Rn, then it follows that the space VMO�(Rn)

(or VMO√�(Rn)) is equivalent to the space CMO(Rn) of Coifman and Weiss (i.e.,
the space of functions of the closure in the BMO norm of the space C0(Rn) of
continuous functions with compact support), and their norms are equivalent. See
Proposition 3.6.

3.3. Properties of Functions in VMOL(Rn)

In [CMS1] and [CMS2], the authors introduced and studied a new family of func-
tion spaces called tent spaces. These spaces are useful for the study of a variety
of problems in harmonic analysis. See also [De]. In this paper, we will adopt the
approach of tent spaces to study our new VMO spaces.

3.3.1. Tent Spaces and Applications
We will use Rn+1

+ to denote the usual upper half-space in Rn+1. The notation$(x) =
{(y, t)∈Rn+1

+ : |x − y| < t} denotes the standard cone (of aperture 1) with vertex
x ∈ Rn. For any closed subset F ⊂ Rn, R(F ) will be the union of all cones with
vertices in F ; that is, R(F ) = ⋃

x∈F $(x). If O is an open subset of Rn, then the
“tent” over O, denoted by Ô, is given as Ô = [R(Oc)]c.

For any function f(y, t) defined on Rn+1
+ , we will denote

A(f )(x) =
(∫

$(x)

|f(y, t)|2 1

t n+1
dy dt

)1/2

and

C(f )(x) = sup
x∈B

(
|B|−1

∫
B̂

|f(y, t)|2 1

t
dy dt

)1/2

.

As in [CMS1], the tent space T
p

2 is defined as the space of functions f such that
A(f )∈Lp(Rn)whenp < ∞. The resulting equivalence classes are then equipped
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with the norm ‖f ‖T
p

2
= ‖A(f )‖p. When p = ∞, the space T ∞

2 is the class of

functions f for which C(f )∈L∞(Rn) and the norm ‖f ‖T ∞
2

= ‖C(f )‖∞.

In what follows, let T p

2,c be the set of all f ∈ T
p

2 with compact support in Rn+1
+ .

We denote by T ∞
2,0 the linear subspace of T ∞

2 consisting of those functions f that
satisfy the condition

η1(f ) = lim
a→0

[
sup

B :rB≤a

(
|B|−1

∫
B̂

|f(y, t)|2 1

t
dy dt

)1/2]
= 0,

and we endow T ∞
2,0 with norm of T ∞

2 . Finally, we denote by T ∞
2,V the closure of

the set T 2
2,c in T ∞

2,0, and we endow T ∞
2,V with the norm of T ∞

2 .

Let H be the set of all f ∈ T ∞
2 satisfying the following three conditions:

(i) f ∈ T ∞
2,0;

(ii) η2(f ) = lima→+∞
[
supB :rB≥a

(|B|−1
∫
B̂
|f(y, t)|2 1

t
dy dt

)1/2] = 0;
(iii) η3(f ) = lima→+∞

[
supB :B⊂(B(0,a))c

(|B|−1
∫
B̂
|f(y, t)|2 1

t
dy dt

)1/2] = 0.

It can be verified that H is a closed linear subspace of T ∞
2 . Note that conditions

(ii) and (iii) are not consequences of (i). To see this, set

f(x, t) =
{

1 if (x, t)∈⋃∞
k=1 Rk ,

0 otherwise,

where Rk = [7 · 2k−3, 9 · 2k−3] × [1, 2]. It follows from the fact {Rk}∞k=1 are pair-
wise disjoint, together with

∫
Rk

|f(x, t)|2(1/t) dx dt = 2k−2 ln 2, that the function
f(x, t) satisfies condition (i). However, f(x, t) does not satisfy condition (ii)
or (iii).

Lemma 3.2. Let T ∞
2,V be defined as before. Then we have

(a) (T ∞
2,V )∗ = T 1

2 and
(b) f ∈ T ∞

2,V if and only if f ∈H.

Proof. For the proof of (a), we refer to [Wa, Thm. 1.7, p. 542]. Let us prove (b).
Since T 2

2,c ⊂ H and since H is a closed linear subspace of T ∞
2 , we have that T ∞

2,V =
T 2

2,c ⊂ H. We now assume that f ∈ H; we want to prove f ∈ T ∞
2,V . It follows

from the definition of H that for any η > 0, there exist a0 > 0, b0 > 0, and c0 >

0 such that

sup
B :rB≤a0

|B|−1
∫
B̂

|f(y, t)|2 1

t
dy dt ≤ η, sup

B :rB≥b0

|B|−1
∫
B̂

|f(y, t)|2 1

t
dy dt ≤ η,

(3.4)
and

sup
B :B⊂(B(0,c0))c

|B|−1
∫
B̂

|f(y, t)|2 1

t
dy dt ≤ η. (3.5)

Let K0 = max(a−1
0 , b0, c0) and define

g(y, t) = f(y, t)χ{y∈B(0,2K0),t∈(2K−1
0 ,2K0)}(y, t).

Obviously, g ∈ T 2
2,c. We now prove
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‖f − g‖2
T ∞

2
< cη. (3.6)

Let us verify the estimate (3.6) by examining the balls B of Rn in three cases.

Case 1: rB < a0 or rB > b0. From the estimate (3.4), we have∫
B̂

|f(y, t) − g(y, t)|2 1

t
dy dt ≤ 2

∫
B̂

|f(y, t)|2 1

t
dy dt ≤ 2η|B|.

Case 2: a0 ≤ rB ≤ b0 and B ⊂ B(0, c0)
c. By the estimate (3.5), we obtain∫

B̂

|f(y, t) − g(y, t)|2 1

t
dy dt ≤ 2

∫
B̂

|f(y, t)|2 1

t
dy dt ≤ 2η|B|.

Case 3: a0 ≤ rB ≤ M0 and B ∩B(0, c0) �= ∅. In this case, it follows from the
definition of g that

|f(y, t) − g(y, t)| =
{ |f(y, t)| if y ∈B and t ∈ (0, 2K−1

0 ),

0 otherwise.
This gives∫

B̂

|f(y, t) − g(y, t)|2 1

t
dy dt ≤

∫ (2K0)
−1

0

∫
B

|f(y, t)|2 1

t
dy dt. (3.7)

We use B(xB , rB) to denote B centered with xB and of radius rB. Then there
exists a k ∈ N such that 2k−1a0 ≤ rB ≤ 2ka0. Consider the ball B(xB , 2ka0).

This ball is contained in the cube Q[xB , 2k+1a0 ] centered at x and of side length
2k+1a0. We then divide this cube Q[xB , 2k+1a0 ] into [2k+1([

√
n ] + 1)]n small

cubes {Qxki
}Nk

i=1 centered at xki
and of equal side length ([

√
n ] + 1)−1a0, where

Nk = [2k+1([
√

n ]+1)]n. For any i = 1, 2, . . . , Nk , each of these small cubes Qxki

is then contained in the corresponding ball Bki
with the same center xki

and ra-
dius r = a0. Consequently, for the ball B(xB , 2ka0), there exists a corresponding
collection of balls Bk1, Bk2 , . . . , BkNk

such that:

(i) each ball Bki
is of radius a0;

(ii) B(xB , 2ka0) ⊂ ⋃Nk

i=1 Bki
;

(iii) there exists a constant c > 0 independent of k such that Nk ≤ c2kn;
(iv) each point of B(xB , 2ka0) is contained in at most a finite number M of the

balls Bki
, where M is independent of k.

These properties (i)–(iv), together with the estimate (3.4), show that∫
B̂

|f(y, t) − g(y, t)|2 1

t
dy dt ≤

∫ (2K0)
−1

0

∫
⋃Nk

i=1 Bki

|f(y, t)|2 1

t
dy dt

≤
Nk∑
i=1

∫
B̂ki

|f(y, t)|2 1

t
dy dt

≤ cη

Nk∑
i=1

|Bki
|

≤ cη|B|.
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Estimate (3.6) follows readily. This proves that f ∈ T ∞
2,V , whence the proof of

Lemma 3.2 is complete.

3.3.2. A Characterization of VMOL(Rn)

Using Lemma 3.2, we can prove the following proposition.

Proposition 3.3. Assume that the operator L satisfies Assumptions A and B in
Section 2.2. Then the following conditions are equivalent :

(a) f is in a function in VMOL(Rn);
(b) f ∈M and Qtm(I − Ptm)f ∈ T ∞

2,V , with ‖f ‖VMOL
∼ ‖Qtm(I − Ptm)f ‖T ∞

2
.

Proof. We first prove the implication (a) ⇒ (b). Suppose f ∈ VMOL(Rn). In
order to prove Qtm(I − Ptm)f ∈ T ∞

2,V , we will prove that there exists a positive
constant c > 0 such that, for any ball B = B(xB , rB),

|B|−1
∫
B̂

|Qtm(I − Ptm)f(x)
∣∣2 1

t
dx dt ≤ c

∞∑
k=1

2−kεδk(f , B), (3.8)

where

δk(f , B) = sup
B ′⊂2k+1B :rB ′ ∈[2−1rB,2rB ]

(
1

|B ′|
∫
B ′
|f(y) − Pr m

B ′ f(y)|2 dy

)
. (3.9)

Once the estimate (3.8) is proved, Qtm(I − Ptm)f ∈ T ∞
2,V follows readily. In-

deed, by the condition f ∈ VMOL(Rn), we have that f ∈ BMOL(Rn) and then
δk(f , B) ≤ c‖f ‖2

BMOL
for some constant c > 0. Moreover, for any k ∈ N we

have that

lim
a→0

sup
B :rB≤a

δk(f , B) = lim
a→∞ sup

B :rB≥a

δk(f , B)

= lim
a→∞ sup

B :B⊂B(0,a)c
δk(f , B)

= 0. (3.10)

By estimate (3.8) we have that

|B|−1
∫
B̂

|Qtm(I − Ptm)f(x)|2 1

t
dx dt

≤ c

k0∑
k=1

2−kεδk(f , B) + c

∞∑
k=k0

2−kε‖f ‖2
BMOL

≤ c

k0∑
k=1

2−kεδk(f , B) + c2−k0ε‖f ‖2
BMOL

.

Note that if k0 is large enough then the quantity 2−k0ε‖f ‖2
BMOL

is sufficiently small.
Fix a k0. We then use the property (3.10) to obtain η1(f ) = η2(f ) = η3(f ) = 0,
where {ηi(f )}3

i=1 of H are defined in Section 3.3.1. This gives Qtm(I − Ptm)f ∈
T ∞

2,V , from which the proof of (b) follows.
We now prove estimate (3.8). Note that

Qtm(I − Ptm) = Qtm(I − Ptm)(I − Pr m
2B

) + Qtm(I − Ptm)Pr m
2B

.
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Hence, (3.8) follows from the estimates (3.11) and (3.12):

|B|−1
∫
B̂

|Qtm(I − Ptm)(I − Pr m
2B

)f(x)|2 1

t
dx dt ≤ c

∞∑
k=1

2−kεδk(f , B); (3.11)

|B|−1
∫
B̂

|Pr m
2B

Qtm(I − Ptm)f(x)|2 1

t
dx dt ≤ c

∞∑
k=1

2−kεδk(f , B). (3.12)

We will prove these two estimates by adapting the argument in [DY2, Lemma
4.6]. Let b1 = (I−Pr m

2B
)fχ2B and b2 = (I−Pr m

2B
)fχ(2B)c . From (2.5), we obtain∫

B̂

|Qtm(I − Ptm)b1(x)|2 1

t
dx dt ≤

∫∫
Rn+1

+
|Qtm(I − Ptm)b1(x)|2 1

t
dx dt

≤ c‖b1‖2
L2(Rn)

= c

∫
2B
|(I − Pr m

2B
)f(x)|2 dx

≤ c|B|δ2(f , B). (3.13)

On the other hand, for any x ∈ B and y ∈ (2kB)c, one has |x − y| ≥ c2krB. By
(2.4), we obtain

|Qtm(I − Ptm)b2(x)| ≤ c

∫
Rn\2B

t ε

(t + |x − y|)n+ε
|(I − Pr m

2B
)f(y)| dy

≤ c

∞∑
k=1

∫
2k+1B\2kB

t ε

(t + |x − y|)n+ε
|(I − Pr m

2B
)f(y)| dy

≤ c

(
t

rB

)ε ∞∑
k=1

2−k(n+ε)r−n
B

∫
2k+1B

|(I − Pr m
2B

)f(y)| dy.
(3.14)

For a fixed positive integer k, the same argument as in Case 3 of Lemma 3.2 shows
that for any ball B(xB , 2krB), k = 1, 2, . . . , there exists a corresponding collection
of balls Bk1, Bk2 , . . . , BkNk

such that:

(i) each ball Bki
is of radius r2B;

(ii) B(xB , 2krB) ⊂ ⋃Nk

i=1 Bki
;

(iii) there exists a constant c > 0 independent of k such that Nk ≤ c2kn;
(iv) each point of B(xB , 2krB) is contained in at most a finite number M of the

balls Bki
, where M is independent of k.

Applying these properties (i)–(iv), one obtains

|Qtm(I − Ptm)b2(x)|

≤ c

(
t

rB

)ε ∞∑
k=1

2−k(n+ε)r−n
2B

∫
⋃Nk+1

i=1 Bki

|(I − Pr m
2B

)f(y)| dy

≤ c

(
t

rB

)ε ∞∑
k=1

2−k(n+ε)

Nk+1∑
i=1

|Bki
|−1

∫
Bki

|(I − Pr m
2B

)f(y)| dy ≤
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≤ c

(
t

rB

)ε ∞∑
k=1

2−kε sup
i :1≤i≤Nk+1

(
|Bki

|−1
∫
Bki

|(I − Pr m
2B

)f(y)|2 dy

)1/2

≤ c

(
t

rB

)ε ∞∑
k=1

2−kεδ
1/2
k (f , B). (3.15)

Therefore,∫∫
B̂

|Qtm(I − Ptm)b2(x)|2 1

t
dx dt ≤ c

r 2ε
B

∫∫
B̂

t 2ε−1 dx dt

( ∞∑
k=1

2−kεδ
1/2
k (f , B)

)2

≤ c|B|
∞∑
k=1

2−kεδk(f , B).

This, together with (3.13), yields estimate (3.11).
Let us prove (3.12). One writes

Pr m
B
Qtm(I−Ptm)f(x) = Pr m

B
Qtm(I−Pr m

2B
)f(x)−Pr m

B
+t mQtm(I−Pr m

2B−t m)f(x).

Note that, by (2.4), for 0 < t < rB the kernel kt,rB (x, y) of the operator Pr m
B
Qtm =

(t m/(t m + r m
B ))Q(tm+r m

B
) satisfies

|kt,rB (x, y)| ≤ c

(
t

rB

)m r ε
B

(rB + |x − y|)n+ε
. (3.16)

Estimate (3.16) holds for the kernel of the operator Pr m
B

+t mQtm. We then use the
argument as in (3.14) and (3.16) to show that, for any x ∈B and 0 < t < rB ,

|Pr m
B
Qtm(I − Pr m

2B
)f(x)| ≤ c

(
t

rB

)m ∫
Rn

r ε
B

(rB + |x − y|)n+ε
|(I − Pr m

2B
)f(x)| dx

≤ c

(
t

rB

)m ∞∑
k=1

2−kεδ
1/2
k (f , B)

and

Pr m
B

+t mQtm(I − Pr m
2B−t m)f(x) ≤ c

(
t

rB

)m ∞∑
k=1

2−kεδ
1/2
k (f , B).

From this it follows that∫
B̂

|Pr m
B
Qtm(I − Ptm)f(x)|2 1

t
dx dt

≤ cr−2m
B

∫
B̂

t 2m−1 dx dt

( ∞∑
k=1

2−kεδ
1/2
k (f , B)

)2

≤ c|B|
∞∑
k=1

2−kεδk(f , B).

Estimate (3.12) is then obtained. We have proved estimate (3.8), so the implication
(a) ⇒ (b) follows.
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In order to prove the implication (b) ⇒ (a), we need the following lemma.

Lemma 3.4. For any f ∈ BMOL and g ∈H1
L∗ ∩ L2, we have the following iden-

tity with constant bm = 36
5 m:∫

Rn

f(x)g(x) dx = bm

∫
Rn+1

+
F(x, t)G(x, t)

1

t
dx dt, (3.17)

where F(x, t) = Qtm(I − Ptm)f(x) and G(x, t) = Q∗
t mg(x).

Proof. See [DY2, Prop. 5.1].

Proof of the implication (b) ⇒ (a) of Proposition 3.3 (cont.). First, it follows
from condition (b) together with [DY2, Thm. 3.2] that f ∈ BMOL(Rn). On the
other hand, for any g ∈L2 we have (I − P ∗

r m
B

)g ∈L2. Also, it follows from [DY2,

Lemma 4.5] that (I − P ∗
r m
B

)g ∈H1
L, and then (I − P ∗

r m
B

)g ∈H1
L ∩ L2. The duality

argument for the L2-space shows that, for any ball B of Rn,(
|B|−1

∫
B

|f(x) − Pr m
B
f(x)|2 dx

)1/2

= sup
‖g‖

L2(B)≤1

|B|−1/2

∣∣∣∣
∫
B

(I − Pr m
B
)f(x)g(x) dx

∣∣∣∣
= sup

‖g‖
L2(B)≤1

|B|−1/2

∣∣∣∣
∫

Rn

f(x)(I − P ∗
r m
B
)g(x) dx

∣∣∣∣. (3.18)

We apply Lemma 3.4 to obtain∣∣∣∣
∫

Rn

f(x)(I − P ∗
r m
B
)g(x) dx

∣∣∣∣
= bm

∣∣∣∣
∫

Rn+1
+

Qtm(I − Ptm)f(x)Q∗
t m(I − P ∗

r m
B
)g(x)

1

t
dx dt

∣∣∣∣
≤ c

∫
Rn+1

+
|Qtm(I − Ptm)f(x)||Q∗

t m(I − P ∗
r m
B
)g(x)|1

t
dx dt

≤ c

∫
4̂B
|Qtm(I − Ptm)f(x)||Q∗

t m(I − P ∗
r m
B
)g(x)|1

t
dx dt

+ c

∞∑
k=2

∫
2̂k+1B\2̂kB

|Qtm(I − Ptm)f(x)||Q∗
t m(I − P ∗

r m
B
)g(x)|1

t
dx dt

= A1 +
∞∑

k=2

Ak.

Using Hölder’s inequality and the square function estimate (2.5), we have
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A1 ≤
(∫

4̂B
|Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2(∫ ∞

0
‖Q∗

t m(I − P ∗
r m
B
)g‖2

2
1

t
dt

)1/2

≤ c‖g‖2

(∫
4̂B
|Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2

≤ c|B|1/2

(
|4B|−1

∫
4̂B
|Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2

since ‖g‖2 ≤ 1.
Let us estimate Ak for k = 2, 3, . . . . Using Hölder’s inequality again, we

have that
Ak ≤ Dk · Ek ,

where

Dk =
(∫

2̂k+1B\2̂kB

|Q∗
t m(I − P ∗

r m
B
)g(x)||Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2

and

Ek =
(∫

2̂k+1B\2̂kB

|Q∗
t m(I − P ∗

r m
B
)g(x)|1

t
dx dt

)1/2

.

Since (I − P ∗
r m
B

) = m
∫ rB

0 Q∗
sm

1
s
ds, we obtain

Q∗
t m(I − P ∗

r m
B
) = m

∫ rB

0
Q∗

t mQ
∗
sm

1

s
ds =

∫ rB

0
h
( s

t

)
�t,s(L

∗)
1

s
ds,

where h(x) = mxm(1+ xm)−2 and

�t,s(L
∗)f(x) = (t m + sm)2

(
d 2P ∗

r

dr 2

∣∣∣
r=t m+sm

f

)
(x).

It follows from estimate (2.4) that the kernel�t,s(L
∗)(x, y)of the operator�t,s(L

∗)
satisfies

|�t,s(L
∗)(x, y)| ≤ c

(t + s)ε

(t + s + |x − y|)n+ε
,

where ε is the positive constant in (2.3). Also, it can be verified that

h
( s

t

)
(t + s)ε = t 2msm(t + s)ε

(t m + sm)3
≤ c min(s ε, (st)ε/2).

Note that for any (x, t) ∈ 2̂k+1B \ 2̂kB and (y, s) ∈ B̂, we have t + s + |x − y| ≥
c2krB. By estimate (2.4), for (x, t)∈ 2̂k+1B \ 2̂kB we have

|Q∗
t m(I − P ∗

r m
B
)g(x)| ≤ c

∣∣∣∣
∫ rB

0
h
( s

t

)
�t,s(L

∗)(g)(x)
1

s
ds

∣∣∣∣
≤ c

∫ rB

0

∫
B

(st)m

(s + t)2m
· (s + t)ε

(s + t + |x − y|)n+ε
|g(y)|1

s
dy ds

≤ c(2krB)−(n+ε)

∫ rB

0
s ε−1 ds‖g‖L1(B)

≤ c2−kε|2k+1B|−1|B|1/2,
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where we used the estimate ‖g‖1 ≤ |B|1/2‖g‖2 ≤ |B|1/2. This gives

Dk ≤ c2−kε/2|B|1/4

(
|2k+1B|−1

∫
2̂k+1B

|Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2
.

On the other hand, the same argument as before shows that

E2
k =

∫
2̂k+1B\2̂kB

|Q∗
t m(I − P ∗

r m
B
)g(x)|1

t
dx dt

≤ c

∫
2̂k+1B

∫ rB

0

∫
B

(st)m

(s + t)2m
· (s + t)ε

(s + t + |x − y|)n+ε
|g(y)|1

s
dy ds

1

t
dx dt

≤ c|2kB|(2krB)−(n+ε)

∫ 2k+1rB

0

∫ rB

0
(st)ε/2−1 ds dt‖g‖L1(B)

≤ c2−kε/2|B|1/2.

Therefore,

Ak ≤ c2−kε/2|B|1/2

(
|2k+1B|−1

∫
2̂k+1B

|Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2

.

By (3.18), for any ball B of Rn we have(
|B|−1

∫
B

|f(x) − Pr m
B
f(x)|2 dx

)1/2

≤ c

∞∑
k=1

2−kε/4σk(f , B),

where

σk(f , B) =
(
|2kB|−1

∫
2̂kB

|Qtm(I − Ptm)f(x)|2 1

t
dx dt

)1/2

.

We then follow the argument as in the proof of the implication (a) ⇒ (b) of this
proposition to show that γ1(f ) = γ2(f ) = γ3(f ) = 0, where the {γi(f )}3

i=1 are
as defined in Section 3.2 (we omit the details). This proves f ∈ VMOL(Rn) and
thus the implication (b) ⇒ (a) of Proposition 3.3.

3.3.3. Equivalence of Classical CMO(Rn) and VMO√�(Rn)

We note that the space VMO(Rn) is different from CMO(Rn) of Coifman and
Weiss, the space of functions of the closure in the BMO norm of the space C0(Rn)

of continuous functions with compact support (cf. [CW, p. 638]). See also [U].
As is well known, VMO(Rn) � BMO(Rn). For example, the function log|x| be-
longs to BMO(Rn) but not to VMO(Rn). See [B] and [BCrSi] for relations among
BMO(Rn), VMO(Rn), CMO(Rn), L∞(Rn) and local spaces.

The aim of this section is to show that if L is the Laplacian � on Rn, then the
space VMO√�(Rn) (or VMO�(Rn)) is equivalent to the space CMO(Rn). First,
we have the following proposition.

Proposition 3.5. The following statements are equivalent.

(a) f ∈ CMO(Rn).

(b) f ∈ B, where B is the subspace of BMO(Rn) satisfying the following con-
ditions:
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(b1) lima→0 supB :rB≤a

(|B|−1
∫
B
|f(x) − fB |2 dx

)1/2 = 0;
(b2) lima→∞ supB :rB≥a

(|B|−1
∫
B
|f(x) − fB |2 dx

)1/2 = 0;
(b3) lima→∞ supB :B⊂B(0,a)c

(|B|−1
∫
B
|f(x) − fB |2 dx

)1/2 = 0.
Here fB = |B|−1

∫
B
f(x) dx.

Proof. The proof of the implication (a) ⇒ (b) follows from the facts C0(Rn) ⊂
B and B is a closed subspace of BMO; thus CMO(Rn) = C0(Rn) ⊂ B.

For the proof of the implication (b) ⇒ (a), we refer to [B, Thm. 7]. See also
[U, Sec. 3, p. 166].

Remark. It is well known that, for any f ∈ BMO(Rn) and a constant K > 1,

|fB − fKB | ≤ c(1+ log K)‖f ‖BMO,

where fB is the mean of f on the ball B. This, together with the properties (b1)–
(b3), shows that the condition (b3) can be replaced by the following weak limiting
condition:

(b′
3) lim|a|→∞

(|B + a|−1
∫
B+a

|f(x) − fB+a|2 dx
)1/2 = 0

for any ball B of Rn, where B + a = {x ∈ Rn : x = a + y, y ∈ B}. We omit the
proof.

Proposition 3.6. The spaces VMO�(Rn), VMO√�(Rn), and CMO(Rn) coin-
cide, and their norms are equivalent.

Proof. Recall that B is the space in Proposition 3.5. We now assume that ψ ∈C∞
0

satisfies the conditions∫
ψ(x) dx = 0 and |ψ(x)| + |x∇ψ(x)| ≤ c

(1+ |x|)n+ε

for some ε > 0. We can argue as in Proposition 3.3 to show that f ∈B if and only
if ψt ∗ f ∈ T ∞

2,V ; we omit the details here. This gives that the spaces VMO�(Rn),
VMO√�(Rn), and CMO(Rn) coincide and that their norms are equivalent.

4. Duality between H 1
L and VMOL∗(Rn) Spaces

4.1. Hardy Space H 1
L(R

n)

We continue with the assumption that L is an operator that satisfies Assumptions
A and B of Section 2.2. Given a function f ∈ L1(Rn), the area integral function
SL(f ) associated with an operator L is defined by

SL(f )(x) =
(∫

$(x)

|Qtmf(y)|2 1

t n+1
dy dt

)1/2

. (4.1)

It follows from Assumption B that the area integral function SL(f ) is bounded on
L2(Rn) [Mc]. It then follows from Assumption A that SL(f ) is bounded on Lp,
1 < p < ∞ (see [ADMc, Thm. 6]). More specifically, there exist constants c1, c2

such that 0 < c1 ≤ c2 < ∞ and
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c1‖f ‖p ≤ ‖SL(f )‖p ≤ c2‖f ‖p (4.2)

for all f ∈Lp, 1 < p < ∞. By duality, the operator SL∗(f ) also satisfies estimate
(4.2), where L∗ is the adjoint operator of L.

The following definition was introduced in [ADMc]. We say that f ∈ L1 be-
longs to a Hardy space associated with an operator L, denoted by H1

L, if SL(f ) ∈
L1. We define its H1

L norm by

‖f ‖H1
L
= ‖SL(f )‖L1 .

Remarks. 1. If L is the Laplacian � on Rn, then it follows from area integral
characterization of Hardy space using convolution that the classical space H1(Rn)

and the spaces H1
�(Rn) and H1√�(Rn) coincide and that their norms are equiva-

lent. See [FS].
2. Recently, Duong and Yan proved in [DY2] that the dual of a Hardy space

H1
L(R

n) is the space BMOL∗(Rn) of Section 3.1, where L∗ is the adjoint oper-
ator of L. This gives a generalization of the duality of H1(Rn) and BMO(Rn)

described by Fefferman and Stein [FS].

4.2. Main Theorem and Its Proof

The aim of this section is to prove the following theorem.

Theorem 4.1. Assume that the operator L satisfies Assumptions A and B of
Section 2.2. Denote by L∗ the adjoint operator of L. Then the dual space of
VMOL(Rn) is the space H1

L∗(Rn) in the following sense.

(i) Suppose f ∈H1
L∗(Rn). Then the linear functional ? given by

?(g) =
∫

Rn

f(x)g(x) dx,

initially defined on the dense subspace VMOL ∩ L2, has a unique extension
to VMOL(Rn).

(ii) Conversely, every continuous linear functional ? on the VMOL(Rn) space
can be realized as just described, with f ∈H1

L∗(Rn) and

‖f ‖H1
L∗ ≤ c‖?‖.

In order to prove Theorem 4.1, we need to establish the following two lemmas.
Consider the operator πL initially defined on T

p

2,c by

πL(f )(x) =
∫ ∞

0
Qtm(f(·, t))(x)1

t
dt. (4.3)

Note that, for any compact set K in Rn+1
+ ,∫

K

|f(x, t)|2 dx dt ≤ C(K, p)‖A(f )‖2
p.

This and estimate (2.5) imply that the integral (4.3) is well-defined and that πL ∈
L2 for f ∈ T

p

2,c.
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Lemma 4.2. The operator πL, initially defined on T
p

2,c, extends to a bounded lin-
ear operator :

(a) from T
p

2 to Lp if 1 < p < ∞;
(b) from T 1

2 to H1
L;

(c) from T ∞
2 to BMOL;

(d) from T ∞
2,V to VMOL.

Proof. For the proofs of (a), (b), and (c), we refer to [DY2, Lemma 4.3]. We now
prove (d). Suppose f ∈ T ∞

2,V . Let us prove that πL(f ) ∈ VMOL(Rn); then, by
Proposition 3.3, we need only prove Qtm(I − Ptm)πL(f ) ∈ T ∞

2,V . We will prove
that there exists a positive constant c > 0 such that, for any ball B = B(xB , rB),

|B|−1
∫
B̂

|Qtm(I − Ptm)πL(f )(x)|2 1

t
dx dt ≤ c

∞∑
k=2

2−kε/2ωk(f , B), (4.4)

where ε is the constant in (2.3) and

ωk(f , B) =
(
|2kB|−1

∫
2̂kB

|f(x, t)|2 1

t
dx dt

)
. (4.5)

Once estimate (4.4) is established, we can argue as in the proof of Proposition 3.3
to show that Qtm(I − Ptm)πL(f )∈ T ∞

2,V . We omit the details here.
Let us verify estimate (4.4). Denote �t(L) = Qtm(I − Ptm). Let f1 = fχ 4̂B

and f2 = fχ(4̂B)c . One writes

|B|−1
∫
B̂

|Qtm(I − Ptm)πL(f )(x)|2 1

t
dx dt

=
2∑

i=1

|B|−1
∫
B̂

|�t(L)πL(fi)(x)|2 1

t
dx dt

= I + II.

For the term I, using estimate (2.5) and property (a) of this lemma yields

I ≤ c|B|−1
∫ ∞

0
‖�t(L)πL(f1)‖2

L2

1

t
dt

≤ c|B|−1‖πL(f1)‖2
2

≤ c|B|−1‖fχ 4̂B‖2
T 2

2

≤ c|4B|−1
∫

4̂B
|f(x, t)|2 1

t
dx dt

= cω2(f , B).

We now estimate term II. Denote by �s,t(L) = Qtm(I −Ptm)Qsm. It follows from
estimate (2.4) that the kernel ks,t(x, y) of �s,t(L) satisfies

|ks,t(x, y)| ≤ c
t msm

(t m + sm)2

(t + s)ε

(t + s + |x − y|)n+ε

≤ c min((ts)ε/2, t−ε/2s 3ε/2)
1

(t + s + |x − y|)n+ε
, (4.6)
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where ε is the constant in (2.3). Observe that for any (x, t) ∈ B̂ and (y, s) ∈
2̂k+1B \ 2̂kB we have t + s + |x − y| ≥ c2krB. From (4.6) it can be verified that∫

Rn+1
+

|ks,t(x, y)| 1
s
dy ds ≤ c < ∞. Using Hölder’s inequality and elementary in-

tegration, we have that there exists a positive constant c such that

II ≤ c|B|−1
∫
B̂

∣∣∣∣
∫

Rn+1
+

ks,t(x, y)f(y, s)χ(4̂B)c

1

s
dy ds

∣∣∣∣2 1

t
dx dt

≤ c|B|−1
∫
B̂

∫
(4̂B)c

|ks,t(x, y)|f(y, s)|2 1

s
dy ds

1

t
dx dt

≤ c

∞∑
k=2

|B|−1
∫
B̂

∫
2̂k+1B\2̂kB

(ts)ε/2

(t + s + |x − y|)n+ε
|f(y, s)|2 1

s
dy ds

1

t
dx dt

≤ c

∞∑
k=2

(2krB)−ε|2k+1B|−1|B|−1
∫
B̂

∫
2̂k+1B

(ts)ε/2|f(y, s)|2 1

s
dy ds

1

t
dx dt

≤ c

∞∑
k=2

2−kε/2|2k+1B|−1
∫

2̂k+1B

|f(y, s)|2 1

s
dy ds

≤ c

∞∑
k=2

2−kε/2ωk(f , B).

Estimate (4.4) then follows readily. Hence, the proof of Lemma 4.2 is complete.

As a consequence of Lemma 4.2, we have the following corollary.

Lemma 4.3. VMOL ∩ L2 is dense in VMOL.

Proof. For any f ∈VMOL, we have Qsm(I − Psm)f ∈ T ∞
2,V . By the definition of

T ∞
2,V , there exists a family of functions {gk(x, s)}k ∈ T 2

2,c such that

‖Qsm(I − Psm)f − gk(·, s)‖T ∞
2

→ 0.

Define fk = 36m
5

∫ ∞
0 Qsmgk(·, s) 1

s
ds. Then it can be verified that fk ∈VMOL ∩

L2. Moreover, by Lemma 4.2 we have that

‖f − fk‖VMOL
≤ c‖Qsmf − gk(·, s)‖T ∞

2,V

≤ c‖Qsmf − gk(·, s)‖T ∞
2

→0

as k → ∞. This proves Lemma 4.3.

Proof of Theorem 4.1. The proof of (i) follows from Lemma 4.3 and the fact that
the dual of a Hardy space H1

L∗(Rn) is the space BMOL(Rn) of Section 3.1, where
L∗ is the adjoint operator of L.

We now prove (ii). Define

@L = {h : h(x, t) = Qtm(I − Ptm)g(x) for some g ∈VMOL} ⊂ T ∞
2,V .
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Note that, for every h(x, t)∈ T ∞
2,V , by Lemma 4.2 we have

R(h)(x) = bm

∫ ∞

0
Qtm(h(·, t))(x)1

t
dt ∈VMOL.

Therefore, for any ?∈ (VMOL)′ and g ∈VMOL, we have

?(g) = ?  R  Qtm(I − Ptm)g (4.7)

for all g ∈ VMOL ∩ L2. Furthermore, it follows from Lemma 4.2 that ?  R is a
continuous linear functional on @L that satisfies

‖?  R‖T ∞
2,V →C ≤ ‖?‖(VMOL)′ ‖R‖T ∞

2,V →VMOL
≤ c‖?‖ < ∞.

Applying the Hahn–Banach theorem, we can extend ?  R to a continuous lin-
ear functional on T ∞

2,V . Note that Lemma 3.2(a) implies that the dual of T ∞
2,V is

equivalent to T 1
2 . By restricting attention to @L, we can conclude that if ? is a con-

tinuous linear functional ? on the space VMOL(Rn), then it follows from (4.7) that
there exists a w(x, t)∈ T 1

2 with ‖w‖T 1
2
≤ C‖?  R‖ such that

?(g)(x) = ?  R  Qtm(I − Ptm)g

=
∫

Rn+1
+

w(x, t)Qtm(I − Ptm)g(x)
1

t
dx dt

=
∫

Rn

g(x)

∫ ∞

0
Q∗

t m(I − P ∗
t m)w(·, t)(x)1

t
dt dx

=
∫

Rn

g(x)f(x) dx.

Using Lemma 4.2(b) for the adjoint operator L∗ of L, we obtain f ∈ H1
L∗ and

‖f ‖H1
L∗ ≤ c‖w‖T 1

2
≤ c‖?  R‖ ≤ c‖?‖. This proves (ii), which completes the

proof of Theorem 4.1.

4.3. Applications

Assumptions A and B of Section 2.2 are satisfied by large classes of differential
operators. We will list some of them.

1. Let A = A(x) = ((ai,j )(x))i,j be an n × n matrix where the coefficients
ai,j are complex-valued L∞(Rn) functions. Assume that this matrix satisfies the
following elliptic (or “accretivity”) condition:

λ|ξ|2 ≤ Re Aξ · ξ̄ ≡ Re
∑
i,j

ai,j(x)ξj ξ̄i, ‖A‖∞ ≤ D,

for ξ ∈ Cn and for some λ, D such that 0 < λ ≤ D < ∞. We define the second-
order divergence form operator

Lf = −div(A∇f ),

which we interpret in the usual weak sense via a sesquilinear form.
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Such a complex elliptic operator L has a bounded H∞ calculus in L2(Rn) [AT].
Note that when A has real entries, or when n = 1, 2 in the case of complex en-
tries, the operator L generates an analytic semigroup e−tL on L2(Rn) with a kernel
pt(x, y) satisfying a Gaussian upper bound; that is,

|pt(x, y)| ≤ C

tn/2
exp

{
−c

|x − y|2
t

}
(4.8)

for x, y ∈Rn and all t > 0.
2. Let 0 ≤ V ∈ L1

loc(R
n). The Schrödinger operator with potential V is de-

fined by
L = −E + V(x) on Rn (n ≥ 3).

The operator L is a self-adjoint positive definite operator; hence it has a bounded
H∞ calculus in L2(Rn) [Mc]. From the Feynman–Kac formula it is well known
that the semigroup kernels pt(x, y) associated with e−tL satisfy the estimates

0 ≤ pt(x, y) ≤ 1

(4πt)n/2
exp

{
−|x − y|2

4t

}
.

Note that unless V satisfies additional conditions, the heat kernel can be a dis-
continuous function of the space variables and the Hölder continuous estimates
may fail to hold (see [Da]).

Acknowledgments. Liang Song and Chaoqiang Tan thankY. S. Han for helpful
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