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Triple Products and Cohomological Invariants
for Closed 3-Manifolds

Thomas E. Mark

Heegaard Floer homology groups are a powerful tool in low-dimensional topol-
ogy introduced and studied by Ozsváth and Szabó [7; 8; 9; 10; 11], and they have
generated much interest among topologists (see e.g. [1; 5; 6]). The groups are
associated to a closed oriented 3-manifold Y together with a choice of spinc struc-
ture s, and they comprise a number of variations: HF +, HF −, ĤF , HF∞. Of
these, HF∞ is considered to be the least interesting as an invariant—a result of
the apparent fact (formulated as a conjecture by Ozsváth and Szabó [8]) that it
is determined by the cohomology ring of Y. Although all the evidence supports
Ozsváth’s and Szabó’s conjecture, the structure of HF∞ can be rather more com-
plicated than a cursory inspection of the cohomology ring of Y might suggest
(cf. [2]). Furthermore, in various situations it can be useful for other purposes to
understand the behavior of HF∞; for example, it plays a key role in Ozsváth’s
and Szabó’s [7] proof of Donaldson’s diagonalizability theorem for definite 4-
manifolds and generalizations.

With these ideas in mind, we introduce here an invariant HC∞∗ (Y ) of the co-
homology ring of Y that we call the “cup homology”. This invariant is closely
related to HF∞(Y, s) for any torsion spinc structure s, granted the conjecture men-
tioned above (more precisely, in this case HC∞∗ (Y ) is the E∞ term of a spectral
sequence converging to HF∞(Y, s), possibly after a grading shift; see Section 4).
The cup homology satisfies the following properties.

(i) It is the homology of a free complex C∞∗ (Y ) over Z whose underlying group
is 
∗H1(Y ;Z)⊗Z[U,U−1] (where U is a formal variable of degree −2), and
whose differential is defined in terms of triple products 〈a ∪ b ∪ c, [Y ]〉 of
elements a, b, c ∈H1(Y ).

(ii) Multiplication by U induces an isomorphism between HC∞
k (Y ) and

HC∞
k−2(Y ) for all k, so HC∞∗ (Y ) is determined as a Z[U ]-module by its

values in two adjacent degrees.
(iii) When b1(Y ) ≥ 1, the ranks rkZ(HC∞

2k (Y )) and rkZ(HC∞
2k+1(Y )) are equal.

The reader familiar with Heegaard Floer homology will recognize that C∞∗ (Y ) is
identical (at least on the level of groups) with the E2 term of a spectral sequence
that calculates HF∞(Y, s). (The d2 differential vanishes for trivial reasons, and
according to the conjecture of Ozsváth and Szabó, d3 is given by the boundary
operator used here.)
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We define an invariant h(Y ) of the cohomology ring of Y by

h(Y ) =
{

rkZ HC∞
k (Y ) ∀k ∈Z if b1(Y ) ≥ 1,

1
2 if b1(Y ) = 0.

Our goal here is to investigate the possibilities for HC∞∗ (Y ) and, in particular, to
study the behavior of h(Y ).

Suppose b1(Y ) ≤ 2. Then there can be no nontrivial triple products of elements
in H1(Y ;Z), so the differential on C∞∗ (Y ) vanishes. Therefore, in this case the
group HC∞∗ (Y ) is independent of Y and the following statements hold.

If b1(Y ) = 0: HC∞
2k (Y ) = Z and HC∞

2k+1(Y ) = 0.

If b1(Y ) = 1: HC∞
k (Y ) = Z ∀k, so h(Y ) = 1.

If b1(Y ) = 2: HC∞
k (Y ) = Z2 ∀k, so h(Y ) = 2.

In general, we have the following bounds on h(Y ).

Theorem 1. Fix an integer b ≥ 1. Then, for any 3-manifold Y with b1(Y ) = b,

L(b) ≤ h(Y ) ≤ 2b−1, (1)

where

L(b) =
{

3(b−1)/2 if b is odd,

2 · 3b/2−1 if b is even.

Given a fixed value b of b1(Y ), it is natural to ask which values of h(Y ) allowed
by Theorem 1 can be realized. We can certainly realize the upper bound 2b−1 for
any b ≥ 1 by taking Y to be the connected sum of b copies of S1 × S 2, or any
other 3-manifold with b1(Y ) = b having trivial cup products on H1. In the case
b = 3, the two possibilities h = 3 and h = 4 are realized by the 3-torus T 3 and
#3S1×S 2, respectively. On the other hand, a simple calculation based on the def-
initions (Lemma 12) shows that, when b1(Y ) ≥ 4, the value h = 2b1(Y )−1−1 does
not occur. Further examples are discussed in Section 2. In general, one expects
that a more complicated cup product structure in the cohomology of Y will result
in a smaller value for h(Y ), where “complicated” refers roughly to the number of
nonvanishing triple products of elements of H1(Y ;Z). It is a result of Sullivan [12]
that, in an appropriate sense, all possibilities for triple cup product behavior are
realized by closed 3-manifolds Y (see Section 1 for a more precise statement). In
principle, this result reduces the determination of which values of h are realized
to a purely algebraic combinatorial question.

We have the following general result on the behavior of h under connected sum.

Theorem 2. Let Y1 and Y2 be closed 3-manifolds as before. Then

h(Y1 # Y2) = 2h(Y1)h(Y2).

Thus, for example, h(Y # S1 × S 2) = 2h(Y ), which gives an easy way to realize
values of h recursively. To spell this out, let Hb ⊂ {L(b),L(b)+ 1, . . . , 2b−1} de-
note the collection of integers n such that n = h(Y ) for some 3-manifold Y with
b1(Y ) = b. We then have our next result.
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Corollary 3. For any integer b ≥ 1, the set Hb+1 contains 2Hb = {2h |
h∈Hb}. In fact, the operation Y �→ Y # S1 × S 2 demonstrates an inclusion

Hb → Hb+1,

h �→ 2h.

It follows, for example, that if Y is a 3-manifold with b1(Y ) = b realizing the
lower bound h(Y ) = L(b) for b odd, then Y # S1 × S 2 realizes the lower bound
h(Y # S1 × S 2) = L(b + 1). However, it is clear from Theorem 1 that this naive
construction will not help realize small values of h(Y ).

Corollary 4. The rank of HF∞
k (T 3 # S1 × S 2; s0) ( for s0 the torsion spinc

structure) realizes the smallest possible rank L(4) = 6 for HF∞ in each degree
among all 3-manifolds Y having b1(Y ) = 4.

Proof. In Section 4 we will show (Proposition 18) that, whenever b1(Y ) ≤ 4,
the lower bound on h(Y ) of Theorem 1 also gives a lower bound on the rank of
HF∞

k (Y, s) in any torsion spinc structure s. Hence the corollary follows from The-
orems 1 and 2.

Note that the corollary could easily be proved directly in Heegaard Floer homol-
ogy by using (as in the proof of [8, Lemma 4.8]) a spectral sequence argument.

A more subtle question in regards to the 3-manifold “geography” that we con-
sider here is: Which values of h(Y ) can be realized by irreducible 3-manifolds?
For example, we shall see that if �g is a closed orientable surface of genus g ≥ 1
then

h(�g × S1) =
(

2g + 1
g

)
;

in particular, h(�2 × S1) = 10. Observe that, since b1(�2 × S1) = 5, it follows
that the bounds supplied by Theorem 1 are 9 ≤ h ≤ 16 (the analogue of the latter
fact for HF∞ is part of the content of [8, Lemma 4.8]).

Let us call a 3-manifold Y rationally irreducible if, in any connected sum de-
composition of Y, at least one of the factors is a rational homology sphere. The
connected sum with a rational homology sphere does not change the triple cup
product structure of a 3-manifold; therefore, if an integer h is realized as h(Y ) for
some rationally irreducible 3-manifold Y, then it is also realized by an irreducible
3-manifold.

We have the following immediate corollary of Theorem 2.

Corollary 5. If h(Y ) is odd, then Y is rationally irreducible.

We also have the following result related to irreducibility, which follows from the
behavior of h under connected sum.

Theorem 6. Let Y1 and Y2 be 3-manifolds having first Betti number at least 1,
and suppose that b1(Y1) and b1(Y2) are not both odd. Let Y = Y1 # Y2 and set b =
b1(Y ) = b1(Y1)+ b1(Y2). Then

h(Y ) ≥ 4

3
L(b).
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As a consequence we see that, if one is interested in realizing small values of h(Y )

for a fixed odd value of b1, then the only candidates are (rationally) irreducible.
On the other hand, it follows from the theorem that if Y is a 3-manifold with

b = b1(Y ) odd and h(Y ) < 4
3L(b) = 4 · 3(b−3)/2 then Y is rationally irreducible.

The inequality in Theorem 6 cannot be strengthened, as shown by the example

T 3 # S1 × S 2 # S1 × S 2,

for which h = 12 = 4
3L(5).

The complex C∞∗ (Y ) can be just as easily be defined using cohomology with co-
efficients in any commutative ring—for example, using H1(Y ;Zp), which gives
rise to a mod p cup homology HC∞∗ (Y )p. We obtain a sequence of invariants
hp(Y ) given by the rank in each dimension of HC∞∗ (Y )p; the arguments used to
define h(Y ) and to obtain Theorem 1 and the other results listed here are insensi-
tive to this change (where, of course, b1(Y ) is calculated in the appropriate coef-
ficients). These invariants can easily be distinct from each other and from h(Y )

(see Section 2), and we can consider the realization problem for each of them.
By the preceding results, if for any p ≥ 1 we define

kp(Y ) = log2(2hp(Y ))

(where by conventionh1(Y ) = h(Y )), then {k1(Y ), k2(Y ), k3(Y ), . . . } is a sequence
of real-valued invariants of 3-manifolds that vanish for rational homology spheres,
are additive under connected sum, and satisfy

m(b1(Y )) ≤ kp(Y ) ≤ b1(Y );
here the lower bound m is a linear function of the first Betti number, which is eas-
ily derived from Theorem 1.

In Section 1 we define the chain complex C∞∗ (Y ) and make some simple obser-
vations; Section 2 is devoted to a few sample calculations. We prove Theorem 1
in Section 3.1, and in Section 3.2 we prove Theorems 2 and 6. In Section 4 we
spell out the conjectural relationship between HC∞∗ (Y ) and HF∞(Y, s). One re-
mark is in order here: there is another version of Floer homology for 3-manifolds
(due to Kronheimer and Mrowka [3]) that is based on the Seiberg–Witten equa-
tions. This “monopole Floer homology” appears to be isomorphic to Heegaard
Floer homology; moreover, the relationship between the cohomology ring and the
Seiberg–Witten analogue of HF∞ (i.e., HM∗) has been established in that theory.
Therefore, according to [3, Chap. IX], our HC∞∗ is isomorphic to the E∞ term of
a spectral sequence converging to the monopole Floer homology HM∗ modulo a
possible shift in grading. In particular, most of our results here could be rephrased
using this monopole homology rather than the more elementary (but somewhat
artificial) cup homology.

1. Definitions

Let Y be a closed oriented 3-dimensional manifold and write H = H1(Y ;Z). The
cup product structure on Y induces a 3-form on H, written µY ∈ 
3H ∗, that is
given by µY (a, b, c) = 〈a ∪ b ∪ c, [Y ]〉 for a, b, c ∈H.
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Remark 7. Sullivan [12] has shown that, for any pair (H,µ) with H a finitely
generated free abelian group and µ ∈ 
3H ∗, there exists a 3-manifold Y with
H1(Y ) = H and cup product form µY = µ.

There is a natural interior product H ∗⊗
kH → 
k−1H, written ω⊗α �→ ω∠ α,
induced by the duality betweenH ∗ andH and with the property thatω∠ (ω∠ α) =
0 for ω ∈H ∗. Hence there is an extension of ∠ to the exterior algebra,


pH ∗ ⊗
kH → 
k−pH,

that satisfies (ω ∧ η)∠ α = ω∠ (η∠ α).

Definition 8. Let U be a formal variable of degree −2. The cup complex of Y
is defined to be the chain complex C∞∗ = C∞∗ (Y ), with chain groups

C∞
∗ = 
∗H ⊗ Z[U,U−1]

graded in the obvious way and with differential

∂ : C∞
k → C∞

k−1,

∂(α ⊗ Un) = µY ∠ α ⊗ Un−1. (2)

Here µY is the 3-form given by cup product defined previously.

Thus, for any k,
C∞

k
∼=

⊕
!≡k mod 2


!H ⊗ U(!−k)/2 (3)

and
∂ : 
!H ⊗ Un → 
!−3 ⊗ Un−1.

We have an explicit expression for ∂. Namely, if a1, . . . , ak ∈H1(Y ), then

∂(a1 · · · ak)

= U−1 ·
∑

i1<i2<i3

(−1)i1+i2+i3〈ai1 ∪ ai2 ∪ ai3 , [Y ]〉a1 · · · âi1 · · · âi2 · · · âi3 · · · ak ,

where we use juxtaposition to indicate wedge product.
Since µY ∠ (µY ∠ α) = (µY ∧µY )∠ α = 0, we see that (C∞∗ (Y ), ∂) is indeed

a chain complex. We write HC∞∗ (Y ) for H∗(C∞∗ (Y ), ∂); clearly, HC∞∗ (Y ) is an
invariant of the homotopy type of Y.

It is obvious that U : C∞∗ → C∞∗−2 is a chain isomorphism, so the homology
HC∞∗ (Y ) is determined as a group by its values in two adjacent degrees. Let

he(Y ) = rkZ(HC∞
2k (Y )) and

ho(Y ) = rkZ(HC∞
2k+1(Y ))

for any k. Now observe that

HC∞
e

∼= HC2k ⊗ Z[U,U−1] and

HC∞
o

∼= HC2k+1(Y )⊗ Z[U,U−1]

for any k.
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Lemma 9. If b1(Y ) ≥ 1, then he(Y ) = ho(Y ).

Proof. As a chain complex over the graded ring Z[U,U−1], the complex C∞∗ has
even- and odd-graded parts given by 
eH ⊗Z[U,U−1] and 
oH ⊗Z[U,U−1], re-
spectively. If b1(Y ) ≥ 1 then the groups 
eH and 
oH have the same rank and
so C∞∗ has vanishing Euler characteristic over Z[U,U−1]. Therefore, the same is
true of HC∞∗ , so that 0 = rkZ[U,U−1](HC∞

e )− rkZ[U,U−1](HC∞
o ) = he − ho.

Definition 10. For Y a closed oriented 3-manifold with b1(Y ) ≥ 1, define

h(Y ) = he(Y ) = ho(Y ).

If b1(Y ) = 0, set h(Y ) = 1
2 .

Thus h is an invariant of the cohomology ring of Y that takes values in Z when Y

is not a rational homology sphere.

Lemma 11. For any 3-manifold Y, we have h(Y ) ≤ 2b1(Y )−1.

Proof. The lemma is true by definition if b1(Y ) = 0, so suppose b1(Y ) ≥ 1. The
rank of HC∞

k (Y ) is no larger than the rank of C∞
k , so from (3) we have

rk(HC∗
k (Y )) ≤

∑
!≡k mod 2

rk(
!H ) =




∑
! even

(
b1(Y )

!

)
for k even,

∑
! odd

(
b1(Y )

!

)
for k odd.

Both sums on the right are equal to 2b1(Y )−1, which proves the lemma.

Following similar terminology in Heegaard Floer homology, we say that a 3-
manifold Y has standard cup homology if h(Y ) = 2b1(Y )−1. Equivalently, the cup
homology is standard if and only if the triple product form µY is zero.

Our next lemma is another example of a constraint on h arising from purely al-
gebraic considerations.

Lemma 12. If Y is a 3-manifold with b1(Y ) = b, b ≥ 4, and if h(Y ) �= 2b−1, then
h(Y ) ≤ 2b−1 − 2.

Proof. Suppose the triple product form on Y is given by µY = ∑
aijk eiej ek ∈


3H ∗, for a basis {en} of H ∗ and aijk integers, with the sum over 0 < i < j <

k ≤ b. Then the differential acts on the top exterior power 
bH ⊗ Un by

∂ : e1 · · · eb ⊗ Un �→
∑

i<j<k

±aijk e1 · · · êi · · · êj · · · êk · · · eb ⊗ Un−1,

which is injective unless µY = 0. Likewise, the component of the differential
mapping into 
0H is easily seen to be surjective (over the rationals) if and only if
µY �= 0.

Therefore, as soon as µY �= 0, a 2-dimensional space of cycles disappears from

bH ⊕
3H and a 2-dimensional space of boundaries appears in 
b−3H ⊕
0H.
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This implies that the rank of HC∞
2k (Y ) and HC∞

2k+1(Y ) are each forced to decrease
by at least 2 once b > 3 and µY �= 0.

2. Examples

Here we calculate h(Y ) for some sample 3-manifolds Y. As remarked previously,
since there can be no nontrivial triple products on H1(Y ) when b1(Y ) ≤ 2, the
differential on C∞∗ (Y ) must vanish in this case. This easily gives the results listed
before Theorem 1.

More generally, if all triple cup products of elements of H1(Y ;Z) vanish (i.e.,
if µY = 0) then the cup homology is standard—that is, HC∞∗ (Y ) ∼= 
∗H1(Y ) ⊗
Z[U,U−1]. This is the case, for example, for connected sums of copies of S1×S 2.

For more interesting examples, it was observed by Sullivan [12] that if Y is the
link of an isolated algebraic surface singularity then µY = 0. In fact, Sullivan’s
argument proves the following statement.

Proposition 13. If Y is a closed 3-manifold bounding an oriented 4-manifold
X such that the cup product pairing on H 2(X,Y ) is nondegenerate, then µY =
0. Hence HC∞∗ (Y ) is standard for such Y and so h(Y ) = 2b1(Y )−1.

In particular, since the link of a singularity bounds a 4-manifold with negative-
definite intersection form onH2(X) = H 2(X,Y ), such 3-manifolds have standard
HC∞∗ (Y ).

Proof of Proposition 13. We work over the rationals, since torsion cannot contrib-
ute to triple products over Z. Poincaré duality implies that the cup pairing

QX : H 2(X)⊗H 2(X,Y ) → Q

is nondegenerate; that is, there exists an isomorphism

QX : H 2(X) → (H 2(X,Y ))∗.

Let Q̃X : H 2(X,Y ) ⊗ H 2(X,Y ) → Q be the cup product form on H 2(X,Y ).

Then we have a commutative diagram

H 2(X)

QX

∼
������������

H 2(X,Y )

i

�����������

Q̃X

�� (H 2(X,Y ))∗.

Hence Q̃X is nondegenerate if and only if i is an isomorphism. In this case, in the
sequence

· · · −→ H1(Y )
j−→ H 2(X,Y )

i−→ H 2(X)
k−→ H 2(Y ) −→ · · ·

the homomorphisms j and k vanish. As noted in [12], this means that cup prod-
ucts of elements a, b ∈H1(Y ) can be computed by lifting to H1(X) because j is
trivial, multiplying, and restricting to Y, which gives 0 since k is trivial.
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If b1(Y ) = 3, then the only possible nontrivial differential in C∞∗ (Y ) is between

3H ⊗ Un and 
0H ⊗ Un−1. If a ∪ b ∪ c = 0 for a basis a, b, c of H = H1(Y ),
then HC∞

k (Y ) ∼= Z4 for each k and so h(Y ) = 4. Otherwise (i.e., if a ∪ b ∪ c �=
0), the differential is injective and HC∞

k (Y ) has rank 3 for all k; hence h(Y ) = 3.
In fact, if 〈a ∪ b ∪ c, [Y ]〉 = n �= 0 then

HC∞
2k (Y ) ∼= Z3 ⊕ (Z/nZ),

HC∞
2k+1(Y ) ∼= Z3.

It also follows that, in the notation of the Introduction, hp(Y ) = 4 for primes p

dividing n and hq(Y ) = 3 for other primes q.

A more substantial example is given by Y = �g × S1, where �g is a closed ori-
ented surface of genus g ≥ 1. In this case it is a simple matter to calculate that
µY = s ∧ ω, where s is the class [pt × S1] and ω ∈
2H1(�g) is the symplectic
2-form given by the cup product pairing on the first cohomology of �. We have a
decomposition


kH1(�g × S1) ∼= 
kH1(�g)⊕ (σ ∧
k−1H1(�g)),

where σ is Poincaré dual to [�g × pt]. With respect to this decomposition, the
boundary in C∞∗ (�g × S1) is trivial on the first factor and is given by

∂(σ ∧ α ⊗ Un) = ω∠ α ⊗ Un−1 ∈
k−2H1(�g)⊗ Un−1

on the second factor for α ∈ 
kH1(�g). Let Ek(g) denote the abelian group de-
termined by the long exact sequence

· · ·
k+1H1(�g)
ω∠·−−→ 
k−1H1(�g) −→ Ek(g)

−→ 
kH1(�g)
ω∠·−−→ 
k−2H1(�g) · · · .

That is, with appropriate grading conventions E∗(g) is the homology of the map-
ping cone of ω∠ · acting on 
∗H1(�g), thought of as a complex with trivial dif-
ferential. (Because the latter is free abelian, E∗(g) is uniquely determined by the
sequence given.) It follows from the previous discussion that

HC∞
∗ (�g × S1) ∼= E∗(g)⊗ Z[U,U−1]. (4)

To give an explicit expression for Ek(g), observe that there is a natural dual-
ity isomorphism , : 
kH1(�g) → 
2g−kH1(�g) induced by interior product with
the orientation form (1/g!)ωg ∈
2gH1(�g). Identifying H1(�g) with H1(�g) via
Poincaré duality, it is an easy exercise to see that ,(ω∠ α) = ω ∧ ,α for any α ∈

∗H1(�g). Therefore, if we define Ek(g) by the sequence

· · ·
k−2H1(�g)
ω∧·−−→ 
kH1(�g) −→ Ek(g)

−→ 
k−1H1(�g)
ω∧·−−→ 
k+1H1(�g) · · · ,

then Ek(g) ∼= E2g+1−k(g). Now, 
kH1(�g) ∼= H k(T 2g), where T 2g is the Jaco-
bian torus of �g. As a result, the foregoing sequence can be identified with the
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Gysin sequence associated to the circle bundle E(g) over T 2g having Euler class
ω, so that E∗(g) = H ∗(E(g)).

The cohomology of E(g) was determined (in a different guise) by Lee and
Packer [4] using this Gysin sequence together with combinatorial matrix theory.
Taking the Poincaré dual of their result shows:

Ek(g) ∼=




Z
(2g

k
)−( 2g

k−2) ⊕
�(k+1)/2 ⊕

j=2

Z
( 2g
k−2j+1)−( 2g

k−2j−1)
j for 0 ≤ k ≤ g,

�(2g+1−k)/2 ⊕
j=0

Z
( 2g
k+2j−1)−( 2g

k+2j+1)
j for g + 1 ≤ k ≤ 2g + 1,

where Z0 = Z and Z1 is the trivial group.
From this it follows in particular that, for k ≤ g,

rkZ(Ek(g)) = rkZ(E2g+1−k(g)) =
(

2g
k

)
−

(
2g

k − 2

)
,

though it is possible to obtain the latter directly as well. Given this and (4), one
may derive that

h(�g × S1) =
(

2g + 1
g

)
.

We remark that the Floer homology HF∞(�g × S1, s) for c1(s) = 0 was calcu-
lated in [2] for coefficients in C and in Z2. Both these results are consistent with
the hypothesis that HF∞(�g × S1, s) ∼= HC∞∗ (�g × S1) with coefficients in Z.

More generally, consider a 3-manifold obtained as the mapping torus of a dif-
feomorphism f : �g → �g. That is, Y is constructed by gluing the boundaries of
�g × [0,1] via f. Then H1(Y ) ∼= Z ⊕ V, where Z is generated by the Poincaré
dual of [�g] and V = ker(1 − f ∗), with f ∗ denoting the action of f on the first
cohomology of �g. It is not hard to see that the cup product form of Y is given in
this case by

µY = s ∧ (ω|V ),
where ω is the intersection form on �g as before and s is represented by a sec-
tion of the obvious fibration Y → S1. Working over the rationals for simplicity,
we can write V = W ⊕ V0, where W is a maximal symplectic subspace of V and
ω|V0 = 0. Clearly this induces a decomposition

C∞
∗ (Y ) ∼= C∞

∗ (�w × S1)⊗Z[U,U−1] C
∞
∗ (#v0 S 2 × S1)

of chain complexes, where 2w = dim(W ) and v0 = dim(V0). Applying both the
Künneth formula as in the proof of Theorem 2 (see Section 3) and our preceding
results for #n S1 × S 2 and �w × S1, we infer that

h(Y ) = 2v0

(
2w + 1

w

)
.

One can see that this number is at least as large as the corresponding value of h
for a trivially fibered 3-manifold having the same first Betti number.
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3. Proofs

3.1. Proof of Theorem 1

Theorem 1 follows from a straightforward estimate of the size of the homology of
(C∞∗ , ∂). To state what we need explicitly, note that for each i, 0 ≤ i ≤ b1(Y ), the
differential restricts as a map

∂ : 
iH1(Y ) → 
i−3H1(Y ).

The differential commutes with the action of U, so we are reduced to considering
three chain complexes C0,C1,C2, where

Cj =
⊕

i≡j mod 3


iH1(Y ). (5)

We wish to bound the size of the homology of the Cj from below, and we do so by
observing that the total rank of the homology of a chain complex must be at least
the absolute value of the Euler characteristic of the complex.

Proposition 14. Fix an integer b ≥ 1 and let H denote a free abelian group of
rank b. Define graded groups Cj (j = 0,1, 2) by equation (5), where the grading
on the factor 
3k+jH is given by k.

(a) If b is odd, then

|χ(C0)| + |χ(C1)| + |χ(C2)| = 2 · 3(b−1)/2.

(b) If b is even, then

|χ(C0)| + |χ(C1)| + |χ(C2)| = 4 · 3b/2−1.

Proof of Theorem 1. The upper bound on h(Y ) was proved in Lemma 11. To ob-
tain a lower bound, note that it suffices to consider two adjacent values of k, say
k = 0 and k = 1. It is easy to see that

HC∞
0 ⊕HC∞

1
∼= H∗(C0)⊕H∗(C1)⊕H∗(C2).

Since χ(H∗(Cj )) = χ(Cj ), the proposition, together with the obvious bound
rk(H∗(Cj )) ≥ |χ(H∗(Cj ))|, gives

rk(HC∞
0 ⊕HC∞

1 ) ≥ |χ(C0)| + |χ(C1)| + |χ(C2)| = 2L(b),

where b = b1(Y ), and Theorem 1 follows.

Proof of Proposition 14. The proof is an exercise in the binomial theorem. We
begin by noting that, for j = 0,1, 2,

χ(Cj ) =
∑
k

(−1)k
(

b

3k + j

)
.

To facilitate our discussion, the preceding sum will be denoted by S(b, j). Now,
if ξ satisfies ξ 3 = 1 then the binomial theorem gives
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(1− ξ)b = S(b, 0)− S(b,1)ξ + S(b, 2)ξ 2. (6)

In particular, taking ξ = 1 yields

S(b, 0)− S(b,1)+ S(b, 2) = 0. (7)

Now we take ξ = e2πi/3 and apply (6) to the identity

(1− ξ)b = (1− ξ)(1− ξ)b−1.

Using 1 − ξ = 3/2 − i
√

3/2 and equating real and imaginary parts gives the
relations

2S(b, 0)+ S(b,1)− S(b, 2) = 3S(b − 1, 0)− 3S(b − 1, 2),

S(b,1)+ S(b, 2) = S(b − 1, 0)+ 2S(b − 1,1)+ S(b − 1, 2).

Together with (7), this leads quickly to the recursion relations

S(b, 0) = S(b − 1, 0)− S(b − 1, 2), (8)

S(b,1) = S(b − 1, 0)+ S(b − 1,1), (9)

S(b, 2) = S(b − 1,1)+ S(b − 1, 2). (10)

Thus the values of S(b, j) for b even are determined by those for b odd. We focus
on the latter case.

First, an easy exercise using the symmetry
(
b
n

) = (
b

b−n

)
shows that

S(6n+ 1, 2) = 0 and S(6n+ 1, 0) = S(6n+ 1,1), (11)

S(6n+ 3, 0) = 0 and S(6n+ 3,1) = S(6n+ 3, 2), (12)

S(6n+ 5,1) = 0 and S(6n+ 5, 0) = −S(6n+ 5, 2). (13)

Next, we obtain a “2-level” recursion formula by applying (6) to the identity

(1− ξ)b = (1− ξ)2(1− ξ)b−2,

using (1−ξ)2 = 3
(
1/2− i

√
3/2

)
, and equating real and imaginary parts as before.

The result is

S(b, 0)+ 1
2S(b,1)− 1

2S(b, 2) = 3
(

1
2S(b − 2, 0)− 1

2S(b − 2,1)− S(b − 2, 2)
)
,

S(b,1)+ S(b, 2) = 3(S(b − 2, 0)+ S(b − 2,1)),

which can be rearranged to yield

S(b, 0)+ S(b,1) = 3(S(b − 2, 0)− S(b − 2, 2)),

S(b, 0)− S(b, 2) = −3(S(b − 2,1)+ S(b − 2, 2)),

S(b,1)+ S(b, 2) = 3(S(b − 2, 0)+ S(b − 2,1)).

Substituting these equations into each other, we obtain

S(b, 0)+ S(b,1) = −33(S(b − 6, 0)+ S(b − 6,1)),

S(b, 0)− S(b, 2) = −33(S(b − 6, 0)− S(b − 6, 2)),

S(b,1)+ S(b, 2) = −33(S(b − 6,1)+ S(b − 6, 2)).



276 Thomas E. Mark

Now suppose that b ≡ 1 mod 6. Then by (11) we have S(b, 2) = 0, so the last of
the equations just displayed shows that, in this case, S(b,1) satisfies

S(b,1) = −33S(b − 6,1).

Since S(1,1) is obviously 1, it follows that if b ≡ 1 mod 6 then S(b,1) = ±3(b−1)/2,
where the sign depends on the value of b modulo 12. Similar reasoning for the
other odd values of b modulo 6 gives the following statements.

If b ≡ 1 mod 6: S(b, 2) = 0 and S(b, 0) = S(b,1) = ±3(b−1)/2,

If b ≡ 3 mod 6: S(b, 0) = 0 and S(b,1) = S(b, 2) = ±3(b−1)/2,

If b ≡ 5 mod 6: S(b,1) = 0 and S(b, 0) = −S(b, 2) = ±3(b−1)/2.

In particular, since S(b, j) = χ(Cj ), we have proved the proposition for the case
of b odd. The even case follows from this and the recursion relations (8)–(10).
For example, if b ≡ 0 mod 6 then

S(b, 0) = 2 · 3b/2−1 and S(b,1) = −S(b, 2) = ±3b/2−1.

This completes the proof of Proposition 14.

3.2. Behavior under Connected Sum

Proof of Theorem 2. If Y = Y1 # Y2 is a connected sum, then we have a decompo-
sition H1(Y ) = H1(Y1)⊕H1(Y2) and therefore


∗H1(Y ) ∼= 
∗H1(Y1)⊗
∗H1(Y2).

Under this decomposition, the cup product form µY satisfies

µY = µY1 ⊗ 1+ 1⊗ µY2 ,

and since contraction is a derivation, ∂Y = ∂Y1 ⊗ 1+ (−1)p1⊗ ∂Y2 on C∞
p (Y1)⊗

C∞
q (Y2). We thus have a decomposition of chain complexes

C∞
∗ (Y ) ∼= C∞

∗ (Y1)⊗Z[U,U−1] C
∞
∗ (Y2).

Working with coefficients in a field F, it follows that

HC∞
0 (Y1 # Y2) ∼= (HC∞

0 (Y1)⊗F HC∞
0 (Y2))⊕ (HC∞

1 (Y1)⊗F HC∞
1 (Y2))

and

HC∞
1 (Y1 # Y2) ∼= (HC∞

0 (Y1)⊗F HC∞
1 (Y2))⊕ (HC∞

0 (Y1)⊗F HC∞
1 (Y2)).

In the notation of Section 1, this gives

he(Y1 # Y2) = he(Y1)he(Y2)+ ho(Y1)ho(Y2),

ho(Y1 # Y2) = he(Y1)ho(Y2)+ ho(Y1)he(Y2).

Adding these equations yields

he(Y1 # Y2)+ ho(Y1 # Y2) = (he(Y1)+ ho(Y1))(he(Y2)+ ho(Y2)),
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which—because h = 1
2 (he + ho)—is equivalent to

2h(Y1 # Y2) = 4h(Y1)h(Y2).

As a simple illustration of this result we show that, if Y is a 3-manifold with
b1(Y ) = 5 that is not rationally irreducible, then h(Y ) can only be 12 or 16. In-
deed, suppose Y decomposes as Y = Y ′ # Y ′′ and assume first that b1(Y

′) = 2 and
b1(Y

′′) = 3. Then h(Y ′) = 2, and h(Y ′′) is either 3 or 4. These two cases give
h(Y ) = 12 or 16, according to Theorem 2. The other possibility is that b1(Y

′) =
1 and b1(Y

′′) = 4; here h(Y ′) = 1 and h(Y ′′) is 6, 7, or 8. The case h(Y ′′) =
7 is ruled out by Lemma 12, and the other two cases again give h(Y ) = 12 and
h(Y ) = 16.

Proof of Theorem 6. We are given 3-manifolds Y1 and Y2 with nonvanishing first
Betti numbers x = b1(Y1) and y = b1(Y2) that are not both odd. First suppose
that x and y are of opposite parity: say x is odd and y is even. Then

h(Y1 # Y2) = 2h(Y1)h(Y2) ≥ 2(3(x−1)/2 · 2 · 3y/2−1) = 4 · 3(x+y−1)/2−1 = 4

3
L(b),

where b = x + y = b1(Y1 # Y2) is odd.
Similarly, if both x = b1(Y1) and y = b1(Y2) are even, we have

h(Y1 # Y2) = 2h(Y1)h(Y2) ≥ 8 · 3x/2−1 · 3y/2−1 = 8

3
· 3(x+y)/2−1 = 4

3
L(b).

4. Relation to Floer Homology

We next outline some results of Ozsváth and Szabó concerning the structure of
HF∞(Y, s) for s a torsion spinc structure and then describe the relationship to
HC∞∗ (Y ).

Recall that there is a version of Heegaard Floer homology with “universal” co-
efficients in the ring RY = Z[H1(Y ;Z)]. We have the following general result of
Ozsváth and Szabó.

Theorem 15 [10, Thm. 10.12]. If (Y, s) is a closed spinc 3-manifold and c1(s)
is torsion, then there is an isomorphism

HF∞(Y, s;RY ) ∼= Z[U,U−1]

of RY -modules, where elements of H1(Y ;Z) act as the identity on Z[U,U−1].

There is an additional structure on Heegaard Floer homology in a spinc structure
with torsion Chern class: a grading that takes values in the rational numbers, con-
structed by Ozsváth and Szabó in [11]. In the case of HF∞, Theorem 15 provides
an integral grading, natural up to an integer shift, with respect to which nonvan-
ishing homogeneous parts lie in even degrees. The relationship between these two
gradings is determined by the spinc structure s via the formula for the shift in grad-
ing induced by cobordisms [11]: explicitly, write the spinc 3-manifold (Y, s) as the
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spinc boundary of a 4-manifold (Z, r). Then the rational-valued grading on the
Heegaard Floer homology of (Y, s) takes values in Z + r, where r ∈Q is given by

r = 1

4
(c2

1 (r)− 3σ(Z)− 2e(Z))+ 1

2
.

Here σ(Z) is the signature of the intersection form of Z and e(Z) is the Euler
characteristic.

For our purposes the rational-valued grading is unimportant, so we simply im-
pose an integer grading on HF∞ in such a way that the universally twisted homol-
ogy is supported in even degrees as before. This choice induces an integer grading
on HF∞(Y, s,M) for any coefficient module M—in particular, for M = Z—that
is well-defined up to a shift by an even integer.

The Z-coefficient Floer homology can be calculated from the universal version
by making use of a change-of-coefficients spectral sequence. For the benefit of
readers not familiar with this construction, we outline it here in general before
considering the case at hand.

Let (C∗ , d) be a free chain complex of modules over a commutative ring R and
letM be anR-module. We wish to compute the homology of the complexC∗⊗RM.

Under reasonable circumstances we may assume that M has free resolution

· · · δ2−→ P2
δ1−→ P1

δ0−→ P0 −→ M −→ 0;
in other words, each Pj is a free R-module and the sequence shown is exact (a
projective resolution would also suffice). We can form the double complex E 0

i,j =
Ci⊗RPj , with the obvious pair of differentials d : E 0

i,j → E 0
i−1,j (the “horizontal”

differential) and δ : E 0
i,j → E 0

i,j−1 (the “vertical” differential) and “total complex”
(tot(E)∗ ,D) where tot(E)k = ⊕

i+j=k E
0
i,j and D = d + (−1)jδ on E 0

i,j .

The double complex gives rise to a spectral sequence (En, dn) converging to
the associated graded module Gr(H∗(tot(E))) determined by one of two natural
filtrations on tot(E): the horizontal filtration

· · · ⊂ F h
0 ⊂ F h

1 ⊂ · · · , F h
j =

⊕
j ′≤j

E 0
i,j ′ ,

and the vertical filtration

· · · ⊂ F v
0 ⊂ F v

1 ⊂ · · · , F v
i =

⊕
i′≤i

E 0
i′,j .

In fact, each of these filtrations gives rise to its own spectral sequence, but (as we
shall see) one of them is essentially trivial. Hence we will suppress the filtration
from the notation for the sequence (En, dn).

The spectral sequence is constructed as follows. Choose one of the filtrations
F h
j or F v

i and take the homology of E 0 with respect to the corresponding dif-
ferential. The result is called E1

i,j , and it inherits a differential from the original
complex that corresponds to the differential in the direction not used at first. For
example, with the double complex E 0

i,j = Ci ⊗ Pj , consider the homology with
respect to the differential δ (i.e., the vertical homology). Because the Ci are free
modules, the result is E1

i,j = Ci ⊗Hj(P∗). Of course, by construction Hj(P∗) = 0
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except when j = 0, and H0(P∗) = M. Thus, starting with the vertical differential
gives a spectral sequence with

E1
i,j =

{
0 if j > 0,

Ci ⊗M if j = 0.

Taking the homology with respect to the remaining differential—the horizontal
one—gives the E 2 term of this sequence, which is obviously

E 2
i,j =

{
0 if j > 0,

Hi(C∗ ⊗M) if j = 0.

The general machinery of spectral sequences would now give a differential d2 :
E 2

i,j → E 2
i−2,j+1 whose homology is the E3-term, but from the structure of E 2

just shown, this differential must be trivial (and the same holds for all subsequent
differentials). The spectral sequence corresponding to this filtration therefore col-
lapses at the E 2 term, and we infer that H∗(tot(E)) = H∗(C∗ ⊗M) is the homol-
ogy we wish to calculate.

To calculate this homology, we turn to the other filtration; that is, we use the
other differential first. Returning to E 0, we take the homology with respect to the
horizontal differential, the differential of C∗. Again, since the Pj are free, it fol-
lows that

E1
i,j = Hi(C∗)⊗R Pj .

When we take the next homology to get E 2—that is, the homology in the vertical
direction coming from the δj—we can no longer commute homology and tensor
product (since the Hi(C∗) need not be free R-modules). By definition, this verti-
cal homology is

E 2
i,j = TorRj (Hi(C∗),M).

We have thus recovered the following standard fact.

Proposition 16. Given a free chain complex of R-modules C∗ and another mod-
ule M, there exists a “universal coefficients spectral sequence” converging to the
homology H∗(C∗ ⊗R M) whose E 2 term is given by E 2

i,j = TorRj (Hi(C∗),M) and
with differential d2 : E 2

i,j → E 2
i+1,j−2.

Returning now to Heegaard Floer homology, Theorem 15 states that the Floer ho-
mology HF∞(Y, s,RY ) for s a spinc structure with c1(s) torsion is equal to 0 or
Z in alternating degrees. Hence the E 2 term of the universal coefficient spectral
sequence (taking M = Z) has zeros in each odd column, while the remaining col-
umns are given by

E 2
i,∗ = TorRY∗ (Z , Z)

for each even i. It is a standard fact that if G is an abelian group then

Tor Z[G]
∗ (Z , Z) = H∗(G;Z) = H∗(K(G,1);Z).

In our case, G = H1(Y ;Z) is free abelian of rank b1(Y ) and K(G,1) is the torus
T b of dimension b = b1(Y ). Thus we have a natural identification TorRY∗ (Z , Z) =
H∗(T b;Z) ∼= 
∗H1(Y ;Z), and the E 2 term of the universal coefficients spectral
sequence can be written as
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TorRY∗ (HF∞
∗ (Y, s;RY ), Z) ∼= 
∗H1(Y ;Z)⊗ Z[U,U−1] ∼= C∞

∗ (Y ). (14)

Observe that, by Proposition 16, the d2 differential maps one column to the right
and two rows down. Since every other column in the E 2 complex vanishes, we
infer that d2 = 0 and so (14) is also the E3 term of the spectral sequence. The d3

differential restricts as a map d3 : 
kH1(Y )⊗Un → 
k−3H1(Y )⊗Un−1. Ozsváth
and Szabó conjecture in [8] that (E3, d3) is the complex (C∞∗ (Y ), ∂) considered
in this paper. It is also conjectured in [8] that all subsequent differentials in the
spectral sequence vanish, so that the E∞ term in the universal coefficients spectral
sequence is our HC∞∗ (Y ).

Although we do not address these conjectures here, we observe that—since the
arguments in the proof of Theorem 1 do not use the differential on C∞∗ (Y ) but
only the ranks of the chain groups—the bounds obtained there apply to the rank
in each degree of HF∞(Y, s;Z) provided that the universal coefficients sequence
collapses after the E3 stage (see also the remarks on monopole Floer homology at
the end of the Introduction). Let us say that (Y, s) is regular if c1(s) is a torsion
class and all differentials dr (r ≥ 4) in that spectral sequence vanish.

Proposition17. If (Y, s) is a regular spinc 3-manifold then the rank ofHF∞
k (Y, s)

satisfies
L(b) ≤ rk(HF∞

k (Y ; s)) ≤ 2b−1,

where b = b1(Y ).

The even differentials d2r in the sequence we are considering vanish for dimen-
sional reasons. Therefore, the first differential past d3 that may be nontrivial is
d5 : 
kH1(Y )⊗Un → 
k−5H1(Y )⊗Un−2. Hence our next proposition follows.

Proposition 18. If b1(Y ) ≤ 4, then (Y, s) is regular for any torsion spinc struc-
ture s.

This proposition—together with Theorems 1 and 2—proves Corollary 4.
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