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Special Loci in Moduli of Marked Curves

Cui Yin

1. Introduction

This paper concerns “special loci” in the moduli space Mg,[n] parameterizing the
smooth projective curves of genus g with n unordered marked points. Classically,
one fixes a finite-order diffeomorphism ϕ of a compact orientable topological sur-
face S of genus g with n marked points. The special locus associated to ϕ cor-
responds to the set of complex structures that can be put on S such that ϕ is an
automorphism of the associated marked algebraic curve. The main theorem of
this paper (Theorem 2.18) uses scheme theory to reformulate the notion of spe-
cial locus in purely algebraic terms. A related result (Corollary 2.23) shows how
the notion can often be further reformulated combinatorially in many cases. As a
consequence of these results, the notion of special locus can be extended to curves
over more general algebraically closed fields, including the characteristic-p case.
In the last section, we consider some examples both in characteristic 0 and char-
acteristicp. It turns out that special loci in characteristicp behave differently than
the analogous special loci in characteristic 0 because of differences in the corre-
sponding Riemann–Hurwitz formulas.

This paper builds upon previous work by González-Díez, Harvey, and Schneps.
González-Díez and Harvey [GoH] considered curves of genus g ≥ 2 over the com-
plex numbers without marked points, and they studied the loci of those with a given
automorphism group acting in a specified topological way. Cornalba [C] gave a
complete classification of the irreducible subvarieties corresponding to the curves
whose automorphism group contains a fixed cyclic subgroup of prime order in the
case g ≥ 1, n = 0, over the complex numbers (but without specifying the topo-
logical action). Later, Schneps [Sc1] considered the cyclic case for genus 0 with n
marked points and for genus 1 with n = 1 or 2 marked points, which correspond to
specifying a finite-order diffeomorphism of the underlying real 2-manifold. Re-
lated work has also been done by Magaard, Shaska, Shpectorov, and Völklein
[MSSV], where the group but not the topological behavior is specified.

The main result in Section 2 provides a purely algebraic definition of special
locus using scheme theory and without reference to differential or topological no-
tions. In order to do this, we rely on the fact that the classical (“differential”)
special locus is irreducible. What we do is define two automorphisms α,α ′ of
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marked curvesX,X ′ as being algebraically equivalent if there is a flat family X of
marked curves containingX,X ′ as fibres, together with an automorphism θ of the
curve Xη corresponding to the generic member of the family, such that θ special-
izes to both α and α ′. The algebraic special locus of α is then defined as the set
of points in the moduli space that have an automorphism algebraically equivalent
to α (see Definition 2.14). Our main theorem (Theorem 2.18) then uses topology
and algebraic geometry to show the equivalence of the classical special locus with
our algebraic special locus over the complex numbers. This allows the notion of
special locus to be carried over to curves defined over other fields. When there are
enough marked points, a more concrete characterization of special loci in terms of
permutations is also given (Corollary 2.23). Some explicit examples are given in
Section 3 in characteristic p, including a complete description of special loci for
marked curves of genus 0 in characteristic p.

2. Special Loci in Moduli

2.1. Differential Special Loci

In this paper, we adopt several definitions from [Sc1] with some adjustments. In
particular, we use the term “differential special locus” for the original term “spe-
cial locus” in order to distinguish this from other related notions.

We fix S once and for all to be an orientable topological surface of genus g
equipped with n distinct ordered marked points s1, . . . , sn. We say that S is of
type (g, n).

Throughout this section, we only work over the complex numbers C. In order to
give the definition of special locus, we first need to give the following definitions.

Definition 2.1. An n-unordered (resp. n-ordered) marked Riemann surface is a
Riemann surface X of genus g together with n unordered (resp. ordered) distinct
marked points x1, . . . , xn. We denote X with unordered marked points x1, . . . , xn
by (X; x1, . . . , xn).

Definition 2.2 (cf. [Sc1, Sec. 2.1]). A parameterized (ordered) marked Rie-
mann surface of genus g consists of the following data:

(1) an n-ordered marked Riemann surface X of genus g with ordered marked
points x1, . . . , xn;

(2) a parameterization—that is, a diffeomorphism� : S → X such that�(si) =
xi for 1 ≤ i ≤ n.

We say that X is of type (g, n).

Definition 2.3 [Sc1, Sec. 2.1]. Two parameterized marked Riemann surfaces
X (with marked points x1, . . . , xn and parameterization �) and X ′ (with marked
points x ′

1, . . . , x ′
n and parameterization �′) are said to be isomorphic if there exist

(a) an isomorphism α : X → X ′ of Riemann surfaces with α(xi) = x ′
i for 1 ≤

i ≤ n and (b) a diffeomorphism h : S → S, with h(si) = si for 1 ≤ i ≤ n, that is
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isotopic to the identity via a family of diffeomorphisms ht : S → S with ht(si) =
si for t ∈ [0,1] and each i and such that the following diagram commutes:

S
�−−−→ X

h

�
�α

S
�′−−−→ X ′

Remark 2.4. The Teichmüller space Tg,n is the set of isomorphism classes of
parameterized marked Riemann surfaces of type (g, n). In fact, it is well known
that the Teichmüller space forms a simply connected complex analytic space of
dimension 3g − 3 + n (cf. [Na, Thm. 3.2.3]).

Definition 2.5 [Sc1, Sec. 2.1]. (a) We define the full mapping class group �g,[n]

by setting
�g,[n] = Diff +([S ])/Diff 0(S),

where Diff +([S ]) denotes the group of orientation-preserving diffeomorphisms
of S that fixes {s1, . . . , sn} as a set and Diff 0(S) is the subgroup of those that are
isotopic to the identity.

(b) We define the pure mapping class group (or pure subgroup of the full map-
ping class group) �g,n by setting

�g,n = Diff +(S)/Diff 0(S),

where Diff +(S) is the subgroup of Diff +([S ]) consisting of diffeomorphisms that
fix each marked point si .

Remark 2.6. For the definition of mapping class group, Schneps [Sc1] and Hain
and Looijenga [HaL] use diffeomorphisms of a compact orientable surface of
genus g, whereas González-Díez, Harvey, and Maclachlan [GoH; MaH] use ho-
meomorphisms of a compact orientable surface of genus g. But these definitions of
the mapping class group are equivalent because every homeomorphism of a com-
pact orientable surface S of genus g can be approximated by a diffeomorphism
of S up to homotopy (cf. [Hi, Sec. 5, Lemma 1.5]). So we can use all the results
about the mapping class group from the papers just cited.

Remark 2.7. The mapping class group �g,[n] acts on the Teichmüller space Tg,n
as follows. Ifψ ∈�g,[n], letψ ′ denote a lifting ofψ to a diffeomorphism of S; then
ψ ′ maps the marked Riemann surface (�,X) to (� � ψ ′,X) [Sc1, Sec. 2.1]. The
unordered moduli space Mg,[n], parameterizing smooth curves of genus g together
with an unordered set of n-distinct marked points, is realized as the quotient of the
Teichmüller space Tg,n by the action of the mapping class group �g,[n]. Similarly,
the ordered moduli space Mg,n, parameterizing smooth curves of genus g together
with an ordered set of n-distinct marked points, is the quotient of Tg,n by the pure
subgroup �g,n of �g,[n].
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Definition 2.8 (cf. [Sc1, Sec. 2.1]). Ifϕ is an element of finite order in the full or
pure mapping class group, then we consider the set of points in Teichmüller space
fixed by ϕ. The image of this set in the quotient moduli space Mg,n or Mg,[n]

is called the differential special locus of ϕ, denoted respectively by Mϕ(S) or
Mϕ[S ].

Remark 2.9. A finite-order mapping class can be represented by a self-homeo-
morphism of that same order. This was proved algebraically by Nielsen [N] in the
n = 0 case; it may well be true for more general n, too.

Remark 2.10. For all genus g, if n > n0(g) = 2g + 2 then special loci in the
ordered moduli space Mg,n are trivial because automorphisms of a marked curve
X can’t fix more than 2g+ 2 points except for the identity (see Remark 2.20). So
in this paper we restrict the special loci in the unordered moduli space Mg,[n].

In Corollary 2.13 we give a characterization of the differential special locus that
does not refer to Teichmüller space or mapping class group; this will make it pos-
sible to carry the concept over to characteristicp. First we introduce the notion of
differential equivalence as follows.

Definition 2.11. Suppose (X; x1, . . . , xn) and (X ′; x ′
1, . . . , x ′

n) are two unordered
marked Riemann surfaces with genus g in the unordered moduli space Mg,[n]. Let
α be a finite-order automorphism of X and let α ′ be a finite-order automorphism
of X ′. Then α and α ′, which fix the marked points as a set, are said to be differen-
tially equivalent if there exists a diffeomorphism � : X → X ′ that maps the set
of marked points of X to the set of marked points of X ′ such that the following
diagram commutes:

X
�−−−→ X ′

α

� �α ′

X
�−−−→ X ′

Proposition 2.12. Let (X; x1, . . . , xn) be an unordered marked Riemann surface
in Mg,[n] and let α be a finite-order automorphism of X. Pick a parameterization
� of X such that (X,�) is a point in Teichmüller space. Let ψ : S → S be the
diffeomorphism induced by α and �. Let ϕ be the equivalence class of ψ in the
full mapping class group.

(a) Then (X,�) is fixed by ϕ under the action of the mapping class group on
Teichmüller space.

(b) Let X ′ (with unordered marked points x ′
1, . . . , x ′

n) be a marked Riemann sur-
face in Mg,[n]. Then there exists a parameterization �′ of X ′ such that the
point (X ′,�′) in Teichmüller space is also fixed by ϕ if and only if there exists
an automorphism α ′ of X ′ that is differentially equivalent to α.
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Proof. (a) By assumption of the proposition, we have the commutative diagram

S
�−−−→ X

ψ

�
�α

S
�−−−→ X

which is equivalent to the commutative diagram

S
�−−−→ X

id

�
�α

S
�ψ−−−→ X

where id : S → S is the identity. So (X,�) is fixed by ϕ in Teichmüller space.
(b) Now suppose that there exists a parameterized marked Riemann surface

(X ′,�′) that is also fixed by ϕ. Then there exist an automorphism α ′′ : X ′ → X ′
and a diffeomorphism h : S → S with h(si) = si for 1 ≤ i ≤ n that is isotopic to
the identity and such that the following diagram commutes:

S
�′−−−→ X ′

h

� �α ′′

S
�′ψ−−−→ X ′

By assumption of the proposition, we have the following commutative diagram:

S
�−−−→ X

ψ

� �α
S

�−−−→ X

Combining the preceding two commutative diagrams, we have the following com-
mutative diagram:

S
�′−−−→ X ′

h

�
�α ′′

X
�−1−−−→ S

�′ψ−−−→ X ′

α

� ψ

� ∥∥∥
X

�−1−−−→ S
�′−−−→ X ′

Let � = �′�−1 : X → X ′ and α ′ = �′ψ�′−1 : X ′ → X ′; then we get the fol-
lowing commutative diagram:
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X
�−−−→ X ′

α

�
�α ′

X
�−−−→ X ′

So α and α ′ are differentially equivalent.
Conversely, suppose there exists an automorphism α ′ ofX ′ that is differentially

equivalent to α. Then there exists a diffeomorphism� : X → X ′ that maps the set
of marked points to the set of marked points and such that the following diagram
commutes:

X
�−−−→ X ′

α

�
�α ′

X
�−−−→ X ′

Then we have the following commutative diagram:

S
�−−−→ X

�−−−→ X ′

ψ

� α

� �α ′

S
�−−−→ X

�−−−→ X ′

Let �′ = ��; then the following diagram commutes:

S
�′−−−→ X ′

ψ

� �α ′

S
�′−−−→ X ′

This is equivalent to the following commutative diagram:

S
�′−−−→ X ′

id

� �α ′

S
�′ψ−−−→ X ′

where id : S → S is the identity. So (X ′,�′) is fixed by ϕ.

Corollary 2.13. Let (X; x1, . . . , xn) be an unordered marked Riemann surface
in Mg,[n] and let α be a finite-order automorphism of X. The differential special
locus of α is the set of points on the moduli space Mg,[n] that have an automor-
phism differentially equivalent to α.

Proof. By Definition 2.8, consider the set of points in Teichmüller space fixed byα.
Then the differential special locus of α is the image of this set in the quotient mod-
uli space. By Proposition 2.12, let (X ′; x ′

1, . . . , x ′
n) be any unordered marked Rie-

mann surface in Mg,[n]. Then there exists a parameterized marked Riemann surface
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(X ′,�′) (where�′ is a parameterization) in Teichmüller space that is also fixed by
α if and only if there exists an automorphism α ′ of X ′ that is differentially equiv-
alent to α. Therefore, the differential special locus of α is the set of points on the
moduli space Mg,[n] that have an automorphism differentially equivalent to α.

2.2. Algebraic Special Loci

Let K be an algebraically closed field. Unlike in the previous section, where we
only worked over the complex numbers C, now we generalize the definition of
special loci to any algebraically closed field K. To do this, we first give the fol-
lowing definition of algebraic special loci.

Definition 2.14. Suppose (X; x1, . . . , xn) and (X ′; x ′
1, . . . , x ′

n) are two unordered
marked curves with genus g in Mg,[n].

(a) Let α and α ′ be finite-order automorphisms of X and X ′ (respectively) that
fix the marked points as a set. We say that α and α ′ are algebraically equiv-
alent if there exists (i) a connected flat family X → T of curves of genus g
with n marked points such that (X,α) and (X ′,α ′) are two fibers and (ii) an
automorphism θ of the curve A that corresponds to the generic point ξ in T
such that θ specializes to both α and α ′.

(b) The algebraic special locus of α is the set of points in the moduli space Mg,[n]

that have an automorphism algebraically equivalent to α; we denote this locus
by M

alg
g,[n](α).

Remark 2.15. Because Mg,[n] is a coarse moduli space, for the flat family X →
T (in Definition 2.14) of curves of genus g with n marked points there is a mor-
phism h : T → Mg,[n] such that, for each closed point t ∈ T, the curveXt together
with its marked points is in the isomorphism class of marked curves determined
by the point h(t)∈ Mg,[n].

Remark 2.16. In a flat family of tamely ramified Galois covers of smooth curves,
the number of branch points must remain constant, with no coalescing of branch
points. Namely, if branch points of ramification indices a and b coalesce to a
branch point of ramification index e in a family of covers of degree d, then by
the Riemann–Hurwitz formula the contribution of these points to the genus is
d
a
(a − 1) + d

b
(b − 1) ≥ d on the general fibre and d

e
(e − 1) < d on the special

fibre, which contradicts the fact that the genus must be constant in the family. As
a consequence, if X and X ′ are in M

alg
g,[n](α), where the order of α is prime to

the characteristic and where α ′ is the corresponding automorphism ofX ′, then the
cyclic covers X → Y := X/〈α〉 and X ′ → Y ′ := X ′/〈α ′ 〉 have the same numeri-
cal data. In other words, the number of marked points, the number of ramification
points of any given index e, and the number of marked points that are ramification
points of index e are all the same.

Lemma 2.17. Let U be a contractible space and let Y be a Riemann surface of
genus g. Let σ1, σ2, . . . , σr be r disjoint continuous sections of the projection map
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π : Y ×U → U. Let u0 ∈U. Then there is a diffeomorphism� : Y ×U → Y ×U
preserving π such that these r disjoint continuous sections all map to constant
sections under � ( possibly after shrinking U around u0).

Proof. By Remark 2.6, it suffices to show that there exists a homeomorphism
� : Y × U → Y × U preserving π such that these r disjoint continuous sections
all map to constant sections under � (possibly after shrinking U around u0).

For i = 1, . . . , r, let Pi be the points of Y such that σi(u0) = (Pi, u0). Since the
Pi are distinct, we may choose disjoint open neighborhoods Di of Pi in Y such
thatDi is homeomorphic to an open disk. We can shrinkU to a contractible space
U ′ ⊂ U such that, for any u′ ∈U ′, σi(u′) ⊂ Di × {u′}. So replacing U by U ′, we
may assume that U has this property.

Let D = ⋃
Di ⊂ Y. It suffices to construct a homeomorphism � : Y × U →

Y × U that restricts to the identity from (Y −D)× U to (Y −D)× U and such
that, for any i, �(σi(u)) = (Pi, u) for every u∈U.

For any i, we first construct a homeomorphism �i : D̄i × U → D̄i × U such
that, for any u ∈ U, �i(σi(u)) = (Pi, u) and restricts the identity on the bound-
ary of D̄i . For i = 1, . . . , r, define ξi(u) ∈Di by σi(u) = (ξi(u), u). In particular,
Pi = ξi(u0). Also identify D̄i with the closed unit disk and identify Pi with the
origin.

Now we construct �i. For any point Q �= ξi(u) in the disk Di and for any u ∈
U, the ray from ξi(u) toQ intersects the boundary of D̄i at a unique point, say Ri.
There is a unique point gi,u(Q) that is on the line segment connecting Pi and Ri
and that satisfies the equation

d(ξi(u),Q)

d(ξi(u),Ri)
= d(Pi, gi,u(Q))

d(Pi,Ri)
,

where d(ξi(u),Q) denotes the distance from ξi(u) toQ. Also let gi,u(ξi(u)) = Pi;
this defines a map gi,u : D̄i → D̄i . Note that gi,u = id on the boundary of D̄i . By
construction, gi,u : D̄i → D̄i is a homeomorphism for any i, u.

Now define �i : D̄i × U → D̄i × U by �i(Q, u) = (gi,u(Q), u). This is a ho-
meomorphism from D̄i ×U to D̄i ×U such that ξi(u)maps to the center Pi ofDi
for any u. Moreover, these homeomorphisms �i together extend to a homeomor-
phism� : Y ×U → Y ×U, which is the identity on (Y −D)×U. This mapping
then has the desired properties.

Theorem 2.18. Over the complex numbers C, let (X; x1, . . . , xn) be an unordered
marked curve of genus g in Mg,[n], where n ≥ 3 if g = 0 and n ≥ 1 if g = 1. Let
α be a finite-order automorphism of X that fixes the marked points as a set. Then
the algebraic special locus of α is the same as the differential special locus of α.

Proof. Suppose X ′ is a marked curve of genus g with unordered marked points
x ′

1, . . . , x ′
n and suppose α ′ is a finite-order automorphism of X ′ that preserves the

marked points as a set. Suppose α ′ and α are algebraically equivalent. Let Y =
X/〈α〉 and Y ′ = X ′/〈α ′ 〉. Then, by Remark 2.16, Y and Y ′ each have the same
genus g ′ and the same number of n′ marked points.
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Now the subvariety M
alg
g,[n](α) maps to a subvariety M ′

α in the moduli space
Mg ′,[n′ ] by mapping the parameterizing point of X to the parameterizing point
of Y. Let X be the family of curves corresponding to the subvariety M

alg
g,[n](α).

Consider the family Y of curves corresponding to the subvariety M ′
α; we claim

that this family is locally trivial in the metric topology.
We need to show that Y is locally trivial. Let u0 ∈ M ′

α be the point correspond-
ing to Y. Pick a contractible neighborhood U of u0 in M ′

α and consider the family
YU of curves corresponding to U. We know that YU is a subspace of Y. Since
all of the curves in YU have the same genus g ′, they are diffeomorphic. (A classi-
cal proof may be found in Ahlfors and Sario [ASa] and a modern Morse-theoretic
proof in Wallace [W].) Moreover, by the corollary to the isotopy lemma of [GP,
p. 142], there exists a diffeomorphism from Y to Y, isotopic to the identity, that
maps the set of n′ marked points to another set of n′ marked points. Hence all of
the curves in YU are diffeomorphic to Y and map the marked points to the marked
points of Y. Since U is contractible, there is a diffeomorphism from YU to Y ×U
that preserves the projections to U. Let b be the number of branch points of the
covering map from X to Y and let r = n′ + b; then there are r disjoint continu-
ous sections of the projection map π : Y × U → U. In fact, the projection map
π : Y × U → U is a trivial cover and each component is trivial, so it consists of
sections. Hence, by Lemma 2.17 (possibly after shrinking U), there is a diffeo-
morphism � : Y ×U → Y ×U such that these r disjoint continuous sections all
map to constant sections under �. So Y is a locally trivial family.

Now consider the family XU of curves in the family X corresponding to the fi-
nite branched cover of YU . (This total space exists because U is contractible.)
Since all of the curves in XU have an automorphism that is algebraically equiva-
lent to α and since Y is locally trivial, there exist diffeomorphisms among these
curves in XU that commute with their automorphism. So X is locally trivial.

Because M ′
α is connected, by the foregoing argument there exists a diffeomor-

phism � : X → X ′ that maps the set of marked points of X to the set of marked
points of X ′ and such that the following diagram commutes:

X
�−−−→ X ′

α

� �α ′

X
�−−−→ X ′

In other words, α and α ′ are differentially equivalent. Therefore, α ′ is in the dif-
ferential special locus of α.

Conversely, let Mg,[n](α) be the differential special locus of α.
First we need to show that the differential special locus Mg,[n](α) is an irre-

ducible subvariety of Mg,[n] over the complex numbers C. By [GoH,Thm.1, p. 79]
we know that the differential special locus Mg,[n](α) is an irreducible subvariety
of Mg,[n] when n = 0—that is, in the case of no marked points. In the case of n
marked points, the differential special locus Mg,[n](α) ∼= Mg,[0](α)× (Y n1 − +̃),
where Y = X/〈α〉, n1 = n/deg(α), and +̃ denotes the multidiagonal of points on
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Y. From this we deduce that the special locus Mg,[n](α) is an irreducible subvari-
ety of Mg,[n] for general n.

Now we prove that Mg,[n](α) has a finite branched cover that is the parameter
space of a family of curves of genus g with nmarked points with a family of auto-
morphism specializing to α at every complex point. We know that Mg,[n](α)(C)

consists of the C-points of a closed irreducible subvariety of Mg,[n]. LetK be the
function field of Mg,[n](α) with algebraic closure K̄. Because K̄ has a finite tran-
scendental degree over Q, there exists an embedding i : K̄ → C. This corresponds
to a C-point of Mg,[n](α), which corresponds to a curveXi with an automorphism
of topological type α. Since the generic point in Mg,[n] (corresponding to a curve
X 0
η ) is defined overK and hence over K̄, this automorphism is defined over K̄ be-

cause K̄ is algebraically closed andX has finitely many automorphisms (since n ≥
3 if g = 0 and n ≥ 1 if g = 1). Hence this generic point is defined over L, where
L is some finite extension ofK. So the field extension L overK corresponds to ir-
reducible finite branched cover from N to Mg,[n](α) and thus we have a family of
curves of genus g with nmarked points parameterizing N with automorphism cor-
responding to α via the embedding map i. For any C-point of N (over a C-point
of Mg,[n](α)), the automorphism of the family specializes to an automorphism
of the curve corresponding to the C-point. This varies algebraically and continu-
ously, so it is constant. But at the point corresponding to Xi, the automorphism is
of type α, so all are of type α. Hence the differential special locus Mg,[n](α) of α
is also the algebraic special locus of α.

Proposition 2.19. LetK be an algebraically closed field. Then every nontrivial
automorphism of a nonsingular complete K-curve of genus g has at most 2g + 2
fixed points, a number that is attained by any hyperelliptic involution.

Proof. Suppose X is a genus-g smooth curve with an order-m automorphism and
suppose n is the number of fixed points of σ. Because the number of fixed points
of σ is less than or equal to the number of fixed points of a power of σ, we may
assume that the automorphism σ has prime order p. Let Y = X/〈σ 〉; then X
is a branched covering space of Y. By the Riemann–Hurwitz theorem, we have
2g− 2 ≥ p(2gY − 2)+ (p−1)n (with equality precisely in the tame case). Sup-
pose that n > 2g + 2; then we get 2g − 2 ≥ −2p + (p − 1)(2g + 3) (since
gY ≥ 0). So we have g(4 − 2p) + 1 − p ≥ 0, which is a contradiction because
4 − 2p ≤ 0 and 1 − p < 0 (p ≥ 2). Therefore, n ≤ 2g + 2. If n = 2g + 2 then
we can take gY = 0 and p = 2; that is, there is a nontrivial order-2 automorphism
β of a hyperelliptic curve of genus g such that β has 2g + 2 fixed points. Hence
every nontrivial automorphism of a genus-g curve overK has at most 2g+2 fixed
points.

Remark 2.20. For n > 2g+ 2, if an automorphism α of a marked curveX fixes
n points, then α = 1. So if two automorphisms α and β of a marked curve X in-
duce the same permutation, then α = β. Also, for X corresponding to a point
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in the ordered moduli space Mg,n, the only automorphism α of X that fixes each
marked point is the identity. (Note that the condition n > 2g + 2 is not really a
restriction for g = 0 since n0(0) = 3 and since we need n ≥ 4 to get a nontrivial
moduli space in genus 0.)

For unordered moduli spaces, however, there can be nonempty special loci even
if n is large compared to g. This can be seen by taking a union of finitely many
orbits of a finite-order automorphism of the underlying curve.

Therefore, if n > 2g + 2 then one can speak in terms of permutations rather than
automorphisms, and these are easier to work with. This motivates the following
proposition.

Let X be a marked curve with genus g in Mg,[n]. Let α be a finite-order auto-
morphism of X that fixes the marked points as a set. We use [α] to denote the
permutation induced by α for a point in the unordered moduli space.

Proposition 2.21. For n > 2g + 2, let (X; x1, . . . , xn) and (X ′; x ′
1, . . . , x ′

n) be
two unordered marked curves with genus g in Mg,[n]. Let α be a finite-order auto-
morphism ofX that fixes the marked points as a set. Then there exists a finite-order
automorphism α ′ (which fixes the marked points as a set) of X ′ that is differen-
tially equivalent to α if and only if there exists a finite-order automorphism α ′′
(which fixes the marked points as a set) of X ′ such that [α ′′ ] is conjugate to [α]
in Sn.

Proof. First suppose that there exists a finite-order automorphism α ′ (which fixes
the marked points as a set) of X ′ that is differentially equivalent to α. Then there
exists a diffeomorphism � : X → X ′ that maps the set of marked points of X to
the set of marked points of X ′ such that the following diagram commutes:

X
�−−−→ X ′

α

� �α ′

X
�−−−→ X ′

Then α ′ = �α�−1. So α and α ′ induce conjugate permutations. Let α ′′ = α ′;
then [α] is conjugate to [α ′′ ].

Conversely, suppose that there exists a finite-order automorphism α ′′ (which
fixes the marked points as a set) of X ′ such that [α ′′ ] is conjugate to [α]. Choose
parameterizations � : S → X for X and �′ : S → X ′. Let ψ : S → S be the dif-
feomorphism induced by α and let ψ ′ : S → S be the diffeomorphism induced
by α ′′. Because α and α ′′ induce conjugate permutations, we know that ψ and ψ ′
induce conjugate permutations.

Therefore, by the corollary to the isotopy lemma of [GP, p.143], there exist a dif-
feomorphism h : S → S that is isotopic to identity and a diffeomorphism ζ : S →
S such that ψ = ζ−1ψ ′ζh. In other words, the following diagram commutes:
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S
ζh−−−→ S

ψ

�
�ψ ′

S
ζ−−−→ S

which is equivalent to the following commutative diagram:

S
ζ−−−→ S

h−1

�
�ψ ′

S
ζψ−−−→ S

So we have the following commutative diagram:

S
ζ−−−→ S

�′−−−→ X ′

h−1

� �ψ ′
�α ′′

S
ζψ−−−→ S

�′−−−→ X ′

Hence the following diagram commutes:

S
�′ζ−−−→ X ′

h−1

� �α ′′

S
�′ζψ−−−→ X ′

Because h−1 : S → S is isotopic to the identity, we obtain that (X ′,�′ζ) is fixed
by the equivalence class ϕ of ψ in the full mapping class group. By Proposi-
tion 2.12(a), we know that (X,�) is fixed by ϕ. So by Proposition 2.12(b), there
exists an automorphism α ′ of X ′ that is differentially equivalent to α; that is, we
have the following commutative diagram:

X
�−−−→ X ′

α

� �α ′

X
�−−−→ X ′

Remark 2.22. Note that, in the proof of Proposition 2.21, in the forward di-
rection we can take α ′′ = α ′. But in the converse direction, α ′ might have to be
different from α ′′ in order for α ′ to be differentially equivalent to α.

Corollary 2.23. For n > 2g + 2, let (X; x1, . . . , xn) be an unordered marked
curve with genus g in Mg,[n] and let α be a finite-order automorphism of X that
fixes {x1, . . . , xn} as a set. The algebraic special locus of α is the set of points on
the moduli space that have an automorphism whose induced permutation of the
marked points is conjugate to [α] in Sn.

The proof follows from Corollary 2.13, Theorem 2.18, and Proposition 2.21.
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3. Examples of Special Loci in Low Genus

3.1. Special Loci in Genus 0 over the Complex Numbers C

For the genus-0 case, a permutation τ of the ordered marked points can be realized
as an automorphism of the marked Riemann surface [Sc1, Sec. 3.1.1]. Such points
are not orbifold points on the ordered moduli space, but they are preimages of orb-
ifold points on the unordered moduli space M0,[n] because the τ have less than n!
preimages under the action of Sn. The points corresponding to marked Riemann
surfaces having special automorphism group determine where the special loci will
lie in the unordered moduli space M0,[n].

Now we investigate the special loci in the genus-0 moduli spaces for arbitrary
n. If S is a sphere with n marked points, then a finite-order element of the map-
ping class group �g,[n] is the class of a diffeomorphism that is simply a rotation
around an axis. In fact, for n ≥ 5, that all finite-order elements in �0,[n] are rota-
tions follows from [MaH, Cor., p. 508] and [Sc2, Sec. 4.1]. For n = 3 we have
�0,[n] = 1. For n = 4 there are four conjugacy classes of finite-order elements, in-
ducing different conjugate permutations [Sc2, Sec. 3, proof of Cor. 2]; we can see
that each conjugate class comes from a rotation.

Let ϕ be a finite-order element of the mapping class group �g,[n]. We may as-
sume that ϕ is a rotation—say, around the axis through the north and south poles
(corresponding to the points ∞, 0). The north and south poles of S may or may
not be marked points, but they are always the only ramification points for ϕ. The
permutation associated to a rotation ϕ is always of the form c1 · · · ck , where the ci
are disjoint cycles of length j such that

jk =



n if the north and south poles are not marked,

n− 1 if one of the two poles is marked,

n− 2 if both poles are marked points.

In [Sc1, Thm. 3.5.1] Schneps computed the special locus of ϕ, where ϕ is asso-
ciated to a permutation [ϕ] that is a product of k disjoint cycles of length j in the
case jk = n−2 (i.e., when the two fixed points of ϕ are marked points). As noted
in [Sc1, Sec. 3.5], the special locus of ϕ in the general case can then be deduced
from this case. The reason is that the special locus in M0,n is just the image of the
one we compute here in M0,n+1 or M0,n+2 under the morphism given by erasing
the extra marked points.

3.2. Special Loci of genus 0 in Characteristic p

In characteristic p, we can also think about marked curves having special auto-
morphism group in the ordered moduli space to determine the special loci in the
unordered moduli space.

First we give several explicit examples of special loci in characteristic 5 and
characteristic 3.
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Example 3.1. In characteristic 5 and in the case M0,5, consider the permutation
τ = (1, 2, 3, 4, 5) and a point (λ, 0,1, ∞,µ) in M0,5 in standard representation
(with three marked points fixed at 0, 1, and ∞). The action of τ on the point takes
it to (µ, λ, 0,1, ∞), and then the transformation by the automorphism x �→ x−λ

λx−λ
brings it back to

( µ−λ
λµ−λ , 0,1, ∞, 1

λ

)
. The fixed points of τ are given by (λ,µ) with

λ = µ− λ
λµ− λ and µ = 1

λ
,

so λ is a root of λ3 − 2λ2 +1. One root is λ = 1, but this is excluded in M0,5. The
remaining roots are λ = 1±√

5
2 = 1

2 = 3 (since this is in characteristic 5), so the
only fixed point of τ is (3, 0,1, ∞, 2). In fact, the point (3, 0,1, ∞, 2) is equivalent
to the point (0,1, 2, 3, 4) in the moduli space M0,5 since (3, 0,1, ∞, 2) transforms
to the point (0,1, 2, 3, 4) by the linear transformation x �→ 3x−9

x−9 . So (0,1, 2, 3, 4)
is fixed by a translation τ.

Remark 3.2. In Example 3.1, τ fixes only one point in characteristic 5 but fixes
two points in characteristic 0 (cf. [Sc1, Thm. 3.5.1]).

Example 3.3. In characteristic 5 and in the case M0,10, consider the permutation
τ = (1, 2, 3, 4, 5, 6, 7, 8, 9,10) and a point (x1, . . . , x7,1, 0, ∞) in M0,10 in standard
representation (with three components fixed at 0, 1, and ∞); then the action of
τ on the point takes it to (∞, x1, . . . , x7,1, 0). But in characteristic 5, there is no
transformation that can bring it back to the original point (x1, . . . , x7,1, 0, ∞), by
a calculation similar to that used in Example 3.1. So there is no fixed point of τ
in M0,10.

Remark 3.4. In Example 3.3, τ has no fixed point in characteristic 5 but fixes two
disconnected 1-dimensional components in characteristic 0 (cf. [Sc1, Thm. 3.5.1]).

Example 3.5. ForM0,4 in characteristic 3, consider the permutation τ = (1, 2, 3)
and a point (λ,1, 0, ∞) in M0,4 in standard representation (with three components
fixed at 0, 1, and ∞). The action of τ on the point takes it to (0, λ,1, ∞). Then the
transformation y �→ y + 2 brings the point (0, 2,1, ∞) back to the original point
(2,1, 0, ∞). So the fixed point of τ in M0,4 is (2,1, 0, ∞).
Remark 3.6. In Example 3.5, τ fixes only one point in characteristic 3 but fixes
two points in characteristic 0 (cf. [Sc1, Thm. 3.5.1]).

Now we give a result to describe the finite-order automorphism in genus-0 alge-
braic curves with marked points in characteristic p.

Proposition 3.7. LetK be an algebraically closed field. Every finite-order auto-
morphism of P1

K with marked points is the conjugacy class of a rotation around
an axis (i.e., by multiplying roots of unity) or the conjugacy class of a translation
(i.e., by adding an element in K).
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Proof. We already know that the group of automorphisms of P1
K is isomorphic

to PGL(2,K). Since K is an algebraically closed field it follows that, by Jordan
canonical form, every element in PGL(2,K) is conjugate to either

A =
(
λ 1
0 λ

)
or B =

(
λ1 0
0 λ2

)
,

where λ, λ1, λ2 are nonzero elements in K.
If an element is conjugate to A, then it has one fixed point ∞ and the corre-

sponding fractional linear transformation is z �→ z+ 1
λ

, which is just a translation.
If the automorphism is of finite order, then the translation can happen only in char-
acteristic p.

If an element is conjugate toB, then it has two fixed points 0 and ∞ and the cor-
responding fractional linear transformation is z �→ λ1

λ2
z, which is a composition

of a rotation and a dilation. If the automorphism is of finite order then it is just a
rotation; this happens both in characteristic 0 and p. In characteristic 0, the rota-
tion can have any order; in characteristic p, its order is prime to p because there
are no primitive pth roots of unity.

The following result describes the special loci in characteristic p in the case g =
0 and n ≥ 3.

Proposition 3.8. Let (X; x1, . . . , xn) be an unordered marked curve of genus 0
over an algebraically closed field K, and let ϕ be a finite-order automorphism of
X that fixes {x1, . . . , xn} as a set. Let [ϕ] denote the permutation of marked points
induced by ϕ. Let g ′ be the genus of X/ϕ and let n′ be the number of marked
points coming from the marked points of X. If M0,[n](ϕ) is not empty then ϕ is of
the form c1 · · · ck , where the ci are disjoint cycles of length j such that jk = n or
n− 1 or n− 2. Moreover, the following statements hold.

(a) If j is not a multiple ofp, then M0,[n](ϕ) has the same description in charac-
teristic 0 and p.

(b) If p|j and j > p, then M0,[n](ϕ) is empty.
(c) If p = j and jk = n−2, then M0,[n](ϕ) is empty. If p = j and jk = n−1 or
jk = n, then M0,[n](ϕ) is isomorphic to quotient of {P1 − {0,1, ∞}}k−2 −+
by Sk , where + denotes the multidiagonal of points with xi = xj for some
i �= j.

Proof. By Proposition 3.7, we know that if M0,[n](ϕ) is not empty then ϕ is of
the form c1 · · · ck , where the ci are disjoint cycles of length j such that jk = n or
n− 1 or n− 2.

(a) If j is not a multiple of p, then we have the j th roots of unity. Because the
proof for characteristic 0 (cf. [Sc1, Thm. 3.5.1]) involves only the pure group the-
ory, it also works for characteristic p in this case.

(b) If p|j and j > p, then ϕ has no fixed point either as a rotation or as a
translation.

(c) If p = j, then ϕ is a translation. If jk = n − 2, then ϕ has no fixed point
because a translation cannot fix two points pointwise.
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If jk = n − 1, then in the ordered moduli space M0,n we know that ϕ fixes
p − 1 disjoint connected components. Each such component is given by

Ci = (0, i, . . . , (p − 1)i, a1, . . . , a1 + (p − 1)i, . . . , ak−1, . . . , ak−1 + (p − 1)i, ∞),
where i = 1, . . . ,p − 1 and a1, . . . , ak−1 are any numbers in the field K such that
all the marked points are distinct. In the unordered moduli space M0,n, all the
components Ci (as well as all those components corresponding to other rotations
having the same cycle type as ϕ) become identified. So M0,[n](ϕ) is isomorphic to
one of Ci, say C1, modulo its stabilizer in Sn = Sjk+1. We could determine its sta-
bilizer by a procedure similar to that used in Schneps’s proof of [Sc1, Thm. 3.5.1]
(where the proof involved only the pure group theory). In fact, the stabilizer of C1

is generated by two natural subgroups: the first, of order k!, corresponds to per-
muting the k disjoint cycles of [ϕ]; the second, of order j k, is generated by the
j cycles themselves. After computing the quotient of C1 by its stabilizer, we ob-
tain that M0,[n](ϕ) is isomorphic to the quotient of {P1 − {0,1, ∞}}k−2 − + by
all permutations of marked points in X/ϕ that come from the marked points with
the same ramification index in X (i.e., Sk), where + denotes the multidiagonal of
points with xi = xj .

If jk = n, then a similar calculation as used in the case jk = n− 1 yields that
M0,[n](ϕ) is isomorphic to the quotient of {P1 − {0,1, ∞}}k−2 −+ by Sk , where
+ denotes the multidiagonal of points with xi = xj .
Proposition 3.8 shows that there is no automorphism of order divisible by p in
characteristic p unless the order is exactly p. Also, there is an automorphism of
order p (namely, translation), but this automorphism behaves differently from an
automorphism of the same order in characteristic 0.

3.3. Special Loci in Genus 1

There is also a generalization of Proposition 3.8 to higher genus. In particular, for
g = 1, we give some results in the following proposition.

Proposition 3.9. Let X be a marked curve of genus 1 with n marked points
x1, . . . , xn over an algebraically closed field K of characteristic �= 2, 3 and let ϕ
be a finite-order automorphism of X. Let [ϕ] ∈ Sn be a permutation of marked
points for n ≥ 5, where [ϕ] is the corresponding permutation of marked points of
ϕ. Suppose that M1,[n](ϕ) is not empty and write [ϕ] as a product of disjoint cy-
cles c1 · · · ck. Then either the ci are of the same length j such that jk = n or each
ci has length 2, 3, 4, 6.

Proof. Let X be a marked curve of genus 1 with n marked points x1, . . . , xn over
an algebraically closed field K of characteristic �= 2, 3, and let ϕ be a finite-order
automorphism of X. Let [ϕ] ∈ Sn be a permutation of marked points for n ≥
5, where [ϕ] is the corresponding permutation of marked points of ϕ. Let g0 be
the genus of X/〈ϕ〉. Then the possible order m of ϕ and their branching data
(m1,m2, . . . ,mr) are limited by the well-known Riemann–Hurwitz equation:



Special Loci in Moduli of Marked Curves 511

2g − 2

m
= (2g0 − 2)+

r∑
i=1

(
1 − 1

mi

)
.

Here we consider the Riemann–Hurwitz formula only in the tame case, since if
the characteristic of K is not 2 or 3 then all the branch coverings we considered
are tame. Because we consider only the cyclic group 〈ϕ〉 of order m, let M =
lcm(m1,m2, . . . ,mr). Then the following conditions are satisfied [B, Cor. 9.4]:

(i) lcm(m1,m2, . . . ,mi−1,mi+1, . . . ,mr) = M for all i;
(ii) M divides m, and if g0 = 0 thenM = m;

(iii) r �= 1, and if g0 = 0 then r ≥ 3;
(iv) if M is even, then the number of mi divisible by the maximum power of 2

dividingM is even.

By the classification of automorphisms of elliptic curves [Si, Thm. 10.1], we know
the possible values of mi are 2, 3, 4, 6. Combining the previous conditions on the
Riemann–Hurwitz equation (3.3), we get that the possible Galois coverings are:

(i) m = 2, r = 4, mi = 2 for all i;
(ii) m = 3, r = 3, mi = 3 for all i;

(iii) m = 4, r = 3, (m1,m2,m3) = (2, 4, 4);
(iv) m = 6, r = 3, (m1,m2,m3) = (2, 3, 6).

Since X has n marked points, by the possible Galois coverings just listed we can
obtain the possible permutations [ϕ] of marked points as in the proposition.
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