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1. Introduction

Roughly speaking, a topological orbifold is a space locally homeomorphic to an
orbit space of a finite group action on R

n.A smooth orbifold consists of a Hausdorff
second countable topological space together with an atlas of coordinate charts re-
alizing such local homeomorphisms and satisfying compatibility conditions (see
Section 2). Orbifolds were introduced by Satake and then studied by Thurston
because of their utility in the investigation of 3-manifolds (e.g., a Seifert fibred
3-manifold is naturally a generalized circle bundle over a 2-orbifold); today, orb-
ifolds arise naturally in diverse branches of mathematics and physics, including
symplectic geometry, string theory, and vertex operator algebras.

We will be interested in orbifolds from a spectral-theoretic point of view. An
orbifold endowed with a metric structure is a Riemannian orbifold. As in the man-
ifold case, associated with every Riemannian metric is a Laplace operator acting
on smooth functions on the orbifold. In the case of closed orbifolds, the Laplac-
ian has a discrete spectrum. We study the relationship between the geometry and
the Laplace spectrum of a closed orbifold via its heat kernel; as in the manifold
case, the time-zero asymptotic expansion of the heat kernel furnishes geometric
information about the orbifold.

Orbifolds began appearing sporadically in the spectral theory literature in the
early 1990s and have received more concentrated attention in the last five years.
Farsi [15] showed that the spectrum of an orbifold determines its volume by prov-
ing that Weyl’s asymptotic formula holds for orbifolds. Dryden and Strohmaier
[13] showed that, for a compact and negatively curved two-dimensional orbifold,
the Laplace spectrum determines both the length spectrum and the orders of the
singular points and vice versa; on the other hand, Doyle and Rossetti [12] gave
(disconnected) examples of isospectral flat two-dimensional orbifolds with dif-
ferent length spectra and orders of singular points. Further investigations of the
relationship between the lengths of closed geodesics and the spectrum were car-
ried out by Stanhope and Uribe in [29]. It is natural to ask about the singularities
that can appear in an isospectral family of orbifolds. Stanhope [28] showed that,
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in general, there can be at most finitely many isotropy types (up to isomorphism)
in a set of isospectral Riemannian orbifolds that share a uniform lower bound on
Ricci curvature. On the other hand, Shams, Stanhope, and Webb [27] constructed
arbitrarily large (finite) isospectral sets of orbifolds that satisfy this curvature con-
dition and whose isotropy types differ. Rossetti, Schueth, and Weilandt [25] re-
cently constructed a pair of isospectral Riemannian orbifolds whose isotropy types
have different orders.

For Riemannian manifolds, the asymptotic expansion of the heat kernel can be
used to relate the geometry of the manifold to its spectrum. From the so-called
heat invariants appearing in the asymptotic expansion, one can tell the dimension,
the volume, and various quantities involving the curvature of the manifold. The
heat kernel has been studied in various analogous or more general settings [4; 5;
6; 11; 17; 24].

In the case of a good Riemannian orbifold (i.e., an orbifold arising as the orbit
space of a manifold under the action of a discrete group of isometries), Donnelly
[10] proved the existence of the heat kernel and constructed the asymptotic expan-
sion for the heat trace. We extend Donnelly’s work to the case of general compact
orbifolds. Moreover, in both the good case and the general case, we express the
heat invariants in a form that clarifies the asymptotic contribution of each part of
the singular set of the orbifold.

We calculate several terms in the asymptotic expansion explicitly in the case of
two-dimensional orbifolds; we then use these terms to prove that the spectrum dis-
tinguishes elements within various classes of two-dimensional orbifolds. In par-
ticular, within the class of all two-dimensional orbifolds with nonnegative Euler
characteristic, the spectrum is a complete topological invariant. Additional results
are obtained for triangular pillow orbifolds endowed with a hyperbolic structure
and for nonorientable two-dimensional orbifolds.

The paper is organized as follows. In Section 2 we give the background nec-
essary for the rest of the paper, recalling several results that clarify the structure
of the singular locus of an orbifold. Section 3 is devoted to the construction of
the heat kernel on an arbitrary closed Riemannian orbifold by means of the con-
struction of a parametrix. The existence of the heat kernel for closed orbifolds
was shown previously by Chiang [8]; existence also follows from more general
results for the heat kernel on Riemannian foliations (see [24]). However, we give
a different construction in order to express the heat kernel in a convenient form
that will allow us, in Section 4, to generalize Donnelly’s asymptotic expansion.
Section 5 is devoted to various applications of the heat expansion, including those
mentioned in the previous paragraph.
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2. Orbifolds and Their Singular Sets

2.1. Definition. (i) An orbifold chart on a topological space X consists of a
connected open subset Ũ of R

n, a finite groupGU acting on Ũ by diffeomorphisms,
and a mapping πU from Ũ onto an open subset U of X inducing a homeomor-
phism from the orbit space GU\Ũ onto U. We will always assume that the group
GU acts effectively on Ũ.

(ii) An embedding λ : (Ũ,GU ,πU) → (Ũ ′,GU ′ ,πU ′) between orbifold charts
with U ⊆ U ′ is a smooth embedding λ : Ũ → Ũ ′ such that the diagram

Ũ
�� λ ��

πU
����

Ũ ′

πU ′
����

GU\Ũ
∼

��

GU ′ \Ũ ′

∼
��

U ↪ �� U ′

commutes. Two charts (Ũ,GU ,πU) and (Ũ ′,GU ′ ,πU ′) on X are said to be com-
patible if, for each point x ∈U ∩U ′, there exists an orbifold chart (Ũ ′′,GU ′′ ,πU ′′)
with U ′′ ⊂ U ∩ U ′ and smooth embeddings (Ũ ′′,GU ′′ ,πU ′′) → (Ũ,GU ,πU) and
(Ũ ′′,GU ′′ ,πU ′′) → (Ũ ′,GU ′ ,πU ′).

(iii) An n-dimensional orbifold atlas A on X is a compatible family of n-
dimensional orbifold charts whose images form a covering of X. A refinement A′
of an orbifold atlas A is an orbifold atlas each of whose charts embeds into a chart of
A. Two orbifold atlases are said to be equivalent if they have a common refinement.
Every orbifold atlas is equivalent to a unique maximal one. An orbifold is a Haus-
dorff second-countable topological space together with a maximal orbifold atlas.

(iv) Let O be an orbifold. A point x of O is said to be singular if, for some
(hence every) orbifold chart (Ũ,GU ,πU) about x, the points in the inverse image
of x in Ũ have nontrivial isotropy in GU. The isomorphism class of the isotropy
group, called the abstract isotropy type of x, is independent both of the choice of
point in the inverse image of x in Ũ and of the choice of chart (Ũ,GU ,πU) about
x. Points that are not singular are called regular.

2.2. Remarks. (i) The notion of orbifold generalizes slightly the notion of V -
manifold introduced by Satake [26]; V -manifolds are orbifolds for which the sin-
gular set has codimension at least 2.

(ii) Given an embedding λ : (Ũ,GU ,πU) → (Ũ ′,GU ′ ,πU ′) as in Definition 2.1,
there exists a homomorphism τ : GU → GU ′ such that λ 
 γ = τ(γ ) 
 λ for all
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γ ∈GU. This was proven by Satake for V -manifolds and was generalized to orb-
ifolds by Moerdijk and Pronk [20]. From our convention that the group actions on
each chart are effective, it follows that the homomorphism τ is injective.

(iii) There are some subtle differences among the definitions of orbifold in the
literature; in particular, some authors do not require that the finite group actions
in the orbifold charts be effective. The definition we use is that in [20]. Although
these distinctions become significant when formulating the correct notion of the
category of smooth orbifolds, they play no role in our computations.

An orbifold is said to be good if it is the orbit space of a manifold under the
smooth action of a discrete group; otherwise, it is said to be bad. In particular,
every point in an orbifold has a neighborhood that is a good orbifold. Even a bad
orbifold can be expressed globally as the quotient of a manifold by a group action,
although not a discrete group action. This is done by introducing a Riemannian
structure and constructing the “bundle” of orthonormal frames. The orthonormal
frame bundle is actually an orbibundle, the appropriate notion of vector bundle
over an orbifold as described in [19] or [30]. However, its total space is a smooth
manifold with an action of the orthogonal group, and one recovers the original
orbifold as the orbit space of this orthogonal action. We shall review this con-
struction after first establishing some notation in the setting of arbitrary group
actions.

2.3. Definition (cf. [14, Chap. 2]). (i) Consider a smooth proper action of a
Lie group H on a smooth manifold M. For x̃ ∈ M, let IsoH (x̃) denote the sub-
group of H that fixes x̃. Define an equivalence relation on M by x̃ ≡ ỹ if IsoH (x̃)
and IsoH (ỹ) are conjugate. Each equivalence class is called anH-orbit type. Note
that the equivalence classes are invariant under the action of H.

We will say that the H-orbit type of x̃ dominates that of ỹ if IsoH (x̃) is conju-
gate to a subgroup of IsoH (ỹ).

(ii) Let π : M → H \M be the projection onto the orbit space. Let p ∈H \M.

As p̃ ranges over the H-orbit π−1(p) in M, the stabilizer IsoH (p̃) ranges over a
conjugacy class of subgroups of H. We will denote this conjugacy class of sub-
groups by IsoH (p) and refer to it as theH-isotropy type ofp. Define an equivalence
relation on H \M by p ≡ q if IsoH (p) = IsoH (q). The equivalence classes will
be called H-isotropy equivalence classes. Note that π carries points of the same
H-orbit type in M to points of the same H-isotropy equivalence class in H \M.

We will say that the H-isotropy equivalence class of p dominates that of q if
the groups making up the conjugacy class IsoH (p) are conjugate to subgroups of
those in IsoH (q).

By an abuse of notation, we will write |IsoH (p)| to mean the order of each of
the groups making up the isotropy type IsoH (p). We will refer to this quantity as
the order of the H-isotropy at p.

2.4. Definition. (i) A Riemannian structure on an orbifold O is an assignment
to each orbifold chart (Ũ,GU ,πU) of a GU -invariant Riemannian metric gŨ on Ũ
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satisfying the compatibility condition that each embedding λ appearing in Defini-
tion 2.1 be isometric. Every orbifold admits Riemannian structures.

(ii) We will say that an orbifold chart (Ũ,GU ,πU) on a Riemannian orbifold O
is a distinguished chart of radius r if Ũ is a convex geodesic ball of radius r. In
this case, U is a convex geodesic ball in O. The entire group GU fixes the center
p̃ of Ũ, so the abstract isotropy type of p := πU(p̃) is represented by GU.

2.5. Remark. Recall that, for a Riemannian manifold M and a point p ∈M, the
convexity radius at p is the largest positive real number r(p) for which the ge-
odesic ball of radius ε about p is geodesically convex for all ε < r(p). If M is
compact, the infimum r of {r(p) : p ∈M} is positive and is called the convexity
radius of M. For a point p in an orbifold O, we may define the convexity radius
at p to be the largest real number r(p) such that O admits a distinguished chart
of radius ε centered at p for all ε < r(p). It is immediate that r(p) is positive.
Moreover, if O is compact, then an elementary argument shows that the infimum
r of {r(p) : p ∈ O} is positive; r is called the convexity radius of O.

2.6. Orthonormal Frame Bundle. We give a brief description of the or-
thonormal frame bundle of a Riemannian orbifold. See [1] for more details. First
consider a good Riemannian orbifold O = G\M, where M is a Riemannian man-
ifold and G is a discrete group acting by isometries on M. Let F(M) → M be
the orthonormal frame bundle of M. Each element γ ∈ G, as an isometry of M,
induces a diffeomorphism γ∗ of F(M) carrying fibers to fibers; thus we obtain an
action of G on F(M) covering the action of G on M. The orthonormal frame bun-
dle F(O) of O is defined to be G\F(M) → O. The fiber of F(O) → O over x ∈
O is the preimage of x in G\F(M). The right action of O(n) on F(M) commutes
with the left action of G and hence descends to a right O(n)-action on F(O). For
a bad orbifold, the orthonormal frame bundle is defined in such a way that its re-
striction to any good neighborhood U ∼= GU\Ũ is the orthonormal frame bundle
of the good orbifold U.

The orthonormal frame bundle of O is a smooth manifold as well as an orbi-
bundle on which the orthogonal groupO(n) acts smoothly on the right, preserving
fibers. In particular, the orbifold O is the orbit space F(O)/O(n) of the right ac-
tion of O(n) on the manifold F(O).

2.7. Notation and Remarks. Let O be an orbifold. Endow O with a Riemann-
ian metric and let F(O) be the associated orthonormal frame bundle as in 2.6. The
O(n)-action on the fiber of F(O) over a point x ∈ O is free if and only if x is a
regular point of O. In particular, for each singular point x of O viewed as an ele-
ment of F(O)/O(n), the O(n)-isotropy type of x is a nontrivial conjugacy class
IsoO(n)(x) of subgroups of O(n). (See Definition 2.3.)

Our realization of the orbifold O as a global quotient of a manifold (namely
F(O)) by an action of O(n) depends, of course, on the Riemannian metric. How-
ever, it is not difficult to show that the conjugacy class IsoO(n)(x) of subgroups of
O(n) is actually independent of the choice of Riemannian metric used in the con-
struction. This conjugacy class of subgroups of O(n) will henceforth be denoted
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Iso(x) (without the subscript O(n) except when needed for clarity) and will be re-
ferred to as the isotropy type of the singular point x of O. Its cardinality |Iso(x)|
will be called the order of the isotropy at x. Similarly, the equivalence classes
of elements of O with the same isotropy type will be called isotropy equivalence
classes without mention of O(n).

The subgroups of O(n) in the conjugacy class Iso(x) lie in the isomorphism
class defined by the abstract isotropy type of x given in Definition 2.1. Indeed, let
(Ũ,GU ,πU) be an orbifold chart with x ∈U. Let x̃ ∈ Ũ with πU(x̃) = x. With re-
spect to any choice of Riemannian metric on O (and associated Riemannian metric
on Ũ ), the group GU acts isometrically on Ũ and thus acts on the left on the or-
thonormal frame bundle F(Ũ). The subgroup IsoGU

(x̃) leaves invariant the fiber
of F(Ũ) over x̃. For each q in this fiber, define a homomorphism σq : IsoGU

(x̃) →
O(n) by the condition γ (q) = (q)σq(γ ), where γ (·) and (·)σq(γ ) denote the left
action of γ and right action of σq(γ )∈O(n) on the fiber. By 2.6, the restriction of
F(O) to U is given by GU\F(Ũ). Let ρ : F(Ũ) → GU\F(Ũ) be the projection;
then σq maps IsoGU

(x̃) isomorphically to the stabilizer of ρ(q) in O(n). This sta-
bilizer is a representative of the conjugacy class Iso(x), and IsoGU

(x̃) represents
the abstract isotropy type of x.

2.8. Definition. A smooth stratification of a manifold or orbifoldM is a locally
finite partition of M into locally closed submanifolds, called the strata, satisfying
the following condition: For each stratum N, the closure of N is the union of N
with a collection of lower-dimensional strata.

2.9. Remarks. (i) For any stratification of an orbifold (or manifold) O, the strata
of maximal dimension are open in O and their union has full measure in O.

(ii) The stratifications that we shall discuss are Whitney stratifications. Because
we do not explicitly use the additional properties of Whitney stratifications here,
we omit the definition and refer the reader to [14]. The notion of Whitney strat-
ification can be defined in the more general setting of spaces that can be at least
locally embedded in a smooth manifold. As discussed in [14], the orbit space of a
proper Lie group action on a smooth manifold has this property.

2.10. Proposition [14]. Given a smooth action of a Lie group H on a manifold
M, the following statements hold.

(i) The connected components of the H-orbit types form a Whitney stratifica-
tion of M. The closure of a stratum Ñ is made up of the union of Ñ with a
collection of lower-dimensional strata, each lying in an H-orbit type strictly
dominated by that of Ñ.

(ii) The connected components of the H-isotropy equivalence classes in H \M
form a Whitney stratification of H \M. The closure of a stratum N is made up
of the union of N with a collection of lower-dimensional strata, each lying in
an H-isotropy equivalence class strictly dominated by that of N. The map π
carries each stratum in M onto a stratum in H \M.
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(iii) For x ∈H \M and N the stratum through x, there exists a neighborhood U
of x in H \M such that the isotropy equivalence class of each element of the
complement of N in U strictly dominates that of x.

(iv) If M is compact, then the stratifications of M and of H \M are finite.

2.11. Corollary. Let O be an orbifold. Then the action of O(n) on the frame
bundle F(O) gives rise to a (Whitney) stratification of O. The strata are con-
nected components of the isotropy equivalence classes in O. The set of regular
points of O intersects each connected component O0 of O in a single stratum that
constitutes an open dense submanifold of O0.

2.12. Notation. (i) We refer to the strata of O in Corollary 2.11 as O-strata.
(ii) If (Ũ,GU ,πU) is an orbifold chart on O, then the action of GU on Ũ gives

rise to stratifications both of Ũ and of U as in Proposition 2.10. We will refer to
these as Ũ-strata and U-strata, respectively.

2.13. Proposition. Let O be a Riemannian orbifold and (Ũ,GU ,πU) an orb-
ifold chart.

(i) The U-strata are precisely the connected components of the intersections of
the O-strata with U.

(ii) Any two elements of the same Ũ-stratum have the same stabilizers inGU (not
just conjugate stabilizers).

(iii) If H is a subgroup of GU , then each connected component W of the fixed
point set Fix(H ) of H in Ũ is a closed submanifold of Ũ. Any Ũ-stratum
that intersects W nontrivially lies entirely in W. Thus the stratification of Ũ
restricts to a stratification of W.

Proof. (i) A consequence of Proposition 2.10 is that each U-stratum (resp. O-
stratum) is a connected component of the set of all points in U (resp. O) having
GU -isotropy (resp. O(n)-isotropy) of a given order. Since by 2.7 the order of the
GU -isotropy of each x ∈ U is equal to the order of the O(n)-isotropy of x, state-
ment (i) follows.

(ii) This follows because GU is discrete and the Ũ-strata are connected.
(iii) The first statement is true for the fixed point set of any smooth proper action

by a compact group on a manifold [14]; the second statement follows from (ii).

2.14. Notation and Remarks. Let O be a Riemannian orbifold and (Ũ,GU ,πU)
an orbifold chart. Let Ñ be a Ũ-stratum in Ũ. By Proposition 2.13, all the points in
Ñ have the same isotropy group in GU ; we will refer to this group as the isotropy
group of Ñ, denoted Iso(Ñ ).

Given a Ũ-stratum Ñ, denote by Isomax(Ñ ) the set of all γ ∈ Iso(Ñ ) such that
Ñ is open in the fixed point set Fix(γ ) of γ.

For γ ∈GU , Proposition 2.13 tells us that each component W of the fixed point
set Fix(γ ) of γ (equivalently, the fixed point set of the cyclic group generated by
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γ ) is a manifold stratified by a collection of Ũ-strata. By Remark 2.9(i), the strata
in W of maximal dimension are open and their union has full measure in W. In
particular, the union of those Ũ-strata Ñ for which γ ∈ Isomax(Ñ ) has full measure
in Fix(γ ).

2.15. Example. On R
2, let rx and ry denote the reflections across the x-axis and

y-axis (respectively) and let r0 denote the rotation through angle π about the ori-
gin 0. Then G := {rx , ry , r0, Id} is a Klein 4-group acting isometrically on R

2.

The quotient of R
2 by the semi-direct product of G with the lattice Z

2 of transla-
tions is a closed orbifold O whose underlying space is a square of side length 1

2 .

The points on the boundary of the square are singular points (not boundary points)
of the orbifold and constitute eight strata: each corner point forms a single stra-
tum with isotropy of order 4, while each open edge forms a stratum with isotropy
of order 2. The strata of codimension 1 are called reflectors or mirrors, and the
single-point strata are called corner reflectors (or dihedral points). The intersec-
tion U of the square with a disk of radius less than 1

2 centered at one of the corners
is the image of an orbifold chart (Ũ,G,πU), where Ũ is a disk in R

2 centered at
the origin and G is the Klein 4-group described previously. The Ũ-strata of this
action consist of the single point 0 and the intersections of the disk Ũ with the
positive and negative x-axis and the positive and negative y-axis. If Ñ is the in-
tersection of Ũ with one of the half-axes, then Iso(Ñ ) consists of a reflection and
the identity while Isomax(Ñ ) contains only the reflection. For Ñ = {0}, we have
Iso(Ñ ) = G but Isomax(Ñ ) = {r0}.

3. Construction of the Heat Expansion

In this section, we address the heat kernel on closed Riemannian orbifolds.

3.1. Proposition. Let O be a closed Riemannian orbifold. The Laplacian �

of O has a discrete spectrum λ1 ≤ λ2 ≤ · · · , with each eigenvalue having finite
multiplicity. The normalized eigenfunctions ϕj are C∞ and form an orthonormal
basis of L2(O).

This proposition was proved by Chiang [8] in the case of V -manifolds (as defined
in Remark 2.2). For an orbifold O that is not aV -manifold, those strata of the sin-
gular set of codimension1are called reflectors. Doubling along all reflectors yields
a V -manifold X that doubly covers O. Thus O is the quotient of a V -manifold X
by a Z2 action. Since the eigenfunctions on O are then the Z2-invariant eigen-
functions on X, Proposition 3.1 follows immediately.

3.2. Definition. Set

R+ = [0, ∞) and R
∗
+ = (0, ∞).

We say that K : R
∗+ ×O ×O → R is a fundamental solution of the heat equation,

or heat kernel, if it satisfies:
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(i) K is C 0 in the three variables, C1 in the first, and C2 in the second;
(ii)

(
∂
∂t

+�x

)
K(t, x, y) = 0, where �x is the Laplacian with respect to the sec-

ond variable; and
(iii) lim t→0+ K(t, x, ·) = δx for all x ∈ O.

By the same argument as in the manifold case (see [2, III.E.2]), Proposition 3.1
implies the following statement.

3.3. Corollary. If a heat kernel exists, then it is unique and is given by

K(t, x, y) =
∞∑
j=1

e−λj tϕj(x)ϕj(y).

Chiang proved the existence of the heat kernel on a compact V -manifold (from
which existence on an arbitrary closed orbifold trivially follows) by proving the
convergence of

∑∞
j=1 e

−λj tϕj(x)ϕj(y). She also showed that the heat kernel can
be approximated on good neighborhoods by the Dirichlet heat kernel on the local
manifold covering. Existence follows also from more general results on existence
of the heat kernel for the basic Laplacian on Riemannian foliations [22]. How-
ever, in order to apply Donnelly’s results on the heat trace for good orbifolds—and
so obtain the terms in the asymptotic expansion for arbitrary orbifolds in an appli-
cable form—we will not assume the existence results for the heat kernel or heat
trace. Instead we construct a parametrix and then follow the standard construction
of the heat kernel from the parametrix as in [2]. Our construction of the parametrix
(and consequently the heat kernel) will use directly the local structure of orbifolds
as quotients of manifolds by finite group actions.

3.4. Definition. A parametrix for the heat operator on O is a function H :
R

∗+ × O × O → R satisfying:

(i) H ∈C∞(R∗+ × O × O);
(ii)

(
∂
∂t

+�x

)
H(t, x, y) extends to a function in C 0(R+ × O × O); and

(iii) lim t→0+ H(t, x, ·) = δx for all x ∈ O.

Recall that the heat kernel on a closed n-dimensional Riemannian manifoldM has
an asymptotic expansion along the diagonal in M ×M as t → 0+ of the form

K(t, x, x) ∼ (4πt)−n/2(u0(x, x)+ tu1(x, x)+ t 2u2(x, x)+ · · · ), (3.5)

where the ui are local Riemannian invariants defined in a neighborhood of the di-
agonal inM×M. Let ζ be a cut-off function that is identically 1 near the diagonal;
then, for m > n/2, the function

K(m)(t, x, y) = ζ(x, y)(4πt)−n/2e−d(x,y)2/4t(u0(x, y)+ · · · + t mum(x, y)) (3.6)

is a parametrix for the heat operator on M.
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3.7. Remark. In what follows, we shall take a local covering of our orbifold O
by distinguished charts and piece together a parametrix for the heat operator on
O from the expressions in (3.6). The key to piecing together the parametrix on O
is to note that, whereas the parametrix K(m) in (3.6) is defined globally on M, the
three defining conditions of a parametrix in Definition 3.4 are satisfied locally as
well as globally by K(m). Indeed, the first two conditions are trivially local. The
third condition is local in the following sense: the expression e−d(x,y)2/4t goes to
zero uniformly as t → 0+ when d(x, y) is bounded away from zero. Thus for f ∈
C 0(M) we have

f(x) = lim
t→0+

∫
M

K(m)(t, x, y)f(y) dy = lim
t→0+

∫
W

K(m)(t, x, y)f(y) dy,

where W is any neighborhood of x.
We will also use the fact (see [2]) that ifm > n/2+2 l then

(
∂
∂t

+�x

)
K(m)(t, x, y)

extends to a function in Cl(R+ × M × M). Moreover, the extension is of class
C2 l in the last two variables.

3.8. Notation. Let O be an orbifold of dimension n. Fix ε > 0 such that, for
each x ∈ O, there exists a distinguished coordinate chart of radius ε centered at
x. Cover O with finitely many such charts (W̃α ,Gα ,πα), α = 1, . . . , s. (Here we
write Gα for GWα

and πα for πWα
.) Let pα be the center of Wα and p̃α the center

of W̃α. Let Uα (resp.Vα) be the geodesic ball of radius ε/4 (resp. ε/2) centered at
pα , and let Ũα and Ṽα be the corresponding balls centered at p̃α in W̃α. We may
assume that the family of balls {Uα}1≤α≤s still covers O.

For each α and each nonnegative integer m, define H̃ (m)
α : R

∗+ × W̃α × W̃α by

H̃ (m)
α (t, x̃, ỹ) = (4πt)−n/2e−d(x̃,ỹ)2/4t(u0(x̃, ỹ)+ · · · + t mum(x̃, ỹ)),

where the ui are the invariants in (3.5). Since each γ ∈Gα is an isometry of W̃α ,
it follows that ui(γx̃, γỹ) = ui(x̃, ỹ) for all x̃, ỹ ∈ W̃α. Therefore, the function

(t, x̃, ỹ) �→
∑
γ∈Gα

H̃ (m)
α (t, x̃, γỹ)

isGα-invariant in both x̃ and ỹ and thus descends to a well-defined function, which
we denote by H (m)

α , on R
∗+ ×Wα ×Wα.

Let ψα : O → R be a C∞ cut-off function that is identically 1 on Vα and is sup-
ported in Wα. Let {ηα : α = 1, . . . , s} be a partition of unity on O with the support
of ηα contained in Ūα. Define H (m) : R

∗+ × O × O → R by

H (m)(t, x, y) =
s∑

α=1

ψα(x)ηα(y)H
(m)
α (t, x, y). (3.9)

We will show that H (m) is a parametrix for the heat kernel on O when m > n/2.

3.10. Lemma. H (m) ∈C∞(R∗+ × O × O).

The proof is immediate.
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3.11. Lemma. Let l be a nonnegative integer. Then:

(i)
(
∂
∂t

+ �x

)
H (m)(t, x, y) extends to a function in Cl(R+ × O × O) if m >

n/2 + 2 l, and it is of class C2 l in the last two variables;
(ii) for any given T > 0 and for each m > n/2, there exists a constant A such

that
∣∣( ∂

∂t
+�x

)
H (m)(t, x, y)

∣∣ < Atm−n/2 when 0 < t < T.

Proof. (i) Let l ≥ 0 and suppose m > n/2 + 2 l. By Remark 3.7, the function(
∂
∂t

+�̃x̃

)
H̃ (m)

α (t, x̃, ỹ) on R
∗+ ×W̃α×W̃α extends toCl(R+ ×W̃α×W̃α). (We use

�̃ to denote the Laplacian on W̃α for all choices of α.) Thus the same is true for∑
γ∈Gα

(
∂
∂t

+ �̃x̃

)
H̃ (m)

α (t, x̃, γỹ), and hence it follows that
(
∂
∂t

+�x

)
H (m)

α (t, x, y)
extends to Cl(R+ ×Wα ×Wα).

Now consider the function

fα(t, x, y) :=
(
∂

∂t
+�x

)
(ψα(x)ηα(y)H

(m)
α (t, x, y)).

Noting that ψα and ηα are compactly supported inside Wα , we may view fα as a
function on R

∗+ × O × O that is 0 whenever x or y lies outside of Wα. We show
that fα extends to Cl(R+ × O × O). Since ψα ≡ 1 onVα , it follows immediately
from the previous paragraph that fα extends to Cl(R+ × Vα × O). Moreover,
fα ≡ 0 on R

∗+ × O × (O \ Uα) and so fα also extends smoothly (to zero) on
R+ × O × (O \Uα). Finally, for (x, y)∈ (O \Vα)× Ūα , we have d(x, y) ≥ ε/4.
Thus, as t → 0+, fα(t, x, y) and all its derivatives converge to 0 uniformly for
(x, y)∈ (O \Vα)× Ūα. Hence H (m) extends to a function in Cl(R+ × O × O).

The claim regarding class C2 l follows from Remark 3.7.
(ii) The ui are constructed so that(

∂

∂t
+ �̃x̃

)
H̃ (m)

α (t, x̃, ỹ) = (4πt)−n/2e−d(x̃,ỹ)2/4tt m�̃x̃um(t, x̃, ỹ)

(see [2]). Because the ui areC∞ functions, there must exist a constantBα such that(
∂

∂t
+ �̃x̃

)
H̃ (m)

α (t, x̃, ỹ) < Bα t
m−n/2

on (0, T ] × W̃α × W̃α. Consequently,(
∂

∂t
+�x

)
H (m)

α (t, x, y) < |Gα|Bα t
m−n/2

on (0, T ] ×Wα ×Wα and(
∂

∂t
+�x

)
(ψα(x)ηα(y)H

(m)
α (t, x, y)) < |Gα|Bα t

m−n/2

on (0, T ]×Vα×O, sinceψα ≡ 1onVα. Once again, for x outside ofVα and y in the
support of ηα , we have d(x, y) ≥ ε/4; hence

(
∂
∂t

+�x

)
(ψα(x)ηα(y)H

(m)
α (t, x, y))

can be bounded in terms of any power of t on (0, T )× (O \Vα)× O.

Statement (ii) now follows from equation (3.9).
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3.12. Remark. Ifm > n/2+2 l, then we can obtain bounds on the partial deriva-
tives of order at most l of

(
∂
∂t

+�x

)
H (m)(t, x, y) by an argument analogous to that

used in the proof of Lemma 3.11(ii).

3.13. Lemma. Let m be any nonnegative integer. For f ∈ C∞(O) and x ∈ O,
we have

lim
t→0+

∫
O
H (m)(t, x, y)f(y) dy = f(x);

in other words, lim t→0+ H (m)(t, x, y) = δx(y). Moreover, if N is a topologi-
cal space and if f is a continuous function on N × O, then the convergence of∫

O H (m)(t, x, y)f(p, y) dy to f(p, x) is locally uniform on N × O.

Proof. Let ψ̃α and η̃α be the lifts of ψα and ηα to W̃α.

Since supp(ηα) ⊂ Ūα ⊂ Wα , we have∫
O
ψα(x)ηα(y)H

(m)
α (t, x, y)f(p, y) dy

= ψα(x)

|Gα|
∑
γ∈Gα

∫
W̃α

H̃ (m)
α (t, x̃, γỹ)η̃α(ỹ)f̃α(p, ỹ) dỹ, (3.14)

where f̃α is a lift of f |N×Wα
to N × W̃α and x̃ is an arbitrarily chosen point in the

preimage of x under the map W̃α →Wα.

We change variables in each of the integrals in the right side of equation (3.14),
letting ũ = γ (ỹ). Since γ is an isometry and since η̃α and f̃α(p, ·) are γ -invariant,
each integral in the summand is equal to∫

W̃α

H̃ (m)
α (t, x̃, ũ)η̃α(ũ)f̃α(p, ũ) dũ. (3.15)

As t → 0+, the integral (3.15) converges to η̃α(x̃)f̃α(p, x̃) = ηα(x)f(p, x) (see
Remark 3.7). Moreover, this convergence is locally uniform on N × W̃α (see [2]).
Once we note that ψα ≡ 1 on the support of ηα , it follows that both sides of
equation (3.14) converge to ηα(x)f(p, x) as t → 0+, and the convergence is lo-
cally uniform on N × Wα. Since both sides of (3.14) are identically zero when
x lies outside of supp(ψα) ⊂ Wα , we thus have locally uniform convergence to
ηα(x)f(p, x) on all of N × O.

Finally, it follows from equation (3.9) that

lim
t→0+

∫
O
H (m)(t, x, y)f(p, y) dy =

∑
α

ηα(x)f(p, x) = f(p, x)

locally uniformly.

3.16. Proposition. H (m) is a parametrix for the heat operator on O ifm > n/2.

Proof. The proof is immediate from Lemmas 3.10, 3.11(i), and 3.13.

The construction of the heat kernel from the parametrix H (m) follows exactly as
in [2]. Here we give only a brief summary.
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3.17. Notation. For A,B ∈C 0(R+ × O × O), define the convolution A ∗B ∈
C 0(R∗+ × O × O) by

A ∗ B(t, x, z) =
∫ t

0
dθ

∫
O
A(t − θ, x, y)B(θ, y, z) dy.

Note that the convolution operator ∗ is associative.

3.18. Lemma. Let l be any nonnegative integer, and let m > n/2 + 2 l. Define
Fm(t, x, y) = (

∂
∂t

+�x

)
H (m)(t, x, y). (See Lemma 3.11 for regularity properties

of Fm.) Then, for each T > 0, the series
∑∞

j=1(−1)j+1F
∗j
m (t, x, y) converges uni-

formly on [0, T ] × O × O. Let Qm : R+ × O × O → R be the sum of this series.
Then Qm ∈ Cl(R+ × O × O). Moreover, for any T > 0, there exists a constant
C such that

|Qm(t, x, y)| ≤ Ctm−n/2

on [0, T ] × O × O.

The proof of Lemma 3.18 is identical to that of [2, Lemma E.III.6] and uses only
Lemma 3.11(ii) and Remark 3.12.

3.19. Lemma. Letm > n/2. ForP ∈C 0(R+×O×O), the functionH (m)∗P, de-
fined formally by the expression in Notation 3.17, exists and is inC 0(R∗+×O×O).

Moreover, if m > n/2 + l, then H (m) ∗ P is of class Cl in the second variable.
For m > n/2 + 2, we have that

(
∂
∂t

+�x

)
(H (m) ∗ P(t, x, y)) exists and equals

(P +H (m) ∗ P)(t, x, y).

Again the proof is identical to that of [2, Lemma E.III.7] and is based on Lem-
ma 3.13.

Using Lemmas 3.18 and 3.19, we obtain (as in [2, Prop. EIII.8]) the following
result.

3.20. Proposition. Let m > n/2 + 2 and define Qm as in Lemma 3.18. Then
K := H (m) −H (m) ∗Qm is a fundamental solution of the heat equation on O.

Uniqueness of the heat kernel implies that H (m) − H (m) ∗ Qm is independent of
the choice of m > n/2 + 2.

3.21. Notation. Let

H̃α(t, x̃, ỹ) =
∑
γ∈Gα

(4πt)−n/2e−d(x̃,γ (ỹ))2/4t(u0(x̃, γ (ỹ))+ tu1(x̃, γ (ỹ))+ · · · ).

Observe that H̃α isGα-invariant in both x̃ and ỹ and thus descends to a well-defined
function, which we denote by Hα , on R

∗+ ×Wα ×Wα.

3.22. Theorem. In the notation of Proposition 3.1 and 3.21, the trace of the heat
kernel has an asymptotic expansion as t → 0+ given by

∞∑
j=1

e−λj t ∼t→0+
s∑

α=1

∫
O
ηα(x)Hα(t, x, x) dx.
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Proof. By Corollary 3.3 and Proposition 3.20, we have
∞∑
j=1

e−λj t =
∫

O
(H (m) −H (m) ∗Qm)(t, x, x) dx

form > n/2+2. Because (4πt)n/2H (m)(t, x, x) is uniformly bounded for (t, x)∈
(0, T ] × O for any given T > 0, it follows from Lemma 3.18 that

∞∑
j=1

e−λj t =
∫

O
H (m)(t, x, x) dx +O(t m−n) (3.23)

on any interval (0, T ]. (Note: If O is a manifold, then
∫

O H (m)(t, x, x) dx =
(4πt)−n/2(a0 +a1t+· · ·+amt

m). For general orbifolds, the arguments in the next
section will show that

∫
O H (m)(t, x, x) dx is of the form (4πt)−n/2 ∑2m

j=0 cj t
j/2.

Thus the error term can be improved toO(t m−(n−1)/2), since
∫

O H (m)(t, x, x) dx =∫
O H (m+n)(t, x, x) dx +O(t m−(n−1)/2).)

Since ψα is identically 1 on the support of ηα , Notation 3.8 yields

H (m)(t, x, x) =
∑
α

ηα(x)H
(m)
α (t, x, x). (3.24)

Substituting (3.24) into (3.23) then yields the theorem.

4. Computation of the Heat Asymptotics

4.1. Notation and Remarks. Let γ be an isometry of a Riemannian manifold
M and let >(γ ) denote the set of components of the fixed point set of γ. Each ele-
ment of >(γ ) is a submanifold of M. For each nonnegative integer k, Donnelly
[10] defined a real-valued function, which we temporarily denote bk((M, γ ), ·), on
the fixed point set of γ. For each W ∈>(γ ), the restriction of bk((M, γ ), ·) to W
is smooth. Two key properties of the bk are:

(i) Locality. For a ∈W, bk((M, γ ), a) depends only on the germs at a of the Rie-
mannian metric ofM and of the isometry γ. In particular, ifU is a γ -invariant
neighborhood of a in M, then bk((M, γ ), a) = bk((U, γ ), a).

(ii) Universality. If M and M ′ are Riemannian manifolds admitting the respec-
tive isometries γ and γ ′, and if σ : M → M ′ is an isometry satisfying σ 
γ =
γ ′ 
 σ, then bk((M, γ ), x) = bk((M

′, γ ′), σ(x)) for all x ∈ Fix(γ ).

In view of the locality property, we will usually delete the explicit reference to
M and rewrite these functions as bk(γ, ·), as they are written in [10].

4.2. Computation of the bk [10]. In the notation of 4.1, let W ∈>(γ ) and let
n = dim(M) and m = dim(W ). For x ∈W, the orthogonal complement Tx(W )⊥
of Tx(W ) in the tangent space Tx(M) is invariant under γ∗. Define Aγ(x) =
γ∗ : Tx(W )⊥ → Tx(W )⊥, and observe that Aγ(x) is nonsingular. Set

Bγ(x) = (I − Aγ(x))
−1.

Donnelly showed that



Asymptotic Expansion of the Heat Kernel for Orbifolds 219

bk(γ, x) = |det(Bγ(x))|b̃k(γ, x),

where b̃k(γ, ·) is an O(m)×O(n−m) universal invariant polynomial in the com-
ponents of Bγ and in the curvature tensor R of M and its covariant derivatives.

Explicit formulas for b0 and b1 are given in [10, Thm. 5.1] using these index-
ing conventions: 1 ≤ α,β ≤ m, m+ 1 ≤ i, j, k ≤ n, and 1 ≤ a, b, c ≤ n. At each
point x ∈W, choose an orthonormal basis {e1, . . . , en} of Tx(M) so that the first m
vectors are tangent to W. The sign convention on the curvature tensor R of M is
chosen so that Rabab is the sectional curvature of the plane spanned by ea and eb.
Set

τ =
n∑

a,b=1

Rabab and ρab =
n∑
c=1

Racbc.

Thus τ is the scalar curvature and ρ the Ricci tensor of M. Then

b0(γ, x) = |det(Bγ(x))|, (4.3)

and summing over repeated indices yields

b1(γ, x)

= |det(Bγ(x))|
(

1
6τ + 1

6ρkk + 1
3RikshBkiBhs + 1

3RikthBktBhi − RkahaBksBhs

)
.

(4.4)

4.5. Notation. Let O be an orbifold and let (Ũ,GU ,πU) be an orbifold chart.
In the notation of 2.12 and 2.14, let Ñ be a Ũ-stratum and let γ ∈ Isomax(Ñ ).

Then Ñ is an open subset of a component of Fix(γ ) and thus, by 4.1, bk(γ, ·) (=
bk((Ũ, γ ), ·)) is smooth on Ñ for each nonnegative integer k. Define a function
bk(Ñ, ·) on Ñ by

bk(Ñ, x) =
∑

γ∈Isomax(Ñ )

bk(γ, x).

4.6. Lemma. Let O be a Riemannian orbifold, let N be an O-stratum, and let
p ∈N. Let (Ũ,GU ,πU) and (Ũ ′,GU ′ ,πU ′) be two orbifold charts with p ∈U ∩U ′.
Let p̃ ∈ Ũ and p̃ ′ ∈ Ũ ′ with πU(p̃) = p = πU ′(p̃ ′), and let Ñ (resp. Ñ ′) be the
Ũ-stratum through p̃ (resp. Ũ ′-stratum through p̃ ′). Then, for each k, we have
bk(Ñ, p̃) = bk(Ñ

′, p̃ ′).

Proof. By Definition 2.1, it suffices to consider the case where one chart embeds
in the other—say, λ : (Ũ,GU ,πU) → (Ũ ′,GU ′ ,πU ′) is an isometric embedding
with λ(p̃) = p̃ ′. The associated homomorphism τ : GU → GU ′ carries IsoGU

(p̃)

isomorphically onto IsoGU ′(p̃
′) and Isomax(p̃) to Isomax(p̃ ′). The Ũ-stratum Ñ is

carried to an open subset of the Ũ ′-stratum Ñ ′. The lemma is thus an immediate
consequence of the universality of the bk , as discussed in 4.1.

4.7. Definition. Let O be a Riemannian orbifold and let N be an O-stratum.
(i) For each nonnegative integer k, define a real-valued function bk(N, ·) by

setting bk(N,p) = bk(Ñ, p̃) where (Ũ,GU ,πU) is any orbifold chart about p,
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p̃ ∈π−1
U (p), and Ñ is the Ũ-stratum through p̃. By Lemma 4.6, the function

bk(N, ·) is well-defined.
(ii) The Riemannian metric on O induces a Riemannian metric—and thus a vol-

ume element—on the manifold N. Set

IN := (4πt)−dim(N )/2
∞∑
k=0

t k
∫
N

bk(N, x) d volN(x),

where d volN is the Riemannian volume element.
(iii) Also set

I0 = (4πt)−dim(O)/2
∞∑
k=0

ak(O)t k,

where the ak(O) (which we will usually write simply as ak) are the familiar heat
invariants. More precisely, the invariants ui in (3.5), which are defined in terms
of the curvature and its covariant derivatives on any Riemannian manifold, also
make sense on any Riemannian orbifold. The invariants ak(O) are given by ak =∫

O uk(x, x) d volO(x). In particular, a0 = vol(O), a1 = 1
6

∫
O τ(x) d volO(x),

and so forth. Observe that if O is finitely covered by a Riemannian manifold M

(say, O = G\M) then ak(O) = 1
|G|ak(M).

4.8. Theorem. Let O be a Riemannian orbifold and let λ1 ≤ λ2 ≤ · · · be the
spectrum of the associated Laplacian acting on smooth functions on O. The heat
trace

∑∞
j=1 e

−λj t of O is asymptotic as t → 0+ to

I0 +
∑

N∈S(O)

IN

|Iso(N )| ,

where S(O) is the set of all O-strata and where |Iso(N )| is the order of the isotropy
at each p ∈N as defined in Remark 2.7. This asymptotic expansion is of the form

(4πt)−dim(O)/2
∞∑
j=0

cj t
j/2 (4.9)

for some constants cj .

4.10. Remark. Suppose O = G\M is a good closed orbifold. Note that M
may be noncompact and G may be an infinite group, although the isotropy group
at any point of M must be a finite subgroup of G. In this setting, Donnelly [11]
proved the existence and uniqueness of the heat kernel KM on M and of an as-
ymptotic expansion for KM. He then obtained an asymptotic expansion for the
heat trace on O. Theorem 4.8, in the case of good orbifolds, organizes the in-
formation in [11] in a way that clarifies the contribution of each O-stratum to the
asymptotics.

The expression for the heat asymptotics of good orbifolds in [11] differs from
that in (4.9) in that the half-powers are missing. However, the absence of these
powers is apparently a typographical error in transcribing a result of Donnelly’s
earlier paper [10], to be stated here as Proposition 4.11.
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Richardson [24] obtained an asymptotic expansion for the heat trace associated
with the basic Laplacian on a Riemannian foliation. Also referring to Donnelly’s
work on good orbifolds, he showed that the expansion is of the form given in (4.9).

The remainder of this section is devoted to proving Theorem 4.8.

4.11. Proposition [10]. Let M be a closed Riemannian manifold, let K(t, x, y)
be the heat kernel of M, and let γ be a nontrivial isometry of M. Then, in the no-
tation of 4.1,

∫
M
K(t, x, γ (x)) d volM(x) is asymptotic as t → 0+ to

∑
W∈>(γ )

(4πt)−dim(W )/2
∞∑
k=0

t k
∫
W

bk(γ, a) d volW(a),

where d volW is the volume form on W defined by the Riemannian metric induced
from M.

4.12. Proof of Theorem 4.8 in Special Case. We prove Theorem 4.8 for O =
G\M a good closed orbifold with G finite (and thus M compact). In particular,
(M,G,π) is a global orbifold chart where π : M → O is the projection. In this
special case, the theorem is an easy consequence of Proposition 4.11. Indeed, if
we let K denote the heat kernel of M and let π : M → O be the projection, then
the heat kernel KO of O is given by

KO(t, x, y) =
∑
γ∈G

K(t, x̃, γ (ỹ)),

where x̃ (resp. ỹ) are any elements of π−1(x) (resp. π−1(y)). Thus∫
O
KO(t, x, x) d volO(x) = 1

|G|
∑
γ∈G

∫
M

K(t, x̃, γ (x̃)) d volM(x̃)

and so Proposition 4.11 implies that∫
O
KO(t, x, x) d volO(x)

∼t→0+
1

|G|
∫
M

K(t, x̃, x̃) d volM(x̃)

+ 1

|G|
∑

1�=γ∈G

∑
W∈>(γ )

(4πt)−dim(W )/2
∞∑
k=0

t k
∫
W

bk(γ, a) d volW(a). (4.13)

The first term on the right-hand side of (4.13) is given by

1

|G|
∫
M

K(t, x̃, x̃) d volM(x̃) = 1

|G| (4πt)
−dim(M)/2

∞∑
k=0

ak(M)t k = I0. (4.14)

(See the final comment in Definition 4.7(iii).)
Next let 1 �= γ ∈G, letW ∈>(γ ), and let Ñ be an M-stratum contained in W.

Then either Ñ has measure zero in W (in which case γ /∈ Isomax(Ñ )) or Ñ is open
in W and so γ ∈ Isomax(Ñ ). Thus—by replacing the integral over W with the in-
tegrals over the M-strata that are open inW, reordering the summations in (4.13),
and taking note of (4.14)—we obtain
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O
KO(t, x, x) d volO(x) ∼t→0+ I0 + 1

|G|
∑

Ñ∈S̃(M)

ĨÑ , (4.15)

where S̃(M) denotes the set of all M-strata and where

ĨÑ = (4πt)−dim(Ñ )/2
∞∑
k=0

t k
∫
Ñ

bk(Ñ, a) d volÑ (a).

Let N be an O-stratum. Then π−1(N ) is a union of finitely many mutually iso-
metric M-stratum Ñ1, . . . , Ñk and π : π−1(N ) → N is a covering map of degree

|G|
|Iso(N )| . We have

ĨÑ1
+ · · · + ĨÑk

= |G|
|Iso(N )|IN

and then Theorem 4.8, in the case of orbifolds finitely covered by manifolds, fol-
lows from (4.15).

The proof in the general case will apply the argument in 4.12 to orbifold charts
and then piece the computations together via a partition of unity. We first general-
ize Proposition 4.11 slightly. The manifolds in the two lemmas that follow do not
have boundaries but could, for example, be bounded domains in a larger manifold.

4.16. Lemma. We use the notation of 4.1. Let M be an n-dimensional Riemann-
ian manifold (without boundary) of finite volume and let γ : M → M be a non-
trivial isometry. Assume that the distance d(x̃, γ (x̃)) remains bounded away from
0 off arbitrarily small tubular neighborhoods of the fixed point set of γ and that
each component of the fixed point set of γ has finite volume. Then, as t → 0+,∫

M

(4πt)−n/2e−d(x̃,γ (x̃))2/4t(u0(x̃, γ (x̃))+ tu1(x̃, γ (x̃))+ · · · ) dx̃

∼
∑

W∈>(γ )

(4πt)−dim(W )/2
∞∑
k=0

t k
∫
W

bk(γ, x̃) d volW(x̃).

This result is proven in Donnelly [10, Thm. 4.1] for M closed. In that case, of
course, the hypotheses on the distance function and on the fixed point set of γ are
automatic and so the lemma is a restatement of Proposition 4.11. The proof goes
through verbatim in the more general setting of Lemma 4.16.

4.17. Lemma. With the notation and hypotheses of the previous lemma, let η̃ be a
smooth bounded γ -invariant function on M. Then, for k = 0,1, 2, . . . , there exists
a family of functions ck(γ, η̃, ·) defined on the fixed point set of γ, smooth on each
component W ∈>(γ ), and such that, as t → 0+,∫

M

η̃(x̃)(4πt)−n/2e−d(x̃,γ (x̃))2/4t(u0(x̃, γ (x̃))+ tu1(x̃, γ (x̃))+ · · · ) dx̃

∼
∑

W∈>(γ )

(4πt)−dim(W )/2
∞∑
k=0

t k
∫
W

ck(γ, η̃, x̃) d volW(x̃).
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Moreover, ck(γ, η̃, ·) satisfies the following properties.

(i) Locality: ck(γ, η̃, x̃) depends only on the germs of γ, η̃ and the Riemannian
metric of M at x̃ ∈W.

(ii) ck(γ, η̃, ·) is 0 off supp(η̃) ∩W.

(iii) The dependence of ck(γ, η̃, ·) on η̃ is linear.
(iv) ck(γ, 1, ·) = bk(γ, ·), where 1 denotes the constant function η̃ ≡ 1.
(v) Universality: If M ′ is another Riemannian manifold, γ ′ is an isometry

of M ′, and σ : M → M ′ is an isometry satisfying σ 
 γ = γ ′ 
 σ, then
ck(γ

′, η̃ 
 σ−1, σ(x̃)) = ck(γ, η̃, x̃) for all x̃ in the fixed point set of γ.

The proof requires only minor changes in the proof of [10, Thm. 4.1]. In the proof
of that theorem, the functions bk(γ, ·) are expressed as linear combinations of
certain derivatives of explicitly defined functions hj , j = 0, . . . , k. To obtain the
functions ck(γ, η̃, ·), we replace the functions hj by the functions η̃hj .

4.18. Notation and Remarks. Let O be a closed orbifold, and consider the
charts Ũα , Ṽα , W̃α and partition of unity {ηα} given in Notation 3.8. Let Ṽα play
the role of M in Lemmas 4.16 and 4.17, and let η̃α = ηα 
 πα play the role of η̃.
Since Ṽα has compact closure inside the larger Riemannian manifold W̃α on which
Gα acts by isometries and since the fixed point set of γ in W̃α is connected (in fact,
it is the union of a collection of geodesics radiating from the center point p̃α), one
easily verifies for each γ ∈ Gα that the hypothesis concerning the distance func-
tion in the two lemmas holds.

(i) For each Ṽα-stratum Ñ, define a smooth function ck,α(Ñ, ·) on Ñ by

ck,α(Ñ, x̃) =
∑

γ∈Isomax(Ñ )

ck(γ, η̃α , x̃).

(ii) LetN be an O-stratum. For each nonnegative integer k and each α = 1, . . . , s,
define a continuous (in fact, smooth) function ck,α(N, ·) on N as follows.
First, for x ∈N ∩ Vα , set ck,α(N, x) = ck(Ñ, x̃), where x̃ is any element of
π−1
α (x) and Ñ is the Ṽα-stratum through x̃. By an argument analogous to that

of Lemma 4.6, this definition is independent of the choice of x̃ in π−1
α (x).

Since η̃α is supported in ¯̃Uα , Lemma 4.17(ii) implies that ck,α(N, ·) is 0 off
N ∩ Ūα and thus extends to a continuous function on N that is 0 off N ∩ Uα.

(iii) Set

IN,α := (4πt)−dim(N )/2
∞∑
k=0

t k
∫
N

ck,α(N, x) d volN(x).

4.19. Lemma. Let O be a closed Riemannian orbifold and letN be an O-stratum.
Then, for each nonnegative integer k,

s∑
α=1

ck,α(N, ·) = bk(N, ·) and
s∑

α=1

IN,α = IN .
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Proof. Let x ∈ N, and let α1, · · · ,αr be those α ∈ {1, . . . , s} for which x ∈ Vαi .

Then we can find a coordinate chart (Ũ,GU ,πU) such that U ⊂ Vα1 ∩ · · · ∩ Vαr
and such that the chart (Ũ,GU ,πU) embeds in each of the charts (Ṽα ,Gα ,πα). Let
λi : Ũ → Ṽαi be the embedding. Let x̃ ∈ π−1

U (x), let Ñ be the Ũ-stratum through
x̃, and let x̃i = λi(x̃). As in the proof of Lemma 4.6, λi(Ñ ) is an open subset of
the Ṽαi -stratum Ñi through x̃i . Using the universality property (v) of Lemma 4.17,
Notation 4.18, and an argument analogous to that of Lemma 4.6, we see that

ck,αi(N, x) := ck,αi(Ñi, x̃i ) =
∑

γ∈Isomax(Ñ )

ck(γ, ηαi 
 πU, x̃).

Thus, since ck,α(N, x) = 0 when α is not one of α1, . . . ,αr , we have

s∑
α=1

ck,α(N, x) =
∑

γ∈Isomax(Ñ )

r∑
i=1

ck(γ, ηαi 
 πU, x̃). (4.20)

Given (iii) and (iv) of Lemma 4.17 and since
∑r

i=1ηαi ≡ 1 on U, we see that

r∑
i=1

ck(γ, ηαi 
 πU, x̃) = bk(γ, x̃) (4.21)

on Ñ. By Definition 4.7, ∑
γ∈Isomax(Ñ )

bk(γ, x̃) = bk(N, x)

and thus the first equation in the lemma follows from (4.20) and (4.21). The sec-
ond equation is then immediate.

Proof of Theorem 4.8. Let n = dim(O). Because the support of ηα is contained
in Vα , by Theorem 3.22 we have

∞∑
j=1

e−λj t ∼t→0+
s∑

α=1

∫
Vα

ηα(x)Hα(t, x, x) d vol(O), (4.22)

where Hα(t, x, x) is defined in Notation 3.21. By Notation 3.21,
s∑

α=1

∫
Vα

ηα(x)Hα(t, x, x) d volO(x)

=
s∑

α=1

1

|Gα|
∫
Ṽα

η̃α(x̃)(4πt)
−n/2(u0(x̃, x̃)+ tu1(x̃, x̃)+ · · · ) d volṼα(x̃)

+
s∑

α=1

1

|Gα|
∑

1�=γ∈Gα

∫
Ṽα

η̃α(x̃)(4πt)
−n/2e−d(x̃,γ (x̃))2/4t(u0(x̃, γ (x̃))

+ tu1(x̃, γ (x̃))+ · · · ) d volṼα(x̃), (4.23)

where η̃α = ηα 
 πα.
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Consider the first sum on the right-hand side of equation (4.23). Since ηα is
supported in Vα , we have

s∑
α=1

1

|Gα| (4πt)
−n/2

∫
Ṽα

η̃α(x̃)(u0(x̃, x̃)+ tu1(x̃, x̃)+ · · · ) d volṼα(x̃)

=
s∑

α=1

(4πt)−n/2
∫

O
ηα(x)(u0(x, x)+ tu1(x, x)+ · · · ) d volO(x)

= (4πt)−n/2
∫

O
(u0(x, x)+ tu1(x, x)+ · · · ) d volO(x) = I0. (4.24)

Next, by Lemma 4.17 and the remarks in 4.18, for each 1 �= γ ∈Gα we have

1

|Gα|
∑

1�=γ∈Gα

∫
Ṽα

η̃α(x̃)(4πt)
−n/2e−d(x̃,γ (x̃))2/4t(u0(x̃, γ (x̃))

+ tu1(x̃, γ (x̃))+ · · · ) d volṼα(x̃)

∼ 1

|Gα|
∑

1�=γ∈Gα

∑
W∈>(γ )

(4πt)−dim(W )/2
∞∑
k=0

t k
∫
W

ck(γ, η̃α , x̃) d volW(x̃). (4.25)

By 4.18 and an argument identical to that in 4.12, the right-hand side of (4.25)
is equal to ∑

N∈S(O)

1

|Iso(N )|IN,α.

Consequently, Lemma 4.19 and (4.25) together imply that the second sum on the
right-hand side of equation (4.23) is equal to∑

N∈S(O)

1

|Iso(N )|IN .

Thus, in view of (4.22)–(4.24), the theorem is proved.

5. Applications

5.1. Theorem. Let O be a Riemannian orbifold with singularities. If O is even
dimensional (resp., odd dimensional) and if some O-stratum of the singular set
is odd dimensional (resp., even dimensional), then O cannot be isospectral to a
Riemannian manifold.

Proof. It is clear from equation (4.3) that, if N is any O-stratum of the singular
set, then the function b0(γ, ·) is strictly positive on N for each γ ∈ Isomax(N ).

Thus, in the two cases, that O is an orbifold can be gleaned from the presence
of half-integer (rep. integer) powers of t in the asymptotic expansion in Theo-
rem 4.8.

5.2. Remark. In [18] this theorem was stated for good orbifolds, but here we
also include bad orbifolds.
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We now restrict our attention to closed two-dimensional orbifolds (2-orbifolds).
The singularities that may occur in 2-orbifolds are cone points, dihedral corner re-
flectors, and mirror reflectors (recall Example 2.15). A cone point p of order n is
an isolated singularity; an orbifold chart for a neighborhood of p is (D2, Zn,π),
where D

2 is an open 2-disk in R
2 and Zn is the cyclic group of order n. The

Euler characteristic of a 2-orbifold is 2 minus the sum of the related values: each
cone point of order n has value (n−1)/n; each dihedral corner reflector has value
(n − 1)/2n; each handle has value 2; each cross-cap has value 1; and each mir-
ror reflector has value 1. Every good 2-orbifold admits a (metrically) spherical,
Euclidean or hyperbolic structure depending on whether the Euler characteristic
is (respectively) positive, zero, or negative [30]. In addition, all bad 2-orbifolds
have positive Euler characteristic.

5.3. Example. Let O be a 2-orbifold and let p be a cone point of order m. If
N = {p}, then Iso(N ) is a cyclic group of order m and Isomax(N ) contains all of
the nontrivial elements. If we let γ be the generator then, for j = 1, . . . ,m− 1,

Aγj = γ j
∗ =

[
cos

( 2jπ
m

) −sin
( 2jπ

m

)
sin

( 2jπ
m

)
cos

( 2jπ
m

)
]

,

where Aγj is as defined in 4.2. Thus

b0(γ
j ) = |det((I − Aγj )

−1)| = 1

2 − 2 cos
( 2jπ

m

) = 1

4 sin2
( jπ
m

) .
(We write b0(γ

j ), rather than using the function notation b0(γ
j, ·), because N

consists of a single point.)

5.4. Lemma.
m−1∑
j=1

1

sin2
( jπ
m

) = m2 − 1

3
.

Proof. A well-known formula (see e.g. [23, Ex. 7.9.1]), proven by the calculus of
residues, states that

π2

sin2(πz)
=

∞∑
k=−∞

1

(k − z)2
.

Thus
m−1∑
j=1

1

sin2
( jπ
m

) = m2

π2

m−1∑
j=1

∞∑
k=−∞

1

(mk − j)2
.

Since
m−1∑
j=1

∞∑
k=−∞

1

(mk − j)2
= 2

∞∑
n=1

1

n2
− 2

∞∑
n=1

1

m2n2

and since
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∞∑
n=1

1

n2
= π2

6
,

the lemma follows.

5.5. Proposition. Let O be a 2-orbifold, let p be a cone point in O of order m,
and let N = {p}. Then, in the notation of Theorem 4.8,

IN = m2 − 1

12
+O(t).

Proof. By Definition 4.7(ii) and Example 5.3,

IN =
m−1∑
j=1

1

4 sin2
( jπ
m

) +O(t).

Thus, Proposition 5.5 follows from Lemma 5.4.

5.6. Example (Calculating heat invariants for 2-orbifolds).

Degree 0 term for orientable 2-orbifolds. An orientable 2-orbifold O can have
only isolated singularities (i.e., cone points). Suppose O has k cone points of or-
ders m1, . . . ,mk. In the notation of 4.7(iii),

I0 = 1

4π
(a0 t

−1 + a1 +O(t)).

Thus, by Theorem 4.8 and Proposition 5.5, the term of degree 0 in the asymptotic
expansion in Theorem 4.8 is given by

a1

4π
+

k∑
i=1

1

mi

m2
i − 1

12
.

By the Gauss–Bonnet theorem (valid also for orbifolds; see [26; 30]), we have

a1 = 2π

3
χ(O).

Hence the degree 0 term is

χ(O)

6
+

k∑
i=1

m2
i − 1

12mi

. (5.7)

Degree 0 term for nonorientable 2-orbifolds. For a 2-orbifold O, the dimen-
sion 0 singular locus is the only portion (aside from the a1/4π = χ(O)/6 compo-
nent) that contributes to the degree 0 term of the asymptotic expansion in Theo-
rem 4.8. A nonorientable 2-orbifold O can have cone points and/or dihedral corner
reflector points that contribute in the following ways. As in the computation of
the degree 0 term for orientable 2-orbifolds, here a simple cone point of order m
contributes 1

m
m2−1

12 . Let N = {p}, where p is a corner reflector point created by
a rotation of order n and a reflection. Then |Iso(N )| = 2n. By Notation 2.14,
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Isomax(N ) contains only the nontrivial elements of the rotation group, since the
reflection fixes one-dimensional strata of the mirror locus, a higher-dimensional
stratum of the singular set. Hence the computations in Example 5.3 and Proposi-
tion 5.5 remain the same, but the difference in |Iso(N )| is seen as an extra 1

2 factor
in Theorem 4.8. The point contributes 1

2n
n2−1

12 to the degree 0 term.
Thus, for a 2-orbifold O with cone points p1, . . . ,pk of orders m1, . . . ,mk and

dihedral corner reflector points q1, . . . , qr of orders n1, . . . , nr , the term of degree 0
in the asymptotic expansion of the heat trace is

χ(O)

6
+

k∑
i=1

1

mi

m2
i − 1

12
+

r∑
j=1

1

2nj

n2
j − 1

12
. (5.8)

Degree 1 term for 2-orbifolds. Aside from a2, only dimension 0 strata of the
singular set contribute to the t term of the asymptotic expansion in Theorem 4.8.
We first note that the last term in (4.4) is 0; this follows from the summation con-
vention and the fact that our singular set is zero dimensional. Using symmetry
properties of the curvature, we can further simplify (4.4) as

b1(γ
j ) = 1

4 sin2
( jπ
m

)(
τ

6
+ ρkk

6
+ 2

3
(R1212(B

2
21 + B2

12 − B12B21 − B22B11))

)
,

whereR1212 is evaluated in the local covering manifold. By the definitions of scalar
and Ricci curvature, the preceding equation becomes

b1(γ
j ) = R1212(1 + B2

21 + B2
12 − B12B21 − B22B11)

6 sin2
( jπ
m

) .

In general, straightforward calculations show that

Bγj = (I − Aγj )
−1 =




1

2
− sin

( 2jπ
m

)
2 − 2 cos

( 2jπ
m

)
sin

( 2jπ
m

)
2 − 2 cos

( 2jπ
m

) 1

2


,

which implies

b1(γ
j ) = R1212

8 sin4
( jπ
m

)
for j = 1, . . . ,m− 1.

Thus, for a 2-orbifold O with cone points p1, . . . ,pk of orders m1, . . . ,mk and
dihedral corner reflector points q1, . . . , qr of orders n1, . . . , nr , the coefficient of the
term of degree 1 in the asymptotic expansion of the heat trace is

a2

4π
+

k∑
i=1

1

mi

( mi−1∑
j=1

R1212

8 sin4
( jπ
mi

))
+

r∑
i=1

1

2ni

( ni−1∑
j=1

R1212

8 sin4
( jπ
ni

))
. (5.9)

Recall (see e.g. [2]) that a2(O) = 1
360

∫
O(2|R|2 − 2|ρ|2 + 5τ 2) d volO(g), where

R is the curvature, ρ is the Ricci curvature, and τ is the scalar curvature of O.
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We can further simplify (5.9) by making the substitution

mi−1∑
j=1

1

sin4
( jπ
mi

) = m4
i + 10m2

i − 11

45
.

See [3] and the references therein or [7; 16] for evaluations of this and similar fi-
nite trigonometric sums.

With this substitution, (5.9) becomes

a2

4π
+

k∑
i=1

R1212(m
4
i + 10m2

i − 11)

360mi

+
r∑
i=1

R1212(n
4
i + 10n2

i − 11)

720ni
. (5.10)

Degree − 1
2 term for 2-orbifolds. The only O-strata that contribute to the degree

1/
√
t term are those of codimension 1 in O. To obtain these O-strata, remove any

dihedral points from the mirror locus and then take the connected components of
the remaining set. Let x ∈N, an O-stratum of the mirror locus, and note that γ ∈
Isomax(N ) must act as a reflection.

To compute b0(γ, x) = |det((I − Aγ )
−1)|, observe that γ∗ = [−1] on the nor-

mal bundle to N and so

b0(γ, x) = |det((I − Aγ )
−1)| = |[2]−1| = 1

2
.

Applying 4.7(ii) yields

IN = (4πt)−1/2
∑

γ∈Isomax(N )

∞∑
k=0

t k
∫
N

1

2
d volN(x)+O(t)

= length(N )

4
√
π

1√
t
+O

(√
t
)
.

We sum over all O-strata of the mirror locus to obtain the coefficient of the 1/
√
t

term in Theorem 4.8:∑
N

IN

|Iso(N )| =
∑
N

1

2

length(N )

4
√
π

= length(MirrorLocus(O))

8
√
π

. (5.11)

Degree 1
2 term for 2-orbifolds. For a 2-orbifold O, the dimension 1 singular

locus gives the sole contribution to the
√
t term of the asymptotic expansion in

Theorem 4.8.
We have

b1(γ, x) = |det(Bγ(x))|
(
τ

6
+ ρkk

6
+ 1

3
RikshBkiBhs

+ 1

3
RikthBktBhi − RkαhαBksBhs

)
(x),

where Bij denotes the i, j entry of Bγ(x), τ is the scalar curvature of M at x, and
ρ is the Ricci curvature.
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In the case of a 2-orbifold with a point x in its mirror locus (but not a dihedral
corner reflector point), the matrix Bγ(x) is one dimensional and thus the third and
fourth terms in the sum vanish. SinceBγ(x) = 1

2 , the last term is − 1
4R1212. We also

have ρkk = R1212 and τ = 2R1212. Thus b1(γ, x) = 1
2

(
1
4R1212

)
(x) = 1

8R1212(x) =
1

16τ(x). Hence, for N a stratum in the mirror locus, the term of degree 1
2 in IN is

given by
√
t√

4π

∫
N

1

16
τ(x) d volN(x) =

√
t

32
√
π

∫
N

τ(x) d volN(x).

The coefficient of the degree 1
2 term in the asymptotic expansion for the heat trace

on O is thus
1

64
√
π

∫
MirrorLocus(O)

τ, (5.12)

where the scalar curvature is the scalar curvature of O computed at points in the
mirror locus and the integral is with respect to the induced Riemannian metric on
the one-dimensional mirror locus. See Table 1 for the asymptotic expansions of
the heat kernel for orbifolds O with χ(O) ≥ 0.

Our notation for orbifolds is adapted from Conway’s convention [9], with com-
mas added for readability. Namely, O(a, b, ∗c, d) denotes an orbifold with simple
cone points of orders a and b and with dihedral corner reflectors of orders 2c and
2d. In addition, O(n×) is a disk with a simple interior cone point and the edge
identified via the antipodal map, while O(n∗) is a disk with a simple interior cone
point and a mirror edge corresponding to a reflection. A detailed explanation of
the orbifold notation can be found in [9] (cf. the figures in [21, pp. 80–90]). See
[30] for a proof that these are all of the closed 2-orbifolds with χ(O) ≥ 0 and
that, for 1 < m �= n, the only bad 2-orbifolds are O(m), O(∗m), O(m, n), and
O(∗m, n).

Let O be an orientable 2-orbifold with k cone points of orders m1, . . . ,mk , de-
noted O(m1, . . . ,mk), and consider the quantity c defined as twelve times the de-
gree 0 term:

c = 2χ(O)+
k∑
i=1

(
mi − 1

mi

)
. (5.13)

This quantity is a spectral invariant; it depends only on the topology, not on the
Riemannian metric. For O(m1, . . . ,mk), we denote by c(m1, . . . ,mk) the associ-
ated spectral invariant. We now investigate classes of orientable 2-orbifolds for
which c is a complete topological invariant. Although Theorem 5.14 is a special
case of Theorem 5.15, we begin with the more restricted class in order to give the
reader intuition for the proof techniques used.

5.14. Theorem. Within the class of all footballs (good or bad ) and all teardrops,
the spectral invariant c is a complete topological invariant. That is, c distinguishes
footballs from teardrops and determines the orders of the cone points.
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Table 1 2-Orbifold Expansions with χ(O) ≥ 0

O with χ(O) > 0 Asymptotic Expansion

O(m) V 1
t
+ 1

12

(
2 +m+ 1

m

) +O(t)

O(∗m) V 1
t
+ML 1√

t
+ 1

24

(
2 +m+ 1

m

) +O
(√

t
)

O(m, n) V 1
t
+ 1

12

(
m+ n+ 1

m
+ 1

n

) +O(t)

O(∗m, n) V 1
t
+ML 1√

t
+ 1

24

(
m+ n+ 1

m
+ 1

m

) +O
(√

t
)

O(m×) V 1
t
+ 1

12

(
m+ 1

m

) +O(t)

O(m∗) V 1
t
+ML 1√

t
+ 1

12

(
m+ 1

m

) +O
(√

t
)

O(2, 2,m) V 1
t
+ 1

12

(
3 +m+ 1

m

) +O(t)

O(∗2, 2,m), O(2, ∗m) V 1
t
+ML 1√

t
+ 1

24

(
3 +m+ 1

m

) +O
(√

t
)

O(2, 3, 3) V 1
t
+ 43

72 +O(t)

O(∗2, 3, 3), O(3, ∗2) V 1
t
+ML 1√

t
+ 43

144 +O
(√

t
)

O(2, 3, 4) V 1
t
+ 97

144 +O(t)

O(∗2, 3, 4) V 1
t
+ML 1√

t
+ 97

288 +O
(√

t
)

O(2, 3, 5) V 1
t
+ 271

360 +O(t)

O(∗2, 3, 5) V 1
t
+ML 1√

t
+ 271

720 +O
(√

t
)

O with χ(O) = 0 Asymptotic Expansion

torus, Klein bottle V 1
t
+O(t)

*torus, *Klein bottle V 1
t
+ML 1√

t
+O

(√
t
)

O(2, 2, 2, 2) V 1
t
+ 1

2 +O(t)

O(∗2, 2, 2, 2), O(2, ∗2, 2), O(2, 2∗) V 1
t
+ML 1√

t
+ 1

4 +O
(√

t
)

O(2, 2×) V 1
t
+ 1

4 +O(t)

O(2, 4, 4) V 1
t
+ 3

4 +O(t)

O(∗2, 4, 4), O(4, ∗2) V 1
t
+ML 1√

t
+ 3

8 +O
(√

t
)

O(3, 3, 3) V 1
t
+ 2

3 +O(t)

O(∗3, 3, 3), O(3, ∗3) V 1
t
+ML 1√

t
+ 1

3 +O
(√

t
)

O(2, 3, 6) V 1
t
+ 5

6 +O(t)

O(∗2, 3, 6) V 1
t
+ML 1√

t
+ 5

12 +O
(√

t
)

Here m, n ≥ 1, V = vol(O)/4π and ML = length(MirrorLocus(O))/8
√
π. Note that *torus is an

annulus with two mirror reflector edges and *Klein bottle is a Möbius band with one mirror reflec-
tor edge.

Proof. Denote by O(m) the teardrop with cone point of order m and by O(r, s)
the football with cone points of orders r and s. Let c(m) and c(r, s) denote the
invariant defined in equation (5.13) in the two cases. Then O(m) has Euler char-
acteristic 1 + 1/m and thus
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c(m) = 2 +m+ 1

m
.

The football O(r, s) has Euler characteristic 1/r + 1/s, so

c(r, s) = r + s + 1

r
+ 1

s
.

The invariant is an integer only in the case of O(2, 2), so the football O(2, 2) is
spectrally distinguishable from the other footballs and teardrops. Hence, for the
remainder of the proof, all footballs will be assumed to have at least one cone point
of order strictly greater than 2.

For teardrops, c(m) trivially determinesm. We next claim that footballs are dis-
tinguishable from teardrops. Indeed, suppose that c(m) = c(r, s). Then m+ 2 =
r + s and 1/m = 1/r +1/s. The latter equation implies that m < min(r, s). Since
also r, s ≥ 2, we have 2 +m < r + s—a contradiction, thus proving the claim.

It remains only to show that, for footballs, c(r, s) determines r and s. From
c(r, s) one can read off the quantities r + s and

1

r
+ 1

s
= r + s

rs
.

Therefore, c(r, s) determines both r+s and rs and thus also |r−s|, since (r−s)2 =
(r + s)2 − 4rs. Hence (r, s) is determined up to order, completing the proof.

5.15. Theorem. LetC be the class consisting of all closed orientable 2-orbifolds
with χ(O) ≥ 0. The spectral invariant c is a complete topological invariant within
C and, moreover, it distinguishes the elements of C from smooth oriented closed
surfaces.

Proof. We first consider the 2-orbifolds for which c is an integer. Note that—
among teardrops, footballs, and triangular pillows—the only integer values are
c(2, 2) = 5, c(2, 3, 6) = 10, c(2, 4, 4) = 9, and c(3, 3, 3) = 8 (cf. Tables 1 and
2). In addition, c(2, 2, 2, 2) = 6, c(S 2) = 4, and c(T 2) = 0. Let Sg be a Rie-
mann surface of genus g ≥ 2. Then we also have c(Sg) = 4 − 4g. It is clear that
the values of c are distinct in each case, so that the spectrum distinguishes these
2-orbifolds.

For the rest of the proof it suffices to consider orbifolds in C with χ(O) > 0,
since these include all orbifolds within C for which c is not an integer. Table 2
lists the values of c for these triangular pillows. Setting c(2, 3, 3) = c(2, 2,m)
and solving for m gives m = (

25 ± √
481

)
/12, which contradicts the assumption

that m is an integer. Similar calculations for c(2, 3, 4) and c(2, 3, 5) show that the
spectrum distinguishes among triangular pillows with χ(O) > 0.

By Theorem 5.14, c distinguishes among teardrops and footballs. We next
show that c distinguishes both teardrops and footballs from triangular pillows
with χ(O) > 0. We have c(m) = 2 + m + 1/m and c(p, q, r) = −2 + p + q +
r + 1/p + 1/q + 1/r; setting the integer and fractional parts of these equations
equal gives
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Table 2 Triangular Pillow Orbifolds

O χ(O) c(O)

χ(O) > 0 O(2, 2, 2) 1
2 5 1

2

O(2, 2,m) 1
m

3 +m+ 1
m

O(2, 3, 3) 1
6 7 1

6

O(2, 3, 4) 1
12 8 1

12

O(2, 3, 5) 1
30 9 1

30

χ(O) = 0 O(3, 3, 3) 0 8

O(2, 4, 4) 0 9

O(2, 3, 6) 0 10

χ(O) < 0 O(3, 3, 4) − 1
12 8 11

12

O(3, 4, 4) − 1
6 9 5

6

O(3, 3, 5) − 2
15 913

15

O(2, 4, 5) − 1
20 9 19

20... −1 < χ(O) < 0 c(O) > 10

2 +m = −1 + p + q + r,

1

m
= 1

p
+ 1

q
+ 1

r
− 1.

Solving the first equation for m and plugging the result into the second equation
yields

0 = pr(p + r − 3)+ pq(p + q − 3)+ qr(q + r − 3)+ pqr(5 − p − q − r).

None of the possible triples (p, q, r) satisfy this equation, showing that teardrops
are distinguished from triangular pillows with χ(O) > 0. The argument that c
distinguishes good footballs from these triangular pillows is analogous.

To see that c distinguishes triangular pillows with χ(O) > 0 from bad foot-
balls, we compare the respective integer and fractional parts of c in each case. For
example, comparing c(2, 3, 3) and c(r, s) with r �= s gives

7 = r + s,

1

6
= 1

r
+ 1

s
,

which implies s2 −7s+42 = 0. Thus s = (
7±√−119

)
/2, which contradicts that

s is an integer. The calculations are similar for O(2, 3, 4) and O(2, 3, 5), while for
O(2, 2,m) we have
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3 +m = r + s,

1

m
= 1

r
+ 1

s
,

which implies r(r − 3)+ s(s − 3)+ rs = 0. We can assume that one of r and s
(say, r) is strictly greater than 2. Thus r − 3 ≥ 0 and s − 3 ≥ −1, which implies

r(r − 3)+ s(s − 3)+ rs ≥ s(r − 1) > 0.

Thus triangular pillows with χ(O) > 0 are distinguished from bad footballs.

5.16. Remark. Notably absent from the class C are triangular pillows with
χ(O) < 0. The invariant c does not seem sufficiently strong to distinguish among
these triangular pillows. However, as a special case of a result in [13], the spec-
trum does determine the orders of the cone points in such a 2-orbifold provided
that it is endowed with a metric of constant curvature −1. In contrast, we do not
need such a metric assumption to distinguish, say, triangular pillows with χ(O) <

0 from triangular pillows with χ(O) > 0.
If O(p, q, r) is any triangular pillow with χ(O) < 0 and if spec(O(p, q, r)) =

spec(O(2, 2,m)), then by setting the integer and fractional parts of the respective
values of c equal we obtain

m+ 3 = p + q + r − 2,

1

m
= 1

p
+ 1

q
+ 1

r
.

Solving the first equation for m and plugging the resulting value into the second
equation yields

2pqr + pr(p + r − 5)+ pq(p + q − 5)+ qr(q + r − 5) = 0. (5.17)

Observe that, for a triangular pillow with χ(O) < 0, we must have 1/p + 1/q +
1/r < 1, which implies that the sum of any two of p, q, r is at least 5. Thus,
each term on the left-hand side of (5.17) is nonnegative. This contradiction im-
plies in turn that O(2, 2,m) cannot be isospectral to such a triangular pillow. For
the remaining triples where χ(O) > 0, we first set the integer and fractional parts
of the respective value of c equal to those of a triangular pillow with χ(O) <

0 and then note that there are no χ(O) < 0 triples satisfying these equations.
Thus c distinguishes between triangular pillows with χ(O) < 0 and χ(O) > 0.
A similar argument shows that c distinguishes triangular pillows with χ(O) < 0
from teardrops; it is clear that c also distinguishes triangular pillows with χ(O) <

0 from the smooth surfaces and the remaining elements of C, with the excep-
tion of footballs. In this last case, it seems that metric assumptions are again
necessary.

5.18. Remark. Other difficulties arise during the consideration of the expanded
class that includes nonorientable orbifolds. Metric assumptions are necessary in
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Figure 1 The uppermost object is a fundamental domain for O(2, 3, 3), with its quo-
tient O(2, 3, 3) below (here the vertices are cone points labeled with their orders and
the double edges represent reflector edges; on the bottom left we show O(∗2, 3, 3),
which is obtained by reflecting O(2, 3, 3) in the plane of the paper, and on the right is
O(3, ∗2), obtained by reflecting O(2, 3, 3) in the plane containing the dashed loop)

numerous cases, such as distinguishing nonorientable orbifolds with the same ori-
entable double cover (e.g., O(∗2, 3, 3) and O(3, ∗2); see Table 1 and Figure 1).

We now examine classes that include nonorientable orbifolds.

5.19. Proposition. Within the class of all closed 2-orbifolds with χ(O) ≥ 0,
the spectrum distinguishes whether the orbifold has zero or positive Euler charac-
teristic.

Proof. Note that, for 2-orbifolds O with χ(O) = 0, c is either an integer or
equal to 4.5. Hence c distinguishes all but the following cases: S 2 from the
orbifolds O(∗3, 3, 3) and O(3, ∗3) (with c = 4), the good football O(2, 2) from
O(∗2, 3, 6) (with c = 5), and the bad teardrop O(2) from the orbifolds O(∗2, 4, 4)
and O(4, ∗2) (with c = 4.5). The lack of a mirror locus in the χ(O) > 0 cases
and the presence of a mirror locus in the corresponding χ(O) = 0 orbifolds can
be gleaned from the degree − 1

2 term, and so they are distinguished.

5.20. Proposition. Within the class of closed 2-orbifolds of constant nonzero
curvature R or −R, the spectrum determines the sign of the curvature—that is,
whether the orbifold is spherical or hyperbolic.
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Proof. Assume that O has cone points p1, . . . ,pk of orders m1, . . . ,mk and/or di-
hedral corner reflector points q1, . . . , qr of orders n1, . . . , nr . Now look at the co-
efficient of the t term in the expansion, as in (5.10), which reduces to

a2

4π
± R

( k∑
i=1

(m2
i + 11)(m2

i − 1)

360mi

+
r∑
i=1

(n2
i + 11)(n2

i − 1)

720ni

)

in the presence of constant curvature. The 1/t term in the expansion gives us
vol(O) and we know the size of the curvature, so we know the a2 component and
may subtract it off. Observe that the summands are nonnegative; hence we can
read the sign of the curvature unless there were no cone points and no dihedral
corner reflector points. In that case, examine the degree 0 term, which now has
no point contributions and reduces to a1/4π = χ(O)/6, and read off the Euler
characteristic.

5.21. Remark. In the case of closed 2-orbifolds with a nontrivial mirror locus,
(5.12) enables us to make a stronger statement. In particular: among such orbi-
folds that are endowed with a metric of strictly positive, strictly negative, or zero
curvature, the spectrum determines the sign of the curvature. This class includes
the bad orbifolds O(∗m) and O(∗p, q) with p �= q, since they admit a metric of
strictly positive (but variable) curvature.

5.22. Proposition. Within the class of spherical 2-orbifolds of constant curva-
ture R > 0, the spectrum determines the orbifold.

Proof. Notice that the metric requirement eliminates teardrops and bad footballs
(and their quotients) from this class. In Table 1, c distinguishes among the re-
maining spherical orbifolds with the exception that c is unable to distinguish be-
tween orbifolds that are nonorientable but have the same orientable double cover:
O(∗m,m), O(m×), and O(m∗) with double cover O(m,m); O(∗2, 2,m) and
O(2, ∗m)with double cover O(2, 2,m); and O(∗2, 3, 3) and O(3, ∗2)with double
cover O(3, 3, 2) (see Figure1). However, c is able to distinguish each nonorientable
class from the remaining orbifolds.

Consider such a class of nonorientable spherical orbifolds with a common ori-
entable double cover. Equation (5.11), the coefficient of the degree − 1

2 term, dis-
tinguishes nonorientable orbifolds with mirror loci from those without—that is,
in this class it distinguishes orbifolds with only cross-caps from those with mir-
ror loci. In the presence of constant curvature, (5.11) also distinguishes among the
remaining spherical cases: among O(∗m,m) and O(m∗), the length of the mirror
locus of O(∗m,m) is larger in the constant curvature metric; among O(∗2, 2,m)
and O(2, ∗m), the length of the mirror locus of O(∗2, 2,m) is larger; and among
O(∗2, 3, 3) and O(3, ∗2), the length of the mirror locus of O(∗2, 3, 3) is larger
(see Figure 1).

5.23. Remark. Metric assumptions are needed only to distinguish within each
nonorientable class. We cannot make a similar statement for flat 2-orbifolds. For
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example, it is possible to endow O(2, ∗2, 2) and O(2, 2∗) with a metric of zero
curvature so that they have the same area and also have mirror loci of the same
length. Then they cannot be distinguished by the asymptotic expansion of the
heat trace.
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