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Sally Modules of Rank One
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1. Introduction

Let A be a Cohen–Macaulay local ring with the maximal ideal m and d = dimA >

0. We assume the residue class field k = A/m of A is infinite. Let I be an m-
primary ideal in A and choose a minimal reduction Q = (a1, a2, . . . , ad) of I. Let

R = R(I ) := A[It] and T = R(Q) := A[Qt] ⊆ A[t],

respectively, denote the Rees algebras of I and Q, where t stands for an indeter-
minate over A. We put

R ′ = R′(I ) := A[It, t−1], T ′ = R′(Q) := A[Qt, t−1],

and
G = G(I ) := R ′/t−1R ′ ∼=

⊕
n≥0

I n/I n+1.

Let B = T/mT, which is the polynomial ring with d indeterminates over the field
k. Following Vasconcelos [13], we then define

SQ(I ) = IR/IT

and call it the Sally module of I with respect to Q. We observe that the Sally mod-
ule S = SQ(I ) is a finitely generated graded T -module, since R is a module-finite
extension of the graded ring T.

Let �A(·) stand for the length and consider the Hilbert function

HI(n) = �A(A/I n+1)

(n ≥ 0) of I. Then we have the integers {ei = ei(I )}0≤i≤d such that the equality

HI(n) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
+ · · · + (−1)ded

holds for all n � 0.
The Sally module S was introduced by Vasconcelos [13], where he gave an ele-

gant review (in terms of his Sally module) of Sally’s works [10; 11; 12] about
the structure of m-primary ideals I with interaction to the structure of G and
Hilbert coefficients ei . Sally first investigated those ideals I satisfying the equal-
ity e1 = e0 − �A(A/I ) + 1 and gave several important results, among which one
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can find the following characterization of ideals I with e1 = e0 − �A(A/I ) + 1
and e2 = 0, where B(−1) stands for the graded B-module whose grading is given
by [B(−1)]n = Bn−1 for all n ∈ Z. (The reader may also wish to consult [2] and
[14] for further ingenious use of Sally modules.)

Theorem 1.1 [12; 13]. The following three conditions are equivalent.

(1) S ∼= B(−1) as graded T -modules.
(2) e1 = e0 − �A(A/I ) + 1 and if d ≥ 2 then e2 = 0.
(3) I 3 = QI 2 and �A(I

2/QI ) = 1.

When this is the case, the following assertions hold true:

(i) e2 = 1 if d ≥ 2;
(ii) ei = 0 for all 3 ≤ i ≤ d if d ≥ 3;

(iii) depthG ≥ d − 1.

This research is a continuation of [12; 13] and aims at similar understanding of the
structure of Sally modules of ideals I that satisfy the equality e1 = e0−�A(A/I )+1
but e2 = 0. When mS = (0), we denote by µB(S) the number of elements in a
minimal homogeneous system of generators of the graded B-module S. Let

Ĩ =
⋃
n≥1

[I n+1 : I n] =
⋃
n≥1

[I n+1 : (an
1, an

2 , . . . , an
d)]

denote the Ratliff–Rush closure of I (cf. [8]), which is the largest m-primary ideal
of A such that I ⊆ Ĩ and

ei(Ĩ ) = ei(I ) for all 0 ≤ i ≤ d.

With this notation, the main result of this paper is stated as follows.

Theorem 1.2. Suppose d ≥ 2. Then the following four conditions are equivalent.

(1) mS = (0), rankB S = 1, and µB(S) = 2.
(2) There exists an exact sequence

0 → B(−2) → B(−1) ⊕ B(−1) → S → 0

of graded T -modules.
(3) e1 = e0 − �A(A/I ) + 1, e2 = 0, and depthG ≥ d − 2.
(4) I 3 = QI 2, �A(I 2/QI ) = 2, mI 2 ⊆ QI, and �A(I

3/Q2I ) < 2d.

When d = 2, one can add the following condition:

(5) �A(Ĩ/I ) = 1 and Ĩ 2 = QĨ.

When any of conditions (1), (2), (3), or (4) is satisfied, the following assertions
hold true:

(i) depthG = d − 2;
(ii) e3 = −1 if d ≥ 3;

(iii) ei = 0 for all 4 ≤ i ≤ d if d ≥ 4;
(iv) �A(I

3/Q2I ) = 2d − 1.
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Moreover, when d = 2 and condition (5) is satisfied, the graded rings G, R, and
R ′ are all Buchsbaum rings with the same Buchsbaum invariants

I(G) = I(R) = I(R ′) = 2.

Combined with Theorem 1.1, this theorem gives, for d = 2, a complete struc-
ture theorem of Sally modules of those ideals I with e1 = e0 − �A(A/I ) + 1
(cf. Theorem 3.1). We could similarly describe the structure of Sally modules in
higher-dimensional cases also provided one could show that I 3 = QI 2 if e1 =
e0 − �A(A/I ) + 1, which we surmise holds true although we could not prove the
implication.

Let us now briefly explain how this paper is organized. We shall prove Theo-
rem 1.2 in Section 3. The key for our proof of Theorem 1.2 is Theorem 2.4, whose
applications we will closely discuss in Section 2. Section 2 also includes some
auxiliary facts on Sally modules. If e1 = 2 but I 2 = QI, the ideal I naturally sat-
isfies the equality e1 = e0 − �A(A/I ) + 1. In Section 4 we shall explore those
ideals I with e1 = 2 but I 2 = QI in connection with the Buchsbaum property of
the graded rings R, G, and R ′ associated to I. We shall explore in Section 5 one
example in order to illustrate our theorems.

In what follows, unless otherwise specified, let (A, m) be a Cohen–Macaulay
local ring with d = dimA > 0. We assume that the field A/m is infinite. Let I be
an m-primary ideal in A and let S be the Sally module of I with respect to a min-
imal reduction Q = (a1, a2, . . . , ad) of I. We put R = A[It], T = A[Qt], R ′ =
A[It, t−1], T ′ = A[Qt, t−1], and G = R ′/t−1R ′. Let M = mT + T+ be the unique
graded maximal ideal in T. We denote by Hi

M(·) (i ∈ Z) the ith local cohomology
functor of T with respect to M. Let L be a graded T -module. For each n∈ Z , let
[Hi

M(L)]n stand for the homogeneous component of Hi
M(L) with degree n. We

denote by L(α), for each α ∈ Z , the graded T -module whose grading is given by
[L(α)]n = Lα+n for all n∈ Z.

2. Preliminaries

The purpose of this section is to summarize some auxiliary results on Sally mod-
ules that we will use throughout this paper. Some of the results are known, but we
include brief proofs for the sake of completeness.

Lemma 2.1. The following assertions hold true.

(1) m�S = (0) for integers � � 0.
(2) The homogeneous components {Sn}n∈Z of the graded T -module S are given by

Sn
∼=

{
(0) if n ≤ 0,

I n+1/IQn if n ≥ 1.

(3) S = (0) if and only if I 2 = QI.

(4) Suppose that S = (0) and put V = S/MS. Let Vn (n ∈ Z) denote the
homogeneous component of the finite-dimensional graded (T/M)-space V
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with degree n and put � = {n ∈ Z | Vn = (0)}. Let q = max�. Then
� = {1, 2, . . . , q} and rQ(I ) = q + 1, where rQ(I ) stands for the reduction
number of I with respect to Q.

(5) S = TS1 if and only if I 3 = QI 2.

Proof. Let u = t−1 and note that S = IR/IT ∼= IR ′/IT ′ as graded T -modules.
We then have u� · (IR ′/IT ′) = (0) for some � � 0, because the graded T ′-module
IR ′/IT ′ is finitely generated and [IR ′/IT ′ ]n = (0) for all n ≤ 0. Hence m� · S =
(0) for � � 0, because Q� = (Qt �)u� ⊆ u�T ′ ∩ A and m = √

Q. This proves
assertion (1).

Because [IR]n = (I n+1)t n and [IT ]n = (IQn)t n for all n ≥ 0, assertion (2)
follows from the definition of the Sally module S = IR/IT. Assertion (3) readily
follows from assertion (2).

To show assertion (4), we observe that V1
∼= S1/mS1 = (0) since S = ∑

n≥1 Sn

and S1
∼= I 2/QI = (0). Hence 1∈�. Let i ∈� and put αi = dimk Vi, where k =

T/M. We choose elements {ξi,j}1≤j≤αi
of Si so that the images of {ξi,j}1≤j≤αi

in
V form a k-basis of Vi. Hence, thanks to graded Nakayama’s lemma, we have

S =
∑
i∈�

( αi∑
j=1

T ξi,j

)
.

Let ξi,j be the image of xi,j t
i in S with xi,j ∈ I i+1.

Let n ≥ 1 be an integer and assume that n /∈ �. Choose x ∈ I n+1 and let ξ be
the image of xt n in S. We write

ξ =
∑

i∈�, i<n

( αi∑
j=1

ϕi,j ξi,j

)

with ϕi,j ∈ Tn−i . Then, letting ϕi,j = bi,j t
n−i with bi,j ∈Qn−i, we obtain

x ≡
∑

i∈�, i<n

( αi∑
j=1

bi,j xi,j

)
modQnI,

whence x ∈ QI n because
∑αi

j=1 bi,j xi,j ∈ Qn−iI i+1 ⊆ QI n for all i ∈ � such
that i < n. Thus I n+1 = QI n. Suppose now n ≤ q. Then I q+1 = QI q, whence
Sq ⊆ T+S and so Vq = (0), which is impossible. Therefore, � = {1, 2, . . . , q}. If
we choose n = q + 1 then the preceding observation shows that I q+2 = QI q+1,
whence rQ(I ) ≤ q +1. If r = rQ(I ) < q +1 then I q+1 = QI q and so Sq ⊆ T+S,
which is absurd. Thus rQ(I ) = q + 1. This proves assertion (4). Assertion (5) is
now clear.

Proposition 2.2. Let p = mT. Then the following assertions hold true.

(1) AssT S ⊆ {p}; hence dimT S = d if S = (0).
(2) �A(A/I n+1) = e0

(
n+d
d

) − (e0 − �A(A/I )) · (
n+d−1
d−1

) − �A(Sn) for all n ≥ 0.
(3) e1 = e0 − �A(A/I ) + �Tp

(Sp); hence e1 = e0 − �A(A/I ) + 1 if and only if
mS = (0) and rankB S = 1.
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(4) Suppose that S = (0) and let s = depthT S; then depthG = s − 1 if s < d,
and S is a Cohen–Macaulay T -module if and only if depthG ≥ d − 1.

Proof. (1) Let P ∈ AssT S. Then p = mT ⊆ P, since m�S = 0 for some � � 0
by Lemma 2.1(1). Since htT p = 1, it is enough to show that htT P ≤ 1. Consider
the exact sequence

0 → ITP → IRP → SP → 0

ofTP -modules. We recall that IT is a Cohen–MacaulayT -module with dimT IT =
d + 1 because

T/IT = (A/I ) ⊗A/Q (T/QT )

is the polynomial ring with d indeterminates over A/I and T is a Cohen–Macaulay
ring with dim T = d+1. Notice now that a1 ∈P is a nonzero divisor on IR, whence
depthTP IRP > 0. Thanks to the depth lemma, it follows from the previous exact
sequence that dimTP ITP = 1, since depthTP IRP > 0 and depthTP SP = 0. Hence
dim TP = 1, because IT is a Cohen–Macaulay T -module with (0) :T IT = (0).
Thus P = p and so we have AssT S = {p} as claimed.

(2) Let n ≥ 0 be an integer. Then, by the exact sequence

0 → Sn → A/QnI → A/I n+1 → 0

of A-modules (Lemma 2.1(2)), we have

�A(A/I n+1) = �A(A/QnI ) − �A(Sn),

and by the exact sequence

0 → Qn/QnI → A/QnI → A/Qn → 0

we have

�A(A/QnI ) = �A(A/Qn) + �A(Q
n/QnI )

= �A(A/Q) ·
(
n + d − 1

d

)
+ �A(Q

n/QnI )

= e0

(
n + d − 1

d

)
+ �A(Q

n/QnI )

= e0

(
n + d

d

)
− e0

(
n + d − 1

d − 1

)
+ �A(Q

n/QnI )

because e0 = �A(A/Q) (recall that Q = (a1, a2, . . . , ad) is a minimal reduction of
I ). By virtue of the isomorphisms

Qn/QnI ∼= (A/I ) ⊗A (Qn/Qn+1) ∼= (A/I ) ⊗A [(A/Q)(
n+d−1
d−1 )] ∼= (A/I )(

n+d−1
d−1 ),

we also have the equality

�A(Q
n/QnI ) = �A(A/I ) ·

(
n + d − 1

d − 1

)
.

Thus,
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�A(A/I n+1)

= �A(A/QnI ) − �A(Sn)

=
[

e0

(
n + d

d

)
− e0

(
n + d − 1

d − 1

)
+ �A(Q

n/QnI )

]
− �A(Sn)

=
[

e0

(
n + d

d

)
− e0

(
n + d − 1

d − 1

)
+ �A(A/I ) ·

(
n + d − 1

d − 1

)]
− �A(Sn)

= e0

(
n + d

d

)
− (e0 − �A(A/I )) ·

(
n + d − 1

d − 1

)
− �A(Sn)

for all n ≥ 0.
(3) If S = (0), then e1 = e0 − �A(A/I ) by assertion (2). We may thus assume

that S = (0). Take a filtration

S = L0 � L1 � · · · � Lq = (0)

of the graded T -module S such that each Li is a graded T -submodule of S and

Li/Li+1
∼= (T/Pi)(−αi)

with some integer αi for all 0 ≤ i < q, where Pi is a graded prime ideal of T.

Then, because AssT S = MinT S = {p}, we see that p ⊆ Pi for all 0 ≤ i < q.

Furthermore,
�Tp

(Sp) = #{i | 0 ≤ i < q, p = Pi},
since

�Tp
(Sp) =

q−1∑
i=0

�Tp
((Li/Li+1)p) =

q−1∑
i=0

�Tp
(Tp/PiTp)

and

Tp/PiTp =
{

Bp if p = Pi,

(0) if p � Pi.

On the other hand,

�A(Sn) =
q−1∑
i=0

�A([Li/Li+1]n) =
q−1∑
i=0

�A([(T/Pi)(−αi)]n)

for all n∈ Z. When p = Pi we have

�A([(T/Pi)(−αi)]n) = �A(Bn−αi
) =

(
n − αi + d − 1

d − 1

)

=
(
n + d − 1

d − 1

)
− αi

(
n + d − 2

d − 2

)
+ (lower terms),

and when p � Pi we have dim T/Pi < d, so the degree of the Hilbert polynomial
of T/Pi is less than d −1. Consequently, the normalized coefficient in degree d −1
of the Hilbert polynomial of the graded T -module S is exactly equal to �Tp

(Sp);
then, by assertion (2), we get the equality e1 = e0 − �A(A/I ) + �Tp

(Sp).
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To show the second part of assertion (3), we recall that AssT S = {p}. If
�Tp

(Sp) = 1 then pSp = (0), so that pS = (0); hence mS = (0) and rankB S =
�Tp

(Sp) = 1. The reverse implication is clear.
(4) Recall that s ≤ d = dimT S. Because IT is a Cohen–Macaulay T -module

with dimT IT = d + 1, it follows from the exact sequence

0 → IT → IR → S → 0 (a)

that depthT IR ≥ d if s = d and depthT IR = s if s < d (by the depth lemma).
We put L = R+ and note that IR ∼= L(1) as graded R-modules. Therefore, since
A is a Cohen–Macaulay ring with dimA = d, from the exact sequence

0 → L → R → A → 0 (b)

it follows that depthR ≥ d if s = d and depthR = s if s < d. Hence, the exact
sequence

0 → IR → R → G → 0 (c)

implies that depthG ≥ d − 1 if s = d. If s < d, then depthR = s and so, by [4,
Thm. 2.1], we obtain depthG = s − 1.

Suppose that depthG ≥ d −1. Then depthR ≥ d by [4, Thm. 2.1]; whence, by
the exact sequence (b) we have depthT L ≥ d and so depthT S ≥ d by the exact
sequence (a). Therefore, S is a Cohen–Macaulay T -module.

Combining Lemma 2.1(3) and Proposition 2.2 yields the following result of North-
cott and Huneke.

Corollary 2.3 [5; 7]. We have e1 ≥ e0 − �A(A/I ). The equality e1 =
e0 − �A(A/I ) holds true if and only if I 2 = QI. When this is the case, ei =
0 for all 2 ≤ i ≤ d, provided d ≥ 2.

The following result is the heart of our paper.

Theorem 2.4. The following conditions are equivalent.

(1) mS = (0) and rankB S = 1.
(2) Either S ∼= B(−1) as graded T -modules, or S ∼= a as graded T -modules for

some graded ideal a (= B) of B with htB a ≥ 2.

Proof. We have only to show (1) ⇒ (2). Because S1 = (0) and S = ∑
n≥1 Sn by

Lemma 2.1, we have S ∼= B(−1) as graded B-modules once S is B-free.
Suppose that S is not B-free. The B-module S is torsion-free, since AssT S =

{mT } by Proposition 2.2(1). Therefore, since rankB S = 1, it follows that d ≥ 2
and S ∼= a(m) as graded B-modules for some integer m and some graded ideal a
(= B) in B, so that we obtain the exact sequence

0 → S(−m) → B → B/a → 0

of gradedB-modules. We may assume that htB a ≥ 2, sinceB = k[X1,X2, . . . ,Xd ]
is the polynomial ring over the field k = A/m. We then have m ≥ 0, because
am+1 = [a(m)]1

∼= S1 = (0) and a0 = (0). We want to show m = 0.
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Because dimB/a ≤ d − 2, the Hilbert polynomial of B/a has degree at most
d − 3. Hence

�A(Sn) = �A(Bm+n) − �A([B/a]m+n)

=
(
m + n + d − 1

d − 1

)
− �A([B/a]m+n)

=
(
n + d − 1

d − 1

)
+ m

(
n + d − 2

d − 2

)
+ (lower terms)

for n � 0. Consequently,

�A(A/I n+1) = e0

(
n + d

d

)
− (e0 − �A(A/I )) ·

(
n + d − 1

d − 1

)
− �A(Sn)

= e0

(
n + d

d

)
− (e0 − �A(A/I ) + 1) ·

(
n + d − 1

d − 1

)

− m

(
n + d − 2

d − 2

)
+ (lower terms)

by Proposition 2.2(2), so e2 = −m. Thus m = 0, because e2 ≥ 0 by Narita’s the-
orem [6].

We note some consequences of Theorem 2.4.

Corollary 2.5. Suppose e1 = e0 − �A(A/I ) + 1 and I 3 = QI 2. Let c =
�A(I

2/QI ). Then the following assertions hold true.

(1) 0 < c ≤ d and µB(S) = c.

(2) depthG ≥ d − c and depthB S = d − c + 1.
(3) depthG = d − c for c ≥ 2.
(4) If c < d, then �A(A/I n+1) = e0

(
n+d
d

) − e1
(
n+d−1
d−1

) + (
n+d−c−1
d−c−1

)
for all n ≥ 0

and

ei =
{

0 if i = c + 1,

(−1)c+1 if i = c + 1
for 2 ≤ i ≤ d.

(5) If c = d, then �A(A/I n+1) = e0
(
n+d
d

) − e1
(
n+d−1
d−1

)
for all n ≥ 1. Also, ei =

0 for 2 ≤ i ≤ d.

Proof. We have mS = (0) and rankB S = 1 by Proposition 2.2(3), while S =
TS1 since I 3 = QI 2 (cf. Lemma 2.1(5)). Thus by Theorem 2.4 we have S ∼= a as
graded B-modules, where a = (X1,X2, . . . ,Xc) is an ideal in B generated by lin-
ear forms {Xi}1≤i≤c. Hence 0 < c ≤ d, µB(S) = c, and depthB S = d − c+1, so
assertions (1), (2), and (3) follow (cf. Proposition 2.2(4)). Considering the exact
sequence

0 → S → B → B/a → 0

of graded B-modules, we have

�A(Sn) = �A(Bn) − �A([B/a]n)

=
(
n + d − 1

d − 1

)
−

(
n + d − c − 1

d − c − 1

)
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for all n ≥ 0 (resp. n ≥ 1) if c < d (resp. c = d). Thus assertions (4) and (5) fol-
low (cf. Proposition 2.2(2)).

Let Ĩ = ⋃
n≥1[I

n+1 : I n] be the Ratliff–Rush closure of I [8], which is the largest

m-primary ideal in A such that I ⊆ Ĩ and ei(Ĩ ) = ei for all 0 ≤ i ≤ d.

Corollary 2.6. Suppose that d ≥ 2. Then the following three conditions are
equivalent.

(1) S ∼= B+ as graded T -modules.
(2) e1 = e0 − �A(A/I ) + 1, I 3 = QI 2, and ei = 0 for all 2 ≤ i ≤ d.

(3) I 3 = QI 2, �A(Ĩ/I ) = 1, and Ĩ 2 = QĨ.

When these conditions hold, depthG = 0.

Proof. Let c = �A(I
2/QI ).

(1) ⇒ (2) and the last assertion: These follow from Corollary 2.5. Notice that
c = �A(S1) = d and I 3 = QI 2 because S ∼= B+.

(2) ⇒ (1): We have c = d by Corollary 2.5(4) and (5) because ei = 0 for all
2 ≤ i ≤ d, so S ∼= B+ (see the proof of Corollary 2.5).

(2) ⇒ (3): We have depthG = 0 by Corollary 2.5(3), since c = d. Now we
apply local cohomology functors Hi

M(·) of T with respect to the graded maximal
ideal M = mT + T+ to the exact sequences

0 → IR → R → G → 0 and 0 → IT → IR → S → 0

of graded T -modules and so derive the monomorphism

H0
M(G) ↪→ H1

M(IR)

and the isomorphisms

H1
M(IR) ∼= H1

M(S) ∼= B/B+

of graded T -modules (recall that S ∼= B+ and IT is a Cohen–Macaulay T -module
with dimT IT = d + 1). Consequently, because H0

M(G) = (0) and �A(B/B+) =
1, we have

H0
M(G) ∼= H1

M(IR) ∼= H1
M(S) ∼= B/B+ ,

whence H0
M(G) = [H0

M(G)]0 = (0). Then �A(Ĩ/I ) = 1 because [H0
M(G)]0

∼=
Ĩ/I. Therefore, it follows from the equality e1 = e0 − �A(A/I ) + 1 that

e1(Ĩ ) = e0(Ĩ ) − �A(A/Ĩ ),

since ei(Ĩ ) = ei for i = 0,1 and �A(A/I ) = �A(A/Ĩ ) + 1. Hence Ĩ 2 = QĨ by
Corollary 2.3.

(3) ⇒ (2): We have e1 = e0 − �A(A/I )+1 and ei = 0 for all 2 ≤ i ≤ d, since
e1(Ĩ ) = e0(Ĩ ) − �A(A/Ĩ ) = e0 − �A(A/I ) + 1 and ei(Ĩ ) = 0 for all 2 ≤ i ≤ d

(cf. Corollary 2.3).

We include a proof of Theorem 1.1 in this context in order to show how our argu-
ments work.
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Proof of Theorem 1.1. (1) ⇒ (3): See parts (2) and (5) of Lemma 2.1.
(3) ⇒ (1): By Lemma 2.1(5) we have S = TS1, whence mS = (0) because

S1
∼= I 2/QI and �A(I

2/QI ) = 1. We thus have an epimorphism B(−1) → S →
0, which must be an isomorphism because dimT S = d.

(1) ⇒ (2) and the last assertions: We have I 3 = QI 2 since S = TS1, so the
assertions now follow from Corollary 2.5 (note that c = 1).

(2) ⇒ (1): We have mS = (0) and rankB S = 1 by Proposition 2.2(3), and the
B-module S is torsion-free by Proposition 2.2(1). Hence S is B-free if d = 1 and
so S ∼= B(−1) as graded T -modules (note that S1 = (0)).

Assume that d = 2. Then we have the exact sequence

0 → B(−1) → S → C → 0 (d)

of graded B-modules with dimB C ≤ 1. Hence �A(Sn) = �A(Bn−1) + �A(Cn) =(
n
1

) + �A(Cn) for all n ≥ 1 and so, by Proposition 2.2(2),

�A(A/I n+1) = e0

(
n + 2

2

)
− (e0 − �A(A/I ) + 1)

(
n + 1

1

)
+ (1 − �A(Cn)).

Consequently, e2 = 1 − �A(Cn) > 0 by Narita’s theorem [6] and so �A(Cn) = 0
for all n ≥ 1. Thus �A(C) ≤ 1, so that C = (0) by the exact sequence (d).

Now let d ≥ 3 and assume that our assertion holds for d − 1. Choose the ele-
ment a1 ∈Q so that a1 is a superficial element of I (this choice is possible because
the field A/m is infinite). Let Ā = A/(a1), Ī = I/(a1), and Q̄ = Q/(a1). Then
all the assumptions of condition (2) are safely fulfilled for the ideal Ī in Ā, since
ei(Ā) = ei for all 0 ≤ i ≤ d − 1. As a result, the hypothesis of induction yields
that depth G(Ī ) ≥ (d−1)−1 = d−2 > 0 and so, thanks to Sally’s technique [12],
we see that a1t is a nonzero divisor for G; from this it follows that I 3 = QI 2 be-
cause Ī 3 = Q̄Ī 2. Thus S ∼= B(−1) as graded B-modules by Corollary 2.5 (note
that c = 1).

3. Proof of Theorem 1.2

We begin with the following statement.

Theorem 3.1. Suppose that d = 2. Then the following three conditions are
equivalent.

(1) e1 = e0 − �A(A/I ) + 1.
(2) Either S ∼= B(−1) as graded T -modules or S ∼= B+ as graded T -modules.
(3) Either (a) I 3 = QI 2 and �A(I

2/QI ) = 1 or (b) �A(Ĩ/I ) = 1 and Ĩ 2 = QĨ.

We obtain e2 = 1 (resp. e2 = 0) if condition (3)(a) (resp. condition (3)(b)) is sat-
isfied and also have the following results.

e2 rQ(I ) depthB S depthG

1 2 2 2 if Q ⊇ I 2

1 2 2 1 if Q ⊇ I 2

0 2 1 0 G is a Buchsbaum ring with I(G) = 2
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Proof. (1) ⇒ (2): In view of Corollary 2.5 and its proof, we need only show that
I 3 = QI 2. This equality follows directly from a result of Rossi [9, Cor. 1.5]. We
present a proof in our context for the sake of completeness.

We have mS = (0) and rankB S = 1. Assume that S ∼= B(−1) as graded B-
modules. Then, by Theorem 2.4, we have S ∼= a as graded B-modules for some
graded ideal a = B with htB a = 2. We will show that a = B+. Because a1

∼=
S1 = (0), the ideal a contains a linear form f = 0 of B and so the ideal a/(f ) of
B/(f ) is principal, since B/(f ) is the polynomial ring with one indeterminate over
the field k = A/m. We write a = (f , g) with a form g ∈ B. Then f , g is a regu-
lar sequence in B, since htB a = 2. Let α = deg g; then α ≤ 2 by Lemma 2.1(4).
We will show that α = 1.

Assume that α = 2. Then, since S ∼= a = (f , g), the graded B-module S has a
resolution of the form

0 −→ B(−3)
(g
f )−−→ B(−1) ⊕ B(−2)

ϕ=(ξ η)−−−−→ S −→ 0,

in which the homomorphism ϕ is defined by ϕ(e1) = ξ ∈ S1 and ϕ(e2) = η ∈ S2

(here {e1, e2} denotes the standard basis of B(−1) ⊕ B(−2)). Let a ∈Q, c ∈Q2,
x ∈ I 2, and y ∈ I 3 be such that f and g are (respectively) the images of at and ct 2

in B and ξ and η are (respectively) the images of xt and yt 2 in S. We observe that
a /∈ mQ, so Q = (a, b) for some b ∈Q. Hence c = a2z1 + abz2 + b2z3 for some
z1, z2, z3 ∈A.

We now consider the relation gξ + fη = 0 in S3; that is, cx + ay ∈Q3I. Write
cx + ay = (a2z1 + abz2 + b2z3)x + ay = a2i + b2j with i, j ∈ QI (recall that
Q3 = (a2, b2)Q). We then have ay ′ = b2x ′, where y ′ = y + az1x + bz2x − ai

and x ′ = j − z3x. Hence x ′ = ah and y ′ = b2h for some h ∈ A, because the se-
quence a, b2 is A-regular. Therefore, h ∈ I 3 : (a2, b2) ⊆ Ĩ because a2h = ax ′ ∈
I 3 and b2h = y ′ ∈ I 3. Now take note that S = Bξ +Bη. We thus have S1 = B0ξ

and S2 = B1S1 + B0η, so �A(I
2/QI ) = 1 and I 3 = QI 2 + (y).

We shall need the following.

Claim 1. h /∈ I and x ′ = ah /∈QI.

Proof of Claim 1. Assume that h ∈ I. Then y ′ = b2h ∈ Q2I and so y =
y ′ − az1x − bz2x + ai ∈QI 2, whence I 3 = QI 2 + (y) = QI 2. This forces S =
BS1, which is impossible because α = 2. Thus h /∈ I. Suppose ah ∈ QI and let
ah = ai1 + bi2 with i1, i2 ∈ I. Then a(h − i1) = bi2 and so h − i1 ∈ (b). Hence
h∈ I, which is impossible.

Because �A(Ĩ/I ) ≥ 1 by this claim, we obtain

e1 = e0 − �A(A/I ) + 1

= e0(Ĩ ) − �A(A/Ĩ ) − (�A(Ĩ/I ) − 1)

≤ e0(Ĩ ) − �A(A/Ĩ )

≤ e1(Ĩ )

= e1,
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where e0(Ĩ ) − �A(A/Ĩ ) ≤ e1(Ĩ ) is the inequality of Northcott for the ideal Ĩ (cf.
Corollary 2.3). Then we have �A(Ĩ/I ) = 1 and e1(Ĩ ) = e0(Ĩ )− �A(A/Ĩ ), so that
Ĩ = I + (h) and Ĩ 2 = QĨ by Corollary 2.3, since Q is also a reduction of Ĩ .

Thus the associated graded ring of Ĩ is a Cohen–Macaulay ring and so (a)∩ Ĩ n =
aĨ n−1 for all n∈ Z , because at is G(Ĩ )-regular.

Now recall that x ′ = ah /∈ QI ; then I 2 = QI + (ah) because �A(I
2/QI ) = 1.

Let Ā = A/(a), Ī = I/(a), and Q̄ = Q/(a). Then Ī 2 = Q̄Ī and so Ī 3 = Q̄Ī 2,
whence I 3 ⊆ QI 2 + (a). Thus I 3 = QI 2 + [(a) ∩ I 3]. On the other hand,

(a) ∩ I 3 ⊆ (a) ∩ Ĩ 3 = aĨ 2 = aQĨ = (aQ)(I + (h)) = (aQ)I + x ′Q ⊆ QI 2;
then I 3 = QI 2 and so α = 1, which is the required contradiction. Thus S = BS1

and S ∼= B+.

(2) ⇒ (3): See Theorem 1.1 and Corollary 2.6.
(3) ⇒ (1): If condition (3)(a) is satisfied, then (1) follows from Theorem 1.1.

Suppose condition (3)(b) is satisfied. Then e1 = e1(Ĩ ) = e0(Ĩ ) − �A(A/Ĩ ) =
e0 − �A(A/I ) + 1 (cf. Corollary 2.3).

We now consider the theorem’s last assertions. Suppose condition (3)(a) is sat-
isfied. Then e2 = 1 by Theorem 1.1. If Q ⊇ I 2 then I 2 = Q ∩ I 2 = QI, so
that G is not a Cohen–Macaulay ring. If Q ⊇ I 2 then Q ∩ I 2 = QI, because
�A(I

2/QI ) = 1 and I 2 � Q ∩ I 2 ⊇ QI. Because I 3 = QI 2, this yields that G is
a Cohen–Macaulay ring.

Suppose condition (3)(b) is satisfied. Then, since Ĩ 2 = QĨ, we have e2 = 0
(by Corollary 2.3; recall that e2(Ĩ ) = e2) and R′(Ĩ ) is a Cohen–Macaulay ring.
We also have the following.

Claim 2. Ĩ n = I n for all n ≥ 2.

Proof of Claim 2. We have S ∼= B+ as graded T -modules, because e2 = 0.
Hence H0

M(G) = [H0
M(G)]0 by the implication (2) ⇒ (3) in the proof of Corol-

lary 2.6. Let n ≥ 2 be an integer. We then have

[Ĩ n ∩ I n−1]/I n ∼= [H0
M(G)]n−1 = (0).

Consequently, Ĩ n = I n because Ĩ n ⊆ Ĩ n ∩ I n−1 (recall that Ĩ n = Qn−1Ĩ, since
Ĩ 2 = QĨ ). Thus Ĩ n = I n for all n ≥ 2.

We put W = R′(Ĩ )/R ′ and look at the exact sequence

0 → R ′ → R′(Ĩ ) → R′(Ĩ )/R ′ → 0 (†)

of gradedR ′-modules. Observe thatW = W1
∼= Ĩ/I by Claim 2, whence �A(W ) =

1. Let N = (m,R+ , t−1)R ′ be the unique graded maximal ideal in R ′. Then, be-
cause R′(Ĩ ) is a Cohen–Macaulay ring, applying functors Hi

N (·) to the exact se-
quence (†) yields Hi

N (R ′) = (0) for all i = 1, 3 and H1
N(R ′) = W. Thus R ′ is a

Buchsbaum ring with the Buchsbaum invariant

I(R ′) =
2∑

i=0

(
2
i

)
�A(Hi

N (R ′)) = 2,
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whence so is the graded ring G = R ′/t−1R ′. We similarly have that R is a Buchs-
baum ring with I(R) = 2, because R(Ĩ ) is a Cohen–Macaulay ring and R(Ĩ )/R =
[R(Ĩ )/R]0

∼= Ĩ/I. This completes the proof of Theorem 3.1.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. (1) ⇒ (3): We have e1 = e0 − �A(A/I ) + 1 by Proposi-
tion 2.2(3) and so e2 = 0 by Theorem 1.1. Because S ∼= B(−1), by Theorem 2.4
we get S ∼= a as graded B-modules for some graded ideal a (= B) in B with
htB a ≥ 2. Since µB(a) = µB(S) = 2, the ideal a is a complete intersection with
htB a = 2 and so depthB B/a = d − 2, whence depthB S = d − 1. Therefore,
depthG = d − 2 by Proposition 2.2(4).

(3) ⇒ (2): We first show that I 3 = QI 2. Thanks to Theorem 3.1, we may as-
sume that d ≥ 3 and our assertion holds true for d −1. Since depthG ≥ d − 2 >

0, we may choose a1 ∈ Q so that a1t is a nonzero divisor in G. Let Ā = A/(a1),
Ī = I/(a1), and Q̄ = Q/(a1). Then, because G(Ī ) ∼= G/a1t · G and ei(Ī ) = ei

for all 0 ≤ i ≤ d − 1, condition (3) is satisfied for the ideal Ī and so Ī 3 = Q̄Ī 2,
whence I 3 = QI 2. Therefore, since e2 = 0, we see by Corollary 2.5 that c =
µB(S) = 2 and so assertion (2) follows.

(2) ⇒ (4): We have mS = (0), S = TS1, and S1
∼= B2

0 . Hence mI 2 ⊆ QI,
I 3 = QI 2, and �A(I

2/QI ) = �A(S1) = 2. We similarly have

�A(I
3/Q2I ) = �A(S2) = 2�A(B1) − �A(B0) = 2d − 1 < 2d.

(4) ⇒ (1): We have S = TS1 and so mS = (0), since mS1 = (0). Given that
�A(S1) = 2, we have an epimorphism B(−1)2 → S → 0 of graded B-modules,
which cannot be an isomorphism because �A(S2) = �A(I

3/IQ2) < 2d. Thus
rankB S = 1, from which µB(S) = 2 follows by Corollary 2.5.

See Theorem 3.1 for the equivalence between condition (5) and the others. See
Corollary 2.5 and the proof of Theorem 3.1 for the last assertions.

We note the following.

Example 3.2. Let A = k[[X,Y,Z1,Z2, . . . ,Zm]] (m ≥ 0) be the formal power
series ring over a field k. Hence dimA = m + 2. We put

Q = (X 4,Y 4,Z1,Z2, . . . ,Zm) and I = Q + (X3Y,XY 3).

Then

mI 2 ⊆ QI, �A(I
2/QI ) = 2, �A(I

3/Q2I ) < 2d, I 3 = QI 2,

where d = m + 2. Hence condition (4) in Theorem 1.2 is satisfied, so that mS =
(0), rankB S = 1, and µB(S) = 2. We have �A(A/Q) = 16, �A(A/I ) = 11, and

�A(A/I n+1) = 16

(
n + 2

2

)
− 6

(
n + 1

1

)
for all n ≥ 1 if m = 0. If m ≥ 1, then

�A(A/I n+1) = 16

(
n + d

d

)
− 6

(
n + d − 1

d − 1

)
+

(
n + d − 3

d − 3

)
for all n ≥ 0. As a result, e3 = −1 and ei = 0 (2 ≤ i ≤ d, i = 3).



372 Shiro Goto, Koj i Nishida, & Kazuho Ozeki

Proof. Because G = G((X 4,X3Y,XY 3,Y 4))[Z1,Z2, . . . ,Zm] (the polynomial
ring), the case m > 0 follows easily from the case m = 0 (see Theorem 1.2(3)).
Let m = 0; then I 2 = QI + (X6Y 2,X2Y 6). It is routine to show that mI 2 ⊆ QI,
�A(I

2/QI ) = 2, and I 3 = QI 2. We have QI 2 = Q2I + (X10Y 2,X6Y 6,X2Y 10),
so �A(I

3/Q2I ) = 3.

Before closing this section, we briefly study ideals with e1 = 2.

Theorem 3.3. Suppose that e1 = 2 and I 2 = QI. Then the following asser-
tions hold.

(i) �A(I/Q) = �A(I
2/QI ) = 1.

(ii) I 3 = QI 2.

(iii) S ∼= B(−1) as graded T -modules.
(iv) depthG = d − 1.
(v) e2 = 1 if d ≥ 2 and ei = 0 for 3 ≤ i ≤ d if d ≥ 3.

Proof. Since I 2 = QI, it follows from Corollary 2.3 that

0 < �A(I/Q) = e0 − �A(A/I ) < e1 = 2.

Therefore, �A(I/Q) = 1 and e1 = e0 − �A(A/I ) + 1. Let I = Q + (x) with x ∈
A. Then I 2 = QI + (x 2), so that �A(I 2/QI ) = 1 because I 2 = QI and mI ⊆
Q. We will show by induction on d that I 3 = QI 2 and depthG ≥ d − 1. Since
�A(S1) = �A(I

2/QI ) = 1, by Theorems 1.1 and 3.1 we may assume that d ≥ 3
and then our assertion holds true for d − 1. Choose a1 ∈ Q so that a1 is a super-
ficial element of I. Then, passing to the ideals Ī = I/(a1) and Q̄ = Q/(a1) in the
ring Ā = A/(a1), we obtain e1(Ī ) = e1 = 2. We claim that Ī 2 = Q̄Ī . In fact, if
Ī 2 = Q̄Ī then the ring G(Ī ) is Cohen–Macaulay. We can thus use Sally’s tech-
nique [12] to find that a1t is regular on G; hence I 2 = QI, which is impossible.
Consequently, the hypothesis of induction shows Ī 3 = Q̄Ī 2 and depth G(Ī ) ≥
(d − 1) − 1 = d − 2 > 0. Thus, again using Sally’s technique, we find that a1t

is regular on G and so I 3 = QI 2 and depthG ≥ d − 1. Since mI ⊆ Q, it fol-
lows that I 2 ⊆ Q; hence G is not a Cohen–Macaulay ring, for otherwise I 2 =
Q ∩ I 2 = QI. Therefore, depthG = d − 1. See Theorem 1.1 for assertions (iii)
and (v).

Corollary 3.4. Suppose that e1 = 2. Then depthG ≥ d −1, and the ring G is
Cohen–Macaulay if and only if I 2 = QI.

4. Buchsbaumness in the Graded Rings G

Associated to Ideals with e1 = 2

The purpose of this section is to study the problem of when the associated graded
rings G are Buchsbaum for the ideals I with e1 = 2.

We assume that e1 = 2 but I 2 = QI. We have depthR = d [4, Thm. 2.1] be-
cause depthG = d − 1 by Theorem 3.3. Let N = mR + R+ and let

a i(G) = sup{n∈ Z | [Hi
N (G)]n = (0)}

for 0 ≤ i ≤ d.
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Lemma 4.1. The following assertions hold true.

(1) ad(G) = 2 − d and �A([Hd
N(G)]2−d) = 1.

(2) ad−1(G) = 1 − d and �A([Hd−1
N (G)]1−d) = 1.

In particular, H0
N(G) = [H0

N(G)]0 and G is a Buchsbaum ring if d = 1.

Proof. Suppose d = 1. Let a = a1 and f = at. Then I 3 = aI 2 by Theorem 3.3.
Let n ≥ 1 be an integer and let x ∈ I n. Then, since I n+2 = aI n+1, we obtain x ∈
I n+1 if ax ∈ I n+2. Thus (0) :G f = [(0) :G f ]0. Hence (0) :G f n = (0) :G f for
all n ≥ 1, so

H0
N(G) = (0) :G f = [(0) :G f ]0

∼= Ĩ/I.

In particular, �A(Ĩ/I ) > 0. Because

e1 = e0 − �A(A/I ) + 1

= e0(Ĩ ) − �A(A/Ĩ ) − (�A(Ĩ/I ) − 1)

≤ e0(Ĩ ) − �A(A/Ĩ )

≤ e1(Ĩ )

= e1,

it follows that �A(Ĩ/I ) = 1, which proves assertion (2). In particular, H0
N(G) =

[H0
N(G)]0 and G is a Buchsbaum ring. Because (0) :G f = H0

N(G), we have the
exact sequence

0 −→ H0
N(G) −→ G/fG −→ H1

N(G)(−1)
f−→ H1

N(G) −→ 0

of local cohomology modules. Hence a1(G) = 1, because H0
N(G) = [H0

N(G)]0

and G/fG = A/I ⊕ I/Q ⊕ I 2/QI with I 2/QI = (0). We have [G/fG]2
∼=

[H1
N(G)]1, whence �A([H1

N(G)]1) = �A(I
2/QI ) = 1 by Theorem 3.3.

Now we consider the case where d ≥ 2. Because depthG = d − 1 > 0 by
Theorem 3.3, we may assume that f = a1t is regular on G. We put Ā = A/(a1),
Ī = I/(a1), and Q̄ = Q/(a1). Then e1(Ī ) = 2 and Ī 2 = Q̄Ī (cf. the proof of
Theorem 3.3). The induction hypothesis now yields assertions (1) and (2) for the
ideal Ī .

We next look at the exact sequence

0 −→ Hd−2
N (G(Ī )) −→ Hd−1

N (G)(−1)
f−→ Hd−1

N (G) −→ Hd−1
N (G(Ī ))

−→ Hd
N(G)(−1)

f−→ Hd
N(G) −→ 0 (∗)

of local cohomology modules, which is induced from the canonical exact sequence

0 → G(−1)
f−→ G → G(Ī ) → 0

of graded G-modules. Because ad−2(G(Ī )) = 2 − d, we get a monomorphism
[Hd−1

N (G)]n ↪→ [Hd−1
N (G)]n+1 for all n ≥ 2 − d, whence [Hd−1

N (G)]n = (0) for
all n ≥ 2 − d. Thus ad−1(G) ≤ 1 − d and
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[Hd−2
N (G(Ī ))]2−d

∼= [Hd−1
N (G)]1−d .

Therefore, ad−1(G) = 1 − d and �A([Hd−1
N (G)]1−d) = �A([Hd−2

N (G(Ī ))]2−d) =
1. On the other hand, letting a = ad(G) in the exact sequence (∗) shows that

[Hd
N(G)(−1)]a+1 = [Hd

N(G)]a (= (0))

is a homomorphic image of [Hd−1
N (G(Ī ))]a+1. Hence a+1 ≤ ad−1(G(Ī )) = 3−d,

whence a ≤ 2 − d. Because [Hd−1
N (G)]3−d = (0) and [Hd

N(G)]3−d = (0), it fol-
lows from (∗) that [Hd−1

N (G(Ī ))]3−d
∼= [Hd

N(G)]2−d . Consequently, ad(G) =
2 − d and �A([Hd

N(G)]2−d) = 1, as claimed.

We can now state the main result of this section. See Theorem 5.1 for an example
whose associated graded ring G is a Buchsbaum ring.

Theorem 4.2. The following two conditions are equivalent.

(1) G is a Buchsbaum ring.
(2) Hd−1

N (G) = [Hd−1
N (G)]1−d .

When d ≥ 2, one can add the following:

(3) R is a Buchsbaum ring.

Proof. (2) ⇒ (1): By Lemma 4.1 we have N · Hd−1
N (G) = 0, since

m · [Hd−1
N (G)]1−d = (0).

Hence G is a Buchsbaum ring, because depthG = d − 1 by Theorem 3.3.
(1) ⇒ (2): By Lemma 4.1 we may assume that d ≥ 2 and that our asser-

tion holds true for d − 1. Because depthG = d − 1 > 0, we may assume that
f = a1t is regular on G. Similarly as before, let Ā = A/(a1), Ī = I/(a1), and
Q̄ = Q/(a1). Then G(Ī ) = G/fG is a Buchsbaum ring with depth G(Ī ) =
d − 2. Hence, by induction we derive Hd−2

N (G(Ī )) = [Hd−2
N (G(Ī ))]2−d . Thus

Hd−1
N (G) = [Hd−1

N (G)]1−d , because Hd−2
N (G(Ī )) ∼= Hd−1

N (G)(−1) (see the exact
sequence (∗) in the proof of Lemma 4.1).

(3) ⇒ (1): We continue to suppose that d ≥ 2. Apply functors Hi
N (·) to the

exact sequences

0 → R+ → R → A → 0 and 0 → R+(1) → R → G → 0.

Then, since depthR = d (cf. [4, Thm. 2.1]), we have the exact sequences

0 → Hd
N(R+) → Hd

N(R) → Hd
m(A) and

0 → Hd−1
N (G) → Hd

N(R+)(1) → Hd
N(R) → Hd

N(G).
(∗∗)

Because R is a Buchsbaum ring, N · Hd
N(R) = (0) and so N · Hd

N(R+) = (0).
Thus N · Hd−1

N (G) = (0), whence G is a Buchsbaum ring.
(2) ⇒ (3): Consider the exact sequences (∗∗). Then

[Hd
N(R+)]n+1 � [Hd

N(R)]n

for all n > ad(G) = 2 − d. Hence
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[Hd
N(R)]n ∼= [Hd

N(R+)]n = (0)

for all n > 2 − d. We have

[Hd
N(R+)]n ∼= [Hd

N(R)]n
for all n < 0 and

[Hd
N(R+)]n = [Hd

N(R+)(1)]n−1 ↪→ [Hd
N(R)]n−1

for all n < 2 − d, since Hd−1
N (G) = [Hd−1

N (G)]1−d . Therefore, since d ≥ 2, it
follows that [Hd

N(R)]n is embedded into [Hd
N(R)]n−1 for all n < 2 − d. Hence

[Hd
N(R)]n = (0) for all n < 2 − d, because Hd

N(R) is a finitely graded R-module
(cf. [1]; recall that G is a Buchsbaum ring). As a result,

Hd
N(R) = [Hd

N(R)]2−d .

Because [Hd
N(R+)]3−d = (0), by the exact sequence (∗∗) we have

[Hd
N(R)]2−d ↪→ [Hd

N(G)]2−d

and so �A(Hd
N(R)) = 1, since �A([Hd

N(G)]2−d) = 1 by Lemma 4.1 and depthR =
d by [4, Thm. 2.1]. Thus N · Hd

N(R) = (0), whence R is a Buchsbaum ring.

5. An Example

In this section we explore the following example, which satisfies the conditions in
Theorem 1.1(1) and Theorem 4.2(1). The example is a generalization of an exam-
ple given by the first author [3], where the case � = ∅ is explored.

Let m ≥ d > 0 be integers. Let � be a subset of {1, 2, . . . ,m} such that
� ∩ {1, 2, . . . , d} = ∅. Let

U = k[[X1,X2, . . . ,Xm,V,Y1,Y2, . . . ,Yd ]]

be the formal power series ring over a field k, and let

a = (X1,X2, . . . ,Xm) · (X1,X2, . . . ,Xm,V ) +
(
V 2 −

d∑
i=1

XiYi

)
.

We put A = U/a and denote the images of Xi, V, and Yj in A by xi, v, and
aj , respectively. Then dimA = d, since

√
a = (X1,X2, . . . ,Xm,V ). Let m =

(xj | 1 ≤ j ≤ m) + (v) + (ai | 1 ≤ i ≤ d) be the maximal ideal in A. We put

I = (a1, a2, . . . , ad) + (xα | α ∈�) + (v) and Q = (a1, a2, . . . , ad).

Then m2 = Qm, I 2 = QI + (v2) = QI, and I 3 = QI 2 (cf. Lemma 5.3), whence
Q is a minimal reduction of both m and I and the series a1, a2, . . . , ad is a system
of parameters for A.

We are now interested in the Hilbert coefficients e′
i of the ideal I as well as the

structure of the associated graded ring and the Sally module of I. We maintain the
same notation as in the previous sections. Our first result is as follows.
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Theorem 5.1. The following assertions hold true.

(1) A is a Cohen–Macaulay local ring with dimA = d.

(2) S ∼= B(−1) as graded T -modules.
(3) e0 = m + 2 and e1 = #� + 2. Hence, e1 = 2 but I 2 = QI if � = ∅.
(4) e2 = 1 if d ≥ 2, and ei = 0 for all 3 ≤ i ≤ d if d ≥ 3.
(5) G is a Buchsbaum ring with depthG = d − 1, and �A(Hd−1

N (G)) = 1.

We divide the proof of Theorem 5.1 into several steps as follows.

Proposition 5.2. Let p = √
(X1,X2, . . . ,Xm,V ) in U. Then �Up

(Ap) = m + 2.

Proof. Let k̃ = k[Y1,1/Y1] and Ũ = U [1/Y1]. We put Zi = Xi/Y1 for 1 ≤ i ≤
m, Tj = Yj/Y1 for 2 ≤ j ≤ d, and W = V/Y1. Then Ũ = k̃[Z1,Z2, . . . ,Zm,V,
T2, T3, . . . , Td ] and

aŨ = (Z1,Z2, . . . ,Zm) · (Z1,Z2, . . . ,Zm,W) +
(
W 2 −

d∑
j=2

TjZj − Z1

)
.

Since the elements {Zi}1≤i≤m,W, and {Tj}2≤j≤d are algebraically independent over
k̃, it follows that

Ũ/aŨ ∼= Ū = k̃[Z2,Z3, . . . ,Zm,W, T2, T3, . . . , Td ]

(W 2,Z2,Z3, . . . ,Zm) · (Z2,Z3, . . . ,Zm,W)
,

where we have replaced Z1 with W 2 − ∑d
j=2 TjZj . Then the ideal pŨ/KŨ corre-

sponds to the prime ideal P = (Z2,Z3, . . . ,Zm,W). Thus �Up
(Ap) = �ŪP

(ŪP) =
m + 2.

Now we have e0(Q) = �Up
(Ap) · eA/pA

0 ((Q + pA)/pA) = m + 2 by the associa-
tive formula of multiplicity, because p = √

a and U/p ∼= k[Y1,Y2, . . . ,Yd ]. On the
other hand, �A(A/Q) = m + 2 because

A/Q ∼= k[[X1,X2, . . . ,Xm,V ]]

(X1,X2, . . . ,Xm) · (X1,X2, . . . ,Xm,V ) + (V 2)
.

Hence e0(Q) = �A(A/Q), so A is a Cohen–Macaulay ring and e0(Q) = m + 2.

Lemma 5.3. The following assertions hold true.

(1) m2 = Qm, I 2 = QI + (v2) = QI, and I 3 = QI 2.

(2) (a1, a2, . . . , ǎi, . . . , ad) ∩ I 2 = (a1, a2, . . . , ǎi, . . . , ad)I for all 1 ≤ i ≤ d.

(3) (aα | α ∈ :) ∩ I n = (aα | α ∈ :)I n−1 for all subsets : � {1, 2, . . . , d} and
for all integers n∈ Z.

(4) (a2
1, a2

2 , . . . , a2
d) ∩ I n = (a2

1, a2
2 , . . . , a2

d)I
n−2 for all 3 ≤ n ≤ d + 1.

Proof. (1) It is routine to check that m2 = Qm and I 2 = QI + (v2). We have
I 3 = QI 2, since v3 = 0. Let us check that v2 /∈QI. Suppose v2 ∈QI and write

v2 =
d∑

i=1

ai xi =
d∑

i=1

ai ξi
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with ξi ∈ I. Then ad(xd − ξd) ∈ (a1, a2, . . . , ad−1) and so xd − ξd ∈ (a1, a2, . . . ,
ad−1), because a1, a2, . . . , ad is a regular sequence. Hence xd ∈ I so that Xd ∈
a + (Y1,Y2, . . . ,Yd)U + (Xα | α ∈ �)U + VU, which is impossible because
� ∩ {1, 2, . . . , d} = ∅.

(2) Let 1 ≤ i ≤ d be an integer and put Qi = (a1, a2, . . . , ǎi, . . . , ad). Then

Qi ∩ I 2 = Qi ∩ (QI + (v2))

= Qi ∩ (QiI + aiI + (v2))

= QiI + Qi ∩ [aiI + (v2)].

Let ϕ ∈Qi ∩(aiI +v2A) and write ϕ = aiρ+v2ξ with ρ ∈ I and ξ ∈A. Then ϕ =
aiρ + ∑d

j=1 aj xj ξ = ai(ρ + xi ξ)+ ∑
j =i aj xj ξ. Hence ai(ρ + xi ξ)∈Qi and so

ρ+xi ξ ∈Qi; thus xi ξ ∈ I. Therefore, ξ ∈ m = I + (xα | α /∈�). Let ξ = ξ ′ +ξ ′′
with ξ ′ ∈ I and ξ ′′ ∈ (xα | α /∈�). Notice that xj ξ = xj(ξ

′ + ξ ′′) = xj ξ
′ +xj ξ

′′ =
xj ξ

′ for all 1 ≤ j ≤ d, since xj ξ
′′ ∈ (x1, x2, . . . , xm)

2 = (0). Consequently, ϕ =
ai(ρ + xi ξ

′) + ∑
j =i aj xj ξ

′ ∈ QiI, since ξ ′ ∈ I and ρ + xi ξ
′ = ρ + xi ξ ∈ Qi.

Thus Qi ∩ I 2 ⊆ QiI, so we have Qi ∩ I 2 = QiI.

(3) Let τ = #:; we will prove assertion (3) by descending induction on τ.

Suppose that τ = d − 1 and let : = {1, 2, . . . , ǐ, . . . , d} with 1 ≤ i ≤ d. If n ≤ 2,
assertion (3) is obvious and follows from assertion (2). So assume that n ≥ 3 and
that our assertion holds true for n − 1. Then, since I 3 = QI 2, we have

Qi ∩ I n = Qi ∩ QI n−1

= Qi ∩ (QiI
n−1 + aiI

n−1)

= QiI
n−1 + [Qi ∩ aiI

n−1]

= QiI
n−1 + ai[Qi ∩ I n−1].

Since Qi ∩ I n−1 = QiI
n−2, it follows by induction on n that

ai[Qi ∩ I n−1] = ai[QiI
n−2] ⊆ QiI

n−1.

Thus Qi ∩ I n ⊆ QiI
n−1, whence Qi ∩ I n = QiI

n−1.

We now consider the case where τ < d −1. Assume that n ≥ 2 and that our as-
sertion holds true for n−1. Let ϕ ∈ (aα | α ∈:)∩ I n and let β ∈ {1, 2, . . . , d} \:.

Then

(aα | α ∈:) ∩ I n ⊆ [(aα | α ∈:) + (aβ)] ∩ I n = [(aα | α ∈:) + (aβ)]I
n−1

by the hypothesis on τ. We write ϕ = ϕ ′ + aβρ with ϕ ′ ∈ (aα | α ∈ :)I n−1 and
ρ ∈ I n−1. Then aβρ ∈ (aα | α ∈ :) and so ρ ∈ (aα | α ∈ :) ∩ I n−1, while (aα |
α ∈ :) ∩ I n−1 = (aα | α ∈ :)I n−2 by the hypothesis on n. Hence ρ ∈ (aα | α ∈
:)I n−2 and so ϕ ∈ (aα | α ∈:)I n−1. Thus (aα | α ∈:) ∩ I n ⊆ (aα | α ∈:)I n−1

as claimed.
(4) We put J = (a2

1, a2
2 , . . . , a2

d). Assume that J ∩ I n = JI n−2 for some 3 ≤
n ≤ d +1 and choose d as small as possible among such counterexamples. Hence
d ≥ 2. Let ϕ ∈ J ∩ I n such that ϕ /∈ JI n−2.
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We begin with the following.

Claim 3.

I d+1 = JI d−1 + a1a2 · · · adI +
d∑

i=1

a1a2 · · · ǎi · · · adv
2A.

Proof of Claim 3. Since I 2 = QI + (v2) and I 3 = QI 2, we have

I d+1 = Qd−1I 2 = Qd−1(QI + (v2)) = QdI + v2Qd−1.

On the other hand, since

Qd = JQd−2 + (a1a2 · · · ad) and

Qd−1 = JQd−3 +
d∑

i=1

a1a2 · · · ǎi · · · adA,

it follows that

QdI = JQd−2I + a1a2 · · · adI ⊆ JI d−1 + a1a2 · · · adI

and

v2Qd−1 = v2JQd−3 + v2

( d∑
i=1

a1a2 · · · ǎi · · · adA

)

⊆ JI d−1 +
d∑

i=1

a1a2 · · · ǎi · · · adv
2A

(notice that v ∈ I ). Therefore,

I d+1 ⊆ JI d−1 + a1a2 · · · adI +
d∑

i=1

a1a2 · · · ǎi · · · adv
2A.

Suppose that n = d + 1. Then by Claim 3 we may write

ϕ = ϕ ′ + a1a2 · · · adη +
d∑

i=1

cia1a2 · · · ǎi · · · adv
2

with ϕ ′ ∈ JI d−1, η ∈ I, and ci ∈A. Because v2 = ∑d
i=1 ai xi, we see that

d∑
i=1

cia1a2 · · · ǎi · · · adv
2 ≡ a1a2 · · · ad

( d∑
i=1

ci xi

)
mod J,

whence

a1a2 · · · ad

(
η+

d∑
i=1

ci xi

)
≡ a1a2 · · · adη+

d∑
i=1

cia1a2 · · · ǎi · · · adv
2 ≡ 0 mod J

because

ϕ = ϕ ′ + a1a2 · · · adη +
d∑

i=1

cia1a2 · · · ǎi · · · adv
2 ∈ J.
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As a result, η + ∑d
i=1 ci xi ∈Q because a1, a2, . . . , ad is a regular sequence in A;

thus we have
d∑

i=1

ci xi ∈ I = (ai | 1 ≤ i ≤ d) + (xα | α ∈�) + (v).

Since {xi}1≤i≤m, v, and {ai}1≤i≤d constitute a minimal basis of the maximal ideal
m of A and since � ∩ {1, 2, . . . , d} = ∅, this forces ci ∈ m for all 1 ≤ i ≤ d.

We write ci = c ′
i + c ′′

i with c ′
i ∈ Q and c ′′

i ∈ (x1, x2, . . . , xm, v). Then, since
(x1, x2, . . . , xm, v) · (x1, x2, . . . , xm) = (0), it follows that c ′′

i xi = 0 and so

ci xi = c ′
i xi + c ′′

i xi = c ′
i xi ∈Q

because c ′
i ∈Q. Consequently, since η + ∑d

i=1 ci xi ∈Q, we have

η ≡ η +
d∑

i=1

c ′
i xi = η +

d∑
i=1

ci xi ≡ 0 modQ.

Hence η ∈Q and so

a1a2 · · · adη ∈Qd+1 = (a2
1, a2

2 , . . . , a2
d)Q

d−1 ⊆ JI d−1.

On the other hand, we have c ′′
i v

2 = 0 since c ′′
i ∈ (x1, x2, . . . , xm, v), so that

civ
2 = c ′

iv
2 + c ′′

i v
2 = c ′

iv
2 ∈Q2 because c ′

i , v
2 ∈Q. Thus

cia1a2 · · · ǎi · · · adv
2 = a1a2 · · · ǎi · · · ad · c ′

iv
2 ∈Qd+1 ⊆ JI d−1

for all 1 ≤ i ≤ d, so that

ϕ = ϕ ′ + a1a2 · · · adη +
d∑

i=1

cia1a2 · · · ǎi · · · adv
2 ∈ JI d−1,

which is a contradiction. Therefore, 3 ≤ n ≤ d.

We put Ā = A/(ad) and Ī = I/(ad). For each x ∈A, let x̄ denote the image of
x in Ā. We then have, by the minimality of d, that

(a2
1 , a2

2 , . . . , a2
d−1) ∩ Ī n = (a2

1 , a2
2 , . . . , a2

d−1)Ī
n−2

for all 3 ≤ n ≤ d. Hence ϕ̄ ∈ (a2
1 , a2

2 , . . . , a2
d−1)Ī

n−2, so that

ϕ ∈ (a2
1, a2

2 , . . . , a2
d−1)I

n−2 + [(ad) ∩ I n].

Since (ad) ∩ I n = adI
n−1 by assertion (3), we have ϕ = ϕ ′ + ad ξ for some ϕ ′ ∈

(a2
1, a2

2 , . . . , a2
d−1)I

n−2 and ξ ∈ I n−1; hence ad ξ ∈ J, because ϕ,ϕ ′ ∈ J. We write
ad ξ = ∑d

i=1 a
2
i ξi with ξi ∈ A. Then ad(ξ − ad ξd) ∈ (a2

1, a2
2 , . . . , a2

d−1) and so
ξ − ad ξd ∈ (a2

1, a2
2 , . . . , a2

d−1). Consequently,

ξ̄ ∈ (a2
1 , a2

2 , . . . , a2
d−1) ∩ Ī n−1 = (a2

1 , a2
2 , . . . , a2

d−1)Ī
n−3

by the minimality of d. Therefore,

ξ ∈ (a2
1, a2

2 , . . . , a2
d−1)I

n−3 + [(ad) ∩ I n−1].
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However, since (ad) ∩ I n−1 = adI
n−2 by assertion (3), we have

ad ξ ∈ ad(a
2
1, a2

2 , . . . , a2
d−1)I

n−3 + a2
dI

n−2 ⊆ JI n−2.

As a result, ϕ = ϕ ′ + ad ξ ∈ JI n−2, which is the required contradiction. Thus

J ∩ I n = JI n−2

for all 3 ≤ n ≤ d + 1, as we wanted.

We are now in a position to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. We have �A(I
2/QI ) = 1, since mv2 ⊆ QI (recall that I 2 =

QI and I 2 = QI + (v2) by Lemma 5.3(1)). Because I 3 = QI 2, by Theorem 1.1
we have S ∼= B(−1) as graded T -modules, so that e1 = e0 − �A(A/I )+1, e2 = 1
if d ≥ 2, and ei = 0 for all 3 ≤ i ≤ d if d ≥ 3. Because �A(A/I ) = m − #� + 1
and e0 = m + 2, we obtain e1 = #� + 2; hence e1 = 2 if � = ∅.

Observe that G is not a Cohen–Macaulay ring. In fact, Q ∩ I 2 = QI (re-
call that I 2 ⊆ Q since m2 = Qm). The ring G is Buchsbaum by parts (1),
(2), and (4) of Lemma 5.3 and [3, Prop. 9.1], so Hd−1

N (G) = [Hd−1
N (G)]1−d and

�A([Hd−1
N (G)]1−d) = 1 both follow by induction on d similarly as in the proofs of

Lemma 4.1 and Theorem 4.2.
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