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1. Introduction and Background

Rational singularities are a class of singularities that have been heavily studied
since their introduction in the 1960s. Roughly speaking, an algebraic variety has
rational singularities if its structure sheaf has the same cohomology as the struc-
ture sheaf of a resolution of singularities. Rational singularities enjoy many useful
properties; in particular, they are both normal and Cohen–Macaulay. Furthermore,
many common varieties have rational singularities, including toric varieties and
quotient varieties. Rational singularities are also known to be closely related to
the singularities of the minimal model program. In particular, it is known that
log terminal singularities are rational and that Gorenstein rational singularities are
canonical.

There is, however, an important distinction between rational singularities and
singularities of the minimal model program. In the minimal model program it is
natural to consider pairs (X,D), where X is a variety and D is a Q-divisor. In re-
cent years the study of pairs (X, ac), where a is an ideal sheaf and c is a positive
real number, has also become quite common. Thus it is natural to try to extend the
notion of rational singularities to pairs. We define two notions of rational pairs:
a rational pair, which is analogous to a Kawamata log terminal (klt) pair; and a
purely rational triple, which is analogous to a purely log terminal (plt) triple (we
will discuss the characteristic-p analogues in Section 5). It is hoped that these
definitions and their study will help further the understanding both of rational sin-
gularities and of log terminal pairs.

In characteristic 0, defining rational singularities for pairs has one distinct ad-
vantage over the corresponding variants of log terminal singularities. In order for
(X,D) to be log terminal, one necessarily must have KX + D a Q-Cartier di-
visor. Likewise, for the pair (X, ac) to be log terminal, X must necessarily be
Q-Gorenstein. One can define rational singularities for a pair (X, ac) without any
such conditions on X.
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Virtually all standard properties of rational singularities transfer to pairs, as we
show. In particular, summands and deformations behave well (see Corollary 4.11
and Theorem 4.13), as do various implications between log terminal and rational
pairs (see Proposition 4.1 and Proposition 4.2). For the most part, the proofs are
generalizations of proofs of the analogous properties of rational singularities. Be-
cause singularities of pairs come up naturally in theorems related to adjunction
and inversion of adjunction, we prove that several of these results extend to ra-
tional pairs as well. In particular, we are able to prove a “rational” analogue of
inversion of adjunction for log terminal pairs (see Theorem 4.14). Using a similar
technique, we are able to give a remarkably short proof of an analogue of inver-
sion of adjunction on log canonicity that uses the notion of Du Bois singularities
(see Theorem 4.16).

Since the early 1980s, it has been known that rational singularities are closely
related to singularities defined by the action of a Frobenius map in positive charac-
teristic; see [F]. After the introduction of tight closure by Hochster and Hunkeke
[HoHu2], a true characteristic-p analogue of rational singularities, F-rationality,
was defined; see [FW]. In the next decade it was shown that a variety has rational
singularities if and only if a generic positive characteristic model has F-rational
singularities [H1; MeSr; Sm2]. Thus, we also define F-rationality for pairs. Di-
rectly in positive characteristic, we are able to show that F-rational pairs satisfy
many of the same basic properties that rational pairs do in characteristic 0; see
Propositions 6.5, 6.15, 7.3, and 7.1 as well as Theorem 7.7. Furthermore, building
on the techniques of Hara and Yoshida [HY], we are able to show a direct corre-
spondence between F-rational and rational pairs (see Theorem 6.11).

We also relate this to a notion that has existed for many years and was defined
and studied for pairs in the toric setting by Blickle: the multiplier submodule (see
[B; H2; HySm; Sm1]). Multiplier ideals and generalized test ideals (their positive-
characteristic analogue) have been studied extensively in recent years as powerful
invariants that measure singularities of pairs. For example, a pair is Kawamata log
terminal (resp. F-regular) if and only if the corresponding multiplier ideal (resp.
generalized test ideal) is the entire ring. When formulating rational singularities
associated to pairs, instead of a (multiplier) ideal it is natural to consider a sub-
module of the canonical module, an object called the multiplier submodule (the
characteristic-p analogue has been studied under the name “parameter test sub-
module”); see Definitions 3.6 and 6.4. Many questions asked about multiplier
ideals can also be asked about multiplier submodules; in particular, we look at an
analogue of the log canonical threshold in characteristic 0 and also in positive char-
acteristic; see Definitions 4.7 and 7.5. We also define jumping exponents for gener-
alized parameter test submodules and show that these numbers form a discrete set
of rational numbers under certain conditions; see Definition 7.9 and Corollary 7.13.

Most of the techniques in this paper are not new. They are either techniques re-
lated to rational and F-rational singularities or techniques related to log terminal
and F-regular singularities. Nonetheless, one might view these techniques extend-
ing so easily to the cases we consider as further evidence that this generalization
of rational singularities to pairs is a natural one.
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2. Preliminaries in Characteristic 0

All schemes in this paper will be assumed to be separated, Noetherian, and of essen-
tially finite type over a field. ForY a scheme, we will often work in the derived cate-
gory of OY -modules, denoted byD(Y ). The symbolDb(Y ) (resp.D+(Y ),D−(Y ))

will denote the derived category of bounded (resp. bounded below, bounded above)
complexes of OY -modules. Let Dcoh(Y ) (resp. Dqcoh(Y )) denote the category of
complexes of OY -modules with coherent (resp. quasi-coherent) cohomology; see
[Ha]. In the setting of the derived category, we will write F • �qis G• if F • and
G• are quasi-isomorphic, and we will use hi(F •) to denote the ith cohomology of
F •. The symbol ω•

Y will be used to denote a normalized dualizing complex on Y

(see [Ha]), and ωY will be used to denote h−dimY(ω•
Y ).

We now state Grothendieck duality for proper morphisms.

Theorem 2.1 [Ha, III.11.1, VII.3.4]. Let f : X → Y be a proper morphism
of Noetherian schemes of finite dimension. Suppose F • ∈ D−

qcoh(X) and G • ∈
D+

coh(Y ). Then the duality morphism

Rf∗R Hom•
X(F

•, f !G •) → R Hom•
Y (Rf∗F •, G •)

is an isomorphism.

Remark 2.2. The case we will consider is when G • is a dualizing complex for
Y and the map f is a morphism of schemes of finite type over a field k such that
f !(ω•

Y ) = ω•
X, giving us the following form of duality:

Rf∗R Hom•
X(F

•,ω•
X)

∼= R Hom•
Y (Rf∗F •,ω•

Y ).

Now we define pairs, log resolutions, and some of the types of characteristic-0
singularities we will be considering; see [Kol2] or [KolM] for a more detailed in-
troduction to these definitions. We fix X to be a Noetherian scheme of finite type
over a field k of characteristic 0.

Definition 2.3. A pair (X, ac) is the combined data of a reduced scheme X,
an ideal sheaf a on X, and a nonnegative rational (or even real) number c. If Z is
a closed subscheme of X defined by an ideal sheaf IZ , then we will often write
(X, cZ) instead of the pair (X, I c

Z).

Definition 2.4. Suppose that X is as just described. A resolution of X is a
proper birational map π : X̃ → X such that X̃ is smooth over k. We let exc(π) de-
note the exceptional set of π. If a is an ideal sheaf on X, then a log resolution of a
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in X (or simply a log resolution of (X, a) or even a log resolution of a) is a resolu-
tion of X such that aOX̃ = OX̃(−G) is an invertible sheaf and exc(π)∪ Supp(G)

is a simple normal crossings divisor.

Definition 2.5. A reduced scheme X is said to have rational singularities if,
for one resolution of X with π : X̃ → X, the natural map OX → Rπ∗OX̃ is a
quasi-isomorphism.

Remark 2.6. If X has rational singularities, then OX �qis Rπ∗OX̃ for every res-
olution (see e.g. [KolM, 5.10] or [Kol2, 11.11]).

Remark 2.7. It is clear from the definition that rational singularities are necessar-
ily normal. It also follows immediately from Grauert–Riemenschneider vanishing
[GR] and Grothendieck duality (see Theorem 2.1) that rational singularities are
Cohen–Macaulay.

Suppose that X is a normal equidimensional Q-Gorenstein scheme. Let a be an
ideal sheaf on X and suppose that π : X̃ → X is a log resolution of (X, ac) with
aOX̃

∼= OX̃(−G). Suppose that nKX is Cartier; we then define π∗(KX) to be
1
n
(π∗(nKX)), which is a Q-divisor on X̃. We use KX̃/X to denote the unique Q-

divisor on X̃ that is numerically equivalent to KX̃ − π∗(KX) and supported on the
exceptional set of π.

We can now write

KX̃/X − cG =
n∑

i=1

a(X,Ei, a
c)Ei,

where the a(X,Ei, ac) are rational numbers and the Ei are divisors.

Definition 2.8. The number a(X,Ei, ac) is called the discrepancy of (X, ac)

along the divisor Ei. We say that (X, ac) has Kawamata log terminal singulari-
ties (or simply is klt ) if, for a fixed log resolution π as before, all the a(X,Ei, ac)

are strictly larger than −1.

Remark 2.9. The definition of klt singularities is independent of the choice of
log resolution; see [KolM]. In fact, if we view each Ei in X̃ as corresponding to
a discrete valuation of the fraction field of X, then the numbers a(X,Ei, ac) are
also independent of the choice of resolution.

Definition 2.10. With notation as before, the multiplier ideal of the pair (X, ac),
denoted by J (X, ac), is defined to be π∗OX̃(�KX̃/X − cG�) ⊆ OX.

Remark 2.11. Observe that (X, ac) is klt if and only if OX̃ is naturally a sub-
sheaf of OX̃(�KX̃/X − cG�). Thus we see that that (X, ac) is klt if and only if
J (X, ac) = OX.



Rational Singularities Associated to Pairs 629

Remark 2.12. In a context similar to multiplier ideals, we will also often deal
with restricting simple normal crossing divisors to a smooth component. In partic-
ular, we will often use (without comment) that round-down commutes with such
restriction; see [La, Sec. 9.1].

Remark 2.13. One can also define log terminal singularities and multiplier ideals
for a triple (X,�, ac), where � is a Q-divisor such that KX +� is Q-Cartier. We
will not consider such definitions here because this notion does not seem as natu-
ral for rational singularities.

A key property of multiplier ideals that we will rely on is local vanishing (see
[Ei]), which is essentially a corollary of Kawamata–Viehweg vanishing (see [Ka;
V]). In Section 3 we state a formulation of local vanishing for multiplier ideals.

Theorem 2.14 [La, 9.4]. Using the notation from Definition 2.10, we have

Rjπ∗OX̃(�KX̃/X − cG�) = 0 for j > 0.

Another variation on log terminal singularities are purely log terminal singularities.
We consider the situation of a triple (X,H ; ac) where X is a normal Q-Gorenstein
scheme, H a reduced integral Cartier divisor with ideal sheaf IH , a another ideal
sheaf, and c a nonnegative real number. A log resolution of such a triple is a si-
multaneous log resolution of IH and a that is also an embedded resolution of H
(which is to say, the strict transform of H is smooth).

Definition 2.15. A triple (X,H ; ac) has purely log terminal singularities, or is
simply plt, if all the discrepancies of the triple (X, IHac) are greater than −1 ex-
cept for those corresponding to the strict transform of H (which are necessarily
equal to −1).

Definition 2.16. Let X be a normal Q-Gorenstein scheme, H a reduced inte-
gral Cartier divisor with ideal sheaf IH , a another ideal sheaf, and c a nonnegative
real number. We define the adjoint ideal of (X,H ; ac), denoted adj(X,H ; ac),
as follows. Let π : X̃ → X be a log resolution of IH and a such that the strict
transform H̃ of H is smooth (i.e., a log resolution of (X,H ; ac)). Let G denote
the divisor on X̃ such that aOX̃ = OX̃(−G). Then adj(X,H ; ac) is defined to be
π∗OX̃(�KX̃/X − cG− π∗H + H̃ �) ⊆ OX.

Remark 2.17. We note that (X,H ; ac) is plt if and only if adj(X,H ; ac) = OX.

When H is a Weil divisor but not a Cartier divisor, one can often still define plt
singularities and adjoint ideals for the triple (X,H ; ac) (in fact, even further gener-
alizations can be made). We restrict ourselves to the Cartier case because rational
singularities seem best behaved in this context; see Remark 3.22 for additional
discussion.

We conclude with a definition of Du Bois singularities (cf. [D; S]).
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Definition 2.18. Suppose that X is a reduced scheme embedded as a closed
subscheme of a scheme Y with rational singularities. Let π : Ỹ → Y be a log res-
olution of (Y,X) that is an isomorphism outside of X (such log resolutions exist
if and only if Y\X is smooth). Let E denote (π−1(X))red. Then X is said to have
Du Bois singularities if the natural map OX → Rπ∗OE is a quasi-isomorphism.

Remark 2.19. This definition is independent of the choice of embedding or res-
olution. The object Rπ∗OE is also often denoted by �0

X.

The condition that π be an isomorphism outside of X is unnecessary, as the fol-
lowing proposition shows (cf. [S, 4.9]).

Proposition 2.20. Suppose that X is a reduced closed subscheme of a scheme
Y with rational singularities and that Y\X is smooth. Let π : Ỹ → Y be a log
resolution of the pair (Y, IX), and let F denote (π−1(X))red. Then X has Du Bois
singularities if and only if the natural map OX → Rπ∗OF is a quasi-isomorphism.

Proof. It is sufficient to show that Rπ∗OF (or, equivalently, that Rπ∗OỸ (−F )) is
independent of the choice of resolution. Since any two log resolutions can be dom-
inated by a third, it is sufficient to consider two log resolutions π1 : Y1 → Y and
π2 : Y2 → Y with a map between them ρ : Y2 → Y1 over Y. Let F1 = (π−1

1 (X))red

and F2 = (π−1
2 (X))red = (ρ−1(F1))red. As mentioned, it is sufficient to prove that

OY1(−F1) → Rρ∗OY2(−F2) is a quasi-isomorphism. Dualizing the map and ap-
plying Grothendieck duality implies that it is sufficient to prove that ωY1(F1) ←
Rρ∗(ωY2(F2)) is a quasi-isomorphism.

We now apply the projection formula while twisting by ω−1
Y1
(−F1) (which is in-

vertible since Y1 is smooth). Hence we need only show that

Rρ∗(ωY2/Y1(F2 − ρ∗F1)) → OY1

is a quasi-isomorphism. But note that F2 − ρ∗F1 = −�ρ∗(1 − ε)F1� for suffi-
ciently small ε > 0. Thus it is sufficient to prove that the pair (Y1, (1− ε)F1) has
klt singularities by local vanishing for multiplier ideals; see [La, 9.4]. But this is
true because Y1 is smooth and F1 is a reduced integral divisor with simple normal
crossings. (Compare this proof with the proof of Theorem 4.16.)

Remark 2.21. Although it is hoped that the smoothness condition on Y\X can
be removed (see [S]), it follows from [Ko1] that if OX → Rπ∗OF is a quasi-
isomorphism (for any Y, even without rational singularities) then X has Du Bois
singularities.

3. Basic Definitions and Fundamental Properties
in Characteristic 0

Definition 3.1. Let (X, ac) be a pair and let π : X̃ → X with aOX̃ = OX̃(−G)

be a log resolution of a. We say that the pair (X, ac) has rational singularities (or
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Kawamata rational singularities) if the natural map OX → Rπ∗OX̃(�cG�) is a
quasi-isomorphism.

Remark 3.2. Explicitly, the pair (X, ac) has rational singularities if and only if
OX → π∗OX̃(�cG�) is an isomorphism and Riπ∗OX̃(�cG�) = 0 for i > 0. Also
note that the natural map of OX to its normalization can be composed with the
map π∗OX̃ → π∗OX̃(�cG�) to obtain OX → π∗OX̃(�cG�), proving that OX is a
summand of its normalization and is thus normal.

Remark 3.3. By Grothendieck duality, the pair (X, ac) has rational singularities
if and only if the natural map Rπ∗ω•

X̃ ⊗ OX̃(�−cG�) → ω•
X is an isomorphism

(cf. [Ke+, p. 50]).

Our first goal is to prove that this definition is independent of the choice of reso-
lution, as follows.

Proposition 3.4. Definition 3.1 is independent of the choice of resolution.

Proof. Let (X, ac) be a pair as in Definition 3.1. Since any two log resolutions can
be dominated by a third, it is enough to consider two log resolutions of a, X1 and
X2 with a map between them:

X2
ρ

��

π2
��

��
��

��
�

X1

π1
����

��
��

�

X .

We use G1 and G2 to denote divisors (on X1 and X2, respectively) such that
aOX1 = OX1(−G1) and aOX2 = OX2(−G2). It is enough to prove that the map
OX1(�cG1�) → Rρ∗OX2(�cG2�) is a quasi-isomorphism (such a map exists be-
cause ρ∗�cG1� ≤ �cG2�). By Grothendieck duality (since X1 and X2 are smooth),
this is equivalent to proving the existence of a quasi-isomorphism

Rρ∗ωX2(−�cG2�) → ωX1(−�cG1�).
Tensoring this map with ⊗ω−1

X1
(which is an invertible sheaf, since X1 is smooth)

then reduces our question to independence of the definition of multiplier ideals
(after an application of local vanishing for multiplier ideals [La, 9.4]), because
ρ∗G1 = G2 and G1 is a simple normal crossings divisor. (See also [GR, Sec. 2].)

Our next main goal is to explore how varying the constant c or varying the ideal
a affects whether the pair in question has rational singularities. In the process of
doing this, we will introduce a notion analogous to the multiplier ideal and will
also prove a technical result (Theorem 3.11), related to [Ko2, Thm. 1] and [KolM,
5.13], which will be used to give a simple proof that log terminal pairs are ratio-
nal and that summands of (appropriate) rational pairs are rational. The essential
ingredient in all of this is the following (vanishing) lemma. This lemma, which
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will be obvious to experts, can be thought of as either a generalization of Grauert–
Riemenschneider vanishing [GR] or a slight modification of the usual formulation
of local vanishing for multiplier ideals [La, 9.4.1].

Lemma 3.5. Suppose that X is a reduced equidimensional scheme and that a is
an ideal sheaf on X. Further suppose that π : X̃ → X is a log resolution of a with
aOX̃ = OX̃(−G). Then, for any nonnegative real number c and for all i > 0, we
have hi(R(π∗ωX̃ ⊗ OX̃(�−cG�))) = 0.

Proof. First note that we may assume X is normal since the map π factors through
the normalization of X and since finite maps have no higher cohomology. Thus,
we may also assume that X is irreducible. We then reduce to the case when a is a
(locally) principal ideal sheaf by choosing general elements of a; see [La, 9.2.22–
9.2.28]. The proof is then the same as the proof of [La, 9.4.1, 9.4.17] except that we
do not need to pull back KX. The essential ingredient is the Kawamata–Viehweg
vanishing theorem [Ka; V].

Smith [Sm1] has noted that, when dealing with rational singularities and related
notions, instead of working with (analogues of ) multiplier ideals one should rather
work with submodules of the canonical module. This idea was further studied in
[H2]. Hence the following definition is natural (cf. Remark 6.4).

Definition 3.6 [B]. The multiplier submodule of a pair (X, ac) is defined to be
the image of π∗(ωX̃ ⊗ OX̃(�−cG�)) inside ωX. We will denote it by J (ωX, ac).

It is easy to see that this submodule is independent of the choice of resolution.
From this point of view, Lemma 3.5 can be thought of as local vanishing for mul-
tiplier submodules.

Lemma 3.7. If X is a reduced equidimensional scheme as before, then the natu-
ral map π∗(ωX̃ ⊗ OX̃(�−cG�)) → ωX is injective.

Proof. Consider the exact triangle

OX −→ Rπ∗OX̃ −→ C • +1−→
and note that dim(Supp(hi(C •))) < dimX − i. By an easy analysis of a spec-
tral sequence, one has Hd

m(C •) = 0, which implies that there is a surjection
H d

m(OX) → Hd
m(Rπ∗OX̃) (for any maximal ideal m). By local duality [Ha, V,

Thm. 6.2], the natural map π∗ωX̃ → ωX is an injection. But then we are done
because ωX̃(�−cG�) ⊂ ωX̃ and π∗ is left exact. Compare with [LiTe, Sec. 2,
Rem. (b)] and [Ke, Sec. 1].

Corollary 3.8. Suppose thatX is a reduced equidimensional Cohen–Macaulay
scheme and that a is an ideal sheaf on X. Then (X, ac) has rational singulari-
ties if and only if the multiplier submodule of X, π∗(ωX̃ ⊗OX̃(�−cG�)), is equal
to ωX.
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At this point it is natural to mention a (characteristic-free) definition for ratio-
nal singularities of pairs that makes sense even when X is not known to have a
resolution. This slight generalization of a definition of Lipman and Teissier will
appear later in the paper when we compare rational and F-rational pairs (see The-
orem 6.11).

Definition 3.9 (cf. [LiTe, Sec. 2]). Let (R, m) be a d-dimensional reduced lo-
cal ring, let a ⊆ R be an ideal such that a contains elements not contained in any
minimal prime ofR, and let t ≥ 0 be a real number. Then (R, at ) is pseudo-rational
if (a) R is normal, Cohen–Macaulay, and analytically unramified and (b) for any
proper birational morphism π : Y → X := SpecR from a normal scheme Y such
that aOY = OY (−G) is invertible, the map

δπ : H d
m(R) → H d

E (OY (�tG�))
is injective. Here E = π−1(m) denotes the closed fiber of π and δπ is the map
induced by OSpecR → Rπ∗OY (�tG�).
Remark 3.10. In addition, whenR is essentially of finite type over a field of char-
acteristic 0, a straightforward application of local duality (see [Ha, V, Thm. 6.2])
implies that (R, at ) is pseudo-rational if and only if (SpecR, at ) has rational
singularities.

Now we come to the promised generalization of a result of Kovács [Ko2].

Theorem 3.11. Suppose that (X, ac) is a pair such that π : X̃ → X is a log res-
olution of a. If the natural map

OX → Rπ∗OX̃(�cG�)
has a left inverse (meaning that there exists a map OX̃(�cG�) → OX such that the
composition OX → Rπ∗OX̃(�cG�) → OX is a quasi-isomorphism), then (X, ac)

has rational singularities.

The proof is virtually the same as the one found in [Ko2]; we simply use Lemma 3.5
instead of Grauert–Riemenschneider vanishing.

Proof of Theorem 3.11. Since π factors through the normalization of X, we im-
mediately see that OX is a summand of its own normalization and thus is itself
normal. Therefore, we may assume without loss of generality that X is irreducible
(and, in particular, equidimensional). Now, apply Grothendieck duality to derive
the composition

ω•
X → Rπ∗ω•

X̃(−�cG�) → ω•
X.

By Lemma 3.5 and since the composition is an isomorphism, we have hi(ω•
X) =

0 for i �= −dimX. This implies that X is Cohen–Macaulay. It is now enough to
show that

π∗(ωX̃ ⊗ OX̃(−�cG�)) → ωX
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is an isomorphism. However, the map is injective by Lemma 3.7, and it is surjec-
tive because it is a split surjection (by assumption).

One could have given an indirect argument that X is Cohen–Macaulay by first
showing that X is rational, but Kovács’s argument generalizes quite well to pairs
and is really no longer than an indirect argument.

Corollary 3.12. Suppose that X is a reduced scheme, a is an ideal sheaf, and
c1 < c2 are nonnegative real numbers. If (X, ac2) has rational singularities then
so does (X, ac1). Furthermore, for b another ideal sheaf with a ⊆ b, if (X, ac1)

is rational then so is (X, bc1).

Proof. Let π : X̃ → X be a log resolution of a. Then we have the following
composition:

OX → Rπ∗OX̃(�c1G�) → Rπ∗OX̃(�c2G�).
This is a quasi-isomorphism by assumption, proving that (X, ac1) has rational sin-
gularities by Theorem 3.11. The proof of the second statement is similar.

Corollary 3.13. Suppose that the pair (X, ac) has rational singularities. Then
X has rational singularities and, in particular, is Cohen–Macaulay.

Remark 3.14. In the previous two corollaries, one can avoid working with the
derived category by first dualizing and then considering containments of multi-
plier submodules.

We conclude this section with a definition of purely rational singularities (cf. Def-
inition 6.14).

Definition 3.15. Let X be a normal scheme, H an integral reduced Cartier di-
visor with ideal sheaf IH , a another ideal sheaf with no minimal prime among the
components of H, and c a nonnegative real number. Suppose that π : X̃ → X is
a log resolution of H and a, where H̃, the strict transform of H, is smooth (i.e., π
is a log resolution of the triple (X,H ; ac)). We use G to denote the divisor on X̃

such that aOX̃ = OX̃(−G). Then (X,H ; ac) has purely rational singularities if
the natural map

OX → Rπ∗OX̃(�cG+ π∗H − H̃�)
is a quasi-isomorphism.

Remark 3.16. By Grothendieck duality, (X,H ; ac) has purely rational singular-
ities if and only if

Rπ∗(ω•
X̃ ⊗ OX̃(�−cG− π∗H + H̃ �)) → ω•

X

is a quasi-isomorphism.

We also define the adjoint submodule.

Definition 3.17. Suppose X is a reduced scheme, H a Cartier divisor, and a
an ideal sheaf with no minimal primes in common with any of the components
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of H. The adjoint submodule of a triple (X,H ; ac) is defined to be the image of
π∗(OX̃(�KX − cG − π∗H + H̃ �) inside ωX, where π is defined as before. We
denote the adjoint submodule by adj(ωX,H ; ac).

We now show that the notions of purely rational singularities and the adjoint sub-
module are well-defined.

Proposition 3.18. With notation as in Definition 3.15, the definition of purely
rational singularities is independent of the choice of resolution (more generally,
the adjoint submodule π∗(OX̃(�KX − cG − π∗H + H̃ �) ⊂ ωX is well-defined ).
Furthermore,

hi(Rπ∗(OX̃(�KX̃ − cG− π∗H + H̃ �))) = 0

for i > 0, so that (X,H ; ac) has purely rational singularities if and only if X is
Cohen–Macaulay and

π∗(OX̃(�KX − cG− π∗H + H̃ �)) → OX̃(KX)

is surjective (in other words, if and only if the adjoint submodule is equal to ωX).

Proof. To show that hi(Rπ∗ωX̃(−�cG+π∗H − H̃�)) = 0 for i > 0, it is enough
to show that hi(Rπ∗ωX̃(−�cG− H̃�)) = 0 by the projection formula, since H is
Cartier. Thus, consider the short exact sequence

0 → ωX̃(−�cG�) → ωX̃(−�cG− H̃�) → ωH̃ (−�cG�) → 0.

If we apply Rπ∗ then the higher cohomology of Rπ∗ωX̃(−�cG�) is zero by
Lemma 3.5 and likewise the higher cohomology of Rπ∗ωH̃ (−�cG�) is also zero.
This proves the vanishing we desired.

It is now sufficient to prove that the adjoint submodule is well-defined. Since
any two log resolutions can be dominated by a third, we consider the case of two
log resolutions of (X,H ; ac), X1 and X2, with a map between them:

X2
ρ

��

π2
��

��
��

��
�

X1

π1
����

��
��

�

X .

As before, we assume that the strict transforms H̃1 and H̃2 of H (in X1 and X2,
respectively) are smooth. We define Gi to be the divisor on Xi such that aOXi

=
OXi

(−Gi); observe that ρ∗G1 = G2 and ρ∗π∗
1H = π∗

2H.

It is now sufficient to show that the map

ρ∗ωX2(−�cG2 + π∗
2H − H̃2�) → ωX1

has image ωX1(−�cG1 + π∗
1H − H̃1�). By the projection formula (twisting by

⊗(ω−1
X1
(π∗

1H − H̃1))), it is sufficient to show that the image of the map

ρ∗OX2(�KX2/X1 − cG2 + H̃2 − ρ∗H̃1�) → OX1(π
∗
1H − H̃1)

is equal to OX1(−�cG1�) = OX1(−�cG1� − H̃1 + H̃1). But this follows because
the definition of the usual adjoint ideal is independent of choice of resolution.
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Remark 3.19. With notation as before, the previous proof implies we have a
short exact sequence

0 → J (ωX, ac) → adj(ωX,H ; ac)⊗ OX(H ) → J (ωH , (a|H )c) → 0.

Note that this is essentially the same as [La, 9.3.44]. Also see Theorem 4.14.

Using the vanishing in Proposition 3.18, one can prove the following analogue of
Theorem 3.11.

Theorem 3.20. If the natural map OX → Rπ∗OX̃(�cG+π∗H − H̃�) has a left
inverse—in other words, if there exists a map Rπ∗OX̃(�cG+ π∗H − H̃�) → OX

such that the composition

OX → Rπ∗OX̃(�cG+ π∗H − H̃�) → OX

is a quasi-isomorphism—then (X,H ; ac) has purely rational singularities.

The proof is the same as in Theorem 3.11.

Remark 3.21. We note that if (X,H ; ac) has purely rational singularities then,
by Theorem 3.11, (X, acI

(1−ε)
H ) has (Kawamata) rational singularities for every ε

satisfying 1 ≥ ε ≥ 0. In particular, (X, ac) has rational singularities.

Remark 3.22. Let us briefly discuss the case where H is not Cartier. In this
case, one can consider π∗(OX̃(�KX − cG+ H̃ �) ⊂ ωX(H ) instead of the adjoint
submodule. One still has a vanishing for the higher cohomology, and many re-
sults still work. However, this object seems somewhat contrived and doesn’t seem
as closely related to the adjoint ideals as defined, for example, in [La]. For this
reason, we restrict ourselves to the Cartier case.

4. Log Terminal Singularities, Deformations,
Summands, and Adjunction

In this section we show how rational pairs relate to log terminal pairs, prove that
pairs with rational singularities behave well with respect to deformation and sum-
mands, and conclude by showing that rational pairs satisfy several “inversion of
adjunction” results often observed for log terminal pairs. We also give a simple
proof of a result related to inversion of adjunction on log canonicity that uses the
notion of Du Bois singularities.

First we relate log terminal and rational singularities associated to pairs. In par-
ticular, we show that Kawamata log terminal pairs are rational and that rational
pairs (X, ac) with X Gorenstein are Kawamata log terminal; see also [E2]. We
then compute an example to show that these notions are distinct even when X is
Q-Gorenstein. Compare the following two results with Propositions 6.5 and 6.15.

Proposition 4.1. If (X, ac) is rational (resp. (X,H ; ac) is purely rational ) and
if X is Gorenstein, then (X, ac) is klt (resp. (X,H ; ac) is plt).
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Proof. Let π : X̃ → X be a log resolution of a. By Remark 3.3 we have a quasi-
isomorphism R(π∗ω•

X̃ ⊗OX̃(�−cG�)) �qis ω
•
X. But then, since ωX is a line bun-

dle, we have π∗OX̃(�KX̃/X− cG�) ∼= OX by the projection formula. Thus the pair
is klt. The proof of the plt case is the same.

Proposition 4.2. Suppose thatX is Q-Gorenstein. If (X, ac) is klt (respectively,
(X,H ; ac) is plt), then (X, ac) is also rational (respectively, (X,H ; ac) is purely
rational ).

Proof. This statement is local, so we may assume that X is affine. Let π : X̃ → X

be a log resolution of a. Now, since (X, ac) is klt, we have a natural inclusion

OX̃ ⊆ OX̃(�KX̃/X − cG�).
This implies an inclusion

OX̃(�cG�) ⊆ OX̃(�KX̃/X − cG� + �cG�) ⊆ OX̃(�KX̃/X�).
Applying Rπ∗ gives us a composition

OX → Rπ∗OX(�cG�) → Rπ∗OX̃(�KX̃/X�).
But Rπ∗OX̃(�KX̃/X�) is quasi-isomorphic to OX because X is log terminal (using
local vanishing for multiplier ideals [La, 9.4]), which completes the proof of the
klt case by Theorem 3.11.

In the plt case, the proof is analogous. We begin with the inclusion OX̃ ⊆
OX̃(�KX̃/X − cG− π∗H + H̃ �) and observe that π∗H − H̃ is a integral divisor.
This gives us an inclusion OX̃(�cG+ π∗H − H̃�) ⊆ OX̃(�KX̃/X�), where H̃ is the
strict transform of H. We then apply Rπ∗ and use Theorem 3.20, which completes
the proof.

Remark 4.3. Compare the preceding proof with [Ko2, Thm. 4].

Remark 4.4. If X is not Q-Gorenstein but ((X,�), ac) is klt (in particular,
KX + � is Q-Cartier), then the same proof implies that (X, ac) is rational. In
this case it seems natural to try to show that (X,�) is a rational pair. However,
there is no clear way to pull back � as a divisor because it is not Q-Cartier (by
assumption).

Remark 4.5. One could also give a more indirect and less homological proof of
Theorem 4.2 by comparing multiplier ideals and multiplier submodules.

We now present an example of a pair with a log terminal underlying scheme that
has rational singularities and not log terminal singularities.

Example 4.6. Consider the surface singularity X = Spec C[x3, x 2y, xy2, y3].
This is a surface with cyclic quotient singularities and so it is, in particular, log
terminal. First we consider the scheme’s resolution and how this affects its canon-
ical divisor. This singularity can be resolved by a single blow-up π : X̃ → X at
the ideal m = (x3, x 2y, xy2, y3).



638 Karl Schwede & Shunsuke Takagi

The canonical module ωX can be identified with the ideal (x 2y, xy2). Note that
this identification yields ω(3)

X
∼= (x3y3). It is now easy to see that the pair (X, mt )

is rational for any 0 < t < 1 but is not klt for t sufficiently close to 1, since X’s
discrepancy along the exceptional divisor is equal to − 1

3 .

This example suggests our next definition. As an analogue of the log canonical
threshold, one can define the following rational number (cf. Definition 7.5).

Definition 4.7. Let X be a scheme with rational singularities and let a be an
ideal sheaf. We define the rational threshold of the pair (X, a), denoted by rt(X, a),
to be equal the following number:

rt(X, a) = sup{t > 0 | (X, at ) has rational singularities}.
In Example 4.6, the log canonical threshold of the pair (X, a) is equal to 2

3 whereas
the rational threshold is equal to 1. More generally, suppose that X is a variety
with a log resolution π : X̃ → X that has only a single reduced exceptional di-
visor E, which dominates P and was obtained by blowing up the same ideal P,
where POX̃ = OX̃(−E); then the rational threshold of (X,P) is always an in-
teger. On the other hand, there are many examples of varieties with noninteger
rational thresholds, since the rational threshold and the log canonical threshold of
a Gorenstein scheme clearly coincide.

Let us consider now a broader set of examples: the Veronese subrings. We will
use a slightly different approach from the preceding example. The following gen-
eralization of a lemma by Kovács will be useful in this computation.

Lemma 4.8 [Ko1, Lemma 3.3]. Suppose that X is a Cohen–Macaulay scheme of
essentially finite type over a field of characteristic 0. Suppose that a is an ideal sheaf
and t is a positive rational number. Let ) be the subset of X, where (X, at ) does
not have rational singularities. Let π : X̃ → X be a log resolution of (X, at ) with
aOX̃ = OX̃(−G). Then Ri(OX̃(�tG�)) = 0 for all 0 < i < dimX − dim) − 1.

Proof. The proof is virtually the same as in [Ko1]; one simply uses Theorem 3.5
instead of Grauert–Riemenschneider vanishing.

Example 4.9. Suppose S = k[x1, . . . , xd ]. Let R be the rth Vernonese subring,
R = k[xr

1 , xr−1
1 x2, xr−1

1 x 2
2, . . . , xd−1x

r−1
d , xr

d ]. We shall study the rational threshold
of the pair (SpecR, mt ), where m is the maximal ideal of the origin. It is clear that
the pair can be resolved with a single blow-up, and to study that blow-up we can
use a set of d charts that correspond to placing each xr

i in the denominator. (Note:
this implies that the rational threshold must be an integer.) Fix X = SpecR. Let
π : X̃ → X be the aforementioned resolution, and let E be the exceptional divisor
(note that mOX̃ = OX̃(−E)). Since R is a Cohen–Macaulay isolated singularity,
by Lemma 4.8 it is sufficient to understand the cohomology Rd−1π∗OX̃(�tE�).

We use Čech cohomology to interpret this object. Using the charts correspond-
ing to xr

1 , . . . , xr
d , we see that an arbitrary element of Rd−1π∗OX̃(�tE�) looks like

f/(xr
1x

r
2 . . . x

r
d )

c. Observe that the order of vanishing of f along E must be greater
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than or equal to cd−�t�. A natural first nonzero element of the cohomology group
would seem to be (xr−1

1 xr−1
2 . . . xr−1

d )/(xr
1x

r
2 . . . x

r
d ); unfortunately, that numerator

doesn’t always exist in this context because in some sense the numerator’s order
of vanishing on E is d(r−1)/r, which is not always an integer. To see that the pair
is nonrational, it is natural to seek a cohomology element that vanishes on E to
degree �d(r −1)/r�− d = �−d/r�, which by assumption must be greater than or
equal to −�t�. It is not hard to see that such a nonzero element exists—assuming
the arithmetic is satisfied by modifying the original “nonexistent” element. In
other words, if t ≥ �d/r� then (X, mt ) cannot be a rational pair, which means
that rt(X, m) ≤ �d/r�. On the other hand, the log canonical threshold lt(X, m) is
equal to d/r and clearly lt(X, m) < rt(X, m). Thus we have d/r ≤ rt(X, m) ≤
�d/r�. Therefore, since rt(X, m) is an integer, it must be equal to �d/r�.
See Example 7.8 for a study of the same class of singularities using positive-
characteristic techniques (an explicit proof of the fact that rt(X, m) ≥ �d/r� is
given in positive characteristic).

We now prove that summands of pairs with rational singularities are rational
(cf. [Bo]). In fact, we prove a more general result that is analogous to the full
generality of [Ko2, Thm. 1]. The proof is relatively short (the key ingredient is
Theorem 3.11) and was inspired by a similar result in [Ko2].

Theorem 4.10. Suppose that ρ : Y → X is a dominant morphism of reduced
schemes such that every component of Y dominates a component of X. Let a be
an ideal sheaf on X and suppose that (Y, (aOY )

c) is rational. Further suppose
that the natural map OX → Rρ∗OY has a left inverse (i.e., there exists a map
δ : Rρ∗OY → OX such that OX → Rρ∗OY → OX is a quasi-isomorphism).
Then (X, ac) has rational singularities as well.

Proof. Let the maps π : X̃ → X and π ′ : Ỹ → Y be log resolutions of (X, ac) and
(Y, (aOỸ )

c), respectively. Let G be the divisor on X̃ such that aOX̃ = OX̃(−G),
and letF be the divisor on Ỹ such that aOỸ = OỸ (−F ). We can choose these reso-
lutions so that there is map γ : Ỹ → X̃ such that the following diagram commutes:

Ỹ
γ

��

π ′
��

X̃

π ′
��

Y ρ
�� X .

Note that γ ∗G = F. We will show that there is a natural map

OX̃(�cG�) → γ∗OỸ (�cF �) = γ∗OỸ (�c(γ ∗G)�).
By composition with the map

OX̃(�cG�) → γ∗γ ∗OX̃(�cG�) = γ∗OỸ (γ
∗�cG�),

we see that it suffices to show the existence of a natural inclusion OỸ (γ
∗�cG�) ⊆

OỸ (�c(γ ∗G)�). But this is true because—even though round-down does not com-
mute with pull-backs—there is always an inequality γ ∗�cG� ≤ �c(γ ∗G)�.
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Now consider the diagram

Rρ∗Rπ ′∗OỸ (�cF �) Rπ∗OX̃(�cG�)��

Rρ∗OY

Rρ∗(p ′ )

��

OX .

p

��

��

Since (Y, (aOY )
c) is rational, it follows that p ′ : OY → Rπ ′∗OỸ (�cF �) is a quasi-

isomorphism. We thus consider the composition

OX → Rπ∗OX̃(�cG�) → Rρ∗Rπ ′
∗OỸ (�cF �) �qis Rρ∗OY → OX,

where the final map in the composition exists by hypothesis. This composition
must be a quasi-isomorphism by construction, creating a left inverse of p. By The-
orem 3.11, the proof is now complete.

Corollary 4.11. Suppose R and S are domains, a is an ideal of R, and R is a
summand of S (e.g., suppose that R is normal and that R → S is a finite map). If
(S, (aS)c) is rational, then so is (R, ac).

Compare this corollary with Proposition 7.1.

Remark 4.12. Observe that the converse of Corollary 4.11 is not true. Of course,
even when a = R, by [Si] the converse can fail for a canonical cover. We can
demonstrate another type of failure by using Example 4.6. Let

X = Spec C[x3, x 2y, xy2, y3]

and let Y = C[x, y] be its canonical cover. Let a = (x3, x 2y, xy2, y3) and note
that aOY = (x, y)3. Then (X, a0.9) has rational singularities but (Y, ((x, y)3)0.9)

clearly does not.

We now explore how rational pairs deform; see [E1, Thm. 2] or [Kol2, 11.15].

Theorem 4.13. Suppose that (X, ac) is a pair, that H is a Cartier divisor on X,
and that H has no common components with V(a). If the pair (H, (a|H )c) has
rational singularities, then so does (X, ac) near H.

Proof [E1]. Let x be a point of X also contained in H. Since it is enough to prove
the problem at the stalk associated to x, we assume X = SpecR with (R,m) local,
H = SpecR/f for some regular element f ∈R, and a is an ideal of R that has no
common minimal primes with (f ) = IH . Since (H, (a|H )c) is rational, it follows
that H and thus X is Cohen–Macaulay. Let π : X̃ → X be a resolution of (X, ac)
that is also simultaneously a resolution of H and let G denote the divisor such that
aOX̃ = OX̃(−G). Let H̄ be the total transform of H (i.e., H̄ is the scheme de-
fined by fOX̃), and let H̃ denote the strict transform of H. Note that there is a
natural inclusion of schemes H̃ → H̄. Consider now the following diagram:
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π∗(ωH̃ ⊗ OX̃(−�cG�))

��

0 �� π∗(ωX̃ ⊗ OX̃(−�cG�))
×f

��

�
ψ

��

π∗(ωX̃ ⊗ OX̃(−�cG�)) ��

�
ψ

��

π∗(ωH̄ ⊗ OX̃(−�cG�)) ��

φ

����

0

0 �� ωX
×f

�� ωX �� ωH �� 0.

The bottom row is exact because H is Cohen–Macaulay, and the top row is exact
by Lemma 3.5. The map labeled φ is surjective because the vertical composi-
tion from π∗(ωH̃ ⊗ OX̃(−�cG�)) is an isomorphism. Hence, by Lemma 3.5, it is
enough to show that ψ is surjective.

Let C be the cokernel of ψ. That φ is surjective means that C
×f−→ C is surjec-

tive (by the snake lemma). But this contradicts Nakayama’s lemma, completing
the proof.

We conclude this section with several results related to adjunction (cf. [KolM, 5.6;
La, 9.5.11, 9.5.17; Sh]). The first result could be thought of as an analogue of ad-
junction and inversion of adjunction for log terminal singularities, and in a sense it
is the easy case because we work only with Cartier divisors (cf. [Kol+, Chaps. 16,
17]). We also obtain a positive-characteristic analogue later in Theorem 7.3.

Theorem 4.14. Suppose that X is a normal scheme and that H is a Cartier divi-
sor on X. Further suppose that a is an ideal sheaf whose support does not contain
any component of H and that c is a nonnegative real number. Then (H, (a|H )c)

has rational singularities if and only if (X,H ; ac) has purely rational singulari-
ties near H.

Proof. By Remark 3.19, we have a short exact sequence that maps to another short
exact sequence:

0 �� J (ωX , ac) ��

α

��

adj(ωX ,H ; ac)⊗ OX(H ) ��

β

��

J (ωH , (a|H )c) ��

γ

��

0

0 �� ωX �� ωX(H ) �� ωH �� 0.

The bottom row is exact on the right because X is Cohen–Macaulay near H under
any assumption.

Suppose first that (H, (a|H )c) has rational singularities; then so does (X, ac)

near H. After localizing, we assume that (X, ac) is rational. These observations
imply that the maps α and γ are isomorphisms, which proves that β is an isomor-
phism as well. Untwisting by OX(H ) implies that (X,H ; ac) has purely rational
singularities.

Conversely, if (X,H ; ac) has purely rational singularities then (X, ac) has ratio-
nal singularities by Remark 3.21. Hence α and β are isomorphisms, which implies
that γ is an isomorphism as well, completing the proof.
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Remark 4.15. One could, of course, dualize the proof of Theorem 4.14 and use
the same argument in the derived category. If H is not Cartier then one could prove
the same result using the suggested definition from Remark 3.22—assuming that
(X, ac) already had rational singularities for the “only if” (rational implies purely
rational) implication.

We also have the following result, which can be viewed as an analogue to the “ad-
junction direction” for log canonical singularities.

Theorem 4.16. Suppose that X is a reduced scheme and that H is a Cartier di-
visor. If (X, (1 − ε)H ) is rational for all sufficiently small ε > 0, then H has
Du Bois singularities.

Proof. Let π : X̃ → X be a log resolution of (X,H ). Let H̄ be the total transform
of H, and let E be the reduced pre-image of H under π; in particular H̄red = E.

Because OX �qis Rπ∗OX̃(�(1− ε)H̄�) for all ε sufficiently close to zero, we have

OX(−H ) �qis Rπ∗OX̃(�(1− ε)H̄ − H̄�)
�qis Rπ∗OX̃(�−εH̄�) �qis Rπ∗OX̃(−E)

for ε sufficiently small. Hence

OX(−H )

��

�� OX
��

��

OH

��

+1
��

Rπ∗OX̃(−E) �� Rπ∗OX̃
�� Rπ∗OE

+1
��

and the first two vertical arrows are quasi-isomorphisms. But then the third ar-
row is also a quasi-isomorphism, which proves that H has Du Bois singularities
by [Ko1, 2.4] (see also [Kol1, 12.8]).

There is a partial converse to Theorem 4.16, which can be thought of as an ana-
logue to inversion of adjunction for log canonicity (cf. [K]).

Theorem 4.17. Suppose that X is a reduced scheme and that H is a Cartier divi-
sor on X. Further suppose that X\H is smooth. Then H has Du Bois singularities
if and only if (X, (1− ε)H ) is rational near H for all sufficiently small ε > 0.

Proof. We set up the proof in the same way as for Theorem 4.16, but now we ob-
serve that OH �qis Rπ∗OE if and only if H has Du Bois singularities, since X−H

is smooth. Note that if H is Du Bois then X automatically has rational singulari-
ties (and thus is also Cohen–Macaulay) by [S, 5.1].

Remark 4.18. When working with any ambient X that has rational singularities
(see [S]), we expect that OH �qis Rπ∗OE if and only if H has Du Bois singular-
ities. Therefore, the condition that X − H is smooth could possibly be replaced
by the condition that X −H is rational without otherwise altering the proof.
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Remark 4.19. We also have a positive-characteristic analogue of the previous two
theorems using F-injective instead of Du Bois singularities; see Proposition 7.7.

It is a conjecture of Kollár that log canonical singularities are Du Bois, and the
foregoing proof shows that this conjecture is closely related to inversion of adjunc-
tion on log canonicity. Recent work by Kovács, Schwede, and Smith [SKoSm] has
shown that (semi)log canonical singularities are Du Bois in the case of Cohen–
Macaulay schemes. That result and the previous argument also give a short ho-
mological proof of inversion of adjunction on log canonicity (at least for the case
where X has Gorenstein rational singularities and is smooth outside H ).

Theorem 4.17 suggests that it might be natural to consider Du Bois singulari-
ties for pairs, and it perhaps even suggests a definition. However, there are cer-
tain technicalities associated with such a definition when the ambient space is not
“nice”. In positive characteristic we do propose an analogous definition, at least
in the Cohen–Macaulay case; see Definition 7.5.

5. Positive-Characteristic Preliminaries

In this section we recall the definitions of generalizations of tight closure and F-
singularities of pairs. The reader is referred to [HY; T1; T2; TW; TY] for details.

Throughout the following sections, all rings are excellent reduced Noetherian
commutative rings with identity. Let R be a reduced ring of characteristic p > 0.
We denote by R◦ the set of elements of R that are not in any minimal prime ideal
of R. Let F : R → R be the Frobenius map that sends x to xp, and let R viewed
as an R-module via the e-times iterated Frobenius map F e : R → R be denoted
by eR. Since R is reduced, we can identify F e : R → eR with the natural inclusion
map R ↪→ R1/pe

. Also, for any ideal I of R and for any power q of p, we denote
by I [q] the ideal of R generated by the qth powers of elements of I. We say that
R is F-finite if 1R (or R1/p) is a finitely generated R-module. For example, any
algebra essentially of finite type over a perfect field is F-finite.

Let M be an R-module. For each integer e ≥ 1, we denote F e(M) = F e
R(M) :=

eR ⊗R M and regard it as an R-module by the action of R from the left. Then we
have the induced e-times Frobenius map F e : M → F e(M). The image of z ∈M

via this map is denoted by zq := F e(z) ∈ F e(M). For an R-submodule N of M,
we denote by N

[q]
M the image of the induced map F e(N ) → F e(M). If M = R

and N is an ideal I of R, then I
[q]
R = I [q].

Definition 5.1 [HY, Def. 6.1; T2, Def. 3.1]. Let R be a reduced ring of charac-
teristic p > 0, let a ⊆ R be an ideal such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real
number. Let N ⊆ M be (not necessarily finitely generated) R-modules.

(i) The at -tight closure N ∗at

M of N in M is defined to be the submodule of M

consisting of all elements z∈M for which there exists a c ∈R◦ such that

ca�tq�zq ⊆ N
[q]
M
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for all large q = pe. The at -tight closure of an ideal I of R is simply defined
by I ∗at

:= I ∗at

R .

(ii) Let x ∈R◦ such that a is not contained in any minimal prime of xR. Then the
divisorial (x; at )-tight closure N

div∗(x;at )
M of N in M is defined to be the sub-

module of M satisfying the following condition: an element z ∈ M belongs
to N

div∗(x;at )
M if there exists a c ∈ R◦ that is not in any minimal prime of xR

and such that
cxq−1a�tq�zq ⊆ N

[q]
M

for all large q = pe. The divisorial (x; at )-tight closure of an ideal I of R is
simply defined by I div∗(x;at ) := I

div∗(x;at )
R .

Remark 5.2. If a = R then at -tight closure is nothing but classical tight closure;
that is, the classical tight closure I ∗ of an ideal I ⊆ R is equal to I ∗Rt

for any t ≥
0. We refer the reader to [Hu] for the classical tight closure theory.

Definition 5.3 [HY, Def. 6.3]. Let R, a, t be as in Definition 5.1. An element
c ∈ R◦ is called an at -test element if, for every ideal I ⊆ R, we have czqa�tq� ⊆
I [q] for all q = pe whenever z∈ I ∗at

.

A local ring R of characteristic p > 0 is said to be F-rational if I ∗ = I for all
ideals I ⊆ R generated by a system of parameters for R (see [FW] for details).

Lemma 5.4 [TY]. Let (R, m) be an excellent reduced local ring of characteris-
tic p > 0. Let a ⊆ R be an ideal such that a ∩ R◦ �= ∅ and let t ≥ 0 be a real
number.

(1) Let R̂ denote the m-adic completion of R. Then I ∗at

R̂ = (IR̂)∗(aR̂)t for all
m-primary ideals I of R.

(2) If R is equidimensional and if S is a multiplicatively closed set in R, then
I ∗at

RS = (IRS)
∗(aRS)

t

for all ideals I generated by a subsystem of parame-
ters for R.

(3) Let c ∈R◦ such that Rc is Gorenstein F-rational. Then some power cn of c is
an at -test element for all ideals a ⊆ R such that a ∩ R◦ �= ∅ and for all real
numbers t ≥ 0.

Definition 5.5 [T1, Def. 3.1]. Let a be an ideal of an F-finite reduced ring R

of characteristic p > 0 such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number.

(i) The pair (R, at ) is said to be F-pure if, for all large q = pe, there exists an
element d ∈ a�t(q−1)� such that the natural inclusion d1/qR ↪→ R1/q splits as
an R-module homomorphism.

(ii) The pair (R, at ) is said to be strongly F-regular if, for every c ∈ R◦, there
exist q = pe and d ∈ a�tq� such that the natural inclusion (cd )1/qR ↪→ R1/q

splits as an R-module homomorphism.
(iii) Let x ∈R◦ such that a is not contained in any minimal prime of xR. The triple

(R, x; at ) is said to be divisorially F-regular if, for every c ∈R◦ that is not in



Rational Singularities Associated to Pairs 645

any minimal prime of xR, there exist q = pe and d ∈ a�tq� such that the nat-
ural inclusion (cdxq−1)1/qR ↪→ R1/q splits as an R-module homomorphism.

Definition 5.6 [TW, Def. 2.1]. Let R and a be as in Definition 5.5. Assume
in addition that R is a strongly F-regular ring; that is, assume the pair (R,R1) is
strongly F-regular. Then the F-pure threshold fpt(a) of a is defined to be

fpt(a) = {t ∈R≥0 | (R, at ) is strongly F -regular}
= {t ∈R≥0 | (R, at ) is F -pure}.

Remark 5.7. (1) When a = R, the strong F-regularity (resp. F-purity) of (R, at )

is equivalent to that of R. See [HoHu1; HoHu2; HoRo] for more on F-pure rings
and strongly F-regular rings.

(2) If (R, at ) is strongly F-regular then it is F-pure. If (R, x; at ) is divisorially
F-regular, then (R, xat ) is F-pure and (R, x1−εat ) is strongly F-regular for any
1 ≥ ε > 0 (see [HW]).

(3) If (R, at ) is strongly F-regular (resp. (R, x; at ) is divisorially F-regular),
then I ∗at = I (resp. I div∗(x,at ) = I ) for all ideals I ⊆ R. If R is F-finite Q-
Gorenstein, then the converse also holds. The reader is referred to [T1, Cor. 3.5]
(resp. [T2, Rem. 3.2]).

6. Basic Definitions and Fundamental Properties
in Positive Characteristic

In [FW], Fedder and Watanabe defined the notion of F-rational rings. In this sec-
tion, we introduce the notion of F-rationality for a pair (R, at ) of a ring R of
characteristic p > 0 and an ideal a ⊆ R with real exponent t ≥ 0.

Definition 6.1 (cf. [FW]). Let a be an ideal of a reduced ring R of character-
istic p > 0 such that a∩R◦ �= ∅, and let t ≥ 0 be a real number. When R is local,
(R, at ) is said to be F-rational if Iat∗ = I for every ideal I generated by a system
of parameters for R. When R is not local, we say that (R, at ) is F-rational if the
localization (Rm, at

m) is F-rational for every maximal ideal m of R.

Proposition 6.2. Let a ⊆ b be ideals of a reduced ring R of characteristic p >

0 such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number.

(1) If (R, at ) is F-rational, then so is (R, as ) for all 0 ≤ s ≤ t.

(2) If (R, at ) is F-rational, then so is (R, bt ). For a a reduction of b, (R, at ) is
F-rational if and only if (R, bt ) is F-rational.

(3) If (R, at ) is F-rational, then R is F-rational and, in particular, is normal.
Moreover, if R is locally excellent then R is Cohen–Macaulay.

Proof. This follows immediately from [HY, Prop. 1.3] and [Hu, Thm. 4.2].

Lemma 6.3. Let (R, m) be a d-dimensional excellent reduced local ring of char-
acteristic p > 0. Let a be an ideal of R such that a ∩ R◦ �= ∅, and let t ≥ 0 be a
real number. Then the following three conditions are equivalent.
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(1) (R, at ) is F-rational.
(2) R is equidimensional and I ∗at = I for some ideal I generated by a system of

parameters for R.

(3) R is Cohen–Macaulay and 0∗at

H d
m(R)

= 0 in H d
m(R). The latter condition is

equivalent to saying that, for each c ∈ R◦, there exist q = pe and c ′ ∈
a�tq� such that cc ′F e : H d

m(R) → H d
m(R) is injective, where F e : H d

m(R) →
H d

m(R) denotes the induced e-times iterated Frobenius map on H d
m(R).

Proof. The implication (1) ⇒ (2) is obvious, so we will prove the implication
(2) ⇒ (3). First note that R is Cohen–Macaulay because I ∗at = I ∗ = I and
R is equidimensional (see [Hu, Thm. 4.2]). We choose a system of parameters
x1, . . . , xd inR such that I = (x1, . . . , xd) and let x denote the product of x1, . . . , xd.

Claim. (xm
1 , . . . , xm

d )∗at = (xm
1 , . . . , xm

d ) for each integer m ≥ 1.

Proof of Claim. Let y ∈ (xm
1 , . . . , xm

d )∗at

. Without loss of generality we may
assume that y(x1, . . . , xd) ⊆ (xm

1 , . . . , xm
d ). Since R is Cohen–Macaulay, one has

y ∈ (xm
1 , . . . , xm

d , xm−1). We write y as y = ∑d
i=1 ai x

m
i +bxm−1, where ai ∈R for

all i = 1, . . . , d and b ∈R. By definition, there exists a c ∈R◦ such that ca�tq�y q ∈
(x

mq

1 , . . . , xmq

d ) for all large q = pe. Then ca�tq�bq ∈ (x
q

1 , . . . , xq

d ). Hence b ∈
(x1, . . . , xd)

∗at = (x1, . . . , xd), which implies that y ∈ (xm
1 , . . . , xm

d ).

Fix an arbitrary element η = [z/xm] ∈ 0∗at

H d
m(R)

. By the definition of at -tight clo-

sure, there exists a c ∈ R◦ such that 0 = ca�tq�ηq = ca�tq�[zq/xmq] for all large
q = pe. This implies that, for large n, ca�tq�zqxn ∈ (x

n+mq

1 , . . . , xn+mq

d ). Since
R is Cohen–Macaulay, we then obtain that ca�tq�zq ∈ (x

mq

1 , . . . , xmq

d ) for all large
q = pe; this yields z ∈ (xm

1 , . . . , xm
d )∗at = (xm

1 , . . . , xm
d ), where the last equality

follows from the preceding claim. Then η = 0; that is, 0∗at

H d
m(R)

= 0.

Next we will show the implication (3) ⇒ (1). Take any system of parameters
x1, . . . , xd in R and let x represent the product of x1, . . . , xd. Fix any element z ∈
(x1, . . . , xd)

∗at

, and consider the element ξ = [z/x] ∈H d
m(R). By definition, we

can choose an element d ∈R◦ such that da�tq�zq ∈ (x
q

1 , . . . , xq

d ) for all large q =
pe. This implies that da�tq�ξ q = 0 for all large q = pe; that is, ξ ∈ 0∗at

H d
m(R)

. Since
ξ = 0 by assumption, we obtain z∈ (x1, . . . , xd).

Remark 6.4. Let the notation be as in Lemma 6.3 and assume in addition that
R is a homomorphic image of a Gorenstein local ring. Then one could define the
generalized parameter test submodule τ(ωR , at ) associated to (R, at ) as

τ(ωR , at ) = AnnωR
(0∗at

H d
m(R)

) ⊆ ωR.

This is a characteristic-p analogue of the multiplier submodule (see Definition 3.6).
By Lemma 6.3, (R, at ) is F-rational if and only if R is Cohen–Macaulay and
τ(ωR , at ) = ωR. Employing the same strategy as in [HyVi], we can use the gener-
alized parameter test submodule τ(ωR , at ) to recover the Briançon–Skoda theorem
for F-rational rings [AHu, Thm. 3.6]: If (R, m) is an excellent F-rational local
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ring of dimension d that is a homomorphic image of a Gorenstein local ring, then
I n+d−1 ⊆ I n for all ideals I ⊆ R and integers n ≥ 0.

Proposition 6.5. Let a be an ideal of a locally excellent reduced ring R of char-
acteristic p > 0 such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number.

(1) If (R, at ) is strongly F-regular then it is F-rational. If R is F-finite Goren-
stein, then the converse also holds.

(2) Let S be a multiplicatively closed set in R. If (R, at ) is F-rational, then the
localization (RS , at

S) is also F-rational.
(3) Assume, in addition, that R is local. Then (R, at ) is F-rational if and only if

(R̂, (aR̂)t ) is F-rational.

Proof. (1) By Remark 5.7, strongly F-regular pairs are F-rational. We thus con-
sider the converse implication. Since strong F-regularity commutes with local-
ization, we may assume that (R, m) is an F-finite reduced local ring. By [T1,
Lemma 3.4], (R, at ) is strongly F-regular if and only if, for each c ∈ R◦, there
exist q = pe and c ′ ∈ a�tq� such that cc ′F e : E → F(E) is injective, where
F e : E → F(E) is the e-times Frobenius map induced on the injective hull E =
ER(R/m) of the residue field R/m. Hence, if (R, at ) is Gorenstein F-rational,
then by Lemma 6.3 it is strongly F-regular because in this case H dimR

m (R) ∼= E.

(2) We may assume that R is a Cohen–Macaulay local ring, and it suffices to
show that (RP , at

P ) is F-rational for every prime ideal P of R. Let x1, . . . , xi be
any elements of P whose images in RP form a system of parameters for RP . We
can choose elements xi+1, . . . , xd of R such that x1, . . . , xd form a system of pa-
rameters for R. Set I = (x1, . . . , xi) and In = (x1, . . . , xi, xn

i+1, . . . , x
n
d ) for each

integer n ≥ 1. By assumption, I ∗at

n = In for all n ≥ 1. This implies that

I =
⋂

n

In =
⋂

n

I ∗at

n = I ∗at

.

Because I is generated by a subsystem of parameters for R, by Lemma 5.4(2) it
follows that (IRP)

∗at
P = I ∗at

RP = IRP . In other words, (RP , at
P ) is F-rational.

(3) Let I be an ideal of R generated by a system of parameters for R. By Lem-
ma 5.4(1), I ∗at = I if and only if (IR̂)∗(aR̂)t = IR̂. Thus, the assertion is obvious.

Definition 6.6. Let a be an ideal of a reduced local ring R of characteristic p >

0 such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number. Then an element c ∈R◦
is called a parameter at -test element if, for every ideal I generated by a system of
parameters for R, we have czqa�tq� ⊆ I [q] for all q = pe whenever z∈ I ∗at

.

Remark 6.7. Let R be a Cohen–Macaulay reduced local ring of characteristic
p > 0, and let c ∈ R◦ be a parameter at -test element. Then, by the same argu-
ment as the proof of Lemma 6.3, we can easily check that (R, at ) is F-rational if
and only if there exist q = pe and c ′ ∈ a�tq� such that cc ′F e : H d

m(R) → H d
m(R)

is injective, where F e : H d
m(R) → H d

m(R) denotes the induced e-times iterated
Frobenius map on H d

m(R).
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Lemma 6.8. Let (R, m) be a d-dimensional excellent reduced equidimensional
local ring of characteristic p > 0. Let c ∈ R◦ such that Rc is F-rational. Then
some power cn of c is a parameter at -test element for all ideals a ⊆ R such that
a ∩ R◦ �= ∅ and, for all real numbers, t ≥ 0.

Proof. Making use of gamma construction, by an argument analogous to the proof
of [V, Thm. 3.9] we can reduce to the case where R is an F-finite reduced local
ring that is a homomorphic image of a Gorenstein local ring. Let c ′ ∈ R◦ be an
R- and at -test element (we can take such an element by Lemma 5.4(3)), and let
F e : H d

m(R) → H d
m(R) denote the induced e-times iterated Frobenius map on

H d
m(R). We now claim (cf. [V, Thm. 1.13]) that there exist q0 = pe0 and n ∈ N

such that the nth power cn of c kills Ker(c ′F e0).

Take any system of parameters x1, . . . , xd in R and let x denote the product
of x1 . . . xd . Fix any z ∈ (x1, . . . , xd)

∗at

and consider the element ξ = [z/x] ∈
H d

m(R). Since c ′ is an at -test element, one has c ′a�tq0q�zq0q ∈ (x
q0q

1 , . . . , xq0q

d )

for all q = pe, which implies that c ′a�tq0q�ξ q0q = 0 in H d
m(R). In particular,

a�tq�ξ q is contained in Ker(c ′F e0) and thus, by our claim, cna�tq�ξ q = 0. Then
there exists an integer k ≥ 0 such that cna�tq�zqx k ∈ (x

q+k

1 , . . . , xq+k

d ). Applying
the colon-capturing property of classical tight closure and [HoHu, Lemma 12.9],
one has some power cm of c such that cmcna�tq�zq ∈ (x

q

1 , . . . , xq

d ) for all q = pe.

Since m is independent of the choice of x1, . . . , xd , z, a, and t, it follows that cm+n

is an at -test element for all ideals a ⊆ R such that a ∩ R◦ �= ∅ and for all real
numbers t ≥ 0.

Theorem 6.9 (cf. [Sm2, Thm. 3.1]). Let R be an excellent reduced local ring
of characteristic p > 0, let a be an ideal of R such that a ∩ R◦ �= ∅, and let t ≥
0 be a real number. If (R, at ) is F-rational, then it is pseudo-rational.

Proof. Because R is excellent and F-rational, it is also Cohen–Macaulay, normal,
and analytically unramified. Let π and δπ be as in Definition 3.9. Then, by [HY,
Prop. 3.8], Ker(δπ ) ⊆ 0∗at

H d
m(R)

. Since (R, at ) is F-rational by Lemma 6.3, this im-

plies that Ker(δπ ) = 0.

Let R be an algebra of essentially finite type over a field k of characteristic 0. Let
a ⊆ R be an ideal such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number. One
can choose a finitely generated Z-subalgebra A of k and a subalgebra RA of R of
essentially finite type over A such that the natural map RA⊗A k → R is an isomor-
phism and aAR = a, where aA := a∩RA ⊆ RA. Given a closed point s ∈ SpecA
with residue field κ = κ(s), we denote the corresponding fibers over s by Rκ and
aκ . Then we refer to a triple (κ,Rκ , aκ), for a general closed point s ∈ SpecA
with residue field κ = κ(s) of sufficiently large characteristic p # 0, as reduc-
tion to characteristic p # 0 of (k,R, a). The pair (Rκ , at

κ ) inherits the properties
possessed by the original pair (R, at ) (the size of p depends on t). Furthermore,
given a log resolution f : X̃ → X = SpecR of (X, a), we can reduce this entire
setup to characteristic p # 0.
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Definition 6.10. In the situation just described, (R, at ) is said to be of strongly
F-regular (resp. F-pure, F-rational ) type if the reduction to characteristic p # 0
of (R, at ) is strongly F-regular (resp. F-pure, F-rational).

Theorem 6.11 (cf. [H1; MeSr]). Let R be a finitely generated algebra over a
field of characteristic 0. Let a ⊆ R be an ideal such that a ∩ R◦ �= ∅, and let
t ≥ 0 be a real number. Then (SpecR, at ) has rational singularities if and only if
(R, at ) is of F-rational type.

Proof. Since the assertion is local, we may assume that (R, m) is a d-dimensional
normal Cohen–Macaulay local ring of essentially finite type over a field of char-
acteristic 0. Fix a log resolution π : Y → X := SpecR of a such that aOY =
OY (−G), let E := π−1(m) be the closed fiber of π, and let δπ : H d

m(R) →
H d

E (OY (�tG�)) be as in Definition 3.9. Then, by Remark 3.10, (SpecR, at ) has
rational singularities if and only if the map δπ is injective. After reduction to char-
acteristic p # 0, we can assume that R is a normal Cohen–Macaulay local ring
of essentially finite type over a perfect field of characteristic p together with a log
resolution π : Y → X := SpecR of (X, a) such that aOY = OY (−G). Then it
suffices to show that (R, at ) is F-rational if and only if the map δπ is injective—but
this follows immediately from the combination of [HY,Thm. 6.9] and Lemma 6.3.

Remark 6.12. In fact, one can use the same techniques to show an equivalence
between the multiplier submodule and the parameter test submodule (cf. [HY,
Thm. 6.8]).

Remark 6.13. In [Sm2], Smith gave a characterization of F-rational rings in
terms of the stability of submodules of H d

m(R) under the action of Frobenius.
Using the technique of Hara and Yoshida (see [HY, Prop. 1.15]), one can prove an
analogous generalization to F-rational pairs.

We now consider another variant of F-rational pairs corresponding to the pure ra-
tionality defined in Definition 3.15.

Definition 6.14. Let x be a nonzero divisor of a reduced ring R of characteris-
tic p > 0, and let a ⊆ R be an ideal that is not contained in any minimal prime of
xR. Let t ≥ 0 be a real number. When R is local, the triple (R, x; at ) is said to
be divisorially F-rational if I div∗(x;at ) = I for every ideal I generated by a sys-
tem of parameters for R. When R is not local, we say that (R, x; at ) is divisorially
F-rational if the localization (Rm, at

m) is divisorially F-rational for every maximal
ideal m of R.

We can prove analogues of Proposition 6.2, Lemma 6.3, and Proposition 6.5 for
divisorial F-rationality.

Proposition 6.15. Let x be a nonzero divisor of a reduced ring R of character-
istic p > 0, and let a ⊆ R be an ideal that is not contained in any minimal prime
of xR. Let t ≥ 0 be a real number.
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(1) If (R, x; at ) is divisorially F-rational, then (R, x1−εat ) is F-rational for all
1 ≥ ε > 0; in particular, (R, at ) is F-rational.

(2) Assume in addition that R is locally excellent. If (R, x; at ) is divisorially F-
regular, then it is divisorially F-rational; if R is F-finite Gorenstein, then the
converse also holds.

Proof. Part (2) follows from the combination of Lemma 6.16 and an argument
similar to the proof of Proposition 6.5(1). So we will prove only part (1). With-
out loss of generality, we may assume that R is local. Let I ⊆ R be an ideal
generated by a system of parameters for R, and let z ∈ I ∗x1−εat

. By definition,
there exists a c ∈R◦ such that cx�(1−ε)q�a�tq�zq ⊆ I [q] for all large q = pe. Then
one can choose an element d ∈ R◦ that is not in any minimal prime of xR such
that dxn lies in the ideal cR for some n ∈N. Taking sufficiently large q = pe so
that n + �(1− ε)q� ≤ q − 1, one has dxq−1a�tq�zq ⊆ I [q]. This implies that z ∈
I div∗(x;at ) = I because (R, x; at ) is divisorially F-rational. Thus, (R, x1−εat ) is
F-rational.

Lemma 6.16. Let (R, m) be a d-dimensional excellent reduced local ring of char-
acteristic p > 0, and let t ≥ 0 be a real number. Fix x ∈R◦ and let a ⊆ R be an
ideal that is not contained in any minimal prime of xR. Then the following three
conditions are equivalent.

(1) (R, at ) is divisorially F-rational.
(2) R is equidimensional and I div∗(x;at ) = I for some ideal I generated by a sys-

tem of parameters for R.

(3) R is Cohen–Macaulay and 0div∗(x;at )

H d
m(R)

= 0 in H d
m(R). The latter condition is

equivalent to saying that, for each c ∈R◦ that is not in any minimal prime of
xR, there exist q = pe and c ′ ∈ a�tq� such that cc ′xq−1F e : H d

m(R) → H d
m(R)

is injective, where F e : H d
m(R) → H d

m(R) denotes the induced e-times iter-
ated Frobenius map on H d

m(R).

Proof. The proof is essentially the same as that of Lemma 6.3.

Remark 6.17. Let the notation be as in Lemma 6.16 and assume in addition that
R is a homomorphic image of a Gorenstein local ring. Then one could define the
divisorial test submodule τ div(ωR , x; at ) associated to (R, x; at ) as

τ div(ωR , x; at ) = AnnωR
(0div∗(x;at )

H d
m(R)

) ⊆ ωR.

This is a characteristic-p analogue of the adjoint submodule (see Definition 3.17).
By Lemma 6.16, (R, x; at ) is divisoriallyF-rational if and only if τ div(ωR , x; at ) =
ωR and R is Cohen–Macaulay.

7. Geometric Properties

In fixed prime characteristic, F-rational pairs satisfy several nice properties that
are analogous to those of rational pairs.
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Proposition 7.1. Let R ↪→ S be a pure finite local homomorphism of local do-
mains of characteristic p > 0. Let a be a nonzero ideal of R and let t ≥ 0 be a
real number. If (S, (aS)t ) is F-rational, then so is (R, at ).

Proof. Let I ⊆ R be an ideal generated by a system of parameters for R. Then
it is easy to check that I ∗at

S ⊆ (IS)∗(aS)t . Since IS is generated by a system of
parameters for S, it follows by assumption that (IS)∗(aS)t = IS. Thus

I ∗at = I ∗at

S ∩ R ⊆ (IS)∗(aS)
t ∩ R = I ;

that is, (R, at ) is F-rational.

Remark 7.2. Suppose R and S are domains, a is an ideal of R, and R is a direct
summand of S. If (S, (aS)t ) is strongly F-regular, then (R, at ) is also strongly
F-regular and, in particular, F-rational. However, even if (S, (aS)t ) is F-rational,
(R, at ) is not necessarily F-rational in general (see [W; HWY] for counterexam-
ples). The reader should compare Proposition 7.1 with Corollary 4.11.

Proposition 7.3. Let (R, m) be an excellent reduced local ring of characteris-
tic p > 0, and let x ∈m be a nonzero divisor of R. Denote S := R/xR. Let a ⊆
R be an ideal that is not contained in any minimal prime of xR, and let t ≥ 0 be a
real number. Then (S, (aS)t ) is F-rational if and only if (R, x; at ) is divisorially
F-rational.

Proof. First assume that (S, (aS)t ) is F-rational. Note that both S and R are nor-
mal and Cohen–Macaulay by Proposition 6.2. We choose elements y1, . . . , yd−1 in
R such that x, y1, . . . , yd−1 forms a system of parameters for R. Let z∈ (x, y1, . . . ,
yd−1)

div∗(x;at ). Then there exists a c ∈R\xR such that ca�tq�xq−1zq ⊆ (x q, y q

1 , . . . ,
y

q

d−1) for all large q = pe. Since x, y1, . . . , yd−1 is an R-regular sequence, one has
ca�tq�zq ∈ (x, y q

1 , . . . , y q

d−1). This implies that c̄(aS)�tq�z̄q ∈ (y1
q, . . . , yd−1

q)where
c̄, z̄, y1, . . . , yd−1 are the images of c, z, y1, . . . , yd−1 in S, respectively. Since c̄ ∈
S \ {0} = S ◦, we have

z̄∈ (y1, . . . , yd−1)
∗(aS)t = (y1, . . . , yd−1).

Thus, z lies in (x, y1, . . . , yd−1) and (R, x; at ) is divisorially F-rational by Lem-
ma 6.16. The converse argument just reverses this.

As a corollary of Proposition 7.3 we obtain the correspondence between pure ra-
tionality and divisorial F-rationality. Let R be an algebra of essentially finite type
over a field of characteristic 0, and let t ≥ 0 be a real number. Let x be a nonzero
divisor of R and let a ⊆ R be an ideal that is not contained in any minimal prime
of xR. Then (R, x; at ) is said to be of divisorially F-rational if reduction to char-
acteristic p # 0 of (R, x; at ) is divisorially F-rational (see the paragraph before
Definition 6.10 for the meaning of “reduction to characteristic p # 0”).

Corollary 7.4. Let notation be as before and assume in addition that R is a
normal local ring of essentially finite type over a field of characteristic 0. Then
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(SpecR, div(x), at ) has purely rational singularities if and only if (R, x, at ) is of
divisorially F-rational type.

Proof. This follows from the combination of Theorem 6.11, Proposition 7.3, and
Theorem 4.14.

Definition 7.5. Let a be an ideal of a Cohen–Macaulay reduced ring R of char-
acteristic p > 0 such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number.

(i) When (R, m) is a d-dimensional local ring and F e : H d
m(R) → H d

m(R) de-
notes the induced e-times iterated Frobenius map on H d

m(R), the pair (R, at )

is said to be F-injective if, for all large q = pe, there exists a c ∈ a�t(q−1)�
such that cF e : H d

m(R) → H d
m(R) is injective. When R is not local, we say

that (R, at ) is F-injective if the localization (Rm, at
m) is F-injective for every

maximal ideal m of R.

(ii) Suppose that R is F-rational. Then we define the F-injective threshold fit(a)
of a to be

fit(a) = sup{t ∈R≥0 | (R, at ) is F -rational}.
We briefly study the properties of F-injective pairs, which are needed in a subse-
quent proposition. Let a be an ideal of a reduced ring R of characteristic p > 0
such that a ∩ R◦ �= ∅, and let t ≥ 0 be a real number. Then the at -Frobenius clo-
sure of an ideal I ⊆ R is defined to be the ideal of R consisting of all the elements
x ∈ R for which a�t(q−1)�xq ⊆ I [q] for all large q = pe. This ideal is denoted
by IFat

.

Lemma 7.6. Let notation be as before and assume in addition that (R, m) is a
d-dimensional Cohen–Macaulay local ring.

(1) If (R, at ) is F-rational then it is F-injective.
(2) (R, at ) is F-injective if and only if, for every (resp. some) ideal I generated

by a system of parameters for R, one has IFat = I.

(3) Suppose that R is an excellent F-rational local ring and that a is a principal
ideal. Then (R, at ) is F-injective if and only if t ≤ fit(a).

Proof. Part (1) is obvious by Lemma 6.3, and part (2) follows from an argument
similar to the proof of Lemma 6.3. So we will prove only part (3).

First we show that

fit(a) = sup{t ∈R≥0 | (R, at ) is F -injective}.
To check this, it is enough to show that if (R, at ) is F-injective for some t > 0
then (R, at−ε) is F-rational for all t ≥ ε > 0. By Lemma 6.8, the unit 1 is a pa-
rameter at−ε-test element. Choose sufficiently large q = pe so that �(t − ε)q� ≤
�t(q−1)�. Then the F-injectivity of (R, at ) implies that there exists a c ∈ a�(t−ε)q�
such that cF e : H d

m(R) → H d
m(R) is injective, where F e : H d

m(R) → H d
m(R) de-

notes the induced e-times iterated Frobenius map on H d
m(R). By Remark 6.7, this

is equivalent to the F-rationality of (R, at−ε).

To complete the proof of part (3), it only remains to show that (R, afit(a)) is F-
injective. Let I ⊆ R be an ideal generated by a system of parameters for R. Let
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ν(pe) := max{r ∈N | arzp
e �⊆ I [q] for all z∈R \ I }.

Because R is F-injective, the invariant ν(pe) is well-defined.

Claim (cf. [MuTW]).

fit(a) = lim
e→∞

ν(pe)

pe
= inf

e

ν(pe)+ 1

pe
.

Proof of Claim. Since a is a principal ideal it follows that, if aν(q)+1zq lies in
I [q], then ap(ν(q)+1)zpq lies in I [pq]. Thus, (ν(q)+1)/q ≥ (ν(pq)+1)/pq; that is,

lim
e→∞

ν(pe)

pe
= inf

e

ν(pe)+ 1

pe
.

Because (R, afit(a)−ε) is F-injective and (R, afit(a)+ε) is never F-injective for all
1 ≥ ε > 0, by part (2) one has �(fit(a)−ε)(q−1)� ≤ ν(q) < �(fit(a)+ε)(q−1)�
for infinitely many q = pe. This implies that

fit(a)− ε ≤ lim
e→∞

ν(pe)

pe
≤ fit(a)+ ε.

Since ε can take arbitrarily small values, we obtain the assertion.

By the claim just proved, �fit(a)(q − 1)� ≤ ν(q) for every q = pe, which means
that IFafit(a) = I.

Theorem 7.7. Let (R, m) be an excellent reduced local ring of characteristic
p > 0, and let x ∈ m be a nonzero divisor of R. If (R, x1−ε) is F-rational for
all sufficiently small 1 # ε > 0, then R/xR is Cohen–Macaulay and F-injective
(i.e., the pair (R/xR, (R/xR)1) is F-injective). When the localized ring Rx is
F-rational, the converse implication also holds.

Proof. Without loss of generality, we may assume that R is Cohen–Macaulay.

Claim. (R, x) is F-injective if and only if R/xR is F-injective.

Proof of Claim. We choose elements y1, . . . , yd−1 in R such that x, y1, . . . , yd−1

is a system of parameters for R. An element z ∈ R lies in (x, y1, . . . , yd−1)
Fx if

and only if zq ∈ (x, y q

1 , . . . , y q

d−1) for all large q = pe, because x, y1, . . . , yd−1 is
an R-regular sequence. This is equivalent to saying that z̄q ∈ (y1

q, . . . , yd−1
q) for

all large q = pe; that is, z̄ ∈ (y1, . . . , yd−1)
F, where z̄, y1, . . . , yd−1 are the im-

ages of z, y1, . . . , yd−1 (respectively) in S. Thus, by Lemma 7.6(2), we obtain the
assertion.

If (R, x1−ε) is F-rational for all sufficiently small 1 # ε > 0, then by Lemma
7.6(3) it follows that (R, x) is F-injective. To complete the proof of this theo-
rem, by the preceding claim it remains only to show that if (R, x) is F-injective
and Rx is F-rational then (R, x1−ε) is F-rational for all 1 ≥ ε > 0. Since Rx is
F-rational, it follows from Lemma 6.8 that some power xn of x is a parameter
x-test element. Choose sufficiently large q = pe so that �(1− ε)q� + n ≤ q −1.
Then the F-injectivity of (R, x) implies that xnx�(1−ε)q�F e : H d

m(R) → H d
m(R)

is injective, where F e : H d
m(R) → H d

m(R) denotes the induced e-times iterated



654 Karl Schwede & Shunsuke Takagi

Frobenius map on H d
m(R). By Remark 6.7, this is equivalent to the F-rationality

of (R, x1−ε).

Example 7.8. Consider the rth Veronese subring R = S(r) of the d-dimensional
formal power series ring S = k[[x1, . . . , xd ]] over a perfect field k of character-
istic p > 0. It is well known that R is strongly F-regular. By [TW, Ex. 2.4(ii)],
the F-pure threshold fpt(m) of the maximal ideal m of R is equal to d/r; that
is, (R, mt ) is strongly F-regular if and only if t < d/r. We will show that the
F-injective threshold fit(m) of m is equal to �d/r�.

Let I = (xr
1 , xr

2 , . . . , xr
d ). Then (R, mt ) is F-rational if and only if I ∗mt

con-
tains none of the monomials x

i1
1 . . . x

id
d in R with r − 2 ≤ ij ≤ r − 1 for all

j = 1, . . . , d. Put n = �d/r� and z = xr−2
1 · · · xr−2

rn−d x
r−1
rn−d+1 · · · xr−1

d ∈ R. Since

x
2q−2
1 · · · x 2q−2

rn−d x
q−1
rn−d+1 · · · xq−1

d is in mn(q−1) ⊆ m�(n−ε)q� for all large q = pe,
it follows that zqm�(n−ε)q� is not contained in I [q]. Thus, z does not belong to
I ∗mn−ε

(here, 1 is an mn−ε-test element by Lemma 5.4). Similarly, we can show
that I ∗mn−ε

contains none of the monomials xi1
1 . . . x

id
d in R with r−2 ≤ ij ≤ r−1

for all j = 1, . . . , d. This means fit(m) ≥ n = �d/r�. We leave it for the reader to
check that fit(m) ≤ �d/r�.
We conclude this section with a proof of a special case of the discreteness and ra-
tionality of F-injective thresholds. More generally, we introduce a new invariant
that is a generalization of F-injective thresholds and then study its properties.

Definition 7.9. Let R be a reduced local ring of characteristic p > 0 that is a
homomorphic image of a Gorenstein local ring, and let a ⊆ R be an ideal such
that a ∩ R◦ �= ∅. We say that a real number t > 0 is a jumping exponent for gen-
eralized parameter test submodules τ(ωR , a∗) if τ(ωR , at ) � τ(ωR , at−ε) for all
ε > 0.

If R is excellent and F-rational, then it follows from Remark 6.4 that the smallest
jumping exponent for the generalized parameter test submodules τ(ωR , a∗) is the
F-injective threshold fit(a) of a.

Lemma 7.10. Let (R, m) be a complete local domain of characteristic p > 0,
and let a ⊆ R be an ideal such that a ∩ R◦ �= ∅.
(1) For every nonnegative real number t, there exists an ε > 0 such that

τ(ωR , at ) = τ(ωR , at ′)

for all t ′ ∈ [t, t + ε).

(2) If α is a jumping exponent for the generalized parameter test submodules
τ(ωR , a∗), then so is pα.

(3) If a is generated by m elements then, for every t ≥ m,

τ(ωR , at ) = τ(ωR , at−1)a.

Proof. (1) Let c ∈ R◦ be a parameter as-test element for every s ≥ 0, and fix
any d ∈ a ∩ R◦. Then cd is also a parameter as-test element for every s ≥ 0.
Denote by Ne the submodule of H d

m(R) consisting of all elements ξ ∈ H d
m(R)
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such that cda�tpe�ξpe = 0 in H d
m(R). By definition, one can see that 0∗at

H d
m(R)

=⋂
e∈N Ne. Since H d

m(R) is an Artinian R-module, there exists an integer m such
that 0∗at

H d
m(R)

= ⋂m
e=0 Ne. Put ε = 1/pm; we will prove that τ(at ) = τ(at+ε). Let

ξ ∈ 0∗at+ε

H d
m(R)

. Because c is a parameter at+ε-test element, ca�(t+ε)q�ξ q = 0 for all

q = pe; in particular, ca�tpe�+1ξpe = 0 for all e = 0, . . . ,m. Since d is in a, we
know that ξ lies in

⋂m
e=0 Ne = 0∗at

H d
m(R)

.

(2) Let c ∈ R◦ be a parameter at -test element for every t ≥ 0, and fix any
ε > 0. Since α is a jumping exponent for generalized parameter test submodules
τ(ωR , a∗), there exists a ξ ∈ 0∗aα

H d
m(R)

that is not contained in 0∗aα−ε

H d
m(R)

. This means

that ca�αq�ξ q = 0 in H d
m(R) for all q = pe, but ca�(α−ε)q�ξ q �= 0 in H d

m(R) for
infinitely many q = pe. Put η = ξp ∈H d

m(R). Then ca�pαq�ηq = 0 in H d
m(R) for

all q = pe, but ca�p(α−ε)q�ηq �= 0 for infinitely many q = pe. This implies that
η belongs to 0∗apα

H d
m(R)

but not to 0∗ap(α−ε)

H d
m(R)

. Thus, by Matlis duality, τ(ωR , apα) �

τ(ωR , ap(α−ε)).

(3) By the proof of [HT, Thm. 4.1], 0∗at

H d
m(R)

= (0∗at−1

H d
m(R)

: a)H d
m(R) for every real

number t ≥ m. Because AnnH d
m(R)(τ (ωR , at−1)a) is equal to (0∗at−1

H d
m(R)

: a)H d
m(R) =

0∗at

H d
m(R)

, by Matlis duality one has

τ(ωR , at ) = AnnωR
(0∗at

H d
m(R)

)

= AnnωR
(AnnH d

m(R)(τ (ωR , at−1)a)) = τ(ωR , at−1)a.

Theorem 7.11. Let (R, m) be an excellent F-rational local ring of characteris-
tic p > 0 that is a homomorphic image of a Gorenstein local ring, and fix g ∈R◦.
Let α,β > 0 be integers and write γ = α/(pβ −1). Then there exists a c ∈ (0, γ )
for which τ(ωR , gt ) = τ(ωR , gc) for all t ∈ [c, γ ).

Proof. For any integers m, n > 0, we denote by Nm,n the submodule of H d
m(R)

consisting of all elements ξ ∈H d
m(R) such that gmξpn = 0 in H d

m(R).

Claim. τ(ωR , gm/pn

) = AnnωR
(Nm,n).

Proof of Claim. First note that, by Lemma 6.8, the unit 1 is a parameter gt -test

element for every t ≥ 0. Then one can see that 0∗g
m/pn

H d
m(R)

= ⋂
e≥n Nmpe−n,e. Now it

suffices to show that Nk,e ⊆ Nkp,e+1 for all integers k, e > 0, but this is obvious.

Fix the R[θ; f β]-module structure on H d
m(R) given by θξ = gαξpβ

for all ξ ∈
H d

m(R). ThenNα(1+pβ+···+pβ(s−1)),sβ coincides with the kernel of θs as anR[θ; f β]-
module. Thus, {Nα(1+pβ+···+pβ(s−1)),sβ}s≥1 forms an ascending chain of R[θ; f β]-
modules, and by the Hartshorne–Speiser–Lyubeznik theorem (see [L, Prop. 4.4])
it stabilizes at some s = ν. For all s ≥ 1, the preceding claim shows that

τ(ωR , gα(1+pβ+···+pβ(s−1))/psβ

) = AnnωR
(Nα(1+pβ+···+pβ(s−1)),sβ).

Thus, the stabilization of {Nα(1+pβ+···+pβ(s−1)),sβ}s≥1 implies the stabilization of a
family of generalized parameter test submodules {τ(ωR , gα(1+pβ+···+pβ(s−1))/psβ

)}s≥1

for s ≥ ν. Since



656 Karl Schwede & Shunsuke Takagi

α(1+ pβ + · · · + pβ(s−1))

psβ
= α

psβ

psβ − 1

pβ − 1

is an increasing sequence that converges to γ as s approaches infinity, we may
take c = α(1+ pβ + · · · + pβ(ν−1))/pνβ.

Corollary 7.12. Let (R, m) be a complete F-rational local ring of character-
istic p > 0, and fix g ∈ R◦. Then the set of jumping exponents for generalized
parameter test submodules τ(ωR , g∗) cannot have a rational accumulation point.

Proof. Assume to the contrary that the set of jumping exponents for generalized
parameter test submodules τ(ωR , g∗) has a rational accumulation point γ. Then
there exists a sequence {cn}n≥1 of jumping exponents converging to γ. If we write
γ in the form of α/pd(pβ −1) then, by Lemma 7.10(2), {pdcn}n≥1 is a sequence of
jumping exponents again and is converging to α/(pβ − 1). This contradicts The-
orem 7.11.

Corollary 7.13. Let (R, m) be a complete F-rational local ring of character-
istic p > 0, and fix g ∈ R◦. Then jumping exponents for generalized parameter
test submodules τ(ωR , g∗) are rational and have no accumulation points.

Proof. Applying Lemma 7.10 and Corollary 7.12 to [KatLZ, Prop. 4.2], we obtain
the assertion.

References

[AHu] I. M. Aberbach and C. Huneke, F-rational rings and the integral closures of
ideals, Michigan Math. J. 49 (2001), 3–11.

[B] M. Blickle, Multiplier ideals and modules on toric varieties, Math. Z. 248 (2004),
113–121.

[Bo] J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs,
Invent. Math. 88 (1987), 65–68.

[D] P. Du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math.
France 109 (1981), 41–81.

[Ei] L. Ein, Multiplier ideals, vanishing theorems and applications, Algebraic
geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, pp. 203–219, Amer.
Math. Soc., Providence, RI, 1997.

[E1] R. Elkik, Singularités rationnelles et déformations, Invent. Math. 47 (1978),
139–147.

[E2] , Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1–6.
[F] R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983),

461–480.
[FW] R. Fedder and K. Watanabe, A characterization of F-regularity in terms of

F-purity, Commutative algebra (Berkeley, 1987), Math. Sci. Res. Inst. Publ., 15,
pp. 227–245, Springer-Verlag, New York, 1989.

[GR] H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische
Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292.

[H1] N. Hara, A characterization of rational singularities in terms of injectivity of
Frobenius maps, Amer. J. Math. 120 (1998), 981–996.



Rational Singularities Associated to Pairs 657

[H2] , Geometric interpretation of tight closure and test ideals, Trans. Amer.
Math. Soc. 353 (2001), 1885–1906.

[HT] N. Hara and S. Takagi, On a generalization of test ideals, Nagoya Math. J. 175
(2004), 59–74.

[HW] N. Hara and K.-i. Watanabe, F-regular and F-pure rings vs. log terminal and
log canonical singularities, J. Algebraic Geom. 11 (2002), 363–392.

[HWY] N. Hara, K.-i. Watanabe, and K.-I. Yoshida, F-rationality of Rees algebras,
J. Algebra 247 (2002), 153–190.

[HY] N. Hara and K.-I. Yoshida, A generalization of tight closure and multiplier
ideals, Trans. Amer. Math. Soc. 355 (2003), 3143–3174.

[Ha] R. Hartshorne, Residues and duality, Lecture Notes in Math., 20, Springer-
Verlag, Berlin, 1966.

[HoHu1] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Colloque
en l’honneur de Pierre Samuel (Orsay, 1987) Mém. Soc. Math. France (N.S.)
38 (1989), 119–133.

[HoHu2] , Tight closure, invariant theory, and the Briançon–Skoda theorem,
J. Amer. Math. Soc. 3 (1990), 31–116.

[HoHu3] , Phantom homology, Mem. Amer. Math. Soc. 103 (1993).
[HoRo] M. Hochster and J. L. Roberts, The purity of the Frobenius and local

cohomology, Adv. Math. 21 (1976), 117–172.
[Hu] C. Huneke, Tight closure and its applications (with an appendix by Melvin

Hochster), CBMS Reg. Conf. Ser. Math., 88, Amer. Math. Soc., Providence,
RI, 1996.

[HySm] E. Hyry and K. E. Smith, On a non-vanishing conjecture of Kawamata and the
core of an ideal, Amer. J. Math. 125 (2003), 1349–1410.

[HyVi] E. Hyry and O. Villamayor, A Briançon–Skoda theorem for isolated
singularities, J. Algebra 204 (1998), 656–665.

[KatLZ] M. Katzman, G. Lyubeznik, and W. Zhang, On the discreteness and rationality
of jumping coefficients, preprint, arXiv:0706.3028.

[K] M. Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167
(2007), 129–133.

[Ka] Y. Kawamata, A generalization of Kodaira–Ramanujam’s vanishing theorem,
Math. Ann. 261 (1982), 43–46.

[Ke] G. R. Kempf, Some quotient varieties have rational singularities, Michigan
Math. J. 24 (1977), 347–352.

[Ke+] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal
embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin, 1973.

[Kol1] J. Kollár, Shafarevich maps and automorphic forms, Princeton Univ. Press,
Princeton, NJ, 1995.

[Kol2] , Singularities of pairs, Algebraic geometry (Santa Cruz, 1995), Proc.
Sympos. Pure Math., 62, pp. 221–287, Amer. Math. Soc., Providence, RI,
1997.

[KolM] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge
Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998.

[Kol+] J. Kollár et al., Flips and abundance for algebraic threefolds, Papers from
the second summer seminar on algebraic geometry (Salt Lake City, 1991),
Astérisque 211 (1992).

[Ko1] S. J. Kovács, Rational, log canonical, Du Bois singularities: On the conjectures
of Kollár and Steenbrink, Compositio Math. 118 (1999), 123–133.



658 Karl Schwede & Shunsuke Takagi

[Ko2] , A characterization of rational singularities, Duke Math. J. 102 (2000),
187–191.

[La] R. Lazarsfeld, Positivity in algebraic geometry. II, Ergeb. Math. Grenzgeb. (3),
49, Springer-Verlag, Berlin, 2004.

[LiTe] J. Lipman and B. Teissier, Pseudorational local rings and a theorem of
Briançon–Skoda about integral closures of ideals, Michigan Math. J. 28 (1981),
97–116.

[L] G. Lyubeznik, F-modules: Applications to local cohomology and D-modules in
characteristic p > 0, J. Reine Angew. Math. 491 (1997), 65–130.

[MeSr] V. B. Mehta and V. Srinivas, A characterization of rational singularities, Asian
J. Math. 1 (1997), 249–271.
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