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Holomorphic Maps on Projective Spaces
and Continuations of Fatou Maps

Tetsuo Ueda

1. Introduction

Let f be a holomorphic map of the complex projective space P
n of dimension n

onto itself. We assume that f is of degree d ≥ 2. As in the one-dimensional case,
the Fatou set � for f is defined by

� := {p ∈ P
n | {f j }j≥0 is a normal family on a neighborhood of p}.

It is sometimes useful to consider the normality of the sequence {f j }j≥0 when re-
stricted to local analytic sets of lower dimension. We introduce a slightly more
general concept as follows.

Definition. A holomorphic map ϕ from a complex analytic space R into P
n is

said to be a Fatou map for f if {f j � ϕ}j≥0 is a normal family.

This definiton was given in [U3] and [R] independently. The following facts are
immediate. An open set V in P

n is contained in the Fatou set � if and only if the
inclusion map V ↪→ P

n is a Fatou map. If ϕ : R → P
n is a holomorphic map

with ϕ(R) ⊂ �, then ϕ is a Fatou map.
In this paper we prove the following two theorems.

Theorem 1. Let S be a Riemann surface and let E be a closed polar set in S. If
ϕ : S−E → P

n is a Fatou map, thenϕ can be extended to a Fatou map ϕ̌ : S → P
n.

Theorem 2. Let S be a Riemann surface and let E be a closed polar set in S. If
ϕ : S → P

n is a holomorphic map and if ϕ(S − E) is contained in the Fatou set
�, then ϕ(S) is also contained in �.

Here E is said to be polar if it is locally expressed as the set on which a subhar-
monic function takes the value −∞.

Theorem 1 may be viewed as an analogue of theorems concerning continuation
of a holomorphic map from S −E into a compact Riemann surface of genus ≥ 2
[N; Su1] or, more generally, into a complex manifold whose universal cover is a
bounded domain of certain type [Su2]. Our proof is an adaptation of Suzuki’s idea.

As an application of these theorems, we make a remark concerning a result due to
Fornæss and Sibony [FS3]. A connected component of the Fatou set � is called
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a Fatou component, and a Fatou component U is said to be recurrent if there is
a point p0 ∈ U whose forward orbit {f j(p0)}j≥0 has a subsequence convergent
to a point in U. A recurrent Fatou component is periodic—that is, invariant under
some iterate of f. Hence the classification of the recurrent Fatou components re-
duces to that of recurrent and invariant Fatou components. The following theorem
was proved in [FS3].

Theorem (Fornæss–Sibony). Let f : P
2 → P

2 be a holomorphic map of de-
gree ≥ 2. Then a recurrent and invariant Fatou component U of f is of one of the
following three types.

(1) U is the immediate basin of some attracting (or superattracting) fixed point
in U.

(2) There is a complex one-dimensional closed submanifold � of U that is bi-
holomorphic to either a disk, a punctured disk, or an annulus, and {f j|U }j≥0

contains a subsequence convergent to a holomorphic map ψ : U → � such
that ψ |� is the identity.

(3) U is a rotation domain (Siegel domain). In other words, {f j|U }j≥0 contains a
subsequence that is uniformly convergent on compact sets to the identity map
idU of U.

We can now prove the following statement.

Theorem 3. In case (2) of the preceding theorem, the manifold � is not biholo-
morphic to the punctured disk.

Indeed, suppose that � is biholomorphic to the punctured disk�− {0}. Then the
inclusion map ϕ : � − {0} → P

2 is a Fatou map and can be extended to a Fatou
map ϕ̌ : � → P

2 by Theorem 1. Then the point ϕ̌(0) is contained in the Fatou set
� by Theorem 2. This contradicts the fact that � is a closed submanifold of U.

Remark. Examples of case (2) with � biholomorphic to a disk (or an annulus)
can be constructed as follows.

(a) Let g : P
1 → P

1 be a holomorphic map of degree d with a Siegel disk (or a
Herman ring) U0. We express g as [z0, z1] 
→ [g0(z0, z1), g(z0, z1)] in homoge-
neous coordinates. Define f : P

2 → P
2 by

[z0, z1, z2 ] 
→ [g0(z0, z1), g1(z0, z1), z
d
2 ].

Then the Fatou componentU of f that contains the set� = {[z0, z1, 0] | [z0, z1] ∈
U0} has the desired property.

(b) Let g : P
1 → P

1 be a holomorphic map that has an attracting fixed point with
its immediate basin U1 and a Siegel disk (or a Herman ring) U2. The 2-fold sym-
metric product of P

1 can be identified with P
2; this identification induces a map

� : P
1×P

1 → P
2, which is a 2-fold branched cover. The map (g, g) : P

1 ×P
1 →

P
1 × P

1 can be factored to a holomorphic map f : P
2 → P

2, and �(U1 × U2) is
a Fatou component of f with the desired property (cf. [M; U1]).
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2. Lifts of Fatou Maps

In order to state characterizations of Fatou maps that are analogous to those of
Fatou sets, we first recall briefly some basic notions on holomorphic dynamics on
P
n. For more detail, see [FS1; FS2; HP; S; U2].
We denote X = C

n+1 − {0} and π : X → P
n the canonical projection. For

a holomorphic map f : P
n → P

n, there exists a homogeneous polynomial map
F : C

n+1 → C
n+1 of degree d such that F −1(0) = {0} and π �F |X = f �π. Such

an F is unique up to a constant factor.
The Green function h for F is defined by

h(z) := lim
j→∞

1

dj
log‖Fj(z)‖, z∈ C

n+1.

The function h is a plurisubharmonic function on C
n+1 with logarithmic pole at 0

and is of the form
h(z) = log‖z‖ + ξ(π(z)).

Here ‖z‖ denotes the Euclidean norm of z ∈ C
n+1 and ξ is a continuous function

on P
n. Furthermore, h behaves under composition of F as

h(F(z)) = d · h(z).
The Fatou set � is characterized in terms of h as follows. Let

H = {z∈ C
n+1 | h is pluriharmonic in a neighborhood of z};

then we have π−1(�) = H. Let

A = {z∈ C
n+1 | Fj(z) → 0 (j → ∞)}

be the basin of attraction to 0 of the map F. This set A coincides with the set
{z∈ C

n+1 | h(z) < 0}.
Now let R be an anayltic space and let ϕ : R → P

n be a holomorphic map.
By a holomorphic lift of ϕ we mean a holomorphic map � : R → X such that
π �� = ϕ.

Theorem 4. For a holomorphic map ϕ : R → P
n, the following properties are

equivalent.

(i) ϕ is a Fatou map for f.
(ii) The sequence {f j � ϕ}j≥0 contains a subsequence that is uniformly conver-

gent on compact sets.
(iii) If V is an open set in R and if �V : V → X is a holomorphic lift of ϕ|V ,

then h ��V is a pluriharmonic function on V.
(iv) For any point ζ ∈R, there exist an open set V containing ζ and a holomor-

phic lift �V of ϕ|V such that h ��V = 0 identically (in other words,�V (V )
is contained in the boundary ∂A of A).
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We omit the proof, which proceeds exactly as in [U2].
For an analytic space R, we denote by πR̂ : R̂ → R the universal covering of

R. We identify its covering transformation group �R̂ with the fundamental group
π1(R). Similarly, we denote byπR̃ : R̃ → R the homology covering ofR and iden-
tify its covering transformation group �R̃ with the homology groupH1(R, Z) (see
e.g. [ASa]).

Theorem 5. Let ϕ : R → P
n be a Fatou map for f. Then there exists a holo-

morphic map �̃ from the homology covering R̃ of R into X such that the diagram

R̃
�̃−−−−→ X

π
R̃

� �π
R −−−−→

ϕ
P
n

commutes and such that h � �̃ = 0 identically. Moreover, there is a group homo-
morphism t : �R̃ → U(1) such that

�̃ � γ = t(γ )�̃ for γ ∈�R̃ ,

where U(1) denotes the multiplicative group of complex numbers of modulus 1.

Proof. LetV be a connected open set in R and let �V,i : V → X be holomorphic
maps such that π � �V,i = ϕ|V and h � �V,i = 0 for i = 1, 2. Then there is a
nonvanishing holomorphic function τ(p) on V such that �V,2(ζ) = τ(ζ)�V,1(ζ).

Since
h ��V,2(ζ) = log|τ(ζ)| + h ��V,1(ζ),

it follows that log|τ(ζ)| = 0 identically on V. Hence τ(ζ) is a constant of modu-
lus 1.

Thus, by analytic continuation, we have a holomorphic map �̂ from the uni-
versal cover R̂ to X such that h � �̂ = 0 and π � �̂ = ϕ � πR̂. There is also a
homomorphism �R̂ → U(1) such that �̂ � γ = t(γ )�̂ for γ ∈�R̂.

Because U(1) is commutative, the homomorphism t is factored to a homomor-
phism from �R̃ , and the �̂ descends to a map �̃ : R̃ → X .

3. Proof of Theorem 1

Let R be a Riemann surface and let ϕ : R → P
n be a nonconstant Fatou map for

f. By Theorem 5 we have a holomorphic map �̃ from the homology cover R̃ into
X with h � �̃ = 0; in other words, �̃(R̃) ⊂ ∂A. For later use we choose and fix
positive numbers r1, r2 such that

∂A ⊂ {z∈ C
n+1 | r1 < ‖z‖ < r2}.



Holomorphic Maps on Projective Spaces and Continuations of Fatou Maps 149

Now we denote by

ω = i

2

n∑
j=0

dzj ∧ dz̄j = 1

4
ddc‖z‖2

the fundamental form corresponding to the Euclidean metric on C
n+1, where dc =

i(∂̄ − ∂). Then �̃ induces a form

ωR̃ = �̃∗ω = 1

4
ddc‖�̃‖2

on R̃. Since ‖�̃‖2 is invariant under the covering transformation group �R̃ , we
have a function K on R such that K � πR̃ = ‖�̃‖2. Then the form

ωR = 1

4
ddcK

on R satisfies π∗
R̃
ωR = ωR̃. The metrics corresponding to ω,ωR̃ ,ωR will be de-

noted (respectively) by ds, dsR̃ , dsR. For a relatively compact domain D in R, we
denote by area(D) the area with respect to ωR; for a smooth arc γ, we denote by
len(γ ) the length with respect to dsR.

Let γ = γ1 + · · · + γq be a sum of oriented smooth closed curves γ1, . . . , γq in
R. We can regard γ as an element of H1(R, Z) and also as an element of �.

Lemma 6. For γ as just described,

|t(γ )− 1| ≤ 1

r1
len(γ ).

Proof. First we consider the case where γ is a single closed curve. Let γ̃ be a lift
of γ to R̃. If we denote by a the initial point of the arc γ̃ then its terminal point is
γ (a), the image of a under the covering transformation corresponding to γ. The
path �̃(γ̃ ) joins the points �̃(a) and �̃(γ (a)) in C

n+1. Hence

‖�̃(γ (a))− �̃(a)‖ ≤ len(�̃(γ̃ )) = len(γ̃ ) = len(γ ).

Since �̃(γ (a)) = t(γ )�̃(a), it follows that

|t(γ )− 1| =
∣∣∣∣ �̃(γ (a))
�̃(a)

− 1

∣∣∣∣ ≤ 1

‖�̃(a)‖ len(γ ) ≤ 1

r1
len(γ ).

Now, if γ = γ1 + · · · + γq then t(γ ) = t(γ1) · · · t(γq). Since the t(γi) are of
absolute value 1, we have

|t(γ )− 1| = |t(γ1) · · · t(γq)− 1| ≤
q∑
j=1

|t(γi)− 1|

≤ 1

r1

q∑
i=1

len(γi) = 1

r1
len(γ ).
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Lemma 7. If D is a relatively compact domain in R with smooth boundary ∂D,
then

area(D) ≤ r2

2
len(∂D).

Proof. Because dc‖z‖2 = i
∑
(zj dz̄j − z̄j dzj ), we have |dc‖z‖2| ≤ 2r2ds in the

ball {‖z‖ < r2}. Hence |dcK| ≤ 2r2dsR on R. Therefore,

area(D) = 1

4

∫
D

ddcK = 1

4

∫
∂D

dcK ≤ 1

4

∫
∂D

|dcK|

≤ r2

2

∫
∂D

dsR = r2

2
len(∂D).

Let � be the unit disk in C, and let E be a compact polar set in �. We choose
s0 (0 < s0 < 1) such that E ⊂ �(s0). By the Evans–Selberg theorem, there is a
harmonic function u(ζ) on �(s0) − E such that u(ζ) → 0 as ζ → ∂D(s0) and
u(ζ) → +∞ as ζ → E (see e.g. [T]). Let

Dλ = {ζ ∈�(s0)− E | u(ζ) < λ},
Cλ = {ζ ∈�(s0)− E | u(ζ) = λ}.

We suppose that�−E is equipped with a conformal metric and denote by area(Dλ)
and len(Cλ) the area and length with respect to this metric.

Lemma 8.

lim inf
λ→+∞

len(Cλ)

area(Dλ)
= 0.

Proof. This is a standard area-length argument (see [Su1]), but we include a proof
here for completeness. We can assume that

∫
Cλ
d cu = 1. Write ω = ρ2du ∧ dcu

with ρ ≥ 0. Then, by the Schwarz inequality,

len(Cλ)
2 =

(∫
Cλ

ρ dcu

)2

≤
(∫

Cλ

d cu

)(∫
Cλ

ρ2 dcu

)
= d

dλ
area(Dλ).

For any ε > 0, the measure of the set e(ε) = {λ > 1 | len(Cλ) ≥ ε area(Dλ)} is
bounded by ∫

e(ε)

d area(Dλ)

len(Cλ)2
≤ 1

ε2

∫
e(ε)

d area(Dλ)

area(Dλ)2
< +∞.

Hence the lemma follows.

Now we prove Theorem 1. Since the theorem concerns a local property, it suffices
to consider the case where S = � and E is a compact subset of �. We also as-
sume that the Fatou map ϕ : � − E → C

n is extended holomorphically to ∂�.
We set R = �− E and introduce the conformal metric ωR on R.

By Lemma 7 we have

area(Dλ) ≤ r2

2
(len(Cλ)+ len(C0)),
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and, by Lemma 8,

2

r2
≤ lim inf

λ→∞
len(Cλ)

area(Dλ)
+ lim
λ→∞

len(C0)

area(Dλ)
,

since area(Dλ) is an increasing function. Hence area(Dλ) is bounded, and we may
use Lemma 8 again to conclude that

lim inf
λ→+∞ len(Cλ) = 0.

Let γ be a closed Jordan curve in R = �− E. We choose λ sufficiently large
so that γ is contained inDλ. Let γ ′ be the union connected components of Cλ that
are inside of γ. Then γ is homologous to γ ′ with suitable orientation. Thus, by
Lemma 6,

|t(γ )− 1| = |t(γ ′)− 1| ≤ 1

r1
len(γ ′) ≤ 1

r1
len(Cλ).

Since the inferior limit of the right-hand side is 0, we conclude that t(γ ) = 1.
As a result, �̃ is invariant under the covering transformations of R̃ and so we

have a holomorphic lift� : R → X ofϕ. Because� is bounded, it can be extended
to a holomorphic map �̌ : � → X with �̌(�) ⊂ ∂A. Thus ϕ̌ = π � �̌ : � → P

n

is the desired Fatou map. This completes the proof of Theorem 1.

4. Proof of Theorem 2

We begin with a lemma.

Lemma 9. Let �(s0) be a disk of radius s0 in C, and let B be a domain in C
m.

Suppose that H is a plurisubharmonic function on �(s0) × B that satisfies the
following conditions:

(1) there exists a real number s1 (0 < s1 < s0) such that H is pluriharmonic on
(�(s0)−�(s1))× B;

(2) there exists a point w0 such that H(z,w0) is a harmonic function of z∈�.
Then H is pluriharmonic on �× B.
Proof. We fix a number r with s1 < r < s0 and define

H ∗(z,w) = 1

2π

∫ 2π

0
H(reiθ,w)

r 2 − |z|2
|re iθ − z|2 dθ

by Poisson integral with respect to the first variable. Then H ∗ is real-analytic on
�(r) × B. For each z ∈ �(r) fixed, H ∗ is pluriharmonic in B. For each w ∈ B
fixed,H ∗ is harmonic in�(r) and the boundary value on ∂�(r) coincides withH.

Hence, for each w ∈ B fixed, H − H ∗ is subharmonic in �(r) and takes the
boundary value 0 on ∂�(r). It follows thatH −H ∗ ≤ 0 on�(r)×B. On the other
hand, for each z∈�(r), the function H −H ∗ is pluriharmonic in B and takes the
value 0 at w0. Thus we have H = H ∗ on �(r)× B by the maximum principle.
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BecauseH = H ∗ is real-analytic on�(r)×B and pluriharmonic on a nonempty
open set, it is pluriharmonic on all of �(r)× B. This proves the lemma.

Now, to prove Theorem 2, it suffices to consider the case where R = � and E
is a compact subset of �. For a holomorphic map ϕ : � → P

n we can choose a
holomorphic lift � : � → X . By assumption, we have ϕ(� − E) ⊂ � and so
�(�− E) ⊂ π−1(�) = H.

Choose s0 (0 < s0 < 1) such that E ⊂ �(s0), and choose ε > 0 such that the
ε-neighborhood of �({|z| = s0}) is in H. We define

H(z,w) = h(�(z)+ w), (z,w)∈�× B,

where h is the Green function and B = {w ∈ C
n+1 | ‖w‖ < ε}. Then H is con-

tinuous and plurisubharmonic on � × B and satisfies condition (1) in Lemma 9.
Since H(z, 0) = h(�(z)) is continuous on � and harmonic on � − E, it is har-
monic on � and thus satisfies condition (2).

It follows from Lemma 9 thatH is pluriharmonic on�×B. This implies that h
is pluriharmonic in the neighborhood of �(z). Therefore, �(�) ⊂ H and hence
ϕ(�) ⊂ �. This completes the proof of Theorem 2.
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