# A Minimal Brieskorn 5-Sphere in the Gromoll-Meyer Sphere and Its Applications 

Carlos Durán \& Thomas Püttmann

## 1. Introduction

This paper links two previously more or less unrelated important examples at the intersection of the fields of transformation groups, exotic spheres, and nonnegative curvature. These two examples are the exotic Gromoll-Meyer sphere $\Sigma^{7}$ and the Brieskorn sphere $W_{3}^{5}$. Several applications are drawn from the interplay between the Riemannian geometry of a 2-parameter family of metrics on $\Sigma^{7}$ and the equivariant geometry of $W_{3}^{5}$, which, surprisingly, determines the equivariant geometry of $\Sigma^{7}$ much more than the equivariant geometry of the exotic Brieskorn spheres $W_{6 j-1,3}^{7}$, although the latter contain $W_{3}^{5}$ in a much more obvious way.

In 1974, Gromoll and Meyer [GrMy] constructed $\Sigma^{7}$ as a biquotient of the compact group $\operatorname{Sp}(2)$ and thereby the first exotic sphere with nonnegative sectional curvature. Note that $\Sigma^{7}$ can be regarded as the basic example of a biquotient in Riemannian geometry and, simultaneously, as the basic example of an exotic sphere. It generates the group $\Theta_{7} \approx \mathbb{Z}_{28}$ of homotopy spheres in dimension 7 , the first dimension except possibly 4 where exotic spheres can occur. Recently, it was shown that $\Sigma^{7}$ is actually the only exotic sphere that can be modeled by a biquotient of a compact Lie group [KaZ; To].

Because of this exceptional status of the Gromoll-Meyer sphere, it seems natural to study the geometry of $\Sigma^{7}$ in detail. Papers that do this from various viewpoints are [D; EK; PaSp; Y; Wi], for example. Here we investigate $\Sigma^{7}$ through the interaction between symmetry arguments, submanifold stratifications, and geodesic constructions. It is important, however, to note that we consider not only the Gromoll-Meyer metric on $\Sigma^{7}$ but also the entire 2-parameter family of metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ that are $\mathrm{O}(2) \times \mathrm{SO}(3)$ invariant by construction. This family includes the Gromoll-Meyer metric $\left(\mu=v=\frac{1}{2}\right)$ and the pointed wiedersehen metric constructed in [D] $(\mu=v=1)$ but not the metrics of almost positive sectional curvature obtained in [EK] and [Wi]. Extending the constructions of [D] and [ADPR], we obtain the following structural information.

[^0]Theorem 1.1. The Gromoll-Meyer sphere $\Sigma^{7}$ is the join of a simple closed geodesic $\Sigma^{1}$ and a minimal subsphere $\Sigma^{5}$ that is $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariantly diffeomorphic to the Brieskorn sphere $W_{3}^{5}$. For $\mu=1$ and $v>0$, the distance between $\Sigma^{1}$ and $\Sigma^{5}$ is a constant $\pi / 2$, and the join structure is realized by distanceminimizing geodesics from $\Sigma^{1}$ to $\Sigma^{5}$.

Recall that the Brieskorn sphere $W_{3}^{5}$ is the submanifold of $\mathbb{C}^{4}$ defined by

$$
\begin{gathered}
z_{0}^{3}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \\
\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{3}=1
\end{gathered}
$$

and that there is a natural action of $\mathrm{O}(2) \times \mathrm{SO}(3)$ on $W_{3}^{5}$ (see Section 4). On the one hand, it is perhaps not surprising that $W_{3}^{5}$ plays a central role for the geometry of $\Sigma^{7}$ if one recalls that $\Sigma^{7}$ is diffeomorphic to $W_{6 j-1,3}^{7}$ for any $j \in\{1,9,17, \ldots\}$ (see [Bk]). Here, $W_{6 j-1,3}^{7} \subset \mathbb{C} \oplus \mathbb{C}^{4}$ is defined by the equations

$$
\begin{gathered}
u^{6 j-1}+z_{0}^{3}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \\
|u|^{2}+\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{3}=1 .
\end{gathered}
$$

On the other hand, whereas $\Sigma^{5}$ and $W_{3}^{5}$ are $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariantly diffeomorphic, the ambient spaces $\Sigma^{7}$ and $W_{6 j-1,3}^{7}$ are never even $\mathrm{SO}(3)$-equivariantly homeomorphic (see Corollary 7.6); in particular, none of them is SO (3)-equivariantly homeomorphic to a join of a circle and $W_{3}^{5}$.

It is important to note that $W_{3}^{5}$ is not equivariantly diffeomorphic to $\mathbb{S}^{5}$ with any linear $(\mathrm{O}(2) \times \mathrm{SO}(3))$-action, and this holds true if one restricts from $\mathrm{O}(2) \times \mathrm{SO}(3)$ to the subgroup $\mathrm{O}(3)=\{ \pm 1\} \times \mathrm{SO}(3)$. This follows from the classification theorems of Jänich and of Hsiang and Hsiang (see [Bd2; HzMa]). On the other hand, these theorems imply that there exist $\mathrm{SO}(3)$-equivariant diffeomorphisms $\mathbb{S}^{5} \rightarrow$ $W_{3}^{5}$ where $\mathrm{SO}(3)$ acts diagonally on $\mathbb{S}^{5} \subset \mathbb{R}^{3} \times \mathbb{R}^{3}$.

This brings us to the first application of Theorem 1.1. Using the geodesic join structure, we derive an explicit formula for an SO (3)-equivariant diffeomorphism $\mathbb{S}^{5} \rightarrow W_{3}^{5}$. This nontrivial formula can be verified by a straightforward computation and immediately carries over to dimension 13.

Theorem 1.2. Formula (9) in Section 5 provides an $\mathrm{SO}(3)$-equivariant diffeomorphism $\mathbb{S}^{5} \rightarrow W_{3}^{5}$ and a $\mathrm{G}_{2}$-equivariant diffeomorphism $\mathbb{S}^{13} \rightarrow W_{3}^{13}$.

As far as we know, this is the first explicit formula for diffeomorphisms between standard spheres and Brieskorn spheres $W_{d}^{2 n-1}$ with $n>2$ and odd $d>1$.

Related to Theorem 1.2 is Theorem 6.3, where we provide nonlinear actions of $\mathrm{O}(2) \times \mathrm{SO}(3)$ and $\mathrm{O}(2) \times \mathrm{G}_{2}$ on the Euclidean spheres $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ that are equivalent to the $(\mathrm{O}(2) \times \mathrm{SO}(3))$-action on $W_{3}^{5}$ and to the $\left(\mathrm{O}(2) \times \mathrm{G}_{2}\right)$-action on $W_{3}^{13}$, respectively. Various models existed for these actions previously (see [Bd1]) but only on manifolds that were inexplicitly diffeomorphic to $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$.

In order to explain the second application of Theorem 1.1, we have to digress briefly into the history of exotic involutions of spheres. A fixed point-free involution of the standard sphere is called exotic if the quotient is not diffeomorphic to the
real projective space. The first examples of such involutions were given by Hirsch and Milnor [HMi]. They considered the exotic Milnor sphere $\mathbb{S}^{3} \cdots \Sigma_{2,-1}^{7} \rightarrow \mathbb{S}^{4}$ and the involution of $\Sigma_{2,-1}^{7}$ induced by the antipodal map on the $\mathbb{S}^{3}$-fibers, detected invariant subspheres of dimensions 5 and 6 in $\Sigma_{2,-1}^{7}$, and proved that the restrictions of the involution of $\Sigma_{2,-1}^{7}$ yield exotic involutions of these subspheres. The next example of an exotic involution was given by Calabi (unpublished; see [Bd1]), who showed that the involution of $W_{3}^{5}$ given by the map $\left(z_{0}, z^{\prime}\right) \mapsto\left(z_{0},-z^{\prime}\right)$ is exotic. In [HzMa], the Calabi involution was identified with an involution constructed by Bredon, and this in turn was identified with the Hirsch-Milnor involution by Yang [Ya]. The latter identification, however, turned out to be incorrect (see a footnote in [SSi]), so an explicit identification between the Hirsch-Milnor involution and the Calabi involution was still missing.

In [ADPR] it was shown that the Hirsch-Milnor involutions are induced by the action of $-\mathbb{1} \in \operatorname{Sp}(2)$ on $\Sigma^{7}=\Sigma_{2,-1}^{7}$ and that the invariant subspheres of Hirsch and Milnor are precisely the sphere $\Sigma^{5} \subset \Sigma^{7}$ of Theorem 1.1 and the intermediate equators $\Sigma^{5} \subset \Sigma_{ \pm A}^{6} \subset \Sigma^{7}$ (see Section 2). In combination with explicit diffeomorphisms $\mathbb{S}^{5} \rightarrow \Sigma^{5}$ and $\mathbb{S}^{6} \rightarrow \Sigma_{ \pm A}^{6}$ provided by the geodesic geometry of $\Sigma^{7}$, this was used to derive explicit formulas for exotic involutions of the Euclidean spheres $\mathbb{S}^{5}, \mathbb{S}^{6}, \mathbb{S}^{13}$, and $\mathbb{S}^{14}$. As a consequence of Theorem 1.1 , we now obtain the following result.

Corollary 1.3. The equivariant diffeomorphism $\Sigma^{5} \rightarrow W_{3}^{5}$ identifies the HirschMilnor involution in dimension 5 with the Calabi involution of $W_{3}^{5}$.

Since $\Sigma^{5} /\{ \pm \mathbb{1}\}$ and $\Sigma_{ \pm A}^{6} /\{ \pm \mathbb{1}\}$ are not diffeomorphic to real projective spaces, it is natural to investigate the metrics on $\Sigma^{5}$ and $\Sigma_{ \pm A}^{6}$ induced by the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{7}$. We will show that $\Sigma^{5}$ or $\Sigma_{ \pm A}^{6}$ is totally geodesic in $\Sigma^{7}$ for none of these metrics. Moreover, the induced metrics always have some negative sectional curvatures.

The third application of Theorem 1.1 concerns the full isometry group of $\Sigma^{7}$. As mentioned already in [GrMy], Hsiang showed that the maximum dimension of the isometry group of any metric on $\Sigma^{7}$ is 4 (see [St] for a proof). Thus the identity component of the isometry group of $\langle\cdot, \cdot\rangle_{\mu, \nu}$ is the group $\mathrm{SO}(2) \times \mathrm{SO}(3)$. It remains a nontrivial problem to determine the other components. Of particular interest is to see which finite groups can act freely on $\Sigma^{7}$. Recent papers [Ba; GSh; Sh1; Sh2] dealt with the analogous problem for the homogeneous and cohomogeneity-1 manifolds of positive sectional curvature. Surprisingly, it turned out that sometimes noncyclic groups can act freely on these spaces. For the cohomogeneity-3 metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{7}$, the structural information of Theorem 1.1 can be used to reduce the problem to the corresponding problem for the induced cohomogeneity-1 metrics on $\Sigma^{5}$. This latter problem can be solved with the help of some curvature computations.

Theorem 1.4. The group $\mathrm{O}(2) \times \mathrm{SO}(3)$ is the full isometry group of the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{7}$ and on $\Sigma^{5}$. Any subgroup that acts freely on either $\Sigma^{7}$ or $\Sigma^{5}$ is a finite cyclic group. Conversely, for any $m \in \mathbb{Z}$ the group $\mathbb{Z}_{m}$ acts freely and isometrically on $\Sigma^{7}$ and on $\Sigma^{5}$, even in several nonconjugate ways for a fixed $m>2$.

All the $\mathbb{Z}_{m}$-quotients of $\Sigma^{7}$ inherit nonnegative sectional curvature from the Gromoll-Meyer metric $\langle\cdot, \cdot\rangle_{1 / 2,1 / 2}$. (It is interesting, however, to note that for $m>2$ the known metrics with almost positive sectional curvature on $\Sigma^{7}[\mathrm{EK}$; Wi] are not invariant with respect to the $\mathbb{Z}_{m}$-actions.) In the case of $\Sigma^{5}$, none of the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ has nonnegative curvature, but by the Grove-Ziller construction [GZ] there exist $(\mathrm{O}(2) \times \mathrm{SO}(3))$-invariant metrics on $\Sigma^{5}$ with $K \geq 0$.

Corollary 1.5. For any $m$ not divisible by 6 and for any two integers $p, q$ with $p \neq 0,3 p-q \neq 0$, and $3 p+q \neq 0$ such that $m$ is relatively prime to $p, 3 p-q$, and $3 p+q$, there is a 7 -manifold with $K \geq 0$ that is homotopy equivalent to the lens space $L_{m}^{7}(p, p, 3 p-q, 3 p+q)$ but not diffeomorphic to any standard lens space. If $m$ is even then there also exists a 5 -manifold with $K \geq 0$ that is homotopy equivalent to the lens space $L_{m}^{5}(p, 3 p-q, 3 p+q)$ but not diffeomorphic to any standard lens space.

In dimension 5 the case $m=2$ was already covered in [GZ]. Apart from this case, these seem to be the first known exotic homotopy lens spaces with $K \geq 0$. Exotic lens spaces with positive Ricci and almost nonnegative sectional curvature in higher dimensions were found by Schwachhöfer and Tuschmann [ScT].

The nontrivial part of Corollary 1.5 is to determine the homotopy type of the free $\mathbb{Z}_{m}$-quotients of $\Sigma^{7}$ and $\Sigma^{5}$. It is well known that the orbit spaces of free $\mathbb{Z}_{m^{-}}$ actions on homotopy spheres are homotopy equivalent to lens spaces (see [Bw]). For a concretely given action on a homotopy sphere, however, there is no canonical tractable way to determine the homotopy type of the quotient. In our case we will follow an idea of Orlik [Or] and construct branched coverings $\Sigma^{5} \rightarrow \mathbb{S}^{5}$ that can be extended by the join structure of Theorem 1.1 to (continuous) branched coverings $\Sigma^{7} \rightarrow \mathbb{S}^{7}$. The essential property of these branched coverings is that they are $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariant where $\mathrm{O}(2) \times \mathrm{SO}(3)$ acts linearly on $\mathbb{S}^{7}$ and $\mathbb{S}^{5}$. The target spaces of the induced maps $\Sigma^{7} / \mathbb{Z}_{m} \rightarrow \mathbb{S}^{7} / \mathbb{Z}_{m}$ and $\Sigma^{5} / \mathbb{Z}_{m} \rightarrow \mathbb{S}^{5} / \mathbb{Z}_{m}$ are thus standard lens spaces, and this allows us to determine the homotopy type of $\Sigma^{7} / \mathbb{Z}_{m}$ and $\Sigma^{5} / \mathbb{Z}_{m}$.

The fourth application of Theorem 1.1 resides in determining the structure of fixed point sets of isometries of $\Sigma^{7}$. Fixed point sets of isometries are useful to understand the geometry of Riemannian manifolds because each connected component is a totally geodesic submanifold. In particular, they provide significant curvature information because the extrinsic and intrinsic sectional curvatures of a plane tangent to a totally geodesic submanifold are equal. In a general biquotient it is fairly difficult if not impossible to determine the structure of all fixed point sets. In $\Sigma^{7}$, however, we can employ Theorem 1.1 to determine the metric structure of all fixed point sets in a very geometric way (see Section 7). It turns out that all fixed point sets with dimension $>1$ are congruent to one of three 3 -spheres $\Sigma_{0}^{3}, \Sigma_{1}^{3}, \Sigma_{2}^{3}$ to a real projective space $P^{3}$ or to a lens space $L^{3} \approx \mathbb{S}^{3} / \mathbb{Z}_{3}$. It is interesting to see how the biquotient structure of $\Sigma^{7}$ causes $\Sigma_{0}^{3}$ and $L^{3}$ to have more intrinsic than extrinsic isometries: Both are intrinsically homogeneous although they inherit only a cohomogeneity- 1 action from the $(\mathrm{O}(2) \times \mathrm{SO}(3))$-action on
$\Sigma^{7}$. The fact that $L^{3}$ and $P^{3}$ are fixed point sets with nontrivial fundamental group shows how much the geometry of $\Sigma^{7}$ differs from the geometry of the standard sphere $\mathbb{S}^{7}$ with constant curvature. The induced metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma_{2}^{3}$ are properly of cohomogeneity 2 . They are remarkable in that the curvature tensor looks like the metrics would be of cohomogeneity 1 and there is no obvious deformation to the constant curvature metric through metrics with this property.

Acknowledgments. The authors would like to thank Uwe Abresch and A. Rigas for many useful discussions. We also thank Luigi Verdiani, whose Maple applets allowed us to cross-check some of the curvature computations in a very efficient way.

## 2. The Geodesic Join Description of the Gromoll-Meyer Sphere

In this section we review and extend some of the constructions of [D] and [ADPR]. In particular, we use a 1-parameter family of metrics on the Gromoll-Meyer sphere $\Sigma^{7}$ with the pointed wiedersehen property along a circle $\Sigma^{1}$ to recognize $\Sigma^{7}$ as the geodesic join of $\Sigma^{1}$ and a minimal subsphere $\Sigma^{5} \subset \Sigma^{7}$.

Let $\mathbb{S}^{3}$ denote the unit sphere in the quaternions $\mathbb{H}$ and let $\operatorname{Sp}(2)$ denote the group of $2 \times 2$ quaternionic matrices $A$ such that $\bar{A}^{t} \cdot A=\mathbb{1}$. On $\operatorname{Sp}(2)$ we consider the class of left-invariant and $\mathrm{Sp}(1) \times \mathrm{Sp}(1)$ right-invariant Riemannian metrics. After rescaling, these metrics correspond precisely to the $\operatorname{Ad}_{\mathrm{Sp}(1) \times \mathrm{Sp}(1)}$-invariant inner products

$$
\left\langle\left[\begin{array}{rr}
x_{1} & -\bar{y}_{1} \\
y_{1} & z_{1}
\end{array}\right],\left[\begin{array}{rr}
x_{2} & -\bar{y}_{2} \\
y_{2} & z_{2}
\end{array}\right]\right\rangle_{\mu, \nu}=\operatorname{Re}\left(\mu \bar{x}_{1} x_{2}+\bar{y}_{1} y_{2}+v \bar{z}_{1} z_{2}\right)
$$

on the Lie algebra $\mathfrak{s p}(2)$. The standard biinvariant metric on $\operatorname{Sp}(2)$ is $\langle\cdot, \cdot\rangle_{1 / 2,1 / 2}$. This metric has nonnegative sectional curvature, and it follows from Cheeger's construction [Ch] that all metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ with $\mu, \nu \leq \frac{1}{2}$ have nonnegative sectional curvature as well.

Two free isometric actions of $\mathbb{S}^{3}$ on $\operatorname{Sp}(2)$ play a central role in the rest of the paper: the standard action

$$
\mathbb{S}^{3} \times \operatorname{Sp}(2) \rightarrow \operatorname{Sp}(2), \quad q \bullet A=A \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & \bar{q}
\end{array}\right]
$$

and the Gromoll-Meyer action [GrMy]

$$
\mathbb{S}^{3} \times \operatorname{Sp}(2) \rightarrow \operatorname{Sp}(2), \quad q \star A=q \cdot A \cdot\left[\begin{array}{cc}
\bar{q} & 0 \\
0 & 1
\end{array}\right]
$$

Both these actions foliate $\operatorname{Sp}(2)$ by $\mathbb{S}^{3}$-orbits in two different ways. The orbit space of the standard action $\bullet$ can be naturally identified with $\mathbb{S}^{7} \subset \mathbb{H}^{2}$ by restricting a matrix in $\operatorname{Sp}(2)$ to its first column. The orbit space $\Sigma^{7}$ of the Gromoll-Meyer action $\star$ is diffeomorphic to the exotic Milnor sphere $\Sigma_{2,-1}^{7}$. The corresponding projection maps are denoted by $\pi_{\mathbb{S}^{7}}: \operatorname{Sp}(2) \rightarrow \mathbb{S}^{7}$ and $\pi_{\Sigma^{7}}: \operatorname{Sp}(2) \rightarrow \Sigma^{7}$. Throughout this paper both orbit spaces, $\mathbb{S}^{7}$ and $\Sigma^{7}$, are presumed to carry metrics induced from $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\operatorname{Sp}(2)$ by Riemannian submersion. The metrics on $\mathbb{S}^{7}$ and $\Sigma^{7}$ will
also be denoted by $\langle\cdot, \cdot\rangle_{\mu, \nu}$. Since Riemannian submersions are curvature nondecreasing, it is clear that the sectional curvature of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ is nonnegative for $\mu, v \leq \frac{1}{2}$.

The starting point for our subsequent geometric constructions and considerations is the following elementary fact: The $\bullet$-orbit and the $\star$-orbit through any real matrix $A \in \mathrm{O}(2) \subset \mathrm{Sp}(2)$ are equal as sets because $A$ commutes with all $q \in \mathbb{S}^{3}$. A geodesic in $\mathrm{Sp}(2)$ that passes perpendicularly through the common orbit

$$
\mathbb{S}^{3} \cdot A=\mathbb{S}^{3} \star A=\left\{\left.A \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & \bar{q}
\end{array}\right] \right\rvert\, q \in \mathbb{S}^{3}\right\}
$$

is perpendicular to all $\bullet$-orbits and all $\star$-orbits and hence projects to geodesics in both orbit spaces, $\mathbb{S}^{7}$ and $\Sigma^{7}$. (Recall that the inner product between the velocity vector field and a Killing field is constant along a geodesic.) Now, fixing a ma$\operatorname{trix} A^{\prime} \in \mathbb{S}^{3} \bullet A=\mathbb{S}^{3} \star A$, we get an identification between the geodesics in $\mathbb{S}^{7}$ that start at the point $\mathbb{S}^{3} \bullet A$ and the geodesics in $\Sigma^{7}$ that start at the point $\mathbb{S}^{3} \star A$ : Two such geodesics $\gamma_{\mathbb{S}^{7}}$ and $\gamma_{\Sigma^{7}}$ correspond to each other if and only if there is a common horizontal lift through $A^{\prime}$-that is, a geodesic $\tilde{\gamma}$ in $\operatorname{Sp}(2)$ that starts at $A^{\prime}$ perpendicularly to $\mathbb{S}^{3} \bullet A=\mathbb{S}^{3} \star A$ such that $\gamma_{\mathbb{S}^{7}}=\pi_{\mathbb{S}^{7}} \circ \tilde{\gamma}$ and $\gamma_{\Sigma^{7}}=\pi_{\Sigma^{7}} \circ \tilde{\gamma}$. See Figure 1. Since $\mathbb{S}^{3} \bullet A=\mathbb{S}^{3} \star A$ are equal only as sets, this identification depends on the choice of $A^{\prime}$. There is, however, a canonical choice for $A^{\prime}$ because $\mathbb{S}^{3} \bullet A=$ $\mathbb{S}^{3} \star A$ intersects $\mathrm{O}(2)$ precisely in the set $\left\{A, A \cdot\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\}$ and hence contains a unique element $A^{\prime} \in \mathrm{SO}(2)$.


Figure 1 For $A \in \operatorname{SO}(2) \subset \operatorname{Sp}(2)$, a geodesic in $\mathbb{S}^{7}$ through $\mathbb{S}^{3} \bullet A$ corresponds precisely to one geodesic in $\Sigma^{7}$ through $\mathbb{S}^{3} \star A$ via a common horizontal lift through $A$

This correspondence has an immediate application in the case $\mu=1$ where each left-invariant metric $\langle\cdot, \cdot\rangle_{1, v}$ on $\operatorname{Sp}(2)$ induces the standard metric on $\mathbb{S}^{7}$ : All unit-speed geodesics of $\mathbb{S}^{7}$ pass through their antipode after time $\pi$ and return to their starting point after time $2 \pi$. This holds in particular for the geodesics that
start at a point $\mathbb{S}^{3} \bullet A$ with $A \in \mathrm{O}(2)$. Since the antipode of $\mathbb{S}^{3} \bullet A$ is the orbit $\mathbb{S}^{3} \bullet(-A)=\mathbb{S}^{3} \star(-A)$, the geodesic correspondence just described implies the following recurrency behavior.

Theorem 2.1 (see [D] for the case where $v=1$ ). The unit-speed geodesics of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{1, v}\right)$ that start at a point $\mathbb{S}^{3} \star A$ with $A \in \mathrm{O}(2)$ all pass through $\mathbb{S}^{3} \star(-A)$ after time $\pi$ and return to $\mathbb{S}^{3} \star A$ after time $2 \pi$ (but do not close smoothly in general). These geodesics are length minimizing until time $\pi$.

In accordance with the literature (see e.g. [Bs]), the points of the circle

$$
\Sigma^{1}:=\left\{\mathbb{S}^{3} \star A \mid A \in \mathrm{O}(2)\right\} \subset \Sigma^{7}
$$

will be called wiedersehen points. The wiedersehen property allows us to define natural subspheres of $\Sigma^{7}$ as follows. For $A \in \mathrm{O}(2)$, the bisector

$$
\Sigma_{ \pm A}^{6}:=\left\{x \in \Sigma^{7} \mid \operatorname{dist}\left(x, \mathbb{S}^{3} \star A\right)=\operatorname{dist}\left(x, \mathbb{S}^{3} \star(-A)\right)=\pi / 2\right\}
$$

is given by the midpoints of the geodesics that start at $\mathbb{S}^{3} \star A$ and end at $\mathbb{S}^{3} \star(-A)$. The intersection of all the bisectors $\Sigma_{ \pm A}^{6}$ in $\Sigma^{7}$ is the set

$$
\Sigma^{5}:=\bigcap_{A \in \mathrm{O}(2)} \Sigma_{ \pm A}^{6}=\left\{x \in \Sigma^{7} \mid \operatorname{dist}\left(x, \Sigma^{1}\right)=\pi / 2\right\}
$$

Recall that the join $X * Y$ of two spaces $X, Y$ is the quotient of $X \times Y \times[0,1] / \sim$, where $(x, y, 0) \sim\left(x, y^{\prime}, 0\right)$ and $(x, y, 1) \sim\left(x^{\prime}, y, 1\right)$ for all $x \in X$ and all $y \in Y$. For our purposes it is convenient to replace $[0,1]$ with $[0, \pi / 2]$.

Corollary 2.2. For $\mu=1$, the Gromoll-Meyer sphere $\Sigma^{7}$ is the geodesic join of the circle $\Sigma^{1}$ and the subsphere $\Sigma^{5}$ that have constant distance $\pi / 2$. In other words, the map $\Sigma^{1} * \Sigma^{5} \rightarrow \Sigma^{7}$ that maps $(x, y, t)$ to $\gamma(t)$, where $\gamma:[0, \pi / 2] \rightarrow$ $\Sigma^{7}$ is the unique unit-speed geodesic segment from $x$ to $y$, is a homeomorphism.

The identification of geodesics in $\mathbb{S}^{7}$ that start at $\mathbb{S}^{3} \bullet A$ with the geodesics of $\Sigma^{7}$ that start at a point $\mathbb{S}^{3} \star A$ provides an $\mathrm{SO}(3)$-equivariant homeomorphism between $\mathbb{S}^{7}$ and $\Sigma^{7}$ that restricts to a diffeomorphism between $\mathbb{S}^{7} \backslash\left(\mathbb{S}^{3} \bullet(-A)\right)$ and $\Sigma^{7} \backslash\left(\mathbb{S}^{3} \star(-A)\right)$.

This diffeomorphism further restricts to diffeomorphisms $S_{ \pm A}^{6} \rightarrow \Sigma_{ \pm A}^{6}$ and $S^{5} \rightarrow \Sigma^{5}$, where

$$
\begin{aligned}
S_{ \pm A}^{6} & =\left\{\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \in \mathbb{S}^{7} \subset \mathbb{H}^{2} \left\lvert\, \operatorname{dist}\left(\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right],\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]\right)=\operatorname{dist}\left(\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right],-\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]\right)=\frac{\pi}{2}\right.\right\} \\
& =\left\{\left.\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \in \mathbb{S}^{7} \subset \mathbb{H}^{2} \right\rvert\, \operatorname{Re}\left(a_{11} w_{1}+a_{21} w_{2}\right)=0\right\} \\
& =\left\{\left.A \cdot\left[\begin{array}{c}
p \\
w
\end{array}\right] \in \mathbb{S}^{7} \subset \mathbb{H}^{2} \right\rvert\, p \in \operatorname{Im} \mathbb{H}, w \in \mathbb{H}\right\}
\end{aligned}
$$

and

$$
S^{5}=\left\{\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right]\left|p_{1}, p_{2} \in \operatorname{Im} \mathbb{H},\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}=1\right\}\right.
$$

Note that

$$
\begin{align*}
\pi_{\Sigma^{7}}^{-1}\left(\Sigma_{ \pm A}^{6}\right) & =\pi_{\mathbb{S}^{7}}^{-1}\left(S_{ \pm A}^{6}\right)=\left\{\left.A \cdot\left[\begin{array}{cc}
p & * \\
w & *
\end{array}\right] \in \operatorname{Sp}(2) \right\rvert\, p \in \operatorname{Im} \mathbb{H}, w \in \mathbb{H}\right\}, \\
\pi_{\Sigma^{7}}^{-1}\left(\Sigma^{5}\right) & =\pi_{\mathbb{S}^{7}}^{-1}\left(S^{5}\right)=\left\{\left.\left[\begin{array}{cc}
p_{1} & * \\
p_{2} & *
\end{array}\right] \in \operatorname{Sp}(2) \right\rvert\, p_{1}, p_{2} \in \operatorname{Im} \mathbb{H}\right\}, \tag{1}
\end{align*}
$$

since the two sets on the right-hand side are invariant under the $\star$-action.
There are explicit formulas for the horizontal lifts of the relevant geodesics in $\mathbb{S}^{7}$ and hence for the diffeomorphisms $S_{ \pm A}^{6} \rightarrow \Sigma_{ \pm A}^{6}$ and $S^{5} \rightarrow \Sigma^{5}$. Consider the geodesic

$$
\gamma_{[w]}^{p}(t)=\cos t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\sin t\left[\begin{array}{c}
p \\
w
\end{array}\right]
$$

in $\mathbb{S}^{7} \subset \mathbb{H}^{2}$ that emanates from the north pole with initial velocity $\left[\begin{array}{l}p \\ w\end{array}\right] \in \mathbb{S}^{6} \subset$ $\operatorname{Im} \mathbb{H} \times \mathbb{H}$. The unique horizontal lift $\tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}$ of $\gamma_{\left[\begin{array}{l}p \\ w\end{array}\right]}$ to $\operatorname{Sp}(2)$ with $\tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}(0)=\mathbb{1}$ is given by

$$
\tilde{\gamma}_{\left[\begin{array}{c}
p
\end{array}\right]}(t)=\cos t\left[\begin{array}{cc}
1 & 0  \tag{2}\\
0 & \frac{w}{|w|} e^{t p} \frac{\bar{w}}{|w|}
\end{array}\right]+\sin t\left[\begin{array}{cc}
p & -e^{t p} \bar{w} \\
w & -\frac{w}{|w|} p e^{t p} \frac{\bar{w}}{|w|}
\end{array}\right],
$$

where $e^{p}=\cos |p|+(p /|p|) \sin |p|$ denotes the exponential map of $\mathbb{S}^{3} \subset \mathbb{H}$ at 1 . Note that, for $w=0$, equation (2) simply becomes $\tilde{\gamma}_{[p}^{p}(t)=\left[\begin{array}{cc}e^{t p} & 0 \\ 0 & 1\end{array}\right]$. Now the curve $\pi_{\Sigma^{7}} \circ \tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}$ is a geodesic of $\Sigma^{7}$ for all metrics $\langle\cdot, \cdot\rangle_{1, v}$ and

$$
\mathbb{S}^{6} \rightarrow \Sigma_{ \pm 11}^{6}, \quad\left[\begin{array}{c}
p  \tag{3}\\
w
\end{array}\right] \mapsto \pi_{\Sigma^{7}} \circ \tilde{\gamma}_{[w]}^{p}\left(\frac{\pi}{2}\right)
$$

is an analytic diffeomorphism. This diffeomorphism restricts to an analytic diffeomorphism $\mathbb{S}^{5} \rightarrow \Sigma^{5}$ for $\operatorname{Re} w=0$.

In [ADPR] it was shown that $\Sigma^{5} /\{ \pm \mathbb{1}\}$ and $\Sigma_{ \pm A}^{6} /\{ \pm \mathbb{1}\}$ are homotopy equivalent but not diffeomorphic to $\mathbb{R}^{5}$ and $\mathbb{R}^{6}$, respectively. We conclude this section with the following observation.

Lemma 2.3. Let $A_{0}:=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. For any $A \in \mathrm{O}(2)$, the bisector $\Sigma_{ \pm A \cdot A_{0}}^{6}$ in $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{1, v}\right)$ is geodesic at the two points $\mathbb{S}^{3} \star A$ and $\mathbb{S}^{3} \star(-A)$; that is, any geodesic of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{1, v}\right)$ that starts at one of these points tangentially to $\Sigma_{ \pm A \cdot A_{0}}^{6}$ is completely contained in $\Sigma_{ \pm A \cdot A_{0}}^{6}$.

Proof. It suffices to consider the case $A=\mathbb{1}$. By (1) we have

$$
\Sigma_{ \pm A_{0}}^{6}=\pi_{\Sigma^{7}}\left(\left\{\left.\left[\begin{array}{cc}
w^{\prime} & * \\
p^{\prime} & *
\end{array}\right] \in \operatorname{Sp}(2) \right\rvert\, p^{\prime} \in \operatorname{Im} \mathbb{H}, w^{\prime} \in \mathbb{H}\right\}\right)
$$

From (2) it is now evident that all the geodesics $\pi_{\Sigma^{7}} \circ \tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}$ with $\operatorname{Re} w=0$ are contained in $\Sigma_{ \pm A_{0}}^{6}$.

Corollary 2.4. The exotic projective space $\Sigma_{ \pm A}^{6} /\{ \pm \mathbb{1}\}$ inherits from $\Sigma^{7}$ a 1parameter family of metrics that are Blaschke at one point.

## 3. Isometries of the Gromoll-Meyer Sphere and the Cohomogeneity-1 Action on $\Sigma^{5}$

The $\bullet$-action of $\mathbb{S}^{3}$ on $\operatorname{Sp}(2)$ of the previous section extends to the action

$$
\mathrm{O}(2) \times \mathbb{S}^{3} \times \mathrm{Sp}(2) \rightarrow \mathrm{Sp}(2), \quad(A, q) \bullet B=A \cdot B \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & \bar{q}
\end{array}\right]
$$

This action is isometric for all metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\operatorname{Sp}(2)$ and commutes with the Gromoll-Meyer action $\star$. Hence, it induces an effective isometric action

$$
\mathrm{O}(2) \times \mathrm{SO}(3) \times \Sigma^{7} \rightarrow \Sigma^{7}, \quad \mathrm{SO}(3)=\mathbb{S}^{3} /\{ \pm 1\}
$$

on $\Sigma^{7}$, which will again be denoted by $\bullet$. This action already appeared in the original paper of Gromoll and Meyer [GrMy]. At the end of Section 8 we will show that $\mathrm{O}(2) \times \mathrm{SO}(3)$ is the full isometry group for all the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{7}$. The following simple fact is fundamental for the rest of the paper. It allows us to investigate geometric properties of the metrics that $\Sigma^{5}$ inherits from $\Sigma^{7}$, it yields an equivariant diffeomorphism between $\Sigma^{5}$ and the Brieskorn sphere $W_{3}^{5}$, and it is the key to determining which isometries act freely on the Gromoll-Meyer sphere.

Lemma 3.1. The e-action of $\mathrm{O}(2) \times \mathrm{SO}(3)$ on $\Sigma^{7}$ leaves $\Sigma^{1}$ and $\Sigma^{5}$ invariant. The induced $\bullet$-action on $\Sigma^{5}$ is of cohomogeneity 1 .

Note that the e-action of $\mathrm{O}(2) \times \mathrm{SO}(3)$ does not leave any of the $\Sigma_{ \pm A}^{6}$ invariant. The largest action that preserves $\Sigma_{ \pm \mathbb{1}}^{6}\left(\right.$ and also $\Sigma_{ \pm A_{0}}^{6}$ with $\left.A_{0}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right)$ is the restriction of the - action to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathrm{SO}(3)$, where $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is the group of diagonal matrices in the $\mathrm{O}(2)$-factor.

Corollary 3.2. The Gromoll-Meyer sphere $\Sigma^{7}$ is $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariantly homeomorphic to the join $\Sigma^{1} * \Sigma^{5}$.

We now study the cohomogeneity-1 action $\bullet$ on $\Sigma^{5}$ in detail. The essential technical step is to find a normal geodesic-that is, a geodesic that crosses all $\bullet$-orbits perpendicularly. This normal geodesic and the information on the isotropy groups along it will be used throughout the paper. Recall from (1) that

$$
\Sigma^{5}=\pi_{\mathbb{S}^{7}}\left(\left\{\left.\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array} *\right] \in \operatorname{Sp}(2) \right\rvert\, p_{1}, p_{2} \in \operatorname{Im} \mathbb{H}\right\}\right)
$$

We will show that the curve $\alpha(s)=\pi_{\Sigma^{7}}(\tilde{\alpha}(s))$ with

$$
\tilde{\alpha}(s)=\left[\begin{array}{ll}
j \cos s & k \sin s  \tag{4}\\
k \sin s & j \cos s
\end{array}\right]
$$

is such a normal geodesic and then compute the isotropy groups along this geodesic and the induced Riemannian metrics on the principal orbits. Finally, we will show that $\mathrm{O}(2) \times \mathrm{SO}(2)$ is the full isometry group of $\left(\Sigma^{5},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$.

Lemma 3.3. The curve $\tilde{\alpha}$ intersects all $\star$-orbits in $\operatorname{Sp}(2)$ perpendicularly. In other words, $\tilde{\alpha}$ is horizontal with respect to the submersion $\pi_{\Sigma^{7}}: \operatorname{Sp}(2) \rightarrow \Sigma^{7}$.

Proof. For all the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ the tangent vector of $\tilde{\alpha}$,

$$
\tilde{\alpha}^{\prime}(s)=\tilde{\alpha}(s) \cdot\left[\begin{array}{rr}
0 & -i \\
-i & 0
\end{array}\right],
$$

is perpendicular to the vertical space at $\tilde{\alpha}(s)$, which is spanned by the three vectors

$$
\begin{aligned}
& \xi_{1}(s):=\left.\frac{d}{d \tau}\left(e^{i \tau} \cdot \tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
e^{-i \tau} & 0 \\
0 & 1
\end{array}\right]\right)\right|_{\tau=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
-2 i & 0 \\
0 & -i
\end{array}\right], \\
& \xi_{2}(s):=\left.\frac{d}{d \tau}\left(e^{j \tau} \cdot \tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
e^{-j \tau} & 0 \\
0 & 1
\end{array}\right]\right)\right|_{\tau=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
j(\cos 2 s-1) & k \sin 2 s \\
k \sin 2 s & j \cos 2 s
\end{array}\right], \\
& \xi_{3}(s):=\left.\frac{d}{d \tau}\left(e^{k \tau} \cdot \tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
e^{-k \tau} & 0 \\
0 & 1
\end{array}\right]\right)\right|_{\tau=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
-k(\cos 2 s+1) & j \sin 2 s \\
j \sin 2 s & -k \cos 2 s
\end{array}\right] .
\end{aligned}
$$

Lemma 3.4. The curve $\tilde{\alpha}$ is a geodesic for any of the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\operatorname{Sp}(2)$.
Proof. Since $\tilde{\alpha}$ is an integral curve of the left-invariant vector field $v$ given by $\left[\begin{array}{rr}0 & -i \\ -i & 0\end{array}\right] \in \mathfrak{s p}(2)$, it suffices to compute $\nabla_{v} v$ at the identity matrix. For an arbitrary left-invariant vector field $w$, the Kozul formula for the Levi-Civita connection yields

$$
\left\langle\nabla_{v} v, w\right\rangle_{\mu, v}=-\langle v,[v, w]\rangle_{\mu, v}
$$

Using the special value of $v$ at the identity matrix and the fact that $\mathrm{ad}_{v}$ is skew symmetric with respect to the biinvariant metric $\langle\cdot, \cdot\rangle_{1 / 2,1 / 2}$, one gets

$$
\left\langle\nabla_{v} v, w\right\rangle_{\mu, v}=-\langle v,[v, w]\rangle_{\mu, v}=-\langle v,[v, w]\rangle_{1 / 2,1 / 2}=-\langle[v, v], w\rangle_{1 / 2,1 / 2}=0
$$

at the identity matrix.
Corollary 3.5. The curve $\alpha:=\pi_{\Sigma^{7}} \circ \tilde{\alpha}$ is a geodesic in $\Sigma^{7}$, and this geodesic is contained in the 5 -sphere $\Sigma^{5} \subset \Sigma^{7}$.

Lemma 3.6. The geodesic $\alpha$ in $\Sigma^{5} \subset \Sigma^{7}$ intersects all $\bullet$-orbits perpendicularly.
Proof. The tangent space to the $\bullet$-orbit through $\tilde{\alpha}(s)$ is spanned by

$$
\begin{align*}
& \hat{v}_{0}(s):=\left.\frac{d}{d \theta}\left(\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot \tilde{\alpha}(s)\right)\right|_{\theta=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
i \sin 2 s & -\cos 2 s \\
\cos 2 s & -i \sin 2 s
\end{array}\right], \\
& \hat{v}_{1}(s):=\left.\frac{d}{d \tau}\left(\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-i \tau}
\end{array}\right]\right)\right|_{\tau=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
0 & 0 \\
0 & -i
\end{array}\right],  \tag{5}\\
& \hat{v}_{2}(s):=\left.\frac{d}{d \tau}\left(\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-j \tau}
\end{array}\right]\right)\right|_{\tau=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{rr}
0 & 0 \\
0 & -j
\end{array}\right], \\
& \hat{v}_{3}(s):=\left.\frac{d}{d \tau}\left(\tilde{\alpha}(s) \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-k \tau}
\end{array}\right]\right)\right|_{\tau=0}=\tilde{\alpha}(s) \cdot\left[\begin{array}{rr}
0 & 0 \\
0 & -k
\end{array}\right] .
\end{align*}
$$

All four vectors are perpendicular to the horizontal vector $\tilde{\alpha}^{\prime}(s)$.
The isotropy groups of the $\bullet$-action along the geodesic $\alpha$ are regular for $s \notin \pi / 4 \cdot \mathbb{Z}$ and are denoted by $H$. The singular isotropy groups at $s=0$ and $s=\pi / 4$ are denoted by $K_{-}$and $K_{+}$, respectively. Straightforward computations yield the following result.

Lemma 3.7. The isotropy groups along the normal geodesic $\alpha$ are given by

$$
\begin{aligned}
H= & \left\{(\mathbb{1}, \pm 1),(-\mathbb{1}, \pm i),\left(\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \pm j\right),\left(\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \pm k\right)\right\} \\
\approx & \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
K_{-}= & \left\{\left(\mathbb{1}, \pm e^{j \tau}\right)\right\} \cup\left\{\left(-\mathbb{1}, \pm i e^{j \tau}\right)\right\} \\
& \cup\left\{\left(\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \pm e^{j \tau}\right)\right\} \cup\left\{\left(\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \pm i e^{j \tau}\right)\right\} \\
\approx & \mathbb{Z}_{2} \times \mathrm{O}(2), \\
K_{+}= & \left\{\left(\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \pm e^{-(3 / 2) i \theta}\right)\right\} \\
& \cup\left\{\left(\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \pm e^{-(3 / 2) i \theta} j\right)\right\} \\
\approx & \mathrm{O}(2) .
\end{aligned}
$$

Note that $K_{+}$is isomorphic to an $\mathrm{O}(2)$ that projects surjectively onto the $\mathrm{O}(2)$ factor in the definition of the $\cdot$-action while $K_{-}$is isomorphic to $\mathbb{Z}_{2} \times \mathrm{O}(2)$ where the $\mathrm{O}(2)$-factor corresponds to $\left\{\left(\mathbb{1}, \pm e^{j \tau}\right)\right\} \cup\left\{\left(-\mathbb{1}, \pm i e^{j \tau}\right)\right\}$, which is contained in the identity component of the acting group $\mathrm{O}(2) \times \mathrm{SO}(3)$. The singular orbit at $s=$ 0 is diffeomorphic to $\mathbb{S}^{2} \times_{\mathbb{Z}_{2}} \mathbb{S}^{1}$ and the singular orbit at $s=\pi / 4$ is diffeomorphic to $\mathrm{SO}(3)$.

The normal geodesic $\alpha$ can be used to express the metric $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{5}$ as $d s^{2}+\omega_{\mu, \nu}(s)$, where $\omega_{\mu, v}(s)$ is the metric on principal orbits. We now compute $\omega_{\mu, \nu}(s)$. This computation will be used in Section 7 to discuss the geometric properties of the metrics on $\Sigma^{5}$ and $\Sigma_{ \pm A}^{6}$ and to determine the full isometry group of the Gromoll-Meyer sphere.

We need to compute the inner products of four linearly independent Killing fields along the normal geodesic $\alpha$ in $\Sigma^{5}$. Such Killing fields $v_{0}(s), \ldots, v_{3}(s)$ are given by the horizontal parts $\tilde{v}_{0}(s), \ldots, \tilde{v}_{3}(s)$ of the Killing fields $\hat{v}_{0}(s), \ldots, \hat{v}_{3}(s)$ along $\tilde{\alpha}$ given in (5). Straightforward computations using the orthogonal basis $\xi_{1}(s), \xi_{2}(s)$, and $\xi_{3}(s)$ of the vertical space at $\tilde{\alpha}(s)$ given in (3) show that

$$
\left.\left.\begin{array}{l}
\tilde{v}_{0}(s)=\tilde{\alpha}(s) \cdot\left(\frac{3 \sin 2 s}{4 \mu+v}\left[\begin{array}{rr}
i v & 0 \\
0 & -2 i \mu
\end{array}\right]+\cos 2 s\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right), \\
\tilde{v}_{1}(s)=\tilde{\alpha}(s) \cdot \frac{2}{4 \mu+v}\left[\begin{array}{cc}
i v & 0 \\
0 & -2 i \mu
\end{array}\right], \\
\tilde{v}_{2}(s)=\tilde{\alpha}(s) \cdot\left(\left[\begin{array}{rr}
0 & 0 \\
0 & -j
\end{array}\right]+\frac{\cos 2 s}{v \cos ^{2} 2 s+4\left(1-(1-\mu) \sin ^{2} s\right) \sin ^{2} s}\right. \\
\tilde{v}_{3}(s)=\tilde{\alpha}(s) \cdot\left(\left[\begin{array}{cc}
j(\cos 2 s-1) & k \sin 2 s \\
k \sin 2 s & j \cos 2 s
\end{array}\right]\right), \\
0
\end{array}\right]+\left[\begin{array}{cc}
k(1+\cos 2 s) & -j \sin 2 s \\
-j \sin 2 s & k \cos 2 s
\end{array}\right]\right) .
$$

The action of the principal isotropy group $H$ on these four Killing fields along $\alpha$ is given by the matrices

$$
\begin{align*}
{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], } & {\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right], } \\
{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right], } & {\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] . } \tag{6}
\end{align*}
$$

Let

$$
\begin{aligned}
& a(s)=1-\left(1-\frac{9 \mu v}{4 \mu+v}\right) \sin ^{2} 2 s \\
& b(s)=\frac{6 \mu v}{4 \mu+v} \sin 2 s \\
& c(s)=v \frac{4\left(1-(1-\mu) \sin ^{2} s\right) \sin ^{2} s}{v \cos ^{2} 2 s+4\left(1-(1-\mu) \sin ^{2} s\right) \sin ^{2} s} \\
& d(s)=v \frac{4\left(1-(1-\mu) \cos ^{2} s\right) \cos ^{2} s}{v \cos ^{2} 2 s+4\left(1-(1-\mu) \cos ^{2} s\right) \cos ^{2} s}
\end{aligned}
$$

Lemma 3.8. The metric $\omega_{\mu, \nu}(s)$ on the principal orbit through $\alpha(s)$ is given by the matrix

$$
\left(\left\langle\tilde{v}_{j}(s), \tilde{v}_{k}(s)\right\rangle\right)_{j, k=0, \ldots, 3}=\left[\begin{array}{cccc}
a(s) & b(s) & 0 & 0 \\
b(s) & \frac{4 \mu \nu}{4 \mu+v} & 0 & 0 \\
0 & 0 & c(s) & 0 \\
0 & 0 & 0 & d(s)
\end{array}\right]
$$

Proof. The equality follows from straightforward computations.
This matrix description of the cohomogeneity-1 metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{5}$ will be interpreted in Section 7 in terms of totally geodesic submanifolds $L^{3}, \Sigma^{2}$, and $\tilde{\Sigma}^{2}$, which intersect pairwise perpendicularly in the normal geodesic $\alpha$. The upper left $2 \times 2$ block of the matrix in Lemma 3.8 describes cohomogeneity- 1 metrics on the lens space $L^{3} \approx \mathbb{S}^{3} / \mathbb{Z}_{3}$ (the block becomes singular at $s \in \pi / 4+(\pi / 2) \mathbb{Z}$; the smoothness at these times can best be seen by passing from $\tilde{v}_{0}$ to $2 \tilde{v}_{0}-3 \tilde{v}_{1}$ and from $s$ to $s+\pi / 4)$. The numbers $c(s)$ and $d(s)$ describe cohomogeneity-1 metrics on the 2 -spheres $\Sigma^{2}$ and $\tilde{\Sigma}^{2}$.

## 4. Identification of $\boldsymbol{\Sigma}^{\mathbf{5}}$ with the Brieskorn Sphere $\boldsymbol{W}_{\mathbf{3}}^{\mathbf{5}}$

We will now construct an $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariant diffeomorphism between the sphere $\Sigma^{5} \subset \Sigma^{7}$ and the Brieskorn sphere $W_{3}^{5}$ given by the equations

$$
\begin{gathered}
\frac{8}{9} z_{0}^{3}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \\
\frac{4}{3}\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=\frac{4}{9}
\end{gathered}
$$

in $\mathbb{C}^{4}=\mathbb{C} \oplus \mathbb{C}^{3}$. It is crucial for Section 5 that we have modified the coefficients compared to the standard definition of $W_{3}^{5}$. The advantage of our choice is that there exists an explicit formula for a unit-speed geodesic in $W_{3}^{5}$ that intersects all orbits of the action

$$
\begin{gather*}
\mathrm{O}(2) \times \mathrm{SO}(3) \times W_{3}^{5} \rightarrow W_{3}^{5} \\
\left(\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], A\right) \cdot\left(z_{0}, z\right)=\left(e^{2 i \theta} z_{0}, e^{3 i \theta} A z\right),  \tag{7}\\
\left(\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], A\right) \cdot\left(z_{0}, z\right)=\left(\bar{z}_{0}, A \bar{z}\right)
\end{gather*}
$$

with $z \in \mathbb{C}^{3}$ perpendicularly. This action on $W_{3}^{5}$ was first considered by Calabi (see Bredon's survey [Bd1]). In the literature, however, the subaction of the identity component $\mathrm{SO}(2) \times \mathrm{SO}(3)$ is used almost exclusively. The additional $\mathbb{Z}_{2}$ symmetry causes the fixed point set of the principal isotropy group to be 1-dimensional. Therefore, we prefer to use normal geodesics and hence canonical identifications between $\Sigma^{5}$ and $W_{3}^{5}$ (see Lemma 4.2).

Consider the curve

$$
\beta(s)=\left(-\frac{1}{2} \cos 2 s, \frac{1}{6}\left[\begin{array}{c}
0 \\
3 \cos s-\cos 3 s \\
3 i \sin s+i \sin 3 s
\end{array}\right]\right)
$$

in $W_{3}^{5} \subset \mathbb{C} \oplus \mathbb{C}^{3}$. It is straightforward to check that $\beta$ is parameterized by arc length and to compute the isotropy groups along $\beta$.
Lemma 4.1. The isotropy groups $H$ at $\beta(s)$ for $s \notin(\pi / 4) \mathbb{Z}, K_{-}$at $\beta(0)$, and $K_{+}$ at $\beta(\pi / 4)$ are given by

$$
\begin{aligned}
H & =\left\{(\mathbb{1}, \mathbb{1}),\left(-\mathbb{1},\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right),\right. \\
& \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
K_{-} & =\left\{\left(\mathbb{1},\left[\begin{array}{ll}
* & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
* & 0 & *
\end{array}\right]\right),\left(\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\right\} \\
& \cup\left\{\left(\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right],\left\{\left(\mathbb{1},\left[\begin{array}{rrr}
* & 0 & * \\
0 & 1 & 0 \\
* & 0 & *
\end{array}\right]\right)\right\} \cup\left\{\left(\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rrr}
* & 0 & * \\
0 & -1 & 0 \\
* & 0 & *
\end{array}\right]\right)\right\}\right.\right. \\
& \approx \mathbb{Z}_{2} \times \mathrm{O}(2), \\
K_{+} & =\left\{\left(D(\theta),\left[\begin{array}{rrr}
1 & 0 \\
0 & D(-3 \theta)
\end{array}\right]\right)\right\} \\
& \cup\left\{\left(D(\theta) \cdot\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & D(-3 \theta)
\end{array}\right] \cdot\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\right)\right\} \\
& \approx \mathrm{O}(2),
\end{aligned}
$$

where $D(\theta)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ denotes the rotation in $\mathbb{R}^{2}$ with angle $\theta$.

Lemma 4.2. The curve $\beta$ is a unit-speed geodesic in $W_{3}^{5}$ that intersects all orbits of the $(\mathrm{O}(2) \times \mathrm{SO}(3))$-action perpendicularly.

Proof. The fixed point set of the principal isotropy group $H$ clearly contains a geodesic that intersects all orbits perpendicularly. This fixed point set is given by

$$
\operatorname{Im} z_{0}=0, \quad z_{1}=0, \quad \operatorname{Im} z_{2}=0, \quad \operatorname{Re} z_{3}=0
$$

It is easy to check that this fixed point set is 1 -dimensional and that $\beta$ maps into the fixed point set of $H$.

In the following theorem it is assumed that $\operatorname{SO}(3)=\mathbb{S}^{3} /\{ \pm 1\}$ is identified with the matrix group $\mathrm{SO}(3)$ by the action of $\mathbb{S}^{3}$ on the imaginary quaternions by conjugation.

Theorem 4.3. The map

$$
\Sigma^{5} \rightarrow W_{3}^{5}, \quad(A, \pm q) \bullet \alpha(s) \mapsto(A, \pm q) \cdot \beta(s)
$$

is a well-defined $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariant diffeomorphism.
Proof. This follows from the isotropy groups in Lemma 3.7 and Lemma 4.1.
Corollary 4.4. There is an $(\mathrm{O}(2) \times \mathrm{SO}(3))$-equivariant homeomorphism

$$
\mathbb{S}^{1} * W_{3}^{5} \rightarrow \Sigma^{7}
$$

Here, $\mathrm{O}(2)$ acts on $\mathbb{S}^{1}$ in the canonical way.
Proof. This follows directly from Corollary 2.2 and Theorem 4.3.

## 5. An Explicit Parameterization of Two Brieskorn Spheres

In this section we present an explicit formula for two diffeomorphisms between Euclidean spheres and Brieskorn spheres. The coefficients in this formula are rational functions of the coordinates of the sphere. They are simple enough that the entire formula fits into a few lines ( just in one direction; the formula for the inverse is too long to be reproduced here) but complicated enough that they could never be guessed. The formula was obtained by combining the geodesic parameterization of $\Sigma^{5} \subset \Sigma^{7}$ and the cohomogeneity-1 diffeomorphism between $\Sigma^{5}$ and the Brieskorn sphere $W_{3}^{5}$. The steps of the computations behind this approach will be explained at the end of this section. The properties of the final formula, however, can be verified directly; this shows that the formula is also valid in dimension 13, where no geometric derivation is possible so far.

Analogously to the previous section, the Brieskorn sphere $W_{3}^{2 n-1}$ is defined by the equations

$$
\begin{gathered}
\frac{8}{9} z_{0}^{3}+z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}=0 \\
\frac{4}{3}\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=\frac{4}{9}
\end{gathered}
$$

for $\left(z_{0}, z\right) \in \mathbb{C} \oplus \mathbb{C}^{n}$. For odd $n \geq 3$, the Brieskorn sphere $W_{3}^{2 n-1}$ is diffeomorphic to the Kervaire sphere (see e.g. [HzMa]). Hence, by a result of Brouwder, $W_{3}^{2 n-1}$
can be diffeomorphic to $\mathbb{S}^{2 n-1}$ only if $n=2^{m}-1$. Until now, this is known to hold only for $n \in\{3,7,15,31\}$ (see [La]). For $n=3,7$, the classification theorems of Jänich and of Hsiang and Hsiang show that there exist $\mathrm{SO}(3)$-equivariant diffeomorphisms $\mathbb{S}^{5} \rightarrow W_{3}^{5}$ and $G_{2}$-equivariant diffeomorphisms $\mathbb{S}^{13} \rightarrow W_{3}^{13}$. We will construct the first explicit formulas for such diffeomorphisms here.

We decompose $z_{0}$ and $z$ into their real and imaginary parts; that is, we set $z_{0}=$ $x_{0}+i y_{0}$ and $z=x+i y$. This leads to the equivalent definition of the Brieskorn sphere $W_{3}^{2 n-1}$ by the three real equations

$$
\begin{align*}
|x|^{2} & =\frac{2}{9}\left(1-2 x_{0}^{3}+6 x_{0} y_{0}^{2}-3 x_{0}^{2}-3 y_{0}^{2}\right) \\
|y|^{2} & =\frac{2}{9}\left(1+2 x_{0}^{3}-6 x_{0} y_{0}^{2}-3 x_{0}^{2}-3 y_{0}^{2}\right)  \tag{8}\\
\langle x, y\rangle & =\frac{4}{9} y_{0}\left(y_{0}^{2}-3 x_{0}^{2}\right)
\end{align*}
$$

for $x_{0}, y_{0} \in \mathbb{R}$ and $x, y \in \mathbb{R}^{n}$. The natural $\mathrm{SO}(n)$-action on $W_{3}^{2 n-1}$ multiplies $x$ and $y$ by a matrix $A \in \mathrm{SO}(n)$ and leaves $x_{0}$ and $y_{0}$ unchanged. Analogously to [HzMa, pp. 31-32], one can show that the orbit space of this action can be identified with the disc $D^{2}=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$ by the projection map $W_{3}^{2 n-1} \rightarrow D^{2}$, $\left(z_{0}, z\right) \mapsto 2 z_{0}$. For $n=7$, the action of $\mathrm{G}_{2} \subset \mathrm{SO}(7)$ has the same orbits as the $\mathrm{SO}(7)$-action.

We now parameterize the standard spheres $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ by two vectors $p, w \in \mathbb{R}^{3}$ (resp. $\mathbb{R}^{7}$ ) with $|p|^{2}+|w|^{2}=1$ and set

$$
\begin{align*}
& x_{0}= \frac{1}{2}\left(|w|^{2}-|p|^{2}\right) \\
& y_{0}=-\langle p, w\rangle \\
& x=\frac{1}{3\left(1+|p|^{2}\right)^{2}}\left(\left(\left(3-2|p|^{2}\right)\left(1+|p|^{2}\right)^{2}-4\left(1-|p|^{2}\right)\langle w, p\rangle^{2}\right) p\right. \\
& \quad-2\left(3+8|p|^{2}+|p|^{4}-4\langle w, p\rangle^{2}\right)\langle p, w\rangle w  \tag{9}\\
&\left.-8|p|^{2}\langle p, w\rangle p \times w\right) \\
& \begin{aligned}
y=\frac{1}{3\left(1+|p|^{2}\right)^{2}} & \left(\left(-\left(1+2|p|^{2}\right)\left(1-6|p|^{2}+|p|^{4}\right)-4\left(1+3|p|^{2}\right)\langle w, p\rangle^{2}\right) w\right. \\
& +2\left(1-|p|^{2}\right)\left(1+3|p|^{2}\right)\langle w, p\rangle p \\
& \left.-4\left(1+2|p|^{2}\right)\left(1-|p|^{2}\right) p \times w\right)
\end{aligned}
\end{align*}
$$

Here, we use the standard cross product on $\mathbb{R}^{3}$ and the cross product on $\mathbb{R}^{7}$ that comes from the imaginary part of the product of two imaginary octonions. It is straightforward but tedious to check that $x_{0}, y_{0}, x, y$ satisfy the equations (8). If $n$ is different from 3 and 7 then the formulas (9) do not work. What we need is to assign to $p, w \in \mathbb{R}^{n}$ a vector that is perpendicular to both and that is different from 0 if $p$ and $w$ are linearly independent. Such a cross product exists only in dimensions 3 and 7 (see [Ms]).

On $\mathbb{S}^{5} \subset \mathbb{R}^{3} \times \mathbb{R}^{3}$ and on $\mathbb{S}^{13} \subset \mathbb{R}^{7} \times \mathbb{R}^{7}$ we consider the diagonal actions of $\mathrm{SO}(3)$ and $\mathrm{G}_{2}$, respectively. The orbit spaces of these actions can again be identified with $D^{2}$ by the projection maps $\mathbb{S}^{2 n-1} \rightarrow D^{2},(p, w) \mapsto|w|^{2}-|p|^{2}-2 i\langle p, w\rangle$. Note
that the preimage of the boundary of $D^{2}$ consists precisely of the pairs $(p, w)$ for which $p$ and $w$ are linearly dependent.

Theorem 5.1. The formulas (9) provide an $\mathrm{SO}(3)$-equivariant diffeomorphism $\mathbb{S}^{5} \rightarrow W_{3}^{5}$ and a $\mathrm{G}_{2}$-equivariant diffeomorphism $\mathbb{S}^{13} \rightarrow W_{3}^{13}$.

Proof. A complete geometric derivation of the formula for the diffeomorphism in the case $n=3$ will be given shortly. This derivation is based on the geometry of the Gromoll-Meyer sphere, and there is no known way to extend it to the case $n=$ 7. Hence we sketch an algebraic proof here that is completely self-contained and works for $n=3$ and $n=7$.

The maps $\psi: \mathbb{S}^{2 n-1} \rightarrow W_{3}^{2 n-1}$ defined by (9) are smooth, equivariant, and induce the identity between the orbit spaces $D^{2}$. Hence they are homeomorphisms. Their inverses $\psi^{-1}: W_{3}^{2 n-1} \rightarrow \mathbb{S}^{2 n-1}$ can be computed explicitly, but the formulas are far too long to be reproduced here (any computer algebra system, however, can do this inversion easily). We just mention the key properties as follows. The coefficients in the equations for $x, y$, and $x \times y$ as combinations of $p, w$, and $p \times w$ are rational functions of $x_{0}$ and $y_{0}$ with nonzero denominators. The determinant of the coefficient matrix is a polynomial of degree 12 in $x_{0}$ and $y_{0}$ that can be seen to be always greater than or equal to $\frac{256}{9\left(3-2 x_{0}\right)^{8}}$ if $x_{0}^{2}+y_{0}^{2} \leq \frac{1}{4}$. Hence, the coefficient matrix can be inverted even if $p$ and $w$ become linearly dependent, and $p$ and $w$ can be expressed as combinations of $x, y$, and $x \times y$ with rational coefficients in $x_{0}$ and $y_{0}$ that do not have singularities for $x_{0}^{2}+y_{0}^{2} \leq \frac{1}{4}$.

In the rest of this section we will describe how (9) was obtained in the case $n=$ 3. During this derivation we will introduce a simple formula for an injective map $\mathbb{S}^{5} \backslash\{w=0\} \rightarrow W_{3}^{5}$ that extends to all odd dimensions and thus yields injective maps $\mathbb{S}^{2 n-1} \backslash\{w=0\} \rightarrow W_{3}^{2 n-1}$. These maps are given by replacing the expressions for $x$ and $y$ in (9) with

$$
\begin{aligned}
-3 x & =\left(|p|^{2}+3|w|^{2}-4\left(\frac{w}{|w|}, p\right\rangle^{2}\right) p+2|p|^{2}\left\langle p, \frac{w}{|w|}\right\rangle \frac{w}{|w|} \\
3 y & =-\left(3|p|^{2}+|w|^{2}\right) w+6\langle w, p\rangle p .
\end{aligned}
$$

The cross products in dimensions 3 and 7 are needed to twist these maps so that they extend to diffeomorphisms $\mathbb{S}^{5} \rightarrow W_{3}^{5}$ and $\mathbb{S}^{13} \rightarrow W_{3}^{13}$.

Now we start with the geometric derivation of formula (9). The basic idea is to combine the explicit parameterization $\mathbb{S}^{5} \rightarrow \Sigma^{5} \subset \Sigma^{7}$ by the geodesics $\pi_{\Sigma^{7}} \circ \tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}$ from (2) at time $\pi / 2$ with the equivariant diffeomorphism $\Sigma^{5} \rightarrow W_{3}^{5}$ from Theorem 4.3. In order to make this composition of maps explicit, we describe the point $\pi_{\Sigma^{7}} \circ \tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}(\pi / 2)$ in terms of the cohomogeneity-1 action of $\mathrm{SO}(3) \times \mathrm{SO}(2)$ on $\Sigma^{5}$-that is, by the parameter $s$ of the normal geodesic $\alpha$ in (4), an angle $\theta$, and a unit quaternion $q \in \mathbb{S}^{3}$ (with several ambiguities). In other words, we solve the equation

$$
q^{\prime} \star \tilde{\gamma}_{[w]}^{p}\left(\frac{\pi}{2}\right)=\left(\left[\begin{array}{rr}
\cos \theta & -\sin \theta  \tag{10}\\
\sin \theta & \cos \theta
\end{array}\right], q\right) \cdot \tilde{\alpha}(s)
$$

(which holds for some $q^{\prime} \in \mathbb{S}^{3}$ ) for $s, \theta$, and $\pm q$ (not caring about any ambiguities). We then plug the results into the corresponding cohomogeneity-1 parameterization

$$
\begin{align*}
& \left(\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \pm q\right) \cdot \beta(s) \\
& \quad \quad=\left(-\frac{1}{2} \cos 2 \theta \cos 2 s-\frac{i}{2} \sin 2 \theta \cos 2 s, x(s, \theta, q)+i y(s, \theta, q)\right) \tag{11}
\end{align*}
$$

of $W_{3}^{5}$, where $x(s, \theta, q), y(s, \theta, q) \in \mathbb{R}^{3}$ will be evaluated later. By Theorem 4.3 it is clear that this procedure yields a well-defined smooth diffeomorphism $\mathbb{S}^{5} \rightarrow$ $W_{3}^{5}$. The actual computations, however, are lengthy and not straightforward. It thus seems appropriate to indicate how they can be done efficiently. First, we identify $\mathbb{R}^{3}$ with the imaginary quaternions. The homomorphism $\mathbb{S}^{3} \rightarrow \mathrm{SO}(3)$ is then given by assigning to $\pm q$ the matrix $(q i \bar{q}, q j \bar{q}, q k \bar{q}) \in \mathrm{SO}(\operatorname{Im} \mathbb{H})$. With this identification, $x(s, \theta, q)$ and $y(s, \theta, q)$ can be evaluated as

$$
\begin{align*}
-3 x(s, \theta, q)= & 2(1+\cos 2 \theta \cos 2 s) q(j \cos s \cos \theta-k \sin s \sin \theta) \bar{q} \\
& -(4 \cos 2 \theta+\cos 2 s) q(j \cos s \cos \theta+k \sin s \sin \theta) \bar{q} \\
3 y(\theta, s)= & 2(1-\cos 2 \theta \cos 2 s) q(j \cos s \sin \theta+k \sin s \cos \theta) \bar{q}  \tag{12}\\
& +(4 \cos 2 \theta-\cos 2 s) q(j \cos s \sin \theta-k \sin s \cos \theta) \bar{q}
\end{align*}
$$

After a few computations, one sees from (10) that

$$
\begin{gathered}
\cos 2 \theta=\frac{|p|^{2}-|w|^{2}}{\sqrt{\left(|p|^{2}-|w|^{2}\right)^{2}+4\langle p, w\rangle^{2}}}, \quad \sin 2 \theta=\frac{2\langle p, w\rangle}{\sqrt{\left(|p|^{2}-|w|^{2}\right)^{2}+4\langle p, w\rangle^{2}}} \\
\cos 2 s=\sqrt{\left(|p|^{2}-|w|^{2}\right)^{2}+4\langle p, w\rangle^{2}}, \quad \sin 2 s=2 \sqrt{\left(|p|^{2}|w|^{2}-\langle p, w\rangle^{2}\right.}
\end{gathered}
$$

Moreover, that (10) holds for some $q^{\prime} \in \mathbb{S}^{3}$ is equivalent to

$$
\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \cdot \tilde{\gamma}_{\left[\begin{array}{l}
p \\
w
\end{array}\right]}\left(\frac{\pi}{2}\right)=\bar{q}^{\prime} \star(q \bullet \tilde{\alpha}(s))
$$

for some $\tilde{q}^{\prime} \in \mathbb{S}^{3}$. Computing formally the "determinant" $a d-b c$ of the quaternionic $2 \times 2$ matrices $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ on both sides of the latter equation, one obtains

$$
\bar{q}^{\prime} \cos 2 s=\left(\left(|p|^{2}-|w|^{2}\right) \frac{w}{|w|}-2\left(\frac{w}{|w|}, p\right\rangle p\right) e^{(\pi / 2) p} \frac{\bar{w}}{|w|} q .
$$

This identity can now be plugged into (10), and the result allows us to evaluate (12):

$$
\begin{aligned}
-3 x= & \frac{w}{|w|} e^{-(\pi / 2) p}\left(\left(|p|^{2}+3|w|^{2}-4\left\langle\frac{w}{|w|}, p\right\rangle^{2}\right) p\right. \\
& \left.\quad+2|p|^{2}\left\langle p, \frac{w}{|w|}\right\rangle \frac{w}{|w|}\right) e^{(\pi / 2) p} \frac{\bar{w}}{|w|} \\
3 y= & \frac{w}{|w|} e^{-(\pi / 2) p}\left(-\left(3|p|^{2}+|w|^{2}\right) w+6\langle w, p\rangle p\right) e^{(\pi / 2) p} \frac{\bar{w}}{|w|} .
\end{aligned}
$$

Expressing all quaternionic products by inner products and cross products, we obtain the formulas

$$
\begin{aligned}
3 x= & \left(3-2|p|^{2}-2 \frac{1+\cos \pi|p|}{1-|p|^{2}}\langle w, p\rangle^{2}\right) p \\
& -2\left(3+|p|^{2} \frac{1+\cos \pi|p|}{1-|p|^{2}}-2 \frac{1+\cos \pi|p|}{\left(1-|p|^{2}\right)^{2}}\langle w, p\rangle^{2}\right)\langle p, w\rangle w \\
& -2|p|^{2} \frac{\sin \pi|p|}{\left(1-|p|^{2}\right)|p|}\langle w, p\rangle p \times w, \\
3 y= & -\left(1+2|p|^{2}\right) \cos \pi|p| \cdot w+2 \frac{-1+4|p|^{2}+\left(1+2|p|^{2}\right) \cos \pi|p|}{|p|^{2}\left(1-|p|^{2}\right)}\langle w, p\rangle^{2} w \\
& -\frac{-1+4|p|^{2}+\left(1+2|p|^{2}\right) \cos \pi|p|}{|p|^{2}\left(1-|p|^{2}\right)}|w|^{2}\langle w, p\rangle p \\
& -\left(1+2|p|^{2}\right) \frac{\sin \pi|p|}{|p|} p \times w,
\end{aligned}
$$

where all the fractions are real-analytic functions of $|p|$. This can now be seen as a final formula for the diffeomorphism $\mathbb{S}^{5} \rightarrow W_{3}^{5}$. In formula (9) we passed to an isotopic rational version by replacing $\sin (\pi / 2)|p|$ and $\cos (\pi / 2)|p|$ with $2|p| /\left(1+|p|^{2}\right)$ and $\left(1-|p|^{2}\right) /\left(1+|p|^{2}\right)$, respectively.

Remark 5.2. Note that the diffeomorphisms of Theorem 5.1 equip $W_{3}^{5}$ and $W_{3}^{13}$ with explicit $\mathrm{SO}(3)-$ and $\mathrm{G}_{2}$-invariant metrics of constant curvature 1 . Wilking (unpublished) proved that there do not exist $\mathrm{SO}(n)$-invariant metrics with positive sectional curvature on any of the $W_{d}^{2 n-1}$ with $n>3$ and odd $d>1$. Moreover, it has been shown [GVWZ] that there do not exist cohomogeneity-1 metrics with nonnegative sectional curvature on any of the $W_{d}^{2 n-1}$ with $n>3$ and odd $d>1$.

## 6. Nonlinear Cohomogeneity-1 Actions on Euclidean Spheres

In this section we present the first explicit formulas for cohomogeneity-1 actions of $\mathrm{O}(2) \times \mathrm{SO}(3)$ and $\mathrm{O}(2) \times \mathrm{G}_{2}$ on the Euclidean spheres $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ that are equivalent to the standard cohomogeneity-1 actions on the Brieskorn spheres $W_{3}^{5}$ and $W_{3}^{13}$ (see Section 4).

The essential parts of these actions are the nonlinear subactions of $\mathrm{SO}(2) \subset$ $\mathrm{O}(2)$. It is convenient, however, to describe the linear parts first. Let $p$ and $w$ denote two imaginary quaternions (octonions) with $|p|^{2}+|w|^{2}=1$. The action of $\mathrm{SO}(3)=\mathbb{S}^{3} /\{ \pm 1\}$ on $\mathbb{S}^{5}$ is given by

$$
\mathrm{SO}(3) \times \mathbb{S}^{5} \rightarrow \mathbb{S}^{5}, \quad( \pm q) \cdot\left[\begin{array}{c}
p \\
w
\end{array}\right]=q\left[\begin{array}{c}
p \\
w
\end{array}\right] \bar{q}=\left[\begin{array}{c}
q p \bar{q} \\
q w \bar{q}
\end{array}\right]
$$

The $G_{2}$-action on $\mathbb{S}^{13}$ is defined in the same diagonal way. (Recall that $G_{2}$ is the automorphism group of the octonions.) The $\mathrm{O}(2)$-actions on $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ contain the linear $\mathbb{Z}_{2}$-subactions

$$
\mathbb{Z}_{2} \times \mathbb{S}^{5} \rightarrow \mathbb{S}^{5}, \quad\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
p \\
w
\end{array}\right]=\left[\begin{array}{r}
p \\
-w
\end{array}\right]
$$

We will now turn to the nonlinear $\mathrm{SO}(2)$-actions. In order to write them down explicitly, we need some preparatory work. Let $e^{p}$ denote the exponential map of $\mathbb{S}^{3} \subset \mathbb{H}\left(\right.$ or $\left.\mathbb{S}^{7} \subset \mathbb{O}\right)$. For $\theta \in \mathbb{R}$, set

$$
\left[\begin{array}{c}
p_{\theta} \\
w_{\theta}
\end{array}\right]:=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{c}
p \\
w
\end{array}\right]=\left[\begin{array}{c}
p \cos \theta-w \sin \theta \\
p \sin \theta+w \cos \theta
\end{array}\right]
$$

and

$$
Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta\right)=\frac{w}{|w|} e^{-(\pi / 2) p} \frac{w_{\theta}}{\left|w_{\theta}\right|} \frac{\bar{w}}{|w|} e^{(\pi / 2) p_{\theta}} \frac{\bar{w}_{\theta}}{\left|w_{\theta}\right|} .
$$

At first glance one would not expect that this formula defines a smooth map.
Lemma 6.1. $\quad Q$ extends to an analytic map $\mathbb{S}^{5} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{3}$ and $\mathbb{S}^{13} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{7}$, respectively.

Proof. Expanding the exponential maps in the definition of $Q$ and applying the two identities $p_{\theta}=w_{(\theta+\pi / 2)}$ and $w_{\theta} w_{\kappa} w_{\tau}=w_{\tau} w_{\kappa} w_{\theta}$, one obtains

$$
\begin{aligned}
Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta\right)= & w w_{\theta} \bar{w} \bar{w}_{\theta} \cdot \frac{\cos \frac{\pi}{2}|p|}{1-|p|^{2}} \cdot \frac{\cos \frac{\pi}{2}\left|p_{\theta}\right|}{1-\left|p_{\theta}\right|^{2}} \\
& -p_{\theta} p \cdot \frac{\sin \frac{\pi}{2}|p|}{|p|} \cdot \frac{\sin \frac{\pi}{2}\left|p_{\theta}\right|}{\left|p_{\theta}\right|} \\
& +w p_{\theta} \bar{w} \cdot \frac{\cos \frac{\pi}{2}|p|}{1-|p|^{2}} \cdot \frac{\sin \frac{\pi}{2}\left|p_{\theta}\right|}{\left|p_{\theta}\right|} \\
& -w_{\theta} p \bar{w}_{\theta} \cdot \frac{\sin \frac{\pi}{2}|p|}{|p|} \cdot \frac{\cos \frac{\pi}{2}\left|p_{\theta}\right|}{1-\left|p_{\theta}\right|^{2}}
\end{aligned}
$$

Lemma 6.2. $Q$ has the following property:

$$
Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta\right) Q\left(\left[\begin{array}{c}
p_{\theta} \\
w_{\theta}
\end{array}\right], \tau\right)=Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta+\tau\right)
$$

Proof. This property is based on the identity $w_{\theta} \bar{w} w_{\tau}=w_{\tau} \bar{w} w_{\theta}$.
Theorem 6.3. The assignment

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{c}
p \\
w
\end{array}\right]:=Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta\right)\left[\begin{array}{c}
p_{\theta} \\
w_{\theta}
\end{array}\right] \overline{Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta\right)}
$$

defines nonlinear $\mathrm{SO}(2)$-actions on $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ that extend to cohomogeneity-1 actions of $\mathrm{O}(2) \times \mathrm{SO}(3)$ and $\mathrm{O}(2) \times \mathrm{G}_{2}$, respectively. These latter actions are equivalent to the standard actions on the Brieskorn spheres $W_{3}^{5}$ and $W_{3}^{13}$.

Proof. The map $Q: \mathbb{S}^{5} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{3}$ is equivariant under conjugation with unit quaternions; that is,

$$
Q\left(\left[\begin{array}{c}
q p \bar{q} \\
q w \bar{q}
\end{array}\right], \theta\right)=q Q\left(\left[\begin{array}{c}
p \\
w
\end{array}\right], \theta\right) \bar{q} .
$$

In an analogous way, $Q: \mathbb{S}^{13} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{7}$ is equivariant under $\mathrm{G}_{2}$. With Lemma 6.2 it is now straightforward to check that the assignment of Theorem 6.3 defines
$\mathrm{SO}(2)$-actions on $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ that commute with the $\mathrm{SO}(3)$-action on $\mathbb{S}^{5}$ and the $\mathrm{G}_{2}$-action on $\mathbb{S}^{13}$. It can be proved in various ways that $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$ equipped with the full actions of $\mathrm{O}(2) \times \mathrm{SO}(3)$ and $\mathrm{O}(2) \times \mathrm{G}_{2}$ are equivariantly diffeomorphic to $W_{3}^{5}$ and $W_{3}^{13}$-for example, by computing the isotropy groups along the curve

$$
s \mapsto\left[\begin{array}{c}
j \cos s \\
(k \cos (\pi \cos s)-i \sin (\pi \cos s)) \sin s
\end{array}\right],
$$

which corresponds precisely to the geodesics $\alpha$ on $\Sigma^{5}$ and $\beta$ on $W_{3}^{5}$ and $W_{3}^{13}$ under the identifications established in the previous sections. (For the isotropy group computation, note that if $p$ and $w$ anticommute and have the same norm then $p_{\theta}=e^{-v(\theta / 2)} p e^{v(\theta / 2)}$, where $v=(p /|p|)(w /|w|)$ and a similar expression holds for $w_{\theta}$.)

Remark 6.4. The formula of Theorem 6.3 was obtained by pulling back the - -action on $\Sigma^{5}$ by the explicit diffeomorphism $\mathbb{S}^{5} \rightarrow \Sigma^{5}$ given in (3).

Remark 6.5. For $\theta=\pi$, the formula of Theorem 6.3 gives exotic involutions on $\mathbb{S}^{5}$ and $\mathbb{S}^{13}$. These are studied in [ADPR].

Remark 6.6. If one replaces $\pi / 2$ in the definition of $Q$ with $(2 m+1)(\pi / 2)$, then one obtains an action that is conjugate to the original action by $\sigma^{m}$, where $\sigma$ is the restriction of the exotic diffeomorphism $\sigma: \mathbb{S}^{6} \rightarrow \mathbb{S}^{6}$ to $\mathbb{S}^{5}$ (see [D]).

## 7. Fixed Point Sets of Isometries

We now study the geometric properties of the large fixed point sets in detail. This information will allow us to show that $\mathrm{O}(2) \times \mathrm{SO}(3)$ is the full isometry group of $\Sigma^{5}$ and $\Sigma^{7}$.

Recall from Lemma 3.1 that the $(\mathrm{O}(2) \times \mathrm{SO}(3))$-action leaves $\Sigma^{5}$ and $\Sigma^{1}$ invariant. Any element (or subgroup) of $\mathrm{O}(2) \times \mathrm{SO}(3)$ fixes either the entire circle $\Sigma^{1}$, two antipodal points in $\Sigma^{1}$, or no points in $\Sigma^{1}$ at all.

Lemma 7.1. If an element $\psi \in \mathrm{O}(2) \times \mathrm{SO}(3)$ does not have a fixed point in $\Sigma^{1}$ then its fixed point set $\left(\Sigma^{7}\right)^{\psi}$ is completely contained in $\Sigma^{5}$.

Proof. The statement obviously does not depend on any metric. In order to prove it, however, it is helpful to use any of the pointed wiedersehen metrics $\langle\cdot, \cdot\rangle_{1, v}$. By Lemma 3.1, the isometry $\psi$ maps $\Sigma^{1}$ and $\Sigma^{5}$ to themselves. Through any point $p \in \Sigma^{7}$ outside $\Sigma^{1} \cup \Sigma^{5}$ there is a unique geodesic segment from $\Sigma^{1}$ to $\Sigma^{5}$ with length $\pi / 2$. If $p$ is fixed by the isometry $\psi$, then this segment is fixed pointwise as well.

Corollary 7.2. For all the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ the 5 -sphere $\Sigma^{5}$ is a minimal submanifold of $\Sigma^{7}$ and of each $\Sigma_{ \pm A}^{6}$.

Proof. All principal isotropy groups of the $\bullet$-action on $\Sigma^{5} \subset \Sigma^{7}$ are conjugate to the subgroup $H \subset \mathrm{O}(2) \times \mathrm{SO}(3)$ determined in Lemma 3.7. The union $\Sigma_{(H)}^{7}$
of all orbits of type $(H)$ in $\Sigma^{7}$ (i.e., the set of all points whose isotropy group is conjugate to $H$ ) is a possibly disconnected open minimal submanifold of $\Sigma^{7}$ (see [HsL]). Any subgroup conjugate to $H$ contains an element of the form $(-\mathbb{1}, \pm q)$. All elements of this form act on $\Sigma^{1}$ by the antipodal map. Thus, Lemma $7.1 \mathrm{im}-$ plies that $\Sigma_{(H)}^{7}$ is contained in $\Sigma^{5}$. Now, $\Sigma^{5}$ is apparently the closure of $\Sigma_{(H)}^{7}$ and hence minimal. An analogous argument using the $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathrm{SO}(3)\right)$-action shows that $\Sigma^{5}$ is minimal in $\Sigma_{ \pm 11}^{6}$.

Lemma 7.3. If $\psi \in \mathrm{O}(2) \times \mathrm{SO}$ (3) fixes precisely two antipodal points $\mathbb{S}^{3} \star( \pm A) \in$ $\Sigma^{1}$ with $A \in \mathrm{O}(2)$, then $\left(\Sigma^{7}\right)^{\psi}$ is contained in $\Sigma_{ \pm A \cdot A_{0}}^{6}$ with $A_{0}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and is also a suspension of $\left(\Sigma^{5}\right)^{\psi}$ from the two points $\mathbb{S}^{3} \star( \pm A)$. In particular, $\left(\Sigma^{7}\right)^{\psi}$ and $\left(\Sigma^{5}\right)^{\psi}$ are both diffeomorphic to spheres.

Proof. It suffices to consider any of the metrics $\langle\cdot, \cdot\rangle_{1, v}$. Between any two points $p, q \in \Sigma^{7}$ with $p \in \Sigma^{1}$ and $q \notin \Sigma^{1}$ there exists a unique minimizing geodesic segment from $p$ to $q$. If $\psi$ fixes $p$ and $q$ then it fixes the geodesic as well. Note that $\left(\Sigma^{7}\right)^{\psi}$ is either empty or odd-dimensional because $\psi$ is orientation preserving. (As a generator of the group $\Theta_{7} \approx \mathbb{Z}_{28}$ of homotopy spheres, $\Sigma^{7}$ does not admit orientation-reversing diffeomorphisms.)

Lemma 7.4. If $\psi \in \mathrm{O}(2) \times \mathrm{SO}(3)$ fixes all points in the circle $\Sigma^{1}$, then either $\left(\Sigma^{7}\right)^{\psi}$ is equal to $\Sigma^{1}$ or $\left(\Sigma^{7}\right)^{\psi}$ is the join of $\Sigma^{1}$ and $\left(\Sigma^{5}\right)^{\psi}$ and thus the suspension of $\left(\Sigma_{ \pm A}^{6}\right)^{\psi}$ from any two antipodal points $\mathbb{S}^{3} \star( \pm A) \in \Sigma^{1}$. In particular, $\left(\Sigma^{7}\right)^{\psi}$, $\left(\Sigma_{ \pm A}^{6}\right)^{\psi}$, and $\left(\Sigma^{5}\right)^{\psi}$ are diffeomorphic to spheres.

Proof. Similar to the proofs of Lemma 7.1 and Lemma 7.3.
The preceding lemmas show that topologically interesting fixed point sets can arise only in the case where the isometry has no fixed points in $\Sigma^{1}$-that is, only when the fixed point set is completely contained in $\Sigma^{5}$.

We now discuss the fixed point sets in more detail. It is clear that conjugate elements of $\mathrm{O}(2) \times \mathrm{SO}(3)$ yield congruent fixed point sets. Every element in $\mathrm{SO}(2) \times \mathrm{SO}(3)$ is conjugate to an element in the maximal torus

$$
\mathrm{SO}(2) \times \mathrm{SO}(2)=\left\{\left.\left(\left[\begin{array}{rr}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right], \pm e^{i \theta_{2}}\right) \right\rvert\, \theta_{1}, \theta_{2} \in \mathbb{R}\right\}
$$

of $\mathrm{SO}(2) \times \mathrm{SO}(3)$. All the other elements of $\mathrm{O}(2) \times \mathrm{SO}(3)$ are conjugate to an element of the form $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm e^{i \theta}\right)$ and fix precisely two points in $\Sigma^{1}$; they will be discussed at the end of this section. We first inspect the fixed point sets of the elements in the maximal torus $\mathrm{SO}(2) \times \mathrm{SO}(2)$ of $\mathrm{SO}(2) \times \mathrm{SO}(3)$.

We first deal with the elements of $\mathrm{SO}(2) \times \mathrm{SO}(2)$ that fix $\Sigma^{1}$ pointwise. These isometries are clearly of the form $\left(\mathbb{1}, \pm e^{i \theta}\right)$, and in Figure 2 this set is indicated by the two vertical lines. From Lemma 3.7 we see that the fixed point set in $\Sigma^{5}$ is a circle located in the singular orbit through $\alpha(0)$ if $e^{i \theta} \neq \pm 1$. Thus, by Lemma 7.4, the fixed point set in $\Sigma^{7}$ is the join of $\Sigma^{1}$ and this circle and hence is diffeomorphic to $\mathbb{S}^{3}$. Although not all elements of the form $\left(\mathbb{1}, \pm e^{i \theta}\right)$ are conjugate to $(\mathbb{1}, \pm i)$,


Figure 2 The elements in the maximal torus of $\mathrm{SO}(2) \times \mathrm{SO}(3)$ with fixed points are precisely illustrated by the two vertical lines
all their fixed point sets are congruent to the fixed point set of $(\mathbb{1}, \pm i)$, which will be denoted by $\Sigma_{0}^{3}$.

Lemma 7.5. The fixed point set $\Sigma_{0}^{3}$ of $(\mathbb{1}, \pm i)$ on $\Sigma^{7}$ is isometric to a 3 -sphere equipped with a Berger metric where the horizontal geodesics have length $2 \pi$ and the Hopf circles have length $2 \pi \sqrt{\mu}$.

Proof. With the structural information just given, it is immediate that $\Sigma_{0}^{3}=$ $\pi_{\Sigma^{7}}(\mathrm{U}(2))$; this is isometric to the homogeneous space $\mathrm{U}(2) / \mathrm{U}(1)$, where $\mathrm{U}(1)$ is embedded into the right lower corner and $U(2)$ is equipped with the metric $\langle\cdot, \cdot\rangle_{\mu, \nu}$.

Corollary 7.6. There is no $\operatorname{SO}(3)$-equivariant homeomorphism between $\Sigma^{7}$ and any of the Brieskorn spheres $W_{6 j-1,3}^{7}$.
Proof. In $W_{6 j-1,3}^{7}$, the fixed point set of $\pm i=\operatorname{diag}(1,-1,-1) \in \mathrm{SO}(3)$ is the integral homology sphere $W_{6 j-1,3}^{3}=W_{6 j-1,3,2}^{3}$. For $j=1$ this space is diffeomorphic to Poincare dodecahedral space, and for $j>1$ the universal cover of $W_{6 j-1,3,2}^{3}$ is $\widetilde{\mathrm{SL}}(2, \mathbb{R})$ (see $[\mathrm{Mi}])$.

Note that this last argument also gives a simple reason for why there are no $\mathrm{SO}(3)-$ invariant Riemannian metrics on $W_{6 j-1,3}^{7}$ with $K>0$ for $j>1$.

Lemma 7.7. The circle $\Sigma^{1}$ is a closed geodesic for all $\mathrm{SO}(3)$-invariant Riemannian metrics on $\Sigma^{7}$ and in particular for all metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$.

Proof. It is easy to check that $\Sigma^{1}$ is the intersection of all the fixed point sets $\left(\Sigma^{7}\right)^{(1, \pm q)}$, that is, the common fixed point set of $\mathrm{SO}(3)$.

We now consider the elements in the maximal torus $\mathrm{SO}(2) \times \mathrm{SO}(2)$ of $\mathrm{SO}(2) \times$ $\mathrm{SO}(3)$ that do not fix any point in $\Sigma^{1}$. The elements with fixed points in $\Sigma^{7}$ correspond up to conjugation to the skew lines in Figure 2. It suffices to consider the left half of Figure 2, since one can conjugate by $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \mathbb{1}\right) \in \mathrm{O}(2) \times \mathrm{SO}(3)$.

Lemma 7.8. The fixed point set $L^{3}$ of the isometry $(-\mathbb{1}, \pm i)$ on $\Sigma^{7}$ is diffeomorphic to the lens space $\mathbb{S}^{3} / \mathbb{Z}_{3}$ and totally geodesic in $\Sigma^{5}, \Sigma_{ \pm A}^{6}$, and $\Sigma^{7}$. Moreover, $L^{3}$ is isometrically covered by a Berger metric on $\mathbb{S}^{3}$ where the horizontal geodesics have length $2 \pi$ and the Hopf circles have length $2 \pi \sqrt{9 \mu \nu /(4 \mu+\nu)}$. In particular, the extremal values of the sectional curvature of $L^{3}$ at any point are $9 \mu \nu /(4 \mu+v)$ and $4-27 \mu \nu /(4 \mu+\nu)$.

Proof. By Theorem 4.3, $\Sigma^{5}$ and the Brieskorn sphere $W_{3}^{5}$ are equivariantly diffeomorphic. In $W_{3}^{5}$ the corresponding fixed point set is $W_{3}^{3}$, which is well known to be diffeomorphic to $\mathbb{S}^{3} / \mathbb{Z}_{3}$ (see e.g. [HzMa]). In $\Sigma^{5}$ there exists a direct argument that allows a simple curvature computation: Straightforward computations show that the horizontal lift of $T_{\alpha(s)} L$ at $\tilde{\alpha}(s)$ is spanned by the horizontal vectors $\tilde{\alpha}^{\prime}(s), \tilde{v}_{0}(s)$, and $\tilde{v}_{1}(s)$. Thus $L$ is 3-dimensional. Let $\mathrm{U}(2)$ be the centralizer of $\left[\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right]$ in $\operatorname{Sp}(2)$. It is straightforward to see that $\pi_{\Sigma^{7}}(j \mathrm{U}(2))$ embeds into the fixed point set. Now $\pi_{\Sigma^{7}}(j \mathrm{U}(2))$ is isometric to the quotient of $j \mathrm{U}(2) \subset \operatorname{Sp}(2)$ by the $\mathrm{U}(1)$-action $(\lambda, j A) \mapsto \lambda j A\left[\begin{array}{cc}\bar{\lambda} & 0 \\ 0 & 1\end{array}\right]$, where $\mathrm{U}(2)$ carries the metric $\langle\cdot, \cdot\rangle_{\mu, \nu}$ induced from $\operatorname{Sp}(2)$. Since $i$ and $j$ anticommute, this quotient is isometric the homogeneous space $U(2) /\left\{\left[\begin{array}{cc}\bar{\lambda}^{2} & 0 \\ 0 & \bar{\lambda}\end{array}\right]\right\}$ and hence is diffeomorphic to $\mathbb{S}^{3} / \mathbb{Z}_{3}$. The vector $\tilde{\alpha}^{\prime}(0)=j\left[\begin{array}{rr}0 & -i \\ -i & 0\end{array}\right]$ is horizontal with respect to the fibration

$$
\mathrm{U}(2) /\left\{\left[\begin{array}{cc}
\bar{\lambda}^{2} & 0 \\
0 & \bar{\lambda}
\end{array}\right]\right\} \rightarrow \mathrm{U}(2) /(\mathrm{U}(1) \times \mathrm{U}(1))=\mathbb{C P}^{1}
$$

and the curve $\exp \left(t \tilde{\alpha}^{\prime}(0)\right)$ closes first after length $2 \pi$ in $\mathrm{U}(2)$. The vector

$$
\tilde{v}_{1}(0)=j \frac{2}{4 \mu+v}\left[\begin{array}{cc}
i v & 0 \\
0 & -2 i \mu
\end{array}\right]
$$

is vertical. It is easy to check that the curve $\exp \left(t \tilde{v}_{1}(0)\right)$ in $\mathrm{U}(2)$ meets the circle $\left\{\left[\begin{array}{cc}\bar{\lambda}^{2} & 0 \\ 0 & \frac{\lambda}{\lambda}\end{array}\right]\right\}$ first at time $T=\pi$. Hence, the length of the vertical circle in the lens space is $\pi\left|\tilde{v}_{1}(0)\right|=2 \pi \sqrt{\mu \nu /(4 \mu+\nu)}$. In the universal cover $\mathbb{S}^{3}$, the length of this Hopf circle is three times as long.

The fixed point sets of the remaining elements of the form $\left(\left[\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right], \pm e^{i \theta_{2}}\right)$ are all contained in the singular orbit through $\alpha(\pi / 4)$ by Lemma 3.7. Up to conjugation, only the following fixed point set $P^{3}$ is more than 1-dimensional.

Lemma 7.9. The fixed point set $P^{3}$ of the isometry $\left(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \mathbb{1}\right)$ with $\theta=$ $2 \pi / 3$ on $\Sigma^{7}$ is isometric to $\mathbb{R}^{3}$ covered by a Berger $\mathbb{S}^{3}$ whose horizontal geodesics have length $2 \pi \sqrt{v}$ and whose Hopf circles have length $2 \pi \sqrt{4 \mu \nu /(4 \mu+v)}$.

Proof. It is immediate from the isotropy groups along the normal geodesic $\alpha$ in Lemma 3.7 that $P^{3}$ is precisely the $(\mathrm{O}(2) \times \mathrm{SO}(3))$-orbit through $\alpha(\pi / 4)$. The subgroup $\mathrm{SO}(3)$ acts simply transitively on this orbit, and the induced metric follows from Lemma 3.8.

We finally deal with the isometries that fix precisely two points in $\Sigma^{1}$. It is clear that these isometries are not contained in $\mathrm{SO}(2) \times \mathrm{O}(3)$. By Lemma 3.7 and Lemma 7.3 they are conjugate to $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm 1\right)$ or $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm j\right)$ if the dimension of the fixed
point set is $>1$. From Lemma 7.3 it is also clear that the fixed point sets of these isometries are suspensions of subspheres of $\Sigma^{5}$ from the two points $\mathbb{S}^{3} \star( \pm \mathbb{1})$.

Lemma 7.10. The fixed point set $\Sigma_{1}^{3}$ of the isometry $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm 1\right)$ is diffeomorphic to $\mathbb{S}^{3}$. The induced metric on $\Sigma_{1}^{3} \backslash\left(\mathbb{S}^{3} \star( \pm \mathbb{1})\right)$ is isometric to the metric

$$
\mu\left(d t^{2}+\frac{v \sin ^{2} t}{v+4 \mu \sin ^{2} t} g_{\mathrm{can}}^{\mathbb{S}^{2}}\right)
$$

on $[0, \pi] \times \mathbb{S}^{2}$. Hence, the sectional curvatures vary between $\nu / \mu(4 \mu+\nu)$ and $(12 \mu+\nu) / \mu \nu$.

Proof. By Lemma 3.7, the fixed point set is the suspension of homogeneous 2spheres from the two points $\mathbb{S}^{3} \star( \pm \mathbb{1})$. This suspension is given by the geodesics $\pi_{\Sigma^{7}} \circ \tilde{\gamma}_{\left[\begin{array}{l}p \\ 0\end{array}\right]}$ in (2). It is straightforward to compute the diameter of the SO (3)-orbits through $\pi_{\Sigma^{7}} \circ \gamma_{\left[\begin{array}{l}p \\ 0\end{array}\right]}(t)$.

Lemma 7.11. The fixed point set $\Sigma^{2}$ of the isometry $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm j\right)$ on $\Sigma^{5}$ and on $\Sigma_{ \pm \mathbb{1}}^{6}$ is isometric to a 2 -sphere equipped with the metric $d s^{2}+\frac{1}{4} c(s) d \phi^{2}$, where $c(s)$ is the function $[0, \pi] \rightarrow \mathbb{R}$ defined in Lemma 3.8. The sectional curvature $K$ of $\Sigma^{2}$ satisfies

$$
\left.K\right|_{s=0}=\frac{12}{v}-8-3 \mu,\left.\quad K\right|_{s=\pi / 4}=\frac{4 v}{1+\mu},\left.\quad K\right|_{s=\pi / 2}=-\frac{v(1+2 \mu)}{\mu(4 \mu+v)}
$$

Proof. It is easy to see that $\Sigma^{2}$ contains the normal geodesic $\alpha$ and that the tangent space to $\Sigma^{2}$ at $\alpha(s)$ is spanned by $\alpha^{\prime}(s)$ and the Killing field $v_{2}(s)$ if $s \notin \pi \mathbb{Z}$. A straightforward computation shows that the circle that corresponds to $v_{2}$ and that acts effectively on $\Sigma^{2}$ inherits the length $\pi \cdot \sqrt{c(s)}$ at time $s$. The formula for $c(s)$ shows that $\Sigma^{2}$ is diffeomorphic to a sphere. The curvature computations are now straightforward. Finally, Lemma 7.1 ensures that the fixed point set of the isometry on $\Sigma_{ \pm \mathbb{1}}^{6}$ is contained in $\Sigma^{5}$.

Remark 7.12. Another way to see that $\Sigma^{2}$ is diffeomorphic to $\mathbb{S}^{2}$ is to pass from $\Sigma^{5}$ to the Euclidean sphere $\mathbb{S}^{5}$ with the nonlinear action obtained in Section 6. On $\mathbb{S}^{5} \subset \operatorname{Im} \mathbb{H} \times \mathbb{H}$ it is straightforward to check that the transformation $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm j\right)$ fixes precisely the 2 -sphere that consists of all unit vectors of the form $\left[\begin{array}{c}p \\ w\end{array}\right]$ with $p \in j \mathbb{R}$ and $w \in \operatorname{span}_{\mathbb{R}}\{i, k\}$.

Corollary 7.13. The fixed point set $\Sigma_{2}^{3}$ of the isometry $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \pm j\right)$ on $\Sigma^{7}$ is diffeomorphic to $\mathbb{S}^{3}$.

Proof. This follows immediately from Lemma 7.11 and Lemma 7.3.
In order to describe the metric that $\Sigma_{2}^{3}$ inherits from $\Sigma^{7}$, it is useful to note that the horizontal lift of the tangent space $T_{\mathbb{S}^{3} \star \mathbb{1}} \Sigma_{2}^{3}$ at $\mathbb{1}$ is spanned by the three vectors

$$
\left[\begin{array}{ll}
j & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & k \\
k & 0
\end{array}\right] .
$$

Hence, $\Sigma_{2}^{3}$ can be parameterized by the horizontal geodesics $\tilde{\gamma}_{\left[\begin{array}{c}p \\ w\end{array}\right]}$ given in (2) with

$$
p=j \cos \theta \quad \text { and } \quad w=i \sin \theta \cos \phi+k \sin \theta \sin \phi
$$

where $t \in[0, \pi], \theta \in[0, \pi]$, and $\phi \in[0,2 \pi]$. Thus, $\Sigma_{2}^{3}$ corresponds to a maximal choice of anticommuting $p$ and $w$. In the coordinates $(t, \theta, \phi)$, the metric on $\Sigma_{2}^{3}$ is given by

$$
\begin{aligned}
& g_{11}=1-\frac{1}{D}(1-\mu)\left(4 \sin ^{2} t \sin ^{2} \theta+v\left(1-2 \sin ^{2} t \sin ^{2} \theta\right)^{2}\right) \cos ^{2} \theta, \\
& g_{22}=\sin ^{2} t+\frac{1}{D} \sin ^{2} t \sin ^{2} \theta\left(v \sin ^{2} \theta(2 t-\sin 2 t)^{2}\right. \\
& -(1-\mu)\left(\left(\nu+4 \sin ^{2} t \sin ^{2} \theta\right) \cos ^{2} t\right. \\
& \left.\left.+2 t v \sin ^{2} \theta\left(2 t \sin ^{2} t \sin ^{2} \theta-\sin 2 t\right)\right)\right), \\
& g_{33}=\frac{1}{D} v \sin ^{2} t \sin ^{2} \theta\left(1-(1-\mu) \sin ^{2} t \sin ^{2} \theta\right), \\
& g_{23}=\frac{1}{D} v \sin ^{2} t \sin ^{3} \theta\left(2 t-\sin 2 t+\frac{1-\mu}{2}\left(\sin 2 t-4 t \sin ^{2} t \sin ^{2} \theta\right)\right), \\
& g_{13}=-\frac{1}{D} \nu(1-\mu) \sin ^{2} t \sin ^{2} \theta \cos \theta\left(1-2 \sin ^{2} t \sin ^{2} \theta\right), \\
& g_{12}=\frac{1-\mu}{4 D} \sin 2 \theta\left(4 \sin 2 t \sin ^{2} t \sin ^{2} \theta\right. \\
& \left.-v\left(1-2 \sin ^{2} t \sin ^{2} \theta\right)\left(4 t \sin ^{2} t \sin ^{2} \theta-\sin 2 t\right)\right),
\end{aligned}
$$

where

$$
D=4\left(1-(1-\mu) \sin ^{2} t \sin ^{2} \theta\right) \sin ^{2} t \sin ^{2} \theta+v\left(1-2 \sin ^{2} t \sin ^{2} \theta\right)^{2}
$$

This specializes for $\mu=1$ to

$$
\begin{aligned}
g= & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \sin ^{2} t & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& +\frac{v \sin ^{2} t \sin ^{2} \theta}{4 \sin ^{2} t \sin ^{2} \theta+v\left(1-2 \sin ^{2} t \sin ^{2} \theta\right)^{2}}\left[\begin{array}{c}
0 \\
(2 t-\sin 2 t) \sin \theta \\
1
\end{array}\right] \\
& \cdot\left[\begin{array}{c}
0 \\
(2 t-\sin 2 t) \sin \theta \\
1
\end{array}\right]^{\mathrm{T}} .
\end{aligned}
$$

Note that $\Sigma_{2}^{3}$ is invariant under the isometry of $\Sigma^{7}$ induced by $-\mathbb{1} \in \operatorname{Sp}(2)$. In our coordinates, this isometry is given by $(t, \theta, \phi) \mapsto(\pi-t, \theta+\pi, \phi-2 \pi \cos \theta)$. This coordinate change allows us to glue $\Sigma_{2}^{3}$ from two disks equipped with $g$.

Although the metric $g$ is of cohomogeneity 2, the curvature of $g$ behaves as if the action on $\Sigma_{2}^{3}$ were of cohomogeneity 1: The orbit space of the natural $\mathrm{SO}(2)$ action on $\Sigma_{2}^{3}$ (given in our coordinates by translation in $\phi$ ) can easily be shown to be the hemisphere of constant curvature 1 for $\mu=1$. In our coordinates, this hemisphere is given by $0 \leq t \leq \pi, 0 \leq \theta \leq \pi$, and is represented by geodesics
from a point in the boundary. It is reasonable to switch to polar coordinates-that is, to make the coordinate change

$$
\left[\begin{array}{c}
\cos t \\
\cos \theta \sin t \\
\sin \theta \sin t
\end{array}\right]=\left[\begin{array}{c}
\sin \omega \cos \psi \\
\sin \omega \sin \psi \\
\cos \omega
\end{array}\right]
$$

with $0 \leq \omega \leq \pi / 2$ and $0 \leq \psi \leq 2 \pi$.
Lemma 7.14. The orbit space of the natural $\mathrm{SO}(2)$-action on $\left(\Sigma_{2}^{3},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ is a hemisphere that inherits a rotationally invariant metric with curvature

$$
\mu \frac{1+2(1-\mu) \cos ^{2} \omega}{\left(1-(1-\mu) \cos ^{2} \omega\right)^{2}}
$$

In particular, the curvature is constant if and only if $\mu=1$.
The eigenvalues of the Einstein tensor (i.e., the critical values of the sectional curvature) of $\Sigma_{2}^{3}$ also turn out to be independent of $\psi$. The metric $g$ itself, however, does not improve in the coordinates $(\omega, \psi, \phi)$, nor does the curvature computation become simpler. The next lemma gives some more detailed curvature information.

Lemma 7.15. The scalar curvature of $\left(\Sigma_{2}^{3},\langle\cdot, \cdot\rangle_{1, v}\right)$ is given by

$$
\frac{4\left(-12+4 v+9 v^{2}+2(21 v-8) \cos 2 \omega+\left(9 v^{2}+16 v-4\right) \cos 4 \omega+2 v \cos 6 \omega\right)}{(4+v+4 \cos 2 \omega+v \cos 4 \omega)^{2}}
$$

For $\mu, v \leq 1$, the minimum of the sectional curvature is given by

$$
\min K=\min \left\{\frac{\mu v}{4 \mu+v}, \frac{12-8(\mu+v)-3 \mu v}{4 \mu+v}\right\}
$$

In the Gromoll-Meyer case where $\mu=\nu=\frac{1}{2}, \Sigma_{2}^{3}$ inherits a metric with $\frac{\min K}{\max K}=$ $\frac{1}{145}$.

Note that by construction and Lemma 7.3, $\Sigma_{2}^{3}$ is totally geodesic in $\Sigma^{7}$ and in $\Sigma_{ \pm A_{0}}^{6}$ with $A_{0}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, and $\Sigma^{2}$ is totally geodesic in $\Sigma^{5}$ and in $\Sigma_{ \pm 11}^{6}$.

Corollary 7.16. There is a point in $\Sigma^{2}$ that has negative curvature for all the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{7}$. Moreover, $\Sigma^{5}$ and $\Sigma_{ \pm 11}^{6}$ are not totally geodesic in $\Sigma^{7}$ for any of these metrics.

Proof. The intrinsic sectional curvature of $\Sigma^{2}$ at $\alpha(\pi / 2)$ is $-v(1+2 \mu) /$ $\mu(4 \mu+\nu)<0$ by Lemma 7.11. The point $\alpha(\pi / 2) \in \Sigma^{2} \subset \Sigma_{2}^{3}$ corresponds to the coordinates $t=\theta=\phi=\pi / 2$ on $\Sigma_{2}^{3}$. The extrinsic sectional curvature of the tangent space of $\Sigma^{2}$ at this point can be computed as $\mu \nu /(4 \mu+\nu)>0$.

We would like to add some comments on these fixed point sets. First, the spheres $\Sigma_{0}^{3}, \Sigma_{1}^{3}$, and $\Sigma_{2}^{3}$ are indexed according to their intrinsic cohomogeneity. Second, the fixed point sets $\Sigma_{0}^{3}, L^{3}$, and $\Sigma_{2}^{3}$ yield necessary conditions for $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ to have nonnegative sectional curvature: That $\Sigma_{0}^{3}$ inherits $K \geq 0$ implies $\mu \leq \frac{4}{3}$, that $L^{3}$ inherits $K \geq 0$ implies $4(4 \mu+\nu)-27 \mu \nu \geq 0$, and that $\Sigma_{2}^{3}$ inherits $K \geq 0$ implies $12-8(\mu+\nu)-3 \mu \nu \geq 0$. The last inequality is the most restricting one.

Of particular interest is the question of whether the nice behavior of geodesics on $\Sigma^{7}$ for $\mu=1$ can be combined with nonnegative sectional curvature. In this case, the inequalities just listed show that necessarily $v \leq 4 / 11$ (this is precisely the inequality that guarantees $\Sigma_{2}^{3}$ inherits $K \geq 0$ ). For $\mu=1$ and any $v>0$, there are always some negative sectional curvatures on $\left(\operatorname{Sp}(2),\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$. The question of whether these disappear for small $v>0$ when going down to $\Sigma^{7}$ is subtle.

A distinguished metric on $\Sigma^{7}$ is $\langle\cdot, \cdot\rangle_{1,1 / 2}$. In this case $\Sigma_{0}^{3}$ and $L^{3}$ both have constant curvature 1.

The results on fixed point sets in this section allow us to compare the metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{5}$ (and hence on the exotic projective space $\Sigma^{5} /\{ \pm \mathbb{1}\}$ ) briefly to those that come from the Grove-Ziller construction for cohomogeneity manifolds with codimension- 2 singular orbits [GZ]. Our metrics are analytic and there are always points with negative sectional curvature. The Grove-Ziller metrics are merely smooth but have nonnegative sectional curvature; on the lens space $L^{3}$ they induce a proper cohomogeneity- 1 metric with planes of zero sectional curvature over an open set of points.

Finally, we would like to point out that not all totally geodesic submanifolds of $\Sigma^{7}$ are fixed point sets of isometries, as the following lemma shows.

Lemma 7.17. For any metric $\langle\cdot, \cdot\rangle_{\mu, \nu}$, the rectangular 2 -torus $T^{2}$ in $\mathrm{Sp}(2) p a$ rameterized by

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{j \beta}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
e^{i \alpha} & i e^{j \beta} \\
i e^{i \alpha} & e^{j \beta}
\end{array}\right]
$$

with $\alpha, \beta \in \mathbb{R}$ is totally geodesic and horizontal with respect to the submersion $\pi_{\Sigma^{7}}: \operatorname{Sp}(2) \rightarrow \Sigma^{7}$. Its image is a totally geodesic rectangular 2 -torus in $\Sigma^{7}$ covered twice by $T^{2}$.

Proof. Consider the subgroup $G$ of $\mathrm{Sp}(1) \times \mathrm{Sp}(1) \subset \mathrm{Sp}(2)$ generated by the two elements $\left[\begin{array}{cc}i & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & j\end{array}\right]$. This group $G$ acts by conjugation isometrically on ( $\left.\mathrm{Sp}(2),\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$. The rectangular torus

$$
\left\{\left.\left[\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{j \beta}
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \subset \mathrm{Sp}(2)
$$

is the common fixed point set of $G$ and hence is totally geodesic. Therefore, its left translated copy $T^{2}$ is totally geodesic, too. It is straightforward to show that $T^{2}$ is horizontal and that $\pi_{\Sigma^{7}}$ restricted to $T^{2}$ induces an embedding of $T^{2} /\left[\begin{array}{cc}1 & 0 \\ 0 & \pm 1\end{array}\right]$ into $\Sigma^{7}$.

This torus was already implicitly contained in [GrMy] and is also listed in [Wi]. The fundamental difference between the standard action $\bullet$ of $\mathbb{S}^{3}$ on $\operatorname{Sp}(2)$ and the Gromoll-Meyer action $\star$ appears here very clearly: The torus $T^{2}$ is horizontal for the $\star$-action whereas only an $\mathbb{S}^{1}$-factor is horizontal for the $\bullet$-action.

## 8. The Isometry Group of the Gromoll-Meyer Sphere

In Lemma 3.1 it was shown that all elements of $\mathrm{O}(2) \times \mathrm{SO}(3) \operatorname{map} \Sigma^{1}$ and $\Sigma^{5}$ to themselves. We show that the same is true for any isometry of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$.

Lemma 8.1. Every isometry of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, v}\right)$ maps $\Sigma^{1}$ and $\Sigma^{5}$ to themselves.
Proof. The maximum dimension of any compact differentiable transformation group on $\Sigma^{7}$ is 4 (see [St]). The $\bullet$-action of $G=\mathrm{O}(2) \times \mathrm{SO}(3)$ on $\Sigma^{7}$ is effective. Hence, the subgroup $G_{0}=\mathrm{SO}(2) \times \mathrm{SO}(3)$ of $G$ is the identity component of the isometry group $\tilde{G}$ of $\Sigma^{7}$. Let $\psi \in \tilde{G}$ be any isometry of $\Sigma^{7}$. Since $G_{0}$ is a normal subgroup of $\tilde{G}$, it follows that conjugation by $\psi$ on $\tilde{G}$ maps $\mathrm{SO}(3)$ to itself. Hence, $\psi$ maps the fixed point set of $\mathrm{SO}(3)$ in $\Sigma^{7}$ to itself. This fixed point set is precisely the circle $\Sigma^{1}$ of wiedersehen points. Moreover, $\psi$ also maps $G_{0}$-orbits diffeomorphically to $G_{0}$-orbits. It thus follows from the isotropy groups (as in the proof of Corollary 7.2) that $\psi$ maps $\Sigma^{5}$ to itself.

Lemma 8.2. The isometry group of $\left(\Sigma^{5},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ is the group $\mathrm{O}(2) \times \mathrm{SO}(3)$.
Proof. It is obvious from the isotropy group computation in Lemma 3.7 that the - -action of $G=\mathrm{O}(2) \times \mathrm{SO}(3)$ on $\Sigma^{5}$ is effective. The full isometry group $\tilde{G}$ of $\Sigma^{5}$ cannot act transitively on $\Sigma^{5}$. Otherwise all fixed point sets of isometries would be homogeneous, but $\Sigma^{2}$ from Lemma 7.11 is not homogeneous. Consider the normal geodesic $\alpha$ in $\Sigma^{5}$ given in formula (4). This geodesic intersects all $G$-orbits perpendicularly. Each principal $G$-orbit is contained in a $\tilde{G}$-orbit of the same dimension (since $\tilde{G}$ does not act transitively) and hence $\alpha$ also intersects all $\tilde{G}$-orbits perpendicularly. Let $\tilde{H}$ denote the common principal isotropy group along the geodesic $\alpha$ and let $\tilde{H}(s)$ denote the group of isomorphisms of $\mathbb{R}^{4}$ that preserve the symmetric bilinear form given by the matrix in Lemma 3.8. Clearly, $\tilde{H}$ is isomorphic to a subgroup of the intersection of all $\tilde{H}(s)$. It is straightforward to see that the intersection of all $\tilde{H}(s)$ is the group of order 8 generated by the three involutions

$$
\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] .
$$

If this entire group of order 8 were the isotropy group along $\alpha$ rather than just the index-2 subgroup given in (6), then the curvature tensor $\left\langle R\left(\alpha^{\prime}, v_{1}\right) v_{2}, v_{3}\right\rangle_{\mu, \nu}$ of $\Sigma^{5}$ would vanish identically. However, computations show that

$$
\left\langle R\left(\alpha^{\prime}, v_{1}\right) v_{2}, v_{3}\right\rangle_{\mu, v}=r_{\mu, v}(\cos 2 s) \sin 4 s
$$

where $r_{\mu, \nu}$ is a rational function with $r_{\mu, \nu}(0)=-4 \mu \nu^{2} /((1+\mu)(4 \mu+\nu))$. This implies that $\left\langle R\left(\alpha^{\prime}, v_{1}\right) v_{2}, v_{3}\right\rangle_{\mu, \nu}$ does not vanish for $s$ close to but not equal to $\pi / 4$. It follows that the isotropy group $H$ of the $\bullet$-action is the full principal isotropy group $\tilde{H}$ of $\left(\Sigma^{5},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$. Because the principal orbits $G / H$ are connected, $G$ is the full subgroup of $\tilde{G}$ that preserves the principal orbits. Moreover, $\tilde{G}$ is a finite extension of $G$ and $G \subset \tilde{G}$ is a normal subgroup. If $G$ were a proper subgroup of $\tilde{G}$, then $\tilde{G} / G$ would act nontrivially on the orbit space and the Weyl group of the cohomogeneity-1 action of $\tilde{G}$ on $\Sigma^{5}$ would be larger than that of the action of $G$. This is impossible, as one can see from the isotropy groups in Lemma 3.7.

THEOREM 8.3. The isometry group of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, v}\right)$ is the group $\mathrm{O}(2) \times \mathrm{SO}(3)$.
Proof. Lemma 8.2 shows that $\mathrm{O}(2) \times \mathrm{SO}(3)$ is the isometry group of $\left(\Sigma^{5},\langle\cdot, \cdot \cdot\rangle_{\mu, \nu}\right)$. By Lemma 8.1, every isometry of ( $\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}$ ) maps $\Sigma^{5}$ to itself. It suffices to show that the only isometry of $\Sigma^{7}$ that fixes $\Sigma^{5}$ pointwise is the identity. Let $\psi$ be such an isometry. The fixed point set $\left(\Sigma^{7}\right)^{\psi}$ is the disjoint union of totally geodesic submanifolds. Let $M$ be the component of $\left(\Sigma^{7}\right)^{\psi}$ that contains $\Sigma^{5}$. Consider the fixed point set $\Sigma^{2}=\Sigma^{5} \cap \Sigma_{2}^{3}$ from Lemma 7.11. Obviously, $\Sigma^{2} \subset M \cap \Sigma_{2}^{3}$. If $\Sigma_{2}^{3}$ were not contained in $M$ then $M \cap \Sigma_{2}^{3}$ would be a proper totally geodesic submanifold of $\Sigma_{2}^{3}$ that contains $\Sigma^{2}$ and is thus equal to $\Sigma^{2}$. We know from Lemma 7.15 that $\Sigma^{2}$ is not totally geodesic in $\Sigma_{2}^{3}$. Hence, $\Sigma_{2}^{3} \subset M$. Now consider the congruent copy $\tilde{\Sigma}_{2}^{3}$ of $\Sigma_{2}^{3}$ given by the fixed point set of the isometry $\left(\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], \pm k\right)$ in $\Sigma^{7}$. We again have $\Sigma^{2}=\Sigma^{5} \cap \tilde{\Sigma}_{2}^{3}$. Hence, by the same argument as before, $\tilde{\Sigma}_{2}^{3}$ is also contained in $M$. The inclusion $\Sigma^{5} \cup \Sigma_{2}^{3} \cup \tilde{\Sigma}_{2}^{3} \subset M$ implies that $\operatorname{dim} M=7$ (inspect the tangent spaces along the normal geodesic) and hence that $\psi=\mathrm{id}_{\Sigma^{7}}$.

## 9. Free Actions on the Gromoll-Meyer Sphere

In this section we classify all closed subgroups of $\mathrm{O}(2) \times \mathrm{SO}(3)$ that act freely on $\Sigma^{7}$ and determine the homotopy type of the orbit spaces. Recall that $\mathrm{O}(2) \times \mathrm{SO}(3)$ is the full isometry group of $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ and $\left(\Sigma^{5},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ and that all elements in $\mathrm{O}(2) \times \mathrm{SO}(3)$ that are not contained in $\mathrm{SO}(2) \times \mathrm{SO}(3)$ have fixed points in $\Sigma^{5} \subset \Sigma^{7}$ because they reverse the orientation of $\Sigma^{5}$. In $\mathrm{SO}(2) \times \mathrm{SO}(3)$, it suffices to consider the elements of a maximal torus.

Lemma 9.1. An element in $\mathrm{SO}(2) \times \mathrm{SO}(3)$ has a fixed point in $\Sigma^{7}$ if and only if it has a fixed point in $\Sigma^{5}$.

Proof. It follows from the isotropy group $K_{-}$determined in Lemma 3.7 that any isometry $(\mathbb{1}, \pm q)$ has fixed points in $\Sigma^{5}$. All other elements of $\mathrm{SO}(2) \times \mathrm{SO}(3)$ are covered by Lemma 7.1.

Lemma 9.2. An element in $\mathrm{SO}(2) \times \mathrm{SO}(3)$ has fixed points on $\Sigma^{5}$ if and only if it is conjugate to an element of the subset of the maximal torus of $\mathrm{SO}(2) \times \mathrm{SO}(3)$ illustrated by all the lines in Figure 2.

Proof. Whether an element of $\mathrm{SO}(2) \times \mathrm{SO}(3)$ has a fixed point in $\Sigma^{5}$ is a property that does not change under conjugation. Hence, it suffices to consider the elements of a fixed maximal torus of $\mathrm{SO}(2) \times \mathrm{SO}(3)$, that is, elements of the form

$$
f\left(\theta_{1}, \theta_{2}\right)=\left\{\left(\left[\begin{array}{rr}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right], \pm e^{i \theta_{2}}\right)\right\}
$$

Since all isotropy groups in $\Sigma^{5}$ are conjugate to isotropy groups along the normal geodesic $\alpha$, an element $f\left(\theta_{1}, \theta_{2}\right)$ has a fixed point in $\Sigma^{5}$ if and only if there exists some $q \in \mathbb{S}^{3}$ such that $(1, q) f\left(\theta_{1}, \theta_{2}\right)(1, \bar{q})$ is contained in one of the groups $H, K_{-}, K_{+}$given in Lemma 3.7. This is precisely the case if $\theta_{1}=0$ and if $\theta_{2}$ is
arbitrary (the two vertical lines in Figure 2 that represent one circle in the torus) or $\theta_{2}= \pm \frac{3}{2} \theta_{1}$ (the diagonal lines in Figure 2).

Corollary 9.3. Every finite group that acts both freely and isometrically on ( $\Sigma^{5},\langle\cdot, \cdot\rangle_{\mu, \nu}$ ) and equivalently on $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ is cyclic.

Proof. Let $G$ be a finite subgroup of $\mathrm{SO}(2) \times \mathrm{SO}(3)$. From Figure 2 we see that the kernel of the projection from $G$ to the $\mathrm{SO}(2)$ factor is trivial.

Corollary 9.4. All finite cyclic groups act both freely and isometrically on $\left(\Sigma^{5},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$ and hence also on the Gromoll-Meyer sphere $\left(\Sigma^{7},\langle\cdot, \cdot\rangle_{\mu, \nu}\right)$.

Proof. This is evident from extending the pattern of Figure 2 periodically to all of $\mathbb{R}^{2}$.

Corollary 9.5. For every $m \in \mathbb{N}$ there exist 7 -dimensional exotic homotopy lens spaces with fundamental group $\mathbb{Z}_{m}$ and nonnegative sectional curvature. For every even $m \in \mathbb{N}$ there exist 5-dimensional exotic homotopy lens spaces with fundamental group $\mathbb{Z}_{m}$ and nonnegative sectional curvature.

Proof. It is well-known that the quotient of a homotopy sphere by a cyclic group is homotopy equivalent to a lens space (cf. [Bw]). Since the Gromoll-Meyer sphere is not diffeomorphic to the standard sphere, its quotients by finite cyclic groups cannot be diffeomorphic to lens spaces. This completes the proof in the 7-dimensional case. In the 5 -dimensional case, $\Sigma^{5} /\{ \pm \mathbb{1}\}$ is an exotic projective space. All finite subgroups of $\mathrm{SO}(2) \times \mathrm{SO}(3)$ of even order that act freely on $\Sigma^{5}$ contain $\{ \pm \mathbb{1}\}$. Hence, all the quotients of $\Sigma^{5}$ by such groups are not diffeomorphic to lens spaces. The metrics $\langle\cdot, \cdot\rangle_{\mu, \nu}$ on $\Sigma^{5}$ do not have nonnegative sectional curvature. However, by the Grove-Ziller construction [GZ] there are $(\mathrm{O}(2) \times \mathrm{SO}(3))$-invariant metrics on $\Sigma^{5} \approx W_{3}^{5}$ with $K \geq 0$. These metrics go down to the quotients and hence supply the desired family of nonnegatively curved exotic homotopy lens spaces. $\square$

In the rest of this section we will determine to which lens spaces the orbit spaces of the $\mathbb{Z}_{m}$-actions on $\Sigma^{7}$ and $\Sigma^{5}$ are homotopy equivalent. Following an idea of Orlik [Or], we construct ( $\mathrm{O}(2) \times \mathrm{SO}(3)$ )-equivariant (continuous) branched coverings $\Sigma^{5} \rightarrow \mathbb{S}^{5}$ and $\Sigma^{7} \rightarrow \mathbb{S}^{7}$. Using these branched coverings, we obtain maps of degree $m l+1$ for some positive integer $l$ from $\Sigma^{7} / \mathbb{Z}_{m}$ and $\Sigma^{5} / \mathbb{Z}_{m}$ to standard lens spaces. By a theorem of Olum [O], the existence of such maps implies the existence of homotopy equivalences.

Let $D(\theta)$ denote the counterclockwise rotation in $\mathbb{R}^{2}$ by the angle $\theta$. Then the subgroup $H_{m ; p, q}$ of $\mathrm{SO}(2) \times \mathrm{SO}(3)$ generated by the element

$$
\psi_{m ; p, q}=\left(D\left(\frac{2 \pi}{m} p\right), \pm e^{i(\pi / m) q}\right)=\left(D\left(\frac{2 \pi}{m} p\right),\left[\begin{array}{cc}
1 & 0 \\
0 & D\left(\frac{2 \pi}{m} q\right)
\end{array}\right]\right)
$$

acts freely on $\Sigma^{7}$ if and only if $p \neq 0,3 p-q \neq 0,3 p+q \neq 0, m$ and $p$ are relatively prime, $m$ and $3 p-q$ are relatively prime, and $m$ and $3 p+q$ are relatively prime. This is precisely what Figure 2 expresses graphically.

Lemma 9.6. If $m$ is not divisible by 6 then the quotient of $W_{3}^{5}$ by the free action of $H_{m ; p, q}$ is homotopy equivalent to the lens space $L_{m}^{5}(p, 3 p+q, 3 p-q)$.

Proof. Suppose first that $m$ is not divisible by 3. The map

$$
\varphi: W_{3}^{5} \rightarrow \mathbb{S}^{5}, \quad\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \mapsto \frac{1}{\sqrt{2\left(1-\left|z_{0}\right|^{2}\right)}}\left(\sqrt{2} z_{1}, z_{2}+i z_{3}, z_{3}+i z_{2}\right)
$$

is a three-to-one covering branched along the singular orbit of the $(\mathrm{SO}(2) \times \mathrm{SO}(3))$ action on $W_{3}^{5}$ given by $z_{0}=0$. If we define a $\mathbb{Z}_{m}$-action on $\mathbb{S}^{5}$ by

$$
\begin{gathered}
\mathbb{Z}_{m} \times \mathbb{S}^{5} \rightarrow \mathbb{S}^{5} \\
\left(j+m \mathbb{Z},\left(z_{1}, z_{2}, z_{3}\right)\right) \mapsto\left(e^{i(2 \pi j / m) 3 p} z_{1}, e^{i(2 \pi j / m)(3 p+q)} z_{2}, e^{i(2 \pi j / m)(3 p-q)} z_{3}\right),
\end{gathered}
$$

then $\varphi$ is $\mathbb{Z}_{m}$-equivariant. The orbit space of this $\mathbb{Z}_{m}$-action on $\mathbb{S}^{5}$ is a lens space generally denoted by $L_{m}^{5}(3 p, 3 p-q, 3 p+q)$. Since $m$ is not divisible by 3 , there exists a positive integer $r$ such that $3 r \equiv 1$ modulo $m$. Identify $\mathbb{S}^{5}$ homeomorphically with the join $\mathbb{S}^{1} * \mathbb{S}^{3}$ and consider the continuous map $\rho: \mathbb{S}^{5} \rightarrow \mathbb{S}^{5}$ of degree $r$ induced by the map $\mathbb{S}^{1} * \mathbb{S}^{3} \rightarrow \mathbb{S}^{1} * \mathbb{S}^{3},(\lambda, w) \mapsto\left(\lambda^{r}, w\right)$. We now obtain the commutative diagram

which includes a map of degree $3 r$ between $W_{3}^{5} / H_{m, p, q}$ and $L_{m}^{5}(p, 3 p-q$, $3 p+q)$. By [O, Thm. 4], these two spaces are homotopy equivalent. In the case where $m$ is not divisible by 2 we can proceed similarly by exchanging the role of $z_{0}$ and $z_{1}$ in the definition of $\varphi$.

Corollary 9.7. $W_{3}^{5} / H_{7 ; 1,0}$ and $W_{3}^{5} / H_{7 ; 1,1}$ are not homotopy equivalent.
Proof. This follows from the homotopy classification of lens spaces; see [O].
Corollary 9.8. If $m$ is not divisible by 6 , then the quotient of $\Sigma^{7}$ by the free action of $H_{m ; p, q}$ is homotopy equivalent to the lens space $L_{m}^{7}(p, p, 3 p-q, 3 p+q)$.

Proof. By Corollary 4.4, $\Sigma^{7}$ is equivariantly homeomorphic to the join $\mathbb{S}^{1} * W_{3}^{5}$. We obtain the statement by joining all spaces in the diagram (13) with $\mathbb{S}^{1}$ (note that $\psi_{m ; p, q}$ acts on the circle $\Sigma^{1} \subset \Sigma^{7}$ as the rotation $\left.D\left(\frac{2 \pi}{m} p\right)\right)$.

The condition " $m$ is not divisible by 6 " seems to be a technical artifact.
Corollary 9.9. $\quad \Sigma^{7} / H_{5 ; 1,0}$ and $\Sigma^{7} / H_{5 ; 1,1}$ are not homotopy equivalent.

## References

[ADPR] U. Abresch, C. E. Durán, T. Püttmann, and A. Rigas, Wiedersehen metrics and exotic involutions of Euclidean spheres, J. Reine Angew. Math. 605 (2007), 1-21.
[Ba] Ya. Bazaikan, A manifold with positive sectional curvature and fundamental group $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$, Sibersk. Mat. Zh. 40 (1999), 994-996.
[Bs] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin, 1978.
[Bd1] G. E. Bredon, Exotic actions on spheres, Proceedings of conference on transformation groups (New Orleans, 1967), pp. 47-76, Springer-Verlag, New York, 1968.
[Bd2] -, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York, 1972.
[Bk] E. Brieskorn, Beispiele zur Differentialgeometrie von Singularitäten, Invent. Math. 2 (1966), 1-14.
[Bw] W. Browder, Free $Z_{p}$-actions on homotopy spheres, Topology of manifolds (Athens, 1969), pp. 217-226, Markham, Chicago, 1970.
[Ch] J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geom. 8 (1972), 623-628.
[D] C. E. Durán, Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of $\mathbb{S}^{6}$, Geom. Dedicata 88 (2001), 199-210.
[DMR] C. E. Durán, A. Mendoza, and A. Rigas, Blakers-Massey elements and exotic diffeomorphisms of $S^{6}$ and $S^{14}$ via geodesics, Trans. Amer. Math. Soc. 356 (2004), 5025-5043.
[EK] J.-H. Eschenburg and M. Kerin, Almost positive curvature on the Gromoll-Meyer sphere, Proc. Amer. Math. Sci. 136 (2008), 3263-3270.
[GrMy] D. Gromoll and W. Meyer, An exotic sphere with nonnegative curvature, Ann. of Math. (2) 100 (1974), 401-406.
[GSh] K. Grove and K. Shankar, Rank two fundamental groups of positively curved manifolds, J. Geom. Anal. 10 (2000), 679-682.
[GShZ] K. Grove, K. Shankar, and W. Ziller, Symmetries of Eschenburg spaces and the Chern problem, Asian J. Math. 10 (2006), 647-661.
[GVWZ] K. Grove, L. Verdiani, B. Wilking, and W. Ziller, Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 159-170.
[GZ] K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. (2) 152 (2000), 331-367.
[HMi] M. Hirsch and J. Milnor, Some curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964), 372-377.
[HzMa] F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer-Verlag, Berlin, 1968.
[HsL] W.-Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1-38.
[KaZ] V. Kapovitch and W. Ziller, Biquotients with singly generated rational cohomology, Geom. Dedicata 104 (2004), 149-160.
[La] T. Lance, Differentiable structures on manifolds, Surveys on surgery theory, vol. 1, Ann. of Math. Stud., 145, pp. 73-104, Princeton Univ. Press, Princeton, NJ, 2000.
[Ms] W. S. Massey, Cross products of vectors in higher dimensional Euclidean spaces, Amer. Math. Monthly 90 (1983), 697-701.
[Mi] J. W. Milnor, On the 3-dimensional Brieskorn manifolds M ( $p, q, r$ ), Knots, groups and 3-manifolds (L. P. Neuwirth, ed.), Ann. of Math. Stud., 84, pp. 175-225, Princeton Univ. Press, Princeton, NJ, 1975.
[O] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 (1953), 458-480.
[Or] P. Orlik, Smooth homotopy lens spaces, Michigan Math. J. 16 (1969), 245-255.
[PaSp] G. P. Paternain and R. J. Spatzier, New examples of manifolds with completely integrable geodesic flow, Adv. Math. 108 (1994), 346-366.
[SSi] M. G. Scharlemann and L. C. Siebenmann, The Hauptvermutung for smooth singular homeomorphisms, Topology of manifolds (Tokyo, 1973), pp. 85-91, Univ. of Tokyo Press, Tokyo, 1975.
[ScT] L. Schwachhöfer and W. Tuschmann, Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004), 59-91.
[Sh1] K. Shankar, On the fundamental groups of positively curved manifolds, J. Differential Geom. 49 (1998), 179-182.
[Sh2] ——, Isometry groups of homogeneous spaces with positive sectional cuvature, Differential Geom. Appl. 14 (2001), 57-78.
[St] E. Straume, Compact differentiable transformation groups on exotic spheres, Math. Ann. 299 (1994), 355-389.
[To] B. Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002), 397-451.
[Wi] F. Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11 (2001), 519-560.
[Y] K. Yamato, The spectrum of the Milnor-Gromoll-Meyer sphere, J. Math. Soc. Japan 54 (2002), 409-445.
[Ya] C. T. Yang, On involutions of the five sphere, Topology 5 (1966), 17-19.
C. Durán

IMECC-UNICAMP
Cidade Universitária
13083-859 Campinas, SP
Brasil
cduran@ime.unicamp.br
T. Püttmann

Mathematisches Institut
Universität Bonn
D-53115 Bonn
Germany
puttmann@math.uni-bonn.de


[^0]:    Received June 20, 2007. Revision received December 19, 2007.
    The first author was supported by FAPESP grant $03 / 016789$ and FAEPEX grant 15406 . The second author was supported by a DFG Heisenberg fellowship and by the DFG priority program SPP 1154 "Globale Differentialgeometrie".

