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Introduction

It was recently established in [10] that multiplier ideals on a smooth variety sat-
isfy some special syzygetic properties. The purpose of this paper is to show how
some of these can be extended to the singular setting.

To set the stage, we review some of the results from [10]. Let X be a smooth
complex variety of dimension dim(X) = d, and denote by (O, m) the local ring of
X at a fixed point x ∈X. Let J ⊆ O be any multiplier ideal; that is, assume J is
the stalk at x of a multiplier ideal sheaf J (X, bλ), where b ⊆ OX is an ideal sheaf
and λ is a positive rational number. The main result of [10] is that if p ≥ 1 then
no minimal pth syzygy of J vanishes modulo md+1−p at x. In other words, if we
consider a minimal free resolution of the ideal J over the regular local ring O,

· · · u3−→ F2
u2−→ F1

u1−→ F0 −→ J −→ 0,

then no minimal generator of the pth syzygy module

Syzp(J ) def= Im(up) ⊆ Fp−1

of J lies in md+1−p · Fp−1. Although this result places no restriction on the or-
ders of vanishing of the generators of J, it provides strong constraints on the first
and higher syzygies of J. When d = 2 these conditions hold for any integrally
closed ideal, but [10] shows that in dimensions d ≥ 3 only rather special inte-
grally closed ideals can arise as multiplier ideals. (In contrast, it was established
by Favre–Jonsson [2] and Lipman–Watanabe [12] that any integrally closed ideal
on a smooth surface is locally a multiplier ideal.)

Multiplier ideals can be defined on any Q-Gorenstein varietyX or, more gener-
ally, for any pair (X,�) consisting of an effective Weil Q-divisor � on a normal
variety X such that KX + � is Q-Cartier. It is natural to wonder whether multi-
plier ideals in this context satisfy the same sort of algebraic properties as in the
smooth case. We will see (Example 3.1) that the result from [10] just quoted does
not extend without change. However, we show that at least for first syzygies, one
obtains a statement by replacing the maximal ideal m by any parameter ideal.
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Theorem A. Let (X,�) be a pair with dimX = d, let (O, m) be the local ring
of X at a Cohen–Macaulay point x ∈X, and fix a system of parameters

z1, . . . , zd ∈ O.
Let J ⊆ O be (the germ at x of ) any multiplier ideal on (X,�). Then no minimal
first syzygy of J vanishes modulo (z1, . . . , zd)d.

IfX is Q-Gorenstein then we can take� = 0, so that one is dealing with usual mul-
tiplier ideals of the form J (X, bλ). Of course, the strongest statement is achieved
by taking z1, . . . , zd to generate the largest possible ideal—which is to say, by tak-
ing the zi to generate a reduction of m. In this case, if x is a smooth point then the
zi generate the maximal ideal itself, and we recover the original result from [10]
in the case p = 1.

Observe that even though Theorem A doesn’t give a uniform bound on the order
of vanishing of syzygies of a multiplier ideal, it does uniformly bound the highest
power of any ideal generated by a system of parameters that can contain a syzygy.
It also yields uniform statements provided we bring the multiplier ideal of the triv-
ial line bundle into the picture. For example, we have the following result.

Corollary B. Let x ∈ X be a Cohen–Macaulay point with maximal ideal m,
and set

τ = J ((X,�); OX)x.
If J is the germ at x of any multiplier ideal, then no first syzygy of J vanishes
modulo τ · m2d−1.

In particular, if (X,�) is Kawamata log terminal (KLT) then no first syzygy can
vanish modulo m2d−1.

Unlike the results for smooth varieties in [10], the statements here deal only
with first syzygies. This may be more an artifact of our method than a necessary
restriction, and it would be interesting to investigate this further.

We begin in Section 1 with a discussion of Skoda’s theorem in the singular set-
ting. In Section 2 we modify the arguments from [10] to prove Theorem A. We
conclude in Section 3 with some examples and applications.

We are grateful to Craig Huneke for some valuable discussions.

1. Skoda Complexes on Singular Varieties

In this section, we discuss the circle of ideas surrounding Skoda’s theorem in the
singular setting. This appears only briefly in [9], so we thought it would be use-
ful to spell out some of the details. We don’t claim any essential novelty for the
material in this section.

Let (X,�) be a pair in the sense of [9, 9.3.55]; this meansX is a normal variety
and � = ∑

diDi is an effective Weil Q-divisor such that KX + � is Q-Cartier.
Fix ideals b, c ⊆ OX, and let

µ : X ′ → X
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be a log resolution of (X,�), b, and c. Then one can attach numbers

a(E)∈ Q, b(E), c(E)∈ N

to each exceptional divisor of µ and also to the proper transforms of the divi-
sors appearing in the support of � or the zeroes of b and c, characterized by the
expressions

KX ′ ≡num µ
∗(KX +�)+ ∑

a(E)E;
b · OX ′ = OX ′

(−∑
b(E)E

)
,

c · OX ′ = OX ′
(−∑

c(E)E
)
.

Given a rational or real weighting coefficient λ > 0, one then defines the multi-
plier ideal

J ((X,�); c · bλ) = µ∗OX ′
(∑

(�a(E)− c(E)− λb(E)�)E)
,

this being independent of the resolution. If X is Q-Gorenstein then we can take
� = 0, and if in addition X is actually Gorenstein then we have the more familiar
definition

J (X, c · bλ) = µ∗OX ′(KX ′/X − [C + λB]),

where
B = ∑

b(E)E, C = ∑
c(E)E.

The following lemma expresses an elementary but important property of multi-
plier ideals.

Lemma 1.1. For any integer m ≥ 0, there is an inclusion

c · J ((X,�); cm · bλ) ⊆ J ((X,�); cm+1 · bλ).

Proof. One has

c · J ((X,�); cm · bλ)

⊆ µ∗OX ′
(−∑

c(E)E
) · µ∗OX ′

(∑
(�a(E)−mc(E)− λb(E)�)E)

⊆ µ∗OX ′
(∑

(�a(E)− (m+ 1)c(E)− λb(E)�)E)

= J ((X,�); cm+1 · bλ).

Corollary 1.2. With (X,�) as above,

c · J ((X,�; OX) ⊆ J ((X,�); c)

for any ideal c. In particular, if (X,�) is KLT then

c ⊆ J ((X,�); c).

We now turn to Skoda complexes. Because our interest is local, we assume for
simplicity of notation that X is affine. Choose elements

f1, . . . , fr ∈ c,

and for compactness write
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J (cm · bλ) = J ((X,�); cm · bλ).

It follows from Corollary 1.2 that each fi multiplies J (c� · bλ) into J (c�+1 · bλ).
Hence the fi determine a complex Skod•(m; f )

· · · −→ O(
r
2)
X ⊗ J (cm−2 · bλ) −→ O r

X ⊗ J (cm−1 · bλ) −→ J (cm · bλ) −→ 0,

arising as a subcomplex of the Koszul complex K•(f1, . . . , fr) = Kosz•(f ) on
the fi.

The basic result for our purposes is Theorem 1.3.

Theorem 1.3. Assume that m ≥ r and that the fi generate a reduction of c.
Then Skod•(m; f ) is exact.

Recall that the hypothesis on the fi is equivalent to requiring that their pull-backs
to the log resolution X ′ generate the pull-back OX ′(−C) of c.

Proof of Theorem 1.3 (sketch). The pull-backs of the given elements fi ∈ c deter-
mine an exact Koszul complex of vector bundles on X ′:

· · · −→ O(
r
2)
X ′ ⊗ OX ′(2C) −→ O r

X ′ ⊗ OX ′(C) −→ OX ′ −→ 0.

Twisting through by OX ′
(∑

(�a(E) − mc(E) − λb(E)�)E
)
, we derive an ex-

act sequence all of whose terms have vanishing higher direct images thanks to the
local vanishing theorems for multiplier ideals [9, 9.4.17]. The direct image of this
twisted Koszul complex, which is the Skoda complex Skod•(m; f ), is therefore
exact.

We conclude this section by recording some consequences of Briançon–Skoda
type.

Corollary 1.4. Assume as in the theorem that m ≥ r and that f1, . . . , fr gen-
erate a reduction of c. Then

(i) J ((X,�); cm · bλ) = (f1, . . . , fr) · J ((X,�); cm−1 · bλ);
(ii) cm · J ((X,�); OX) ⊆ (f1, . . . , fr)m+1−r.
In particular, if (X,�) has only log terminal singularities then

cm ⊆ (f1, . . . , fr)
m+1−r.

Proof. Part (i) follows from the surjectivity of the last map in the Skoda complex,
and it implies inductively that Jm = (f1, . . . , fr)m+1−rJr−1. Thus, given (i), for
part (ii) one uses Lemma 1.1 to conclude

cm · J ((X,�); OX) ⊆ J ((X,�); cm)

= (f1, . . . , fr)
m+1−r · J ((X,�); cr−1)

⊆ (f1, . . . , fr)
m+1−r.

The last statement in the corollary follows from (ii) because J ((X,�); OX) =
OX when (X,�) has log terminal singularities.
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Remark 1.5. The inclusion cm ⊆ (f1, . . . , fr)m+1−r in the last statement of the
corollary holds more generally on any variety with only rational singularities;
this follows from Lipman and Tessier’s form of the Briançon–Skoda theorem [11,
Thm. 2.1].

2. Proof of Theorem A

We now refine the arguments of [10] to prove Theorem A.
As in the statement, let (O, m) be the local ring of X at the Cohen–Macaulay

point x ∈X. Let
c = (z1, . . . , zd) ⊆ O

denote the ideal generated by the given system of parameters, and write

J (cm · bλ) = J ((X,�); cm · bλ)x ⊆ O
for the germ at x of the indicated multiplier ideal.

We claim to begin with that the map

Tor1(c
d−1 · J, O/c) −→ Tor1(J, O/c) (∗)

vanishes. This follows by observing that [10, Thm. B] remains valid in our set-
ting, but it is more instructive to write out the argument explicitly. In fact, since
(O, m) is Cohen–Macaulay and since c is generated by a regular sequence, we may
compute each Tor in question via the Koszul complexK•(z1, . . . , zd) associated to
z1, . . . , zd . That being said, consider the commutative diagram

O(d2) ⊗ cd−1J (bλ) ��

� �

��

Od ⊗ cd−1J (bλ) ��

� �

��

O ⊗ cdJ (bλ)
� �

��

O(d2) ⊗ J (cd−2bλ) ��

� �

��

Od ⊗ J (cd−1bλ) ��

� �

��

O ⊗ J (cdbλ)
� �

��

O(d2) ⊗ J (bλ) �� Od ⊗ J (bλ) �� O ⊗ J (bλ).

The top and bottom rows arise from the Koszul complex (except that we have
harmlessly modified the upper term on the right), and the middle row is part of
the Skoda complex. The inclusion of the top into the middle row comes from
Lemma 1.1.

The groups in (∗) are computed respectively as the homology of the first and
third rows in the diagram, with the map arising from the inclusion of one in the
other. By Theorem 1.3, the middle row of the diagram is exact. Hence the map in
(∗) is zero, as required.

Following the idea of [10, Prop. 2.1], we now deduce Theorem A from (∗). Let
J = J (bλ) ⊆ O, and consider a minimal free resolution F• of J :
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· · · u3−→ F2
u2−→ F1

u1−→ F0
π−→ J −→ 0, (1)

where Fi = Obi. Assume for a contradiction that the statement of the theorem
fails. Then there is a minimal generator e ∈ F1 such that u1(e) ∈ (z1, . . . , zd)dF0.

In particular, e lies in the kernel of the induced map

F1 ⊗ O/c u1⊗1−−→ F0 ⊗ O/c
and so represents a class

ē ∈ Tor1(J, O/c) = H1(F• ⊗ O/c).
Furthermore, since e is minimal generator of F1, we have e /∈ mF1 and hence e /∈
im(u2); this ensures that the class ē represents in Tor is nonzero. To complete the
proof of Theorem A, we will show that ē lies in the image of the natural map

ē ∈ im(Tor1(c
d−1J, O/c) −→ Tor1(J, O/c)), (∗∗)

which contradicts (∗).
For (∗∗), the plan is to explicate the representation of e as a Koszul cohomol-

ogy class. Toward this end, let h1, . . . ,hr be minimal generators of J and let
g1, . . . , gr ∈ m be the coefficients of the minimal syzygy represented by e ∈F1, so
that

∑
gihi = 0. By assumption,

gi ∈ cd = (z1, . . . , zd)
d.

Now write
gi = z1gi1 + · · · + zdgid ,

where each gij ∈ (z1, . . . , zd)d−1, and for j = 1, . . . , d put

Gj = h1g1j + · · · + hrgrj .
Then Gj ∈ (z1, . . . , zd)d−1J. Furthermore, the Gj give a Koszul relation on the zj ,
that is,

z1G1 + · · · + zdGd = 0,

and so they represent a first cohomology class of the complex (z1, . . . , zd)d−1J ⊗
K•(z1, . . . , zd); here, as before, K•(z1, . . . , zd) denotes the Koszul complex on the
zj . In other words, (G1, . . . ,Gd) represents an element

η ∈ Tor1(c
d−1J, O/c).

It is not hard to check that the image of η under the natural map to Tor1(J, O/c)
is precisely the class ē. In other words, ē lies in the image of the map in (∗∗), as
required.

Remark 2.1. The “lifting” argument of [10, Prop. 1.1] cannot be carried out in
the singular case for pth syzygies when p ≥ 2 because the entries of the matrices
defining the maps in the minimal free resolution of J can be assumed only in the
maximal ideal m, not in (z1, . . . , zd). However, if we happen to know that an ideal
J has a minimal free resolution in which the entries of the matrices describing all
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the maps µi for i < p lie in the ideal (z1, . . . , zd), then we can carry out the same
“zigzag” argument as in [10, Prop. 1.1] to deduce that no minimal pth syzygy of
J is in (z1, . . . , zd)d+1−p. This will be the case, for example, when ideals J are
generated by a regular sequence of elements vanishing to high order at x.

3. Corollaries and Examples

We start with an example to show that the results of [10] do not extend without
change to the singular case.

Example 3.1. Let O be the local ring at the origin of the hypersurface in C3 de-
fined by the equation

xn + y n + zn = 0,

where n ≥ 3. Blowing up the singular point yields a log resolution, and it is
easy to compute that the multiplier ideal of the trivial ideal is precisely τ =
(x, y, z)n−2. This multiplier ideal has a minimal syzygy vanishing to order 2: the
elements x 2, y2, z2 give a minimal syzygy on the (subset of the) minimal genera-
tors xn−2, y n−2, zn−2 of τ. This shows that, in the singular case, Theorem A of [10]
does not hold as stated, which would rule out a minimal syzygy vanishing modulo
(x, y, z)2. In contrast, as our Theorem A here predicts, this syzygy does not vanish
modulo the square of the ideal generated by two of the coordinate functions.

We next use results of Briançon–Skoda type to give statements involving the mul-
tiplier ideal of OX. For a normal complex variety X of dimension d, define an
ideal σ(X) ⊆ OX by setting

σ(X) =
∑

�

J ((X,�); OX), (2)

where the summation is taken over all effective Q-divisors� such thatKX +� is
Q-Cartier.

Corollary 3.2. If x ∈X is a Cohen–Macaulay point and if

J = J ((X,�); bλ)x ⊆ O = Ox,X

is the germ at x of any multiplier ideal, then no minimal first syzygy of J can
vanish modulo σ(X) · m2d−1. In other words, if g1, . . . , gr are the coefficients of a
minimal syzygy on minimal generators h1, . . . ,hr ∈ J, then

gi /∈ σ(X) · m2d−1

for at least one index i.

Corollary 3.3. If X supports a Q-divisor �0 such that (X,�0) is KLT, then
no first syzygy of any multiplier ideal J can vanish modulo m2d−1.
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Proof of Corollary 3.2. Let z1, . . . , zd be a system of parameters at x generating a
reduction of the maximal ideal m ⊆ O. It follows from Corollary 1.4(ii) that

σ(X) · m2d−1 ⊆ (z1, . . . , zd)
d.

The assertion then follows from Theorem A.

Remark 3.4. Using the result of Lipman and Teissier [11] quoted in Remark 1.5,
a similar argument shows that the conclusion of Corollary 3.3 holds at any Cohen–
Macaulay point of a Q-Gorenstein variety with only rational singularities.

Example 3.5. Let R be the local ring at the vertex of the affine cone over a
smooth projective hypersurface of degree n in projective d-space. Then R is a
d-dimensional Gorenstein ring with multiplier ideal τ = mn−d. According to
Corollary 3.2, no minimal syzygy of any multiplier ideal can vanish to order
n− d + (2d −1) = n+ d −1. Note that, since every ideal is contained in the unit
ideal, it follows that every multiplier ideal is contained in the multiplier ideal τ =
mn−d of the trivial ideal.

Remark 3.6. If X is Q-Gorenstein then σ(X) = J (X, OX), since in this case
one can take � = 0 in the sum defining σ(X). It is known in this setting that
J (X, OX) reduces modulo p � 0 to the test ideal τ(X) of X defined using tight
closure (see [4; 17]). It would be interesting to know whether there is an analogous
interpretation of the ideal σ(X) on an arbitrary normal variety X. In this connec-
tion, observe from Corollary 1.4 that if f1, . . . , fr ∈ m are functions generating a
reduction of an ideal c, then

σ(X) · cm ⊆ (f1, . . . , fr)
m+1−r;

in characteristic p > 0, the analogous formula holds with σ(X) replaced by τ(X).

Our remaining applications make more systematic use of the connection with tight
closure just alluded to. Let X be a Q-Gorenstein variety of dimension d, let x ∈
X be a Cohen–Macaulay point, and set

τ = J (X, OX)x ⊆ O = Ox,X.

In the Q-Gorenstein setting, Corollary 3.2 asserts that no minimal first syzygy
of a multiplier ideal can vanish modulo τ · m2d−1. However, according to [17,
Thm. 3.1] or [4], the ideal τ is a universal test ideal for O in the sense of tight clo-
sure. Roughly speaking, this means that after reducing modulo p for p � 0 the
ideal τ becomes the test ideal for the corresponding ring O modulo p; that is, the
elements of τ multiply the tight closure of any ideal I back into the ideal I. (For
precise statements we refer to the main theorems of either [17] or [4].) We can now
deduce some statements in characteristic 0 by reducing modulo p and invoking
facts from tight closure, as follows.

Corollary 3.7. Assume that X is Q-Gorenstein and let J ⊂ O denote the Ja-
cobian ideal of O with respect to some local embedding in a smooth variety. If
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f = (f1, . . . , fr) is a minimal ( first) syzygy of some multiplier ideal J, then some
fi fails to be in the ideal Jm2d−1.

Proof. Keeping in mind our remarks from the preceding paragraph, it suffices to
show that the Jabobian ideal J is contained in the multiplier ideal τ. Indeed, by [6,
Thm. 3.4] we know that, in prime characteristic, the Jacobian ideal is contained in
the test ideal; this means that, in characteristic 0, the Jacobian ideal must be con-
tained in the multiplier ideal of the unit ideal by [17, Thm. 3.1]. (Related results
comparing multiplier ideals and Jacobian ideals can be found in [1, Sec. 4].)

Remark 3.8. One can replace the multiplier ideal τ = J (X, OX) in this discus-
sion by any ideal τ ′ with the property that, after reducing modulo p for p � 0,
τ ′ is contained in the parameter test ideal for the corresponding prime character-
istic ring. The point is that the parameter test ideal will multiply the tight closure
of any ideal I generated by monomials in a system of parameters back into I, so
that the equation

τ ′m2d−1 ⊆ (z1, . . . , zd)
d

will hold for such τ ′. One could, for example, replace σ(X) in the statement of
Corollary 3.2 by a universal parameter test ideal if one is known to exist. For in-
stance, when O is rationally singular, the universal parameter test ideal exists and
is the unit ideal; this is essentially the well-known statement that rationally singu-
lar rings correspond, after reduction modulo p for p � 0, to rings in which all
parameter ideals are tightly closed (see the main theorems in [16] and [3] or [13]).

Example 3.9. Using Remark 3.8, we can generalize Example 3.5 as follows. Let
x be the vertex of the cone over any rationally singular projective variety Y with
respect to any ample invertible sheaf L. In other words, the local ring O at x is
obtained by localizing the section ring of Y with respect to L at its unique homo-
geneous maximal ideal m. Assume that O is Cohen–Macaulay and Q-Gorenstein
(it is always normal), and let d be its dimension. Let a be the a-invariant of O;
that is, let a be the largest integer n such that the graded module ωO is nonzero
in degree −n (or, alternatively, such that ωX ⊗ L−n has a nonzero global section).
Then no minimal first syzygy of J can vanish to order a + 2d at the vertex of
the cone.

The point in this case is that, after reducing modulo p � 0, the parameter test
ideal includes all elements of degree > a. In particular, ma+1 is contained in the
parameter test ideal and so we can apply Remark 3.8.

To see that every element of degree greater than the a-invariant is contained in
the parameter test ideal, recall first that the parameter test ideal of O is the anni-
hilator of the tight closure of the zero module in H d

{x}(O) [15, Prop. 4.4]. On the
other hand, for a section ring over a rationally singular variety, the tight closure
of zero inH d

{x}(O) is precisely the submodule ofH d
{x}(O) of nonnegatively graded

elements. Since H d
{x}(O) vanishes in degree > a, it follows that every element of

degree > a annihilates the required tight closure module; see also [8].
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Example 3.10. The case of a standard graded algebra gives a user-friendly spe-
cial case of Example 3.9. Let R be a normal Cohen–Macaulay Q-Gorenstein
N-graded domain generated by its degree-1 elements over its degree-0 part C.
Assume also that R has isolated nonrational singularities. Then the first minimal
syzygies of every multiplier ideal in R have degree < 2d + a, where d is the
dimension of R and a is the a-invariant of R. (The statement holds even in the
nonhomogeneous case, where by “degree” we mean the degree of the smallest de-
gree component of the syzygy.)

Example 3.11. In the smooth two-dimensional case, every integrally closed ideal
is a multiplier ideal by a theorem of [12] or [2]. As in [10], TheoremA easily implies
the existence of integrally closed ideals in dimension ≥ 3 that are not multiplier
ideals in the singular case also. For example, if X is a normal Cohen–Macaulay
Q-Gorenstein variety of dimension ≥ 3, then we can find plenty of regular se-
quences f1, . . . , fr—where r is strictly smaller than the dimension—contained in
an arbitrarily high power some minimal reduction of (z1, . . . , zd), of m. For gen-
eral such fi, the ideal I they generate is radical and hence integrally closed. On
the other hand, the Koszul syzygies on the fi violate Theorem A. If we want an
m-primary example then we can work in the graded case and add a large power
of m to I as in [10, Lemma 2.1]. (The proof of this lemma is given in [10] for
polynomial rings, but it works for any graded ring.)

Finally, it would be interesting to know the answer to the following question.

Question 3.12. If R is a two-dimensional Q-Gorenstein rational singular ring
essentially of finite type over C, then is every integrally closed ideal a multiplier
ideal?

The first point to consider would be whether the conclusion of Corollary 3.3 auto-
matically holds in such rings.
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