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1. Introduction

Let (R, m, k) be a local ring of positive characteristic p—that is, quasi-local (only
one maximal ideal) and Noetherian. Let q = pe, where e is a nonnegative integer.
For any ideal I of R we denote I [q] = (iq : i ∈ I ).

For an m-primary ideal I, one can consider the Hilbert–Samuel multiplicity and
the Hilbert–Kunz multiplicity of I with respect to R.

Definition 1.1. Let I be an m-primary ideal in (R, m). Let λ(·) denote the usual
length function.

1. The Hilbert–Samuel multiplicity of R at I is defined by

e(I ) = e(I ;R) := lim
n→∞ d!

λ(R/I n)

nd
.

The limit exists and is a positive integer.
2. The Hilbert–Kunz multiplicity of R at I is defined by

eHK(I ) = eHK(I ;R) := lim
q→∞

λ(R/I [q])

q d
.

Monsky has shown that the latter limit exists and is positive.

The Hilbert–Samuel multiplicty of R, denoted e(R), is by definition e(m).

Similarly, the Hilbert–Kunz multiplicity of R, denoted eHK(R), is eHK(m).

It is known that, for parameter ideals I, one has e(I ) = eHK(I ). The following
sequence of inequalities is also known to hold whenever I is m-primary:

max

{
1,

e(I )

d!

}
≤ eHK(I ) ≤ e(I ).

We call a local ring R formally unmixed if R̂ is equidimensional and Min(R̂) =
Ass(R̂)—in other words, dim(R̂/P ) = dim(R̂) for all its minimal primes P and
if all associated primes of R̂ are minimal. Nagata calls such rings unmixed. How-
ever, throughout our paper, a local unmixed ring is a local ring R that is equi-
dimensional and for which Min(R) = Ass(R).
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In this paper we investigate rings that have small Hilbert–Kunz multiplicity. It is
known that a formally unmixed local ring of characteristic p is regular if and only
if eHK(R) = 1. In fact, similar statements that hold true for the Hilbert–Samuel
multiplicity are considered classical. (The unmixedness assumption is essential
because there are examples of nonregular rings that are not formally unmixed with
eHK(R) = 1; the reason is that neither Hilbert–Samuel multiplicity nor Hilbert–
Kunz multiplicity can pick up lower-dimensional components of R̂.) Since e(R)
is always a positive integer, it follows that e(R) ≥ 2 if R is formally unmixed but
not regular. The situation is much more subtle with the Hilbert–Kunz multiplicity
because it often takes on noninteger values. So the question becomes: If one fixes
the dimension d, how close to 1 can eHK(R) be (when R is formally unmixed but
not regular)? What can be said about the structure of rings of small Hilbert–Kunz
multiplicity? This problem has been intensively studied in recent years (with suc-
cess mostly for rings of small dimension) by Blickle and Enescu [3], Enescu and
Shimomoto [5], and Watanabe and Yoshida [15; 16; 17]. In this paper we develop
techniques that shed light on this problem independent of dimension. We show
that if R is not regular then there exists a lower bound—strictly greater than 1 and
depending only on d—for its Hilbert–Kunz multiplicity.

The goal is at least twofold: find the constants

εHK(d,p) = inf{eHK(R) − 1 : R nonregular, formally unmixed,

dimR = d, charR = p}
and

εHK(d ) = inf{εHK(d,p) : p > 0}
(as introduced in [3]) and then describe the structure of the rings with small Hilbert–
Kunz multiplicity from both an algebraic and geometric point of view.

It is known that εHK(d,p) ≥ 1/(d!pd) by results in [3]. However, as p →
∞, the right-hand side clearly tends toward 0, so this does not give a positive
lower bound for εHK(d ). A by-product of our work is that it leads to a proof that
εHK(d ) > 0, answering positively a problem raised in [3, Sec. 3]. We should
mention that a conjecture of Watanabe and Yoshida [17] asserts that if (R, m, k)
has residue field equal to Fp, p > 2, then eHK(R) ≥ eHK(Rp,d), where Rp,d =
Fp[[x0, . . . , xd ]]/(x 2

0 + · · · + x 2
d ). This conjecture has been answered positively

for dimensions d = 1, 2, 3, 4 (the difficult cases of dimensions 3 and 4 are due to
Watanabe and Yoshida) and in the case of complete intersections by Enescu and
Shimomoto [5].

The starting point of our investigation is the following theorem.

Theorem 1.2 (Blickle–Enescu). Let R be an unmixed d-dimensional ring that
is a homomorphic image of a Cohen–Macaulay local ring of characteristic p >

0. Let d ≥ 2. If
eHK(R) ≤ 1 + max{1/d!,1/e(R)},

then R is Cohen–Macaulay and F-rational.
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Remark1.3. The proof of this result shows that, in fact, the inequality eHK(R) <
e(R)

e(R)−1 forces R to be Cohen–Macaulay and F-rational.

In fact, the hypotheses of Theorem 1.2 suffice to show that R must be (strongly)
F-regular. This is the content of Corollary 3.6, reprinted here for convenience.

Corollary. Let (R, m, k) be a formally unmixed ring of characteristic p with
dim(R) = d ≥ 2. If eHK(R) ≤ 1 + max{1/d!,1/e(R)}, then R is F-regular and
Gorenstein. If R is excellent, then R is strongly F-regular.

Theorem 4.12 gives a positive lower bound for ε(d ) that does not depend on p, as
follows.

Theorem. Let (R, m, k) be a formally unmixed local ring of positive character-
istic p and dimension d ≥ 2. If R is not regular, then

eHK(R) ≥ 1 + 1

d · (d!(d − 1) + 1)d
.

This result shows that ε(d ) > 0, but our techniques can be refined to give sharper
estimates. In a future paper we will give results that are considerably better but
at the cost of much more technical arguments; we have opted here to give instead
a more accessible proof of the fact that such an ε(d ) exists. Although the afore-
mentioned conjecture of Watanabe and Yoshida is still open, we have developed
techniques that—for the first time—work regardless of dimension or additional
hypotheses on the rings.

In dealing with Hilbert–Kunz multiplicities it often useful to assume that the
rings under study are either formally unmixed or unmixed and homomorphic im-
ages of Cohen–Macaulay rings. This will also be the case in our paper.

Acknowledgment. We thank the referee for a careful reading of the original
manuscript and also for a number of important corrections and improvements.

2. Definitions and Known Results

First we would like to review some definitions and results that will be useful later.
Throughout the paper, R will be a Noetherian ring containing a field of character-
istic p, where p is prime. Also, q will denote pe, a varying power of p.

If I is an ideal in R then I [q] = (iq : i ∈ I ), where q = pe is a power of the
characteristic. Let R◦ = R \⋃

P, where P runs over the set of all minimal primes
of R. An element x is said to belong to the tight closure of the ideal I if there
exists a c ∈R◦ such that cxq ∈ I [q] for all sufficiently large q = pe. The tight clo-
sure of I is denoted by I ∗. By a parameter ideal we mean an ideal generated by a
full system of parameters in a local ring R. A tightly closed ideal of R is an ideal
I such that I = I ∗.
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Let F : R → R be the Frobenius homomorphism F(r) = rp. We denote by F e

the eth iteration of F ; that is, F e(r) = r q and F e : R → R. One can regard R

as an R-algebra via the homomorphism F e. As an abelian group this R-algebra
equals R, but it has a different scalar multiplication. We will denote this new alge-
bra by R(e). For an R-module M we let F e(M) = R(e) ⊗R M, where we consider
this an R-module via R(e); in other words, a(r ⊗m) = (ar)⊗m, but r ⊗ (am) =
aqr ⊗ m. For an element m ∈ M, let mq = 1 ⊗ m ∈ F e(M). If N ⊆ M then we
denote the image of F e(N ) in F e(M) by N [q], and this is the same as the sub-
module of F e(M) generated by the elements nq for n ∈ N. We then say that x ∈
M is in the tight closure of N in M, denoted N ∗

M , if there exists a c ∈R0 such that
cxq ∈N [q] for all q � 0.

Definition 2.1. R is F-finite if R(1) is module finite over R or, equivalently (in
the case thatR is reduced), ifR1/p is module finite overR. Also, R is called F-pure
if the Frobenius homomorphism is a pure map (i.e., if F ⊗R M is injective for
every R-module M).

If R is F-finite, then R1/q is module finite over R for every q. Moreover, any quo-
tient and localization of an F-finite ring is F-finite. Any finitely generated algebra
over a perfect field is F-finite. An F-finite ring is excellent.

Definition 2.2. A reduced Noetherian F-finite ring R is strongly F-regular if,
for every c ∈R0, there exists a q such that the R-linear map R → R1/q sending 1
to c1/q splits over R or, equivalently, if Rc1/q ⊂ R1/q splits over R.

The notion of strong F-regularity localizes well, and all ideals are tightly closed
in strongly F-regular rings. Regular rings are strongly F-regular, and strongly
F-regular rings are Cohen–Macaulay and normal.

Let ER(k) be the injective hull of the residue field of R. Then a reduced F-finite
ring R is strongly F-regular if and only if 0∗

ER
= 0, (see e.g. [14, 7.1.2]). More

generally, when (R, m) is reduced and excellent (but not necessarily F-finite), we
will say that R is strongly F-regular if 0∗

ER
= 0.

Definition 2.3. A ring R is called F-rational if all parameter ideals are tightly
closed. A ring R is called weakly F-regular if all ideals are tightly closed. The
ring R is F-regular if and only if S−1R is weakly F-regular for all multiplicative
sets S ⊂ R.

Regular rings are (strongly) F-regular. For Gorenstein rings, the notions of F-
rationality and F-regularity coincide (and if, in addition, the ring is excellent, then
they coincide with strong F-regularity).

Definition 2.4. Let I ⊆ J be two m-primary ideals in (R, m, k), and let M be
a finitely generated R-module. Then the Hilbert–Kunz multiplicity of I on M is

eHK(I ;M) = lim
q→∞

1

q d
λ(M/I [q]M),
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and the relative Hilbert–Kunz multiplicity of I and J on M is

eHK(I, J ;M) = eHK(I ;M) − eHK(J ;M).

When M = R, we simply drop M from the notation.

Proposition 2.5 (Associativity formula; see [17, Prop. 1.2(5)]). Let (R, m, k)
be a local ring and I an m-primary ideal of R. Denote Assh(R) = {P ∈Ass(R) :
dim(R/P ) = dim(R)}. Then

eHK(I ;M) =
∑

P∈Assh(R)

λRP
(MP) · eHK(I ;R/P ).

Remark 2.6. The associativity formula immediately implies that if eHK(R) < 2
then Assh(R) contains one element, and if this element is the prime P then the
P -primary component of 0 is P. Thus, if R is unmixed and eHK(R) < 2, then R

is a domain.

We will also need the following technical notion.

Definition 2.7. Let (R, m, k) be a local ring of positive characteristic p, and let
J ⊂ I be m-primary ideals. Define the star length of J in I, denoted λ∗(I/J ), to
be the minimum length n of a sequence of ideals

J ∗ = I0 ⊂ I1 ⊂ · · · ⊂ In = I ∗

such that, for each k, we have Ik+1 = (Ik , xk)∗ for some element xk with mxk ⊂ Ik.

The definition of star length was introduced by Hanes [6], who also noted some
of the following basic properties of the star length function.

Proposition 2.8. Let J ⊂ I be any m-primary ideals of a local ring (R, m, k)
of prime characteristic p > 0. Then the following statements hold.

(a) λ∗(I/J ) ≤ λ(I/J ) and λ∗(I/J ) = λ∗(I ∗/J ∗).
(b) eHK(J ) ≤ eHK(I )+ λ∗(I/J ) eHK(R); moreover, eHK(J ) ≤ λ∗(R/J ) eHK(R).

Our next proposition offers a natural characterization of strong F-regularity in
terms of the relative Hilbert–Kunz multiplicity.

Proposition 2.9. Let (R, m, k) be an excellent local ring. Then the following
are equivalent :

(1) R is strongly F-regular ;
(2) inf{eHK(I, J ) | I � J } > 0;
(3) inf{eHK(I, (I, x)) | I is m-primary and irreducible and x is a socle element

modulo I } > 0.

Proof. Let ER(k) = E. By [2, Thm. 0.2], R is strongly F-regular if and only if
lim inf λ(R/0 :F e(E) u

q)/q d > 0 (the theorem is stated there for F-finite rings,
but the proof works also in the excellent case).
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We first show that (1) implies (3). Let I ⊆ R be irreducible and m-primary,
and let x be a socle element modulo I. There is then an injection R/I ↪→ E

sending x to u. Applying Frobenius gives a map R/I [q] → F e(E) sending xq to
uq, from which it is clear that I [q] : xq ⊆ 0 :F e(E) uq. Hence eHK(I, (I, x)) ≥
lim inf λ(R/0 :F e(E) u

q)/q d > 0.
To see that (3) implies (2), we first note that it suffices to take J = (I, y) for a

socle element y modulo I. In this case we can embed R/I ↪→ R/I1 ⊕ · · · ⊕R/It ,
where each In is irreducible, and y �→ (x, 0, . . . , 0), where x is the socle ele-
ment modulo I1. It is then clear, after applying Frobenius, that eHK(I, J ) ≥
eHK(I1, (I1, x)).

Clearly, (2) implies (3).
Suppose that (3) holds but that R (of dimension d) is not strongly F-regular.

Choose c ∈ R0 such that cuq = 0 in F e(E) for all q. Then dimR/cR = d − 1.
Let e1 = eHK(R) and e2 = eHK(R/cR). Fix q0 such that

λ(R/(c, m[q0 ])) ≤ (e2 + 1)q d−1
0 .

Because cuq0 = 0, we can choose an irreducible ideal I with socle representative
x such that cxq0 ∈ I [q0 ]. Since mx ⊆ I, we see that (m[q0 ], c)[q]xq0q ⊆ I [q0q] for
all q. Hence, for large q we have

λ

(
R

I [q0q] : xq0q

)
≤ λ

(
R

(m[q0 ], c)[q]

)

≤ λ

(
R

(m[q0 ], c)

)
(e1 + 1)q d ≤ (e2 + 1)q d−1

0 (e1 + 1)q d.

Dividing by (q0q)
d and taking limits then shows that

eHK(I, (I, x)) ≤ (e2 + 1)(e1 + 1)

q0
.

Since q0 may be taken arbitrarily large (this will change the ideal I ), we have con-
tradicted the assumption (3).

In later sections we will often want to obtain a minimal reduction of an ideal in
a local ring. The standard technique is to pass to a faithfully flat extension. Our
next remark merely summarizes several well-known facts that will be needed.

Remark 2.10. Let (R, m, k) be a local ring of characteristic p.

(a) Assume that (R, m) → (S, n) is a flat local homomorphism with n = mS

(e.g., completion).
(i) For any m-primary ideal I ⊆ R, we have eHK(IS) = eHK(I ). In partic-

ular, eHK(S) = eHK(R).

(ii) If R is Cohen–Macaulay (CM) with canonical module ωR , then S is CM
with canonical module ωS = ωR ⊗ S.

(b) Let Y be an indeterminate over R and set S = R[Y ]mR[Y ]. Then S is (i) faith-
fully flat with maximal ideal extended fromR and (ii) residue field isomorphic
to k(Y ) (hence infinite). Part (a) then applies.
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(c) If R has infinite residue field then m has a minimal reduction x = x1, . . . , xd
with e(R) = e((x)) = eHK((x)), and if R is CM then the common value is
also equal to λ(R/(x)). If R has finite residue field, then parts (a) and (b) may
be applied in order to change to the case where the residue field is infinite.

3. Hilbert–Kunz Lower Bounds via Duality

This section will present various lower bounds for the Hilbert–Kunz multplicity
of a ring (R, m, k) of fixed multiplicity and dimension.

Lemma 3.1. If (R, m) is local of dimension d, I ⊆ J are m-primary ideals,
c ∈R◦, and M is finitely generated over R, then

lim
q→∞

1

q d
λ

(
J [q]M

(cJ [q] + I [q])M

)
= 0.

Proof. Let n = µ(M) and k = µ(J ). Then one can see that there is a surjection(
R

cR

)nk

→ J [q]M

(cJ [q] + I [q])M
→ 0

and that the kernel contains I [q]
(
R
cR

)nk
.

Since dimR/cR = d − 1, we observe that

lim
q→∞

1

q d
λ

((
R

cR + I [q]

)nk)
= 0,

which implies our statement.

We are now ready to formulate an important technical result leading to a series of
corollaries that are the main goal of this section.

Theorem 3.2. Let (R, m) be a Cohen–Macaulay ring with system of parameters
x = x1, . . . , xd. Let e = λ(R/(x)). Suppose that I ⊇ (x), and set J = (x)∗ : I.

Let a = λ∗(R/I ), f = λ∗(R/J ), and b = λ(((x)∗ : I )/(x)). Then eHK(R) ≥
e

f+a
and so, in particular,

eHK(R) ≥ e

e − b + a
.

Proof. Completing R leaves the Hilbert–Kunz multiplicity unaffected, can only
increase the star lengths (a and f ), and can only decrease b. So to prove the desired
formulas we may complete R. We may therefore assume that R has a q0-weak test
element c.

LetωR be the canonical module ofR. We haveAssh(R) = Ass(R) and, for each
P ∈ Ass(R), λRP

(ωP) = λRP
(RP). Hence, by applying the associativity formula

in Remark 2.5 to compute eHK(I ;R) and eHK(I ;ω), we see that they are equal.
Thus eHK(I1, I2;ωR) = eHK(I1, I2) whenever I1 ⊆ I2 are m-primary ideals.

Since x is a system of parameters (s.o.p.), it follows that eHK((x)) = e((x)) =
e. Also, eHK((x)) = eHK(J ) + eHK((x), J ). By Proposition 2.8, it follows that
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eHK(J ) ≤ λ∗(R/J ) eHK(R) = f eHK(R). The heart of the proof is seeing that
eHK((x), J ;ωR) ≤ a eHK(R) and so eHK((x), J ) = eHK((x), J ;ωR) ≤ a eHK(R).

Indeed, ωR/(x)[q]ωR is the canonical module of the Artinian ring R/(x)[q], so
it is injective over it. By Matlis duality over complete Artinian rings, we obtain
that λ(R/I [q]) = λ(Hom(R/I [q],ωR/(x)[q]ωR)).

Note that, by the definition of J and the fact that c is a q0-weak test element,
we have cJ [q] ⊆ (x)[q] : I [q] for all q ≥ q0. Thus, for all q ≥ q0,

(cJ [q] + (x)[q])ωR

(x)[q]ωR

⊆ (x)[q]ωR : I [q]

(x)[q]ωR

= Hom

(
R

I [q]
,

ωR

(x)[q]ωR

)
.

By the equality

λ

(
J [q]ωR

(x)[q]ωR

)
= λ

(
J [q]ωR

(cJ [q] + (x)[q])ωR

)
+ λ

(
(cJ [q] + (x)[q])ωR

(x)[q]ωR

)
,

Lemma 3.1, Matlis duality, and Proposition 2.8, we have

eHK((x), J ;ωR) ≤ eHK(I ;ωR) = eHK(I ) ≤ a eHK(R).

In conclusion,

e = eHK((x),R) = eHK(J,R) + eHK((x), J )

≤ f eHK(R) + a eHK(R) = (f + a) eHK(R),

proving the theorem’s first inequality. The last inequality follows because f =
λ∗(R/J ) ≤ λ(R/J ) = e − b.

The next corollary shows how useful Theorem 3.2 can be when R is not Goren-
stein. Note that the lower bound for eHK(R) does not depend on the dimension of
the ring.

Corollary 3.3. Let (R, m) be a Cohen–Macaulay ring of CM-type t and mul-
tiplicity e = e(R). Then

eHK(R) ≥ e

e − t + 1
.

Proof. We may assume by Remark 2.10 that the residue field is infinite, so there
exists a s.o.p. x with e(R) = λ(R/(x)). Now apply Theorem 3.2 with I = m (so
a = 1 and b ≥ t).

Corollary 3.4. Let (R, m) be a nonregular Cohen–Macaulay ring of minimal
multiplicity. Then eHK(R) ≥ e(R)/2.

Proof. By the structure theorem of Sally [13], R has type t = e(R)−1. Therefore,
eHK(R) ≥ e(R)

e(R)−(e(R)−1)+1
= e(R)

2
.

Corollary 3.5. Let (R, m, k) be a local Cohen–Macaulay ring of characteris-
tic p and dimension d. If eHK(R) <

e
e−1, then R is Gorenstein and F-regular (and

hence strongly F-regular if R is also excellent).

Proof. We may assume that R is not regular. If R is not Gorenstein then t, the
type of R, is at least 2. Theorem 3.2 then shows that eHK ≥ e

e−t+1 ≥ e
e−1. Hence

R is Gorenstein, and we are done by Theorem 1.2.
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We can now state the desired generalization of Theorem 1.2. The improvement is
replacing “F-rational” by an appropriate form of “F-regular” in the conclusion.

Corollary 3.6. Let (R, m, k) be a formally unmixed ring of characteristic p

with dim(R) = d ≥ 2. If eHK(R) ≤ 1 + max{1/d!,1/e(R)}, then R is F-regular
and Gorenstein. If R is excellent, then R is strongly F-regular.

Proof. Let e = e(R). We can pass to the completion and assume that R is com-
plete and unmixed. We remark that, for an excellent Gorenstein ring, strong F-
regularity and F-regularity are equivalent. Moreover, if the completion of a ring
R is F-regular then R is F-regular. Hence, by Theorem 1.2 we may assume that R
is Cohen–Macaulay.

If R is not strongly F-regular, then eHK(R) ≥ e
e−1 > 1+ 1

e . Therefore, 1+ 1
d! ≥

eHK(R) > 1 + 1
e , which implies that e > d! and eHK(R) ≥ e

d! >
d!+1
d! . This is a

contradiction.
If e ≥ d! + 1 then, since eHK(R) > e/d! (this inequality is due to Hanes [7]),

it follows that eHK(R) > 1 + 1
d! > 1 + 1

e —a contradiction. Thus e ≤ d! and so
eHK(R) ≤ 1 + 1

e < e
e−1, which implies that R is Gorenstein.

It should be remarked that Corollaries 3.5 and 3.6 are closely related to recent un-
published results of D. Hanes, who independently proved in particular that, under
the assumptions of Corollary 3.6, the ring R is Gorenstein and F-regular.

Theorem 3.2 yields some interesting results when we apply it to Gorenstein
rings that are not F-regular.

Corollary 3.7. Let (R, m) be a Gorenstein ring of dimension d and embedding
dimension v = µ(m). Let e = e(R). If either R or R̂ is not F-regular, then

eHK(R) ≥ e

e − v + d
.

Proof. Non-F-regularity passes to the completion, so we may assume that R is
complete. By Remark 2.10, we may assume that the residue field is infinite—
and that x is a s.o.p. with e(R) = λ(R/(x))—while preserving the nonweak-F-
regularity of R. If u denotes a socle element modulo (x) then u ∈ (x)∗. We can
now apply Theorem 3.2 with I = m. Then

a = λ∗(R/m) = 1 and b = λ(((x)∗ : m)/(x)) ≥ v − d + 1,

since in the 0-dimensional Gorenstein ring S = R/(x) we have (u)S : mS = 0 :
m2S and λ(0 : m2S) = λ(S/m2S) = v − d + 1. The corollary now follows.

Remark 3.8. It is possible in “pathological” (e.g., nonexcellent) cases for a ring
to be weakly F-regular while its completion is not. Loepp and Rotthaus construct
such an example, which is Gorenstein, in [12]. Corollary 3.7 applies in this case.

Corollary 3.7 can be improved, and this improvement—although interesting on its
own—will also prove useful in Section 4. We first establish some notation. For a
graded ring G = ⊕

i≥0 Gi that is finitely generated over an Artinian ring G0, let
ki = λ(Gi). If λ(G) < ∞, let r = max{i | Gi �= 0}. We note that if (S, n) is a
Gorenstein ring of dimension 0 and if G is the associated graded ring of S at n,
then Gr is generated by the image of the socle element and so kr = 1.
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Corollary 3.9. Let (R, m) be a non-F-regular Gorenstein local ring of dimen-
sion d and multiplicity e = e(R), and let x = x1, . . . , xd be a minimal reduction
of m. Let G be the associated graded ring of R/(x) (at its maximal ideal ), and
let r and ki (0 ≤ i ≤ r) be as before. Then

eHK(R) ≥ max
1≤i≤r

{
e

e − ki

}
.

As a consequence,

eHK(R) ≥ e

e − e−2
r−1

≥ r + 1

r
.

Proof. Because R is not F-regular, if u denotes a socle element modulo (x) then
u∈ (x)∗. Thus (x) : m = (u, x) ⊆ (x)∗. We may then apply Theorem 3.2 with I =
mj + (x) and J = (x)∗ : I ⊇ (u, x) : mj = ((x) : m) : mj = (x) : mj+1. In this
case, λ(R/I ) = ∑j−1

i=0 ki and λ(R/J ) = e−λ(J/(x)) ≤ e−λ(R/(mj+1+(x))) =
e − (∑j

i=0 ki
)

(Matlis duality and the fact that J ⊂ (x) : mj+1 give the inequal-
ity). Hence

eHK(R) ≥ e

λ∗(R/(mj + (x))) + λ∗(R/J )

≥ e∑j−1
i=0 ki + e − (∑j

i=0 ki
) = e

e − kj
.

Since k0 = kr = 1, there exists at least one ki ≥ e−1−1
r−1 and so

eHK(R) ≥ e

e − e−2
r−1

.

A bit of algebra shows that

e

e − e−2
r−1

≥ r + 1

r
⇐⇒ e ≥ r + 1.

The latter condition always holds.

Corollary 3.10. Let (R, m) be a non-F-regular Gorenstein ring of dimension
d > 1. Then eHK(R) ≥ d+1

d
. If R is not a hypersurface, then eHK(R) ≥ d

d−1.

Proof. By Remark 2.10, we may assume that (a) R is complete with infinite resi-
due field and (b) x is a s.o.p. that is a minimal reduction of m.

Let G and r be as in the proof of Corollary 3.9. The result of Corollary 3.9 suf-
fices if r + 1 ≤ d, so we assume that r ≥ d. By the Briançon–Skoda theorem,
md ⊆ (x)∗.

Let e = e(R) be the multiplicity. It is easy to see that, for any integer n ≤ e,
we have e

e−n
≥ d

d−1 if and only if n ≥ e/d. By Corollary 3.9 we are done if some
ki ≥ e/d, so assume that each ki < e/d.

Let I = md−1 + (x). Then (x)∗ : I ⊇ m (by the Briançon–Skoda theorem) and
so, by Theorem 3.2,

eHK(R) ≥ e

e − (e − 1) + 1 + k1 + · · · + kd−2
= e

2 + k1 + · · · + kd−2
.
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Since each ki < e/d we have eHK(R) >
e

2+(d−2)(e/d ) , and the right-hand side is
easily seen to be at least d

d−1 provided that e ≥ 2d.
The only case left is if e < 2d. Then 2d > e > dki for all ki implies that each

ki = 1 (i.e., R is a hypersurface) and e = r + 1 (recall that r ≥ d). Say m =
(z, x) minimally. By the Briançon–Skoda theorem, zd ∈ (x)∗ and so (x)∗ : m ⊇
(zd, x) : z ⊇ (zd−1, x). Applying Theorem 3.2 with I = m now yields

eHK(R) ≥ e

1 + d − 1
= e

d
≥ d + 1

d
.

4. Radical Extensions and Comparison
of Hilbert–Kunz Multiplicities

In this section we develop a technique that, in conjuction with the results obtained
so far, will give a lower bound for the Hilbert–Kunz multiplicity of unmixed non-
regular local rings of dimension d that depends only on d and is strictly greater
than 1, thus showing that ε(d ) > 0. This answers one of the open questions men-
tioned in the Introduction.

We will need to use a result of Watanabe andYoshida [15,Thm. 2.7;17,Thm.1.6].
For a domain R we use Q(R) for the fraction field of R as well as R+ for the ab-
solute integral closure of R (i.e., an integral closure of R in an algebraic closure
of Q(R)).

Theorem 4.1. Let (R, m) ↪→ (S, n) be a module-finite extension of local do-
mains. Then, for every m-primary ideal I of R,

eHK(I ) = eHK(IS)

[Q(S) : Q(R)]
· [S/n : R/m]. (4.1)

We need the following definition.

Definition 4.2. Let (R, m) be a domain. Let z ∈ m, and let n be a positive in-
teger. Let v ∈ R+ be any root of f(X) = Xn − z. We call S = R[v] a radical
extension for the pair R and z.

Remark 4.3. If S is radical for R and z, then b := [Q(S) : Q(R)] ≤ n. Assume
also that R is normal and that z is a minimal generator of m. Then, in fact, b = n.

To see this we need to show that f(X) = Xn − z is the minimal polynomial for
v = z1/n over R. Let g(X) be the minimal polynomial of v over Q(R). Because R
is normal, g(X)∈R[X]. The constant term of g(X) is in m, since z is not a unit.
Then g(X)|f(X) in R[X]. Say f(X) = g(X)h(X). Then the constant term of
h(X) is a unit (or else z ∈ m2). But modulo m, g(X)h(X) = Xn and so, in fact,
h(X) is a unit constant.

In what follows, n will denote the maximal ideal of S whenever S is local. We
remark that if R is a complete local domain and z∈ m, then S must be local.

Theorem 4.4. Let (R, m) be a complete local domain of positive prime charac-
teristic with algebraically closed residue field. Let x = x1, . . . , xd be a system of
parameters, and set e = eHK((x)) = e((x)) and a = λ(R/(x)∗).



12 Ian M. Aberbach & Florian Enescu

Let z ∈ m − (x)∗ be a minimal generator and let v ∈ R+ be any nth root of z.
Let S = R[v] be a radical extension for R and z, and denote the maximal ideal of
S by n. Let b = [Q(S) : Q(R)]. Then

eHK(R) ≥ b(n − 1) e + n eHK(S)

b(a(n − 1) + 1)
.

For b = n, this inequality simplifies to

eHK(R) ≥ (b − 1) e + eHK(S)

a(b − 1) + 1
.

Remark 4.5. If we put eHK(R) = 1+ δR and eHK(S) = 1+ δS , then the preced-
ing inequalities are equivalent to

δR ≥ b(n − 1)(e − a) + n − b + nδS

b(a(n − 1) + 1)
and, if b = n,

δR ≥ (b − 1)(e − a) + δS

a(b − 1) + 1
.

For the proof of Theorem 4.4, the following remark is helpful.

Remark 4.6. Let I ⊆ R be an ideal in a local ring (R, m), and let v ∈ m be an
element such that (I, v) is m-primary. Then, for all n ≥ 1,

eHK((I, vn), (I, vn−1)) ≥ eHK((I, vn+1), (I, vn)).

To see this, we observe that (I, vn)[q] : v(n−1)q ⊆ (I, vn+1)[q] : vnq for all q;
hence

eHK((I, vn), (I, vn−1))

= lim
q→∞

1

q d
λ

(
(I, vn−1)[q]

(I, vn)[q]

)
= lim

q→∞
1

q d
λ

(
R

(I, vn)[q] : v(n−1)q

)

≥ lim
q→∞

1

q d
λ

(
R

(I, vn+1)[q] : vnq

)
= eHK((I, vn+1), (I, vn)).

Proof of Theorem 4.4. Let (x)∗ = I0 � I1 � · · · � Ia−2 � (Ia−2, z) = Ia−1 =
m � R be a saturated filtration, and let wi ∈R be an element whose image gener-
ates Ii/Ii−1 (in particular, take wa−1 = z). We can then filter (x)∗S ⊆ S by filling
in each Ii−1S ⊆ IiS with

Ii−1S ⊆ (Ii−1, v
n−1wi)S ⊆ · · · ⊆ (Ii−1, vwi)S ⊆ IiS

(where we allow that some of the containments may be equalities).
From Theorem 4.1 and the fact that [S/n : R/m] = 1 (R/m is algebraically

closed), we have that eHK(mS) = b eHK(mR). Thus, eHK(mS, n) = b eHK(R) −
eHK(S). By Remark 4.6, for each 1 ≤ j < n,

eHK((v
j, mS), (vj−1, mS)) ≥ eHK((v

j+1, mS), (vj, mS)).

Therefore,

eHK((mS), (vn−1, mS)) ≤ eHK(mS, n)

n − 1
.
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Set y := eHK((mS), (vn−1, mS)), and consider the filtration

mS = (z, Ia−2)S ⊇ (zv, Ia−2)S ⊇ (zv2, Ia−2)S

⊇ · · · ⊇ (zvn−1, Ia−2)S ⊇ Ia−2S. (4.2)

Remark 4.6 applies to each containment in equation (4.2), so each relative
Hilbert–Kunz multiplicity is at most

eHK((zv, Ia−2)S, mS) = eHK((v
n+1, Ia−2)S, (vn, Ia−2)S) ≤ y.

Adding them all up yields eHK(Ia−2S, mS) ≤ ny, and from this it follows that

eHK(Ia−2S, mS) ≤ n · eHK(mS, n)

n − 1
.

Using Theorem 4.1 to return to R, we have

eHK(Ia−2, m) ≤ n
eHK(mS, n)

b(n − 1)
.

Each of the other a−1 terms in the filtration of (x)∗ ⊆ R has relative Hilbert–Kunz
multiplicity at most eHK(R), so we obtain the inequality(

n
eHK(mS, n)

b(n − 1)

)
+ (a − 1) eHK(R) ≥ eHK((x)∗) = e. (4.3)

But this yields

eHK(R) ≥ b(n − 1) e + n eHK(S)

b(a(n − 1) + 1)
.

Corollary 4.7. Let (R, m) be an F-rational complete nonregular local ring
of positive prime characteristic with algebraically closed residue field. Let x =
x1, . . . , xd be a system of parameters and a minimal reduction for m, and let e =
e(R) = eHK((x)) = e((x)).

Let z ∈ m − (x) be a minimal generator and let v ∈ R+ be any nth root of z.
Let S = R[v] be a radical extension for R and z, and denote its maximal ideal of
S by n. Then

eHK(R) ≥ (n − 1) e + eHK(S)

e(n − 1) + 1
.

Proof. By Remark 4.3, b = [Q(S) : Q(R)] = n. Since R is F-rational, (x) =
(x)∗. Hence one can apply Theorem 4.4 together with the observation that a = e.

Remark 4.8. Corollary 4.7 can be substantially improved, but the proof is con-
siderably more difficult. We will give improved versions in a later paper along
with improved estimates of lower bounds for ε(d ).

Corollary 4.9. Let (R, m) be a complete local domain of positive prime char-
acteristic with algebraically closed residue field. Let x = x1, . . . , xd be a system
of parameters and a minimal reduction for m, and set e = eHK((x)) = e((x)) and
a = λ(R/(x)∗). Then

eHK(R) ≥ e + 1

a + 1
.
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Proof. If m = (x)∗, then a = 1 and eHK(R) = eHK((x)) = e ≥ e+1
2 .

Otherwise, take any minimal generator of m not in (x)∗ and adjoin a square
root of it from R+. Then apply Theorem 4.4 and note that, since 2 = n ≥ b and
eHK(S) ≥ 1,

eHK(R) ≥ b(n − 1) e + b

b(a(n − 1) + 1)
= (n − 1) e + 1

a(n − 1) + 1
= e + 1

a + 1
.

Remark 4.10. Assume that (R, m) is CM of type t, and let I be a parameter
ideal and minimal reduction for m such that I � I ∗ � m. Then e = λ(R/I ) and
t = λ((I : m)/I ).

The two ideals I ∗ and (I : m) are incomparable in many cases. However, in
the special case when (I : m) ⊆ I ∗ (the Gorenstein case, for example), t ≤ e − a

and e
e−t+1 ≤ e+1

a+1. So Corollary 4.9 improves an earlier result of ours in this case.

We now begin a construction that will yield a lower bound for the Hilbert–Kunz
multiplicity of Gorenstein, F-regular, nonregular local rings.

Assume that (R, m) is a Gorenstein F-regular local ring of multiplicity e =
e(R) > 1. Note that R must be a normal domain. We may complete and (by [1,
Thm. 3.4]) extend the residue field to assume that it is algebraically closed. Let
x = x1, . . . , xd be a minimal reduction of m, so that λ(R/(x)) = e.

Lemma 4.11. Let R and x be as just described, and suppose that z, v = z1/n, and
S are as in Corollary 4.7. Assume, moreover, that x1, . . . , xd−1, z is also a minimal
reduction of m. Let u∈ m denote a socle element modulo (x1, . . . , xd−1, z). Then:

(a) x1, . . . , xd−1, v is a minimal reduction of n (the maximal ideal of S);
(b) u is still a socle element modulo (x1, . . . , xd−1, v)S; and
(c) S is Gorenstein and e(S) = e(R).

Proof. Let xd−1 = x1, . . . , xd−1.

(a) If m = (xd−1, z) + J, where µ(J ) = µ(m) − d, then n = (xd−1, v)S + JS.

Since J is integral over (xd−1, z)R, it follows that the ideal JS is integral over
(xd−1, z)S and hence over the larger ideal (xd−1, v)S. This suffices to show (a).

(b) If u ∈ (xd−1, v)S then u ∈ (xd−1, z)S ∩ R ⊆ ((xd−1, z)R)∗ = (xd−1, z)R, a
contradiction. With J as in part (a), we have

nu = ((xd−1, v)S + JS)u ⊆ JuS + (xd−1, v)S

⊆ (xd−1, z)S + (xd−1, v)S ⊆ (xd−1, v)S.

Thus u is a socle element.
(c) By Remark 4.3, Xn − z is the minimal polynomial of v over R. Therefore, S

is R-free and hence flat with Gorenstein closed fiber. Thus S is Gorenstein. Then

e(S) = λS(S/(xd−1, v)) = 1

n
λS(S/(xd−1, v

n))

= 1

n
λS(S/(xd−1, z)) = λR(R/(xd−1, z)) = e(R).
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Let d = dimR and k = µ(m) − d > 1. Observe that eHK(R) ≥ e(R)
d! . Hence,

whenever e(R) ≥ d! + 1, we have eHK(R) ≥ 1 + 1
d! .

Therefore, if we want to produce a lower bound for eHK(R) in terms of only
d, then there is no harm in fixing e(R) = e as well. This is so because we can
take the minimum of the lower bounds obtained for fixed d, e while letting e vary
between 2 and d!.

The residue field of R is infinite, so we may pick y1, . . . , yd+1 ∈ m − m2 in gen-
eral position and thus assume that each d-element subset is a minimal reduction of
m (see e.g. Theorem 8.6.6 of [10] and the comment after it). Let u denote a socle
element modulo (y1, . . . , yd)R, and let r = max{i | u ∈ mi + (y1, . . . , yd)R}. Set
n = �d/r� (so nr ≥ d). Let R0 = R, and for each i ≥ 1 let vi = y1/n

i and set
Ri = Ri−1[vi]. For each i, write eHK(Ri) = 1 + δi .

For a given i ≥ 1, ifRi−1 is F-regular then we may apply Corollary 4.7 toRi−1 ⊆
Ri with x = v1, . . . , vi−1, yi+1, . . . , yd+1 and z = yi (x is a minimal reduction of
Ri−1 by Lemma 4.11(a)). Also, by Lemma 4.11(b), u is a socle element modulo
(v1, . . . , vi, yi+1, . . . , yd)Ri. Noting that the multiplicity stays the same, we obtain

1 + δi−1 ≥ 1 + 1

e(Ri−1)(n − 1) + 1
δi = 1 + 1

e(R0)(n − 1) + 1
δi . (4.4)

We claim that, for some i ≤ d, Ri is not F-regular. If not, then Rd is F-regular.
Let mR0 = (y1, . . . , yd) + J with µ(J ) = µ(m) − d. It is then clear that mRd

=
(v1, . . . , vd) + JRd. By the Briançon–Skoda theorem, md

Rd
⊆ ((v1, . . . , vd)Rd)

∗;
hence

u∈ (JR0)
r ⊆ (y1, . . . , yd)rRd = (yr

1, . . . , y
r
d )Rd = (vrn

1 , . . . , vrn
d )Rd

⊆ (vd
1, . . . , vd

d )Rd ⊆ ((v1, . . . , vd)Rd)
∗ = (v1, . . . , vd)Rd ,

in contradiction to Lemma 4.11(b).
Assume, then, that i0 = min{i | Ri is not F-regular}. By Corollary 3.10, it fol-

lows that eHK(Ri) ≥ d+1
d

= 1 + 1
d
. Repeated application of equation (4.4) yields

eHK(R) = eHK(R0) ≥ 1 +
(

1

e(R)(n − 1) + 1

)i0 1

d
.

We are now in position to state and prove the main result of the paper.

Theorem 4.12. Let (R, m, k) be a formally unmixed local ring of positive char-
acteristic p and dimension d ≥ 2. If R is not regular, then

eHK(R) ≥ 1 + 1

d · (d!(d − 1) + 1)d
.

Proof. Because we can make a faithfully flat extension, we may assume that k is
algebraically closed and also that R is complete.

We can assume that eHK(R) < 1+ 1
d! and so, by Corollary 3.6, R is Gorenstein

and F-rational and hence is strongly F-regular.
If e ≥ d! + 1, then eHK(R) ≥ e(R)

d! ≥ 1 + 1
d! . We can thus assume that e ≤ d!.



16 Ian M. Aberbach & Florian Enescu

Now we apply the technique described just before our statement of the theorem
and, noting that n ≤ d, obtain that

eHK(R) ≥ 1 + 1

(d · (e(d − 1) + 1)d
≥ 1 + 1

d · (d!(d − 1) + 1)d
.
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