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Maximally Symmetric Stable Curves

Michael A. van Opstall & Răzvan Veliche

In this paper we prove a sharp bound for the automorphism group of a stable curve
of a given genus and describe all curves attaining that bound. All curves are de-
fined over C and are projective.

A well-known result of Hurwitz [Hu] states that the maximal order of the auto-
morphism group of a smooth curve of genus g is 42(2g−2). This bound is not at-
tained in every genus; for example, the maximal order of the automorphism group
of a smooth genus-2 curve is 48, attained by the curve with affine equation y2 =
x 5 +x. In genus 3, the bound of 168 is achieved by the famous Klein quartic y7 =
x3 − x 2 (given in homogeneous coordinates by x3y + y3z+ z3x). A curve attain-
ing the Hurwitz bound is known as a Hurwitz curve; a great deal is known about
these curves and the corresponding automorphism groups.

Exercise 2.26 of [HM] asks if this bound holds for stable curves. A stable curve
is a curve with nodal singularities and finite automorphism group. Gluing three
copies of the elliptic curve with j-invariant 0 (which has six automorphisms that
fix a point) to a copy of the projective line yields a genus-3 curve with 63 · 6 auto-
morphisms, breaking the Hurwitz bound. In genus 2, gluing the aforementioned
elliptic curve to itself yields a curve with 72 automorphisms—not breaking the
Hurwitz bound, but more symmetric than any smooth genus-2 curve.

Our goal in this paper is to give a sharp bound for the automorphism group of
a stable curve of genus g and to roughly describe all curves attaining this bound.
Since the moduli space of stable curves is locally the quotient of a smooth germ
by the automorphism group of a stable curve, this bound gives some measure of
how singular this moduli space can be near the boundary.

In order to state the bound, some notation is necessary. We define three func-
tions on positive integers g computed as follows. Write g in binary and, starting
from the left-hand side, count pairs (11 or 10) of binary digits that start with 1, ig-
noring intermediate 0s (there may be an unpaired 1 in the ones place after pairing).
Let k(g) be the number of11s and l(g) the number of10s, and setN(g) equal to g if
there is no unpaired1or to g−1if there is an unpaired1. For example: 215 is written
in binary as 11010111. We count the first 11, ignore the next 0, count the 10, another
11, and there is a 1 left over. Hence k(215) = 2, l(215) = 1, and N(215) = 214.

Theorem 0.1 (Main Theorem). The order of the automorphism group of a sta-
ble curve of genus g is less than or equal to 6g · 2N(g) · (

3
8

)k(g) · (
1
2

)l(g)
unless:
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g = 3 · 2n (n ≥ 0), in which case the bound is 6g · 2g−3 · 6; or g = 5 · 2n (n ≥
0), in which case the bound is 6g · 2g−5 · 10. In all cases, these bounds are sharp.

We describe the dual graph (a graph with one vertex, labeled with the genus, for
each irreducible component of the curve and where two vertices are joined by
an edge if the corresponding components intersect) of a curve attaining the given
bounds. The dual graph will be a tree whose leaves correspond to the elliptic curve
with j-invariant 0 (which has six automorphisms after fixing a point) and whose
interior vertices all correspond to rational curves.

When the genus is 3 · 2n, an optimal graph is three binary trees (with 2n leaves
each) attached by their roots to a common vertex. For genus 2n, an optimal graph
is a binary tree with 2n leaves. A pair 11 counted as before contributes 3 · 2n to
the genus, and a pair 10 contributes 2n. To a chain of rational curves of length
k(g)+ l(g)+ (N(g)−g), attach the corresponding optimal curves of genus 3 · 2n

or 2n just described. Now stabilize the resulting curve (delete valence-2 vertices
from the graph). If g = 5 ·2n then the result is not quite optimal: the optimal graph
is five binary trees (with 2n leaves each) all joined to a vertex. One checks eas-
ily that the orders of the automorphism groups are the bounds given in the Main
Theorem.

We will be able to do a little better; in fact, any curve attaining the bound must
have a tree as dual graph. In the final section, we use this fact to describe all curves
with maximal automorphism group.

We thank the referee for useful suggestions.

1. Geometric Preparation

Denote by E the most symmetric elliptic curve (that with j-invariant 0). We will
also use P1 somewhat abusively to denote a smooth rational curve, and P1 will be
coordinatized as the Riemann sphere. Given a vertex v, we will call the number
of edges connecting v to a vertex corresponding to a P1 the rational valence of v;
elliptic valence is defined similarly.

Automorphisms of stable curves come from two sources: automorphisms of
their components that preserve or permute the nodes properly, and certain auto-
morphisms of the dual graph. Not every graph automorphism is induced by an
automorphism of the curve. For example, n points on P1 can be permuted at most
dihedrally. Once another point is required to be fixed, n additional points may
be permuted at most cyclically. After fixing two points (say, zero and infinity),
n points may still be permuted cyclically (the nth roots of unity). All attaching
of curves to copies of P1 will be tacitly done in the most efficient way: placing
several isomorphic branches of the curve at roots of unity and then making other
attachments at zero and infinity so as not to disrupt the cyclic symmetry.

Definition 1.1. An automorphism of a dual graph G will be called geometric if
it is induced by an automorphism of the corresponding stable curve. The group of
such automorphisms will be denoted Aut0G.
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We will call the vertices of the dual graph corresponding to the rational curves ra-
tional vertices and those corresponding to elliptic curves elliptic vertices. Finally,
a vertex in a graph meeting a single edge will always be called a leaf, whether or
not the graph in question is a tree. As usual, the corresponding components of the
curve are called tails.

Definition 1.2. A maximally symmetric stable curve is a stable curve whose
automorphism group has maximal order among all stable curves of the same genus.

Note that this definition makes sense: a stable curve of genus g has at most 2g− 2
components, each with normalization of genus at most g. Hence there is a bound
for the automorphism group of a genus-g curve of [42(2g − 2)]2g−2(2g − 2)!.

In this section we shrink the class of curves that need to be considered. An ini-
tial lemma will be essential in what follows.

Lemma 1.3. The dual graph of the stabilization of a nodal curve of genus g > 1
with no tails has at least as many automorphisms as the dual graph of the original
curve.

Proof. First note that if a vertex is deleted in stabilizing a graph, then all vertices
in the orbit of this vertex are also deleted.

We proceed by induction on the number of vertices in the graph. There are no
unstable curves of genus 2 or higher with a graph with a single node, so there is
nothing to prove in this case.

The only possibility is that there is a vertex v of valence 2 corresponding to a
rational curve. Proceed in both directions along geodesics away from v until ver-
tices u and w are reached that are stable (i.e., not deleted in stabilizing). Such
vertices exist because the curve has genus ≥ 2, and they may coincide. If v is
moved by an automorphism then the arc from u to w is moved with it, and the
converse is obviously true. Therefore, replacing the entire arc from u to w with a
single edge from u to w (including the case of replacing the arc with a loop from
u = w to itself ) does not decrease the automorphism group of the curve.

Lemma 1.4. A maximally symmetric curve has only smooth components.

Proof. Let C be any stable curve, and suppose that C1 is a component with nodes.
Replacing C1 in C with its normalization drops the genus of C by the number of
nodes of C1. For each pair of points of the normalization lying over a node, choose
one and glue a copy of E to it. This makes up the genus deficit. The automor-
phisms of each copy of E multiply the order of the automorphism group by 6.
The automorphisms of C1 correspond to those of its normalization that permute
the nodes appropriately. Therefore, the normalization of C1 has more automor-
phisms than C1, and fewer of these are killed off by gluing elliptic curves to only
one of each pair of points over a node than by identifying these points. If the nor-
malization is genus 0 and if C1 has only one node, then the normalized component
will be collapsed to keep the curve stable and E will be re-attached at the point of
attachment of the rational curve.
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Lemma 1.4 Lemma 1.5 Lemma 1.6

Figure 1 Illustrating Lemmas 1.4–1.6

Finally, if multiple isomorphic copies of C1 occur in C and result in a symme-
try of the dual graph that induces automorphisms of C, then replace each copy of
C1 by this construction to maintain the symmetry. We call this maintaining graph
symmetry and do not explicitly mention it hereafter.

Lemma 1.5. There exists a maximally symmetric stable curve whose components
are all P1 or E.

Proof. By Lemma 1.4, all components may be taken as smooth. It is clear that
using E to replace an elliptic curve less symmetric than E can only help.

If C1 is a component of C with genus h > 1 then replace C1 with a rational
curve, attach a rational tail, and glue h copies of E to this second rational curve.
Ignoring graph symmetry, C1 contributed at most 42(2h−2) automorphisms to C,
whereas the new construction contributes at least 2 · 6h (the factor of 2 is because
there are at least two copies of E that may be permuted, since h > 1).

There is a technical issue: 2 · 62 is not greater than 84, but we have already seen
that there is no smooth genus-2 curve with more than 2 · 62 automorphisms. Also,
if C is itself a smooth genus-2 curve then the construction leads to a nonstable
curve. This is fine—the maximally symmetric genus-2 curve is two copies of E
glued together, which satisfies the conclusion of the lemma.

Lemma 1.6. A maximally symmetric stable curve’s components are all copies of
P1 or E. The dual graph of such a curve has no multiple edges, its leaves are
elliptic, and other vertices are rational.

Proof. Apply the constructions of Lemmas 1.4 and 1.5. Suppose there is a copy
of E that is not a tail of the curve. Then E is attached in at least two points, so
replacing E with a P1 and gluing E to this P1 does not decrease the number of
automorphisms; this makes E a tail.

By Lemma 1.4 there are no loops in the graph. Suppose two vertices are con-
nected by n edges. Since we may assume at this point that all elliptic components
are tails, these vertices must be rational. Replace the multiple edge by a vertex
joined by two edges to the former endpoints of the multiple edge. Add a rational
tail to this new vertex, and arrange n − 1 copies of E as tails around this rational
vertex. The curve may need to be stabilized, but we have seen that in this case
stabilization will not affect automorphisms.

If n = 3 and if the entire curve consists of two P1 attached in three points, then
this construction does not result in a stable curve. But again this is an exceptional
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case, and we know that the maximally symmetric genus-2 curve satisfies the con-
clusions of the lemma.

The configuration of two rational curves connected by n nodes and connected
some other way to the rest of the curve contributes (excluding graph symmetry) at
most 2n automorphisms. The construction here replaces this with a configuration
contributing 6n−1 automorphisms.

Lemma 1.6 Lemma 2.2

Figure 2 Illustrating Lemmas 1.6 and 2.2

2. Breaking Cycles

This section contains the main part of the reduction: we may assume that the dual
graph of a maximally symmetric stable curve is a tree. To achieve this, we need to
break cycles in the graph and so produce a new graph with more automorphisms.
In one case, this is easy. Throughout this section we assume that all of the reduc-
tions from the previous section have been carried out; we are now studying simple
graphs whose interior vertices all correspond to smooth rational curves and whose
leaves are copies of E.

Definition 2.1. A cycle in a graph is called isolated if it shares no edge with
any cycle in its orbit under the action of the automorphism group of the graph.

Lemma 2.2. The dual graph of a maximally symmetric stable curve C has no
isolated edge-transitive cycles.

Proof. The replacement picture is the right-hand side of Figure 2. Such a cycle of
n rational curves contributes 1 to the genus and contributes at most 2n automor-
phisms (dihedral symmetry). Detach the n curves in the cycle from each other;
then attach each of them to a new P1 at the nth roots of unity, attaching a copy of
E at 0. This may decrease graph symmetry by a factor of 2 (reflections in the di-
hedral group are not included in this case because our automorphisms must fix the
point of attachment of the spoke), but it multiplies automorphisms by 6 owing to
the introduction of a copy of E.

Remark 2.3. The assumption that the cycle is isolated is necessary so that the
construction can be carried out on every cycle in the orbit.

The following proposition is obvious, but we state it for ease of reference.

Proposition 2.4. There are at most two orbits of the automorphism group among
the vertices of an edge-transitive graph.
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Definition 2.5. Suppose G is a graph and G′ is a subgraph. Then Aut0
G′ G will

denote the group of geometric automorphisms of G that fix G′.

In what follows, a graph will be called optimal if its geometric automorphism
group is maximal among dual graphs of stable curves of a given genus.

Proposition 2.6 (Edge-transitive graphs are not optimal). Let C be a stable
curve with dual graph G. If G is an edge-transitive graph with valence at least 3
at each of its vertices, then there exists a curve C ′ whose dual graph is a tree with
elliptic leaves such that |AutC ′| > |AutC|.
Proof. By Propositoin 2.4, there are two orbits of vertices, O(v) and O(w), with
respective valences ev and ew; set nv = |O(v)| and nw = |O(w)|. Then nvev =
nwew and the genus of G is g = nv

2 (ev − 2)+ nw
2 (ew − 2)+1. The number of ver-

tices of G is n = nv + nw. The case in which there exists a single orbit O(v) is
dealt with exactly as in the case where ev = ew.

We will bound |Aut0G| by using a sequence of trees that “grow” and eventually
include all the vertices of G (spanning trees). Start with a vertex v, and denote by
T0 the tree consisting of v alone. There are nv choices for T0.

For T1, take T0 and all vertices (which are in the orbit of w) adjacent with T0.

Then |Aut0
T0
T1| ≤ 2ev (the automorphisms of T1 fixing T0 at most dihedrally per-

mute the ev edges around v).

Assume the trees T0, . . . , Ti have been constructed. If Ti spans G, we stop. If
not, there is a vertex of Ti (call it x) such that at least one of its neighbors is not in
Ti. Let Ti+1 be the span of Ti and x. We use ni to denote the number of vertices in
the tree Ti and e to denote the valence of x (which equals either ev or ew).

We have the following possibilities.

• If e ≥ 4 and x has at least three neighbors in Ti, or if e = 3 and x has two
neighbors in Ti, then |Aut0

Ti
Ti+1| = 1. In both cases, ni+1 ≥ ni + 1.

• If e ≥ 4 and x has at most two neighbors in Ti, or if e = 3 and x has exactly one
neighbor in Ti, then |Aut0

Ti
Ti+1| ≤ 2. Here ni+1 ≥ ni + (e − 2) (resp. ni+1 =

ni + 2).

This process will terminate after a finite number of steps, sinceG has finitely many
vertices.

Denoting by sv the number of times the second possibility occurs with x ∈
O(v) and by sw the number of times the second possibility occurs with x ∈O(w),
we have nw ≥ ev + sv(ev − 2) (resp. nw ≥ 3 + 2sv when ev = 3) and nv ≥
1 + sw(ew − 2) (resp. nv ≥ 1 + 2sw when ew = 3). At the same time, it is clear
that |Aut0G| ≤ nv · 2ev · 2sv+sw.

A curve of genus g whose dual graph is a tree with elliptic leaves will have at
least 6g automorphisms. We want to show that 6g > 3 ·2nvev ·2sv+sw. This means

6
nv

2
(ev−2)+ nw

2
(ew−2)

> nvev2sv+sw.

We have several cases to consider, depending on the valences ev and ew.

Case 1: ev = ew = 3. Then sv ≤ nw−3
2 and sw ≤ nv−1

2 , so it is sufficient to

prove 6
nv

2
+ nw

2 > 3nv2
nw−3

2
+ nv−1

2 or
√

6
n
> 3

4n
√

2
n
, which is clearly true.
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Case 2: ev = 3 < ew. Then sw ≤ nv−1
ew−2 and sv ≤ nw−3

2 ; the inequality to

prove becomes 6
nv

2
+ nw

2
(ew−2) ≥ 3nv2

nw−3
2

+ nv−1
ew−2 . Now nv = nw

ew
3 , so the inequal-

ity becomes (removing the index w) 6
ne
6

+ n
2
(e−2) ≥ ne2

n−3
2

+ ne−3
3(e−2) or 6

2ne
3

−n ≥
ne · 2

5n
6

− 3
2
+ 2n−3

3(e−2)
(
since ne−3

3(e−2) = n
3 + 2n−3

3(e−2)

)
. Since e > 3, this claim is true by

the inequality 6
2ne

3
−n ≥ ne · 22n or

(
3
2

)n · 6
2n(e−3)

3 ≥ ne. For n ≥ 2 we have
(

3
2

)n ≥
n and 6

4(e−3)
3 ≥ 6e−3 > e (since e > 3). For n = 1, 3

2 · 6
2
3
(e−3)

> 3
2 3e−3 > e since

e > 3. So in this case also we are done.

Case 3: ev , ew > 3. Then sw ≤ nv−1
ew−2 and sv ≤ nw−ev

ev−2 . The inequality to prove

becomes 6
nv

2
(ev−2)+ nw

2
(ew−2) ≥ nvev · 2

nv−1
ew−2

+ nw−ev

ev−2 ; since ev , ew > 3, this is im-

plied by 6nvev−nv−nw > nvev2
nv+nw

2 . Using nw = nvev
nw

and dropping the index v

yields 6ne > ne · (
6
√

2
)n+ ne

ew . Now 6
√

2 < 9 and ew ≥ 4, so it is enough to show

that 6ne > ne · 32n+ ne
2 or

(
2
√

3
)ne

> ne · 32n. Since 2n ≤ ne
2 , this is implied by

(
2
√

3
)ne

> ne · (√3
)ne, which becomes 2ne > ne and so finishes the proof of this

final case.

Proposition 2.7. Assume that G is a dual graph that consists of an edge-
transitive graph H having rational vertices v1, . . . , vn and with a tree Ti attached
at each vertex vi that is either degenerate (i.e., consists of vi only) or has only
elliptic leaves and otherwise rational vertices. To avoid trivialities, assume that
H is not a tree. Then G is not an optimal graph.

Proof. The point is that H has at least one cycle, and this forces less than desirable
symmetry in G.

By Proposition 2.4 we know that there are at most two orbits of vertices in
H. Assume that there are exactly two, O(v) and O(w); the other case is simi-
lar (practically identical proof using ev = ew). Denote by nv and nw the order of
O(v) and O(w) in H and by ev and ew their respective valence in H. Then nvev =
nwew. If ev = ew = 2, then H is an isolated edge-transitive cycle in G and thus
G cannot be optimal. The genus of H is

g(H ) = nv

2
(ev − 2) + nw

2
(ew − 2) + 1 ≥ 2.

If all of the Ti are degenerate then G is simply H and, by Proposition 2.6, there
exists an optimal tree with strictly more automorphisms than G; hence we are
done in this case. If some of the Ti are not degenerate, then the genus of H is
smaller than the genus of G and so, by induction, there exists an optimal tree T

with |Aut0 T | > |Aut0H |. (Note that, in light of Lemma 1.3, Proposition 2.6
applies to graphs with some vertices of valence 2.) Detach the nondegenerate iso-
morphic Ti (including the edge that connects their root to the vertex vi) from the
vertices of H and pair them two-by-two around a new root, ultimately connect-
ing these roots of pairs to a new rootV. Connecting V to the root of T by an edge
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does not change the overall genus and yields at least a 2-fold increase in automor-
phisms (actually a 2

n−1
2 -fold increase, where n is the number of the Ti detached);

this increase is due to the extra freedom allowed on the Ti, which can be swapped
independently of the vertices vi. The reattaching can decrease the symmetry of T
by a factor of at most 2, so as soon as one orbit of isomorphic trees has at least
two elements we obtain the desired strict increase in symmetry. In particular, G
was not optimal.

If there exists a unique tree Ti that is nondegenerate, there necessarily exists an
orbit of vertices of H with a single vertex in it. Since H is edge-transitive, the
condition that H not be a tree implies that H is “tree-like” (of diameter 2) but with
multiple edges. From the breaking of multiple edges earlier in the proof we may
derive at least a 3-fold increase in symmetry by shooting out elliptic tails in place
of multiple edges. Again, G was not optimal.

So now we need only show that—starting with a graph (that is not a tree) with ellip-
tic leaves and otherwise rational vertices—there exists a graph of the same genus
satisfying the properties of Lemma 2.2 and with at least as many automorphisms.
Then the lemma shows that the original graph could not have been optimal.

Lemma 2.8. We may assume that an optimal graph of genus g has the following
property. Around each vertex there are at most three orbits of edges and at most
one orbit of two or more edges.

Proof. Assume that in an optimal graph we have a vertex v, necessarily rational
(by previous reductions), around which there exist either (a) four or more orbits
or (b) at least two orbits of edges, each orbit with at least two edges (ending at v)
in it.

Let us establish some notation. Arrange the orbits of edges around v in decreas-
ing order of their sizes so that O1, . . . ,Ok ,Ok+1, . . . ,Ok+l , where |O1| ≥ |O2| ≥
· · · ≥ |Ok| ≥ 2 > 1 = |Ok+1| = · · · = |Ok+l| (k or l may be zero). We must
show that there exists an optimal graph in which k ≤ 1 and k + l ≤ 3. Note that
if k + l ≥ 4 there are no automorphisms permuting the edges around v, and if
k + l = 3 there is at most one (nontrivial) orbit being cyclically (half-dihedrally)
permuted by the automorphisms fixing v.

We will perform the following operations on the given graph:

1. detach all edges from around v, keeping track of their orbits;
2. replace v by a path of rational vertices v1−v2 −· · ·−vk −vk+1−· · ·−vk+l−1;
3. attach the orbit Oi to vi for 1 ≤ i ≤ k + l − 2, and attach the orbits Ok+l−1 and

Ok+l to vk+l−1.

Each operation should be done simultaneously at all vertices in the orbit of v so
as not to lose the initial graph symmetry. That these vertices are in the same orbit
implies that the same partition of edges is repeated around each such vertex, and
thus the same insertion of the new rational path can be done everywhere. Note
that the genus of the graph has not been changed, as one vertex has been replaced
by k + l − 1 vertices and k + l − 2 edges.
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Observe that there is a map from the new graph to the old graph. Prescribing
that the newly introduced paths will go (orientation-preserving) only onto another
similar (newly introduced) path means that distinct automorphisms of the original
graph are lifted to distinct automorphisms of the new graph. Thus we have pre-
served or increased the order of the automorphism group (i.e., the new graph is
also optimal) and so the claim of the lemma is established.

We will need the following lemma when changing graphs into those of the type in
Proposition 2.7.

Lemma 2.9. Let G be a simple graph of genus g ≥ 1 with elliptic leaves and
otherwise rational vertices. Assume that the valence at each rational vertex is at
least 3—except possibly at some rational vertices v1, . . . , vk , where it may be 2. Let
H be a subgroup of Aut0G that fixes the vertices v1, . . . , vk and acts at most cycli-
cally (i.e., not fully dihedrally) on the edges around them. Then 2|H | < |Aut0 T |
for some T a tree with g elliptic tails.

Proof. The lemma is obviously true for g = 2, as case-by-case inspection shows
(and noting that the vertices of valence 2 do not bring any extra symmetry).

Assume that H fixes only one rational vertex v. The orbit of this vertex by H

is trivial. By valence reasons, removing this vertex and the k ≥ 2 edges around
it (which can be in an orbit only by themselves) will yield a graph G′ of genus
g − k +1 and with valence of at least 2 at any vertex, but the removal will not de-
crease the automorphism group by a factor of any more than k (because the action
on the removed edges is at most cyclic). In other words, the subgroup of H fixing
the edges around v has index at most k in H. Moreover, the automorphisms fixing
the edges around v will fix their opposite ends in G′. Now either G′ has genus 1
(with our assumptions on valences on G this means a cycle, which would be fixed
by any automorphism fixing the edges around v) or has genus ≥ 2. In either case
one can replace inductively G′ by a tree T ′ with at least twice as many automor-
phisms (in the case of the cycle, one may simply use another elliptic tail), arrange
another k − 1 elliptic tails around a root, link this root to the root of T ′ at infin-
ity and fix zero as well. At most a dihedral symmetry is lost at the root of the tree
replacing G′ in this manner, but 6k−1 is gained through the elliptic tails. Overall
one gains at least a factor of 6k−1

k
> 2 in the automorphism group, which is what

is needed.
Now, if H fixes several rational vertices v1, . . . , vk , then we may use the previ-

ous case to bound the larger subgroup—fixing only one of the vi—and thus obtain
the desired bound.

Theorem 2.10. The optimal graph of genus g is a tree. More precisely: For any
graph G of genus g that is not a tree, there exists a tree T (with g elliptic tails)
such that |Aut0 T | > |Aut0G|.
Proof. Begin with an optimal graph that satisfies the conclusions of Lemma 2.8,
and recall that an optimal tree should not have isolated cycles.
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Choose an edge e such that:

• the order of its orbit is smallest among all orbits of edges; and
• if this order is at least 2, require that the orbit of one of its ends be the smallest

among the possible choices for e.

The goal of this choice is to control the valence of the graph left by removing e

and the edges in its orbit.
To fix notation for the remainder of the proof, denote by v the end of e with the

smallest orbit and by w the other end; denote by nv the order of the orbit of v and
use like notation for w.

Lemma 2.11. Assume that e has a unique representative around v. Then one and
only one of the following cases can occur :

(1) e has a unique representative around w; or
(2) all the edges around w are in O(e).

Proof. Assume that e would have at least another representative around w and that
there would exist another edge f /∈O(e). Then v and w are not in the same orbit,
and |O(e)| ≥ 2nw. At the same time, |O(f )| ≤ nw (by Lemma 2.8), contradict-
ing the choice of e.

We will prove Theorem 2.10 inductively. Let us establish some more notation.
The connected components of G′ = G \ O(e) will be denoted by G1, . . . ,Gk; the
graph obtained from G by contracting the components G1, . . . ,Gk to vertices will
be called G′′ (this could have multiple edges—i.e., be nonsimple); and some op-
timal tree with elliptic tails and the same genus as Gi (resp. G′′) will be called Ti
(resp. T ′′).

The basic idea is to look at the connected components of G′, replace them in-
ductively (if necessary) by optimal trees, then reconnect the trees at their roots to
form a common tree. Care needs to be taken with this procedure because some
components may be degenerate (isolated vertices) and because some symmetry
might be lost in the individual trees (those with full dihedral symmetry around
their root) when they are connected (by an edge ending at their root) to some other
trees. However, Lemma 2.9 shows that the latter is not a real concern.

Proposition 2.12. With the given choice of e, the following statements hold.

(1) If around a vertex v there are three edges in O(e), then all edges ending at v
are in O(e).

(2) Removing the edges in the orbit of e from the graph G cannot leave a vertex
with valence 1.

Proof. (1) If f is an edge ending at v not in O(e), then |O(e)| ≥ 3
2nv while

|O(f )| ≤ nv , contradicting the choice of e.
Now, if O(e) has only one element ending at v and w, then we are done: by

stability there must be at least two other edges, not in the orbit of e (unless one
or both of these is a tail, in which case the remaining valence is 0), around both
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v and w. So assume there are at least two edges in the orbit of e ending at v. If
there are at least three such edges, then part (1) says that all the edges around v

are in O(e) and so v would have valence 0 in G′. If there are precisely two edges
in O(e) around v, then stability of G and Lemma 2.11 show that e is not unique
around w, either.

• If O(e) has only two representatives around w, then the existence of an edge-
transitive isolated cycle formed by edges in O(e) with vertices in O(v) and
O(w) is immediate.

• If O(e) has at least three representatives around w, then part (1) says that all
edges around w must be in O(e). Then, using f to denote (one of ) the extra
edge(s) around v, we have that |O(e)| ≥ 2nv+3nw

2 > nv ≥ |O(f )|, which would
lead to a contradiction.

(2) Note that (a) G′′ can be a tree only if e is unique in its orbit around v and
(b) all Gi containing a vertex in O(w) contain a unique such vertex but no vertex
in O(v). There are two possibilities for G′: it is either connected or disconnected.

Case 1: G′ is connected. Then there are no isolated vertices left in G′ and all
vertices have valence ≥ 2; by Proposition 2.12, e must be unique in its orbit around
both v and w. The automorphism group of G′ has order at least that of G (exam-
ining the movement of vertices). The genus of G′ is at least one less than that of
G. Stabilizing G′ does not decrease the number of automorphisms and does pre-
serve the genus—except when G′ is a cycle. But then it would be isolated in its
orbit and not adjacent to any edge-transitive cycles, so G would not be optimal by
an argument similar to the proof of Lemma 2.2.

By induction, there exists an optimal graph that is a tree T ′ whose genus is (at
least) one less than that of G′, and |Aut0 T ′| > |Aut0G′|; now compensate for
the loss of genus by attaching the necessary number of elliptic tails to the root of
T ′. If T ′ had dihedral symmetry at the root, then the loss of it (factor of 2) is eas-
ily compensated by each elliptic tail yielding a 6-fold increase in automorphisms.
But this contradicts the optimality of G.

Case 2: G′ is disconnected. If all the components Gi are single vertices (i.e.,
if all the edges around both v and w are in O(e)), then we are done because one
of the following holds.

• All these vertices are rational, in which case G is an edge-transitive graph with
only rational vertices (so there are at most two orbits of vertices in it). Lemma 2.6
shows that these are not optimal; that is, this case cannot occur with our choice
of e.

• All of these vertices are elliptic, in which case G was the dual graph of two
elliptic curves meeting in a node and was thus a tree.

• Some of the vertices are elliptic and some rational. In this case it is clear that
there can be only one rational vertex and that all the elliptic vertices were con-
nected by e and its translates to it. Hence G was already a tree (of diameter 2).

So we may assume that some component Gi is not an isolated point and thus
must be of positive genus; then the genus of G′′ is strictly less than the genus of G′
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and we are in the situation described in Lemma 2.11 (i.e., O(e) does not exhaust
all edges around both ends of e).

Note that we have the following formula bounding |Aut0G|:

|Aut0G| ≤ |Aut0
G G′′| ·

k∏

i=1

|Aut0
v,w Gi |,

where Aut0
v,w Gi is the group of automorphisms of Gi fixing the ends of edges in

O(e) and Aut0
G G′′ is the group of automorphisms of G′′ induced by those of G.

This follows because the automorphisms fixing O(e) automatically fix vertices in
each component Gi.

If G has no cycles, then it is a tree and we are done. Henceforth we shall assume
implicitly that G has a cycle and will show that it is not optimal.

Construct a graph H as follows. Take G′′ and attach to its vertices the trees Ti
via a new edge, at their roots. Note that the genus of H is the same as the genus
of G, which is

∑k
i=1 g(Gi) + g(G′′). When does this construction provide a sta-

ble graph with more symmetry than the original G? Or rather: How much is the
symmetry of the graph affected by this construction?

Lemma 2.9 shows that no symmetry is lost in replacing the Gi with Ti. It is
similarly clear that fixing only the root (as opposed to any other vertex) of a tree
yields the maximum number of automorphisms. Let f denote the root of the tree
Ti (which may be an edge; see Section 4). Observe that

|Aut0H | ≥ |Aut0
G G′′| ·

k∏

i=1

|Aut0
f Ti |

and so H must also be optimal. Now Proposition 2.7 finishes the proof of the fact
that G was not optimal.

We have shown that the optimal graphs are trees. Hence we may say something
about the valence of the interior vertices.

Definition 2.13. If the rational valence at a vertex is r and the elliptic valence
is e, then we say the valence of this vertex is (r, e). This will cause no confusion
with the usual use of the word.

Lemma 2.14. In an optimal graph, the valence of each rational vertex may be
only one of (0, 3), (0, 4), (0, 5), (3, 0), (4, 0), (5, 0), (1, 2), (1, 3), (2,1), or (3,1).

Proof. “Smaller” valences are ruled out by stability of the curve. Suppose there
is a point of valence (n, 0) with n ≥ 6. If all of the branches from this vertex are
mutually nonisomorphic, then the vertex can be replaced by a chain of rational
vertices and various branches distributed in a way that decreases the valence into
the allowed range. This will not affect automorphisms. At the other extreme, if
all vertices are isomorphic and if n = 2k, then we can replace the vertex with a
chain of k rational vertices and attach the branches to this pairwise. This replaces
dihedral symmetry of order 4k with k involutions plus a global involution of the
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chain—at least 2k+1 automorphisms. If k = 2 this does not affect the order of
the automorphism group, but if k ≥ 3 the order increases. If n is odd, a similar
procedure grouping three branches together and otherwise pairing branches works
similarly. In the intermediate cases where there are some isomorphic branches but
not all branches are isomorphic, split the vertex into a chain of rational vertices,
one for each isomorphism class of branches; reattach the branches; and then apply
the preceding arguments. The cases (0, n) are handled similarly.

For a vertex of the form (1, n)with n > 3, pair the elliptic leaves as much as pos-
sible and connect the resulting two-leaf branches (and possibly a single leaf ) to the
vertex. This will transfer excess elliptic valence to rational valence, which can then
be distributed as before. In this case, there is one branch that cannot possibly be
isomorphic to the others; hence, to make symmetry maximal, this one branch (the
rational one) should be glued to the origin of P1, and the elliptic branches should
be glued as symmetrically as possible at roots of unity. But an automorphism that
fixes the origin can permute the roots of unity only cyclically, so we can reduce the
valence further than in the previous cases. The cases (n,1) are handled similarly.

Finally, vertices of valence (r, e) with r and e both larger than allowed here are
dealt with by adding two branches to the vertex in question, distributing the ratio-
nal branches of the original vertex around one and the elliptic vertices around the
other. This reduces to two vertices of types (1, e) and (r + 1, 0), which have al-
ready been dealt with.

Note that we cannot do better than this lemma in general: if we have a vertex of
valence (5, 0) and if all the branches are isomorphic, then the contribution to sym-
metry near this vertex is dihedral of order 10. On the other hand, if we split this
into two vertices of valence (4, 0) and (3, 0) connected by an edge, then the con-
necting edge corresponds to the components of the curve being glued together; the
most symmetric option is to glue the two curves at their origins and the branches at
roots of unity. But gluing the origins together makes the symmetry of the roots of
unity only cyclic, so we have six automorphisms only. Splitting into two branches
with two leaves and a single leaf gives at most eight automorphisms.

The following definition will be useful.

Definition 2.15. A stable curve is simple if

(1) its components are all copies of E or P1;
(2) its dual graph is a tree with all leaves elliptic and all other vertices P1; or
(3) the valence of each vertex is no greater than 5, and the elliptic valence is no

greater than 3.

The previous reductions show that there exists a maximally symmetric stable curve
of genus g that is simple. The “geometric” contribution to the automorphism group
of a genus-g simple curve is 6g, and the rest comes from certain automorphisms
of the graph.

Under the assumption of simplicity, elliptic components are distinguished from
rational components by occurring as leaves on the tree, so we need not count auto-
morphisms of the dual graph as a weighted graph. Therefore, the problem of
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finding a maximally symmetric stable curve has been reduced to finding a maxi-
mally geometrically symmetric graph of a certain type.

3. Proof of the Main Theorem

A tree has either an edge or vertex that is invariant under the action of the auto-
morphism group (see [Se, Cor. 2.2.10]). An invariant vertex will be called a root
of the tree; an invariant edge is called a virtual root. If no confusion is possible,
either one will be called a root. We will actually need something a little stronger,
as follows.

Lemma 3.1. If G is a tree of finite diameter n, then all geodesics of length n have
(a) the same middle vertex if n is odd or (b) a common middle edge if n is even.

Proof. This is [Se, Exer. 2.2.3].

Such a vertex (edge) will be called an absolute (virtual) root. Since G is a tree,
given any other vertex v of G there is a unique edge adjacent to v along the geo-
desic to an absolute (virtual) root. Let Gv denote the subtree of G obtained as
follows: remove the edge adjacent to v along the geodesic to an absolute root; then
Gv is the connected component containing v of what remains.

In the rest of this section, G is always assumed to be the dual graph of a simple
stable curve.

Definition 3.2. Given a graph G, let V(G) be the set of vertices of G and let
E(G) be the set of edges. Define oV : V(G) → N by oV (v) = |O(v)|. When we
speak of an automorphism acting on an edge, the edge is assumed to be oriented
(i.e., swapping the endpoints of an edge is considered a nontrivial automorphism
of that edge). With this convention, define oE : E(G) → N by oE(e) = |O(e)|.
Definition 3.3. A tree is called perfect of type n if

(1) n = 1: the tree has a single vertex;
(2) n = 2: the tree is a binary tree;
(3) n > 2: the tree consists of n binary trees linked to a common root.

Lemma 3.4. Suppose G is a tree with an edge e such that oE(e) = 1. Removing
e results in two connected trees G1 and G2. In this case, Aut0G decomposes as
Aut0G1 × Aut0G2. Moreover, if G is optimal then so are G1 and G2.

Proof. The first part is clear: e is not moved by any automorphism, so any non-
trivial automorphism must be an automorphism of G1 or G2 (or a composition
thereof ). The second part is also easy: if G1 is not optimal, then G1 (as a subgraph
of G) could be replaced by an optimal graph with the same number of leaves of
G1, contradicting the optimality of G.

The following lemma is the most essential part of proving the Main Theorem. It
states that if a vertex v is moved by the automorphism group, then its branches
should all be isomorphic (except along the geodesic leading to the absolute root).
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If not, then the various copies of the branches attached to vertices in the orbit of v
should be removed and grouped together to increase symmetry.

Lemma 3.5. Suppose v is a vertex with oV (v) > 1. Then the branches of Gv

around v are all isomorphic.

Proof. The strategy is this: if v is a moving vertex and has two nonisomorphic
branches, then these branches also move and a more symmetric graph can be
created by grouping like branches together.

Suppose that there are two vertices v1 and v2 adjacent to v in Gv such that Gv1 �∼=
Gv2. Because v moves, there are other copies of Gvi in the graph G. Denote by
G′

i the tree obtained by removing Gvi and its orbit under the automorphism group
of G. Then Aut0G surjects onto Aut0G′

i with kernel those automorphisms fixing
the vertices of G not in the image of Gvi under the action of Aut0G. The order of
this kernel is |Aut0Gvi |oV (vi ). Let Gi denote the stabilization of G′

i . Then Aut0G′
i

is isomorphic to Aut0Gi.

Now construct a graph G◦
i from G by removing everything from G except the

orbit of Gvi and the corresponding geodesics to the absolute root (including the
root edge if the absolute root is virtual) and stabilizing the result. Since Gv1 �∼=
Gv2 , it follows that G1 and G◦

1 are nontrivial and that the sum of their numbers of
leaves is the number of leaves of G. Join G1 and G◦

1 at their roots (making an ap-
propriate construction when the root is virtual or when this makes the valence too
high at the new root). The resulting graph has more automorphisms than G, since
the order of Aut0G◦

1 is at least oV (v1)|Aut0Gv1|oV (v1). This contradicts the opti-
mality of G and thus proves the lemma.

Proposition 3.6. Suppose G is optimal. Then min(oE) ≤ 5 and min(oV ) ≤ 2.
Moreover, if min(oE) ≥ 3, then the graph consists of min(oE) isomorphic sub-
trees attached to a common root.

Proof. First suppose that G has an invariant vertex. Then clearly min(oV ) = 1 is
attained at this vertex. Since an optimal graph has valence at most 5, the orbit of
an edge with this root has at most five elements. This shows that min(oE) ≤ 5,
since these five edges may be permuted at most among themselves.

Now suppose that G has no invariant vertex. Then there must be an invariant
edge. This edge is either carried in an oriented way onto itself or the orientation
is reversed, so min(oE) ≤ 2. Because the edge is invariant, its endpoints can at
most be taken to each other, so min(oV ) ≤ 2 in this case as well.

The graph has an absolute root or an absolute virtual root. If there is an abso-
lute virtual root e, then this edge has oE(e) = 1 or oE(e) = 2. If min(oE) ≥ 3
then there is an absolute root v. Consider the isomorphism classes of the branches
from v. If any class has a single member then the edge from v to the root of that
branch is an invariant edge, which contradicts min(oE) ≥ 3. Now, if there are at
least two isomorphism classes (each with more than one member) then, by the
proof of Lemma 2.14, we have a contradiction of optimality. It is clear that one of
these edges attains the minimum of oE (since the whole graph rotates around v),
which proves the last statement of the proposition.
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Proposition 3.7. An optimal graph with 2g leaves can be obtained from an op-
timal graph with g leaves by replacing each leaf with a vertex attached to two
leaves.

Proof. It suffices to show that an optimal graph with 2g leaves has the property
that exactly two leaves are connected to a vertex that is connected to any leaves.
Such a graph is certainly obtained by “doubling”. Conversely, if such a graph has
its leaves removed to obtain a nonoptimal graph with g leaves, then doubling an
optimal graph with g leaves will produce a more symmetric graph with 2g leaves.

For reasons of valence, the only configurations of leaves other than two per
branch are branches with one leaf or branches with three, except for the two cases
of four leaves around a root and five leaves around a root. Five is not an even
number and so the lemma doesn’t apply, and there is an optimal tree with four
leaves that is doubled from the optimal tree with two leaves. By Lemma 3.5 and
the stability of the curve in question, branches with one leaf are not permuted by
the geometric automorphism group: by stability, there must be at least two edges
other than the one to the leaf, and removing one on the geodesic to the root leaves
a tree with at least one rational branch and one elliptic leaf. An even number of
such branches may be combined pairwise to increase the order of the automor-
phism group (remove one leaf and place it on a branch with another, yielding an
involution). Therefore, an optimal graph contains at most one such branch.

Now suppose that v1 is a vertex adjacent to three leaves. We claim that oV (v1) =
1. Denote by v0 the vertex one step from v1 toward the absolute root (if v1 is the
absolute root then the claim is clearly true).

Suppose that oV (v0) > 1. Then Lemma 3.5 implies that all vertices one unit
away from v0 in the tree Gv0 are branches with three leaves. By valence consider-
ations, the only possibilities are that Gv0 has two to five branches. If there are two
branches, split the six leaves into three branches with two leaves each. If there are
three branches, split them into the configuration shown in Figure 3. In both cases,
the contribution to automorphisms increases, in the first case from 18 to 24 and in
the second from 81 to 128. Similar constructions can be performed on a configu-
ration of four or five branches of three leaves around a root (the answers are given
by the Main Theorem) to obtain more automorphisms. This contradicts optimal-
ity, so oV (v0) = 1.

Now, if there is another branch of Gv0 adjacent to v0 that has three leaves, these
could be combined as in the previous paragraph with the leaves around v1, contra-
dicting optimality. Hence v1 is the only branch of Gv0 adjacent to v0 with three
leaves; therefore, if it is moved by some automorphism of G then v0 will follow.
This contradicts oV (v0) = 1.

Thus, branches with an odd number of leaves do not move around the graph.
Hence they may be broken up to increase symmetry: pairing two branches with
a single leaf adds an involution, switching the leaves. Pairing a single leaf with
a branch with three leaves and splitting into pairs increases the automorphism
group by a factor of at least 8/3. Similarly, two branches with three leaves each
can be combined. These constructions contradict optimality of the graph, and
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Figure 3 Splitting a 3-3-3 configuration in Lemma 3.7

we conclude that an optimal graph of even order has exactly two leaves on every
branch that has any leaves at all. The proposition is proved.

Replacing each leaf with two according to Proposition 3.7 will be called doubling
a graph. The following lemma strengthens Lemma 3.5.

Lemma 3.8. If oV (v) > 1 for some vertex v, then the branches of Gv around v

are all isomorphic perfect trees.

Proof. If the number of leaves of one of these branches is even, then Lemma
3.7 allows us to prove the result by induction. If the number of leaves on a branch
is not even, then each branch has a subbranch with three leaves—but we have seen
that such configurations are not optimal, so the number of leaves must be even.

Now the preliminaries are in place, and the Main Theorem may be proved.

Proof of Main Theorem. The genus-2 case is easily checked by hand. The base
case for part two is that of genus 3, which follows from the fact that there is a
unique simple graph among dual graphs of genus-3 curves. In genus 4 there are
two simple dual graphs, both maximally symmetric and one satisfying the form
of the theorem. In genus 5 it is also easy to find a maximally symmetric graph
among the simple graphs, which is the final case of the Main Theorem.

The proof proceeds by induction on the number of binary digits of g. Suppose
the result is known for g with m or fewer binary digits. Lemma 3.7 then shows that
if g has m + 1 binary digits and the last digit is 0, the result follows. So we may
suppose that g has m+1 digits and the last digit is 1. This implies that min(oE) �=
2 (otherwise there would be an even number of leaves). If min(oE) ≥ 3, then we
are done by Lemma 3.8 and Proposition 3.6.

The only remaining possibility is that g is odd and min(oV ) = 1. That is, there
is an invariant edge (there may be several such edges). Let e be an invariant edge
where the ratio between the number of vertices on the large side and small side is
maximized. Remove this edge and call the larger resulting graphG1 and the smaller
resulting graph G2. By Lemma 3.4 it follows that Aut0G ∼= Aut0G1 × Aut0G2

and that G1 and G2 are optimal.
If G2 has only one vertex then G2 contributes nothing to Aut0G. Therefore, G

is obtained from an optimal graph by adding a vertex. We may add an edge to an
existing appendage so that the resulting new appendage is maximally symmetric.
This will yield the wrong answer if the appendage grows too large (i.e., becomes
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a binary tree). But then the answer has been given by Lemma 3.8, so the case of
G2 a single vertex is done.

Either G1 or G2 has an odd number of leaves. Suppose first that G1 has an odd
number. By the induction hypothesis, G2 is doubled from a graph with half as
many leaves and so it has no vertices of valence (2,1), (3,1), or (1, 3). On the other
hand, G1 must have an invariant vertex of one of these three types. Since the edge
connecting this invariant vertex of valence (2,1) or (3,1) to a leaf must be invari-
ant, vertices of valence (2,1) and (3,1) do not occur (the ratio of the number of
vertices in G1 to that in G2 was chosen to be maximal, and G2 has at least two
vertices). Thus G1 has a vertex of valence (1, 3), which is unique by induction.
Considering the subtree of G rooted at this vertex shows that G2 has at most two
leaves; otherwise, G could be divided at the (1, 3) vertex to yield a higher weight
ratio. Yet because here the (1, 3) vertex of G1 is invariant, this subtree can be re-
moved and then joined to the branch supporting the two leaves of G2 with the
leaves redistributed to increase the order of the automorphism group.

Hence G2, the smaller graph, has an odd number of leaves. Previous arguments
on G1 show that it is enough to consider when G2 has three leaves. By induction,
we have one of the following three cases.

Case 1: G1 has 3 · 2n + a leaves and is of the form given by the theorem. If
a+3 < 2n, thenG fits the form of the theorem: the three leaves ofG2 are part of an
appendage. In any case, the appendage of G1 is itself a nested collection of maxi-
mally symmetric trees of the types given, so G2 is attached to the last of these. The
problem thus reduces to adding a branch with three leaves to an appendage with
six leaves. It is easy to see that any such configuration can be rearranged to give
more automorphisms; therefore, a G2 with three leaves does not actually occur in
this case.

Case 2: G1 has 4 · 2n + b leaves and is of the form given by the theorem. If
b+3 < 2n+1, then G fits as in case 1. An argument similar to that given previously
shows that this border crossing does not happen here, either (in this case, adding
a branch with three leaves to a branch with two leaves does not give an optimal
configuration of five leaves).

Case 3: G1 has 5 · 2n leaves. It is clear that adding G2 to a maximal G1 as
given in the theorem will not yield a maximally symmetric curve (the root may be
broken), so this case does not occur.

4. Description of All Maximally Symmetric Curves

In Sections 2 and 3 we described one way of finding a maximally symmetric stable
curve of genus g. It is natural to ask if the curve found is unique. The first counter-
example occurs in genus 4, where there are two maximally symmetric curves; this
happens again in genus 7 (see Figure 4).

As the genus increases, even worse nonuniqueness can occur. However, we can
describe all maximally symmetric curves of a given genus.
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Figure 4 Nonuniqueness in genus 7

Proposition 4.1. A maximally symmetric curve of genus g has:

(1) all components P1 or E; and
(2) dual graph a tree with all leaves elliptic and other vertices rational.

Proof. We actually gain automorphisms in all of the reduction steps, with one
exception: reducing valence at a vertex where neighboring vertices are noniso-
morphic does not necessarily add any automorphisms. Therefore, conditions of
valence were omitted from the conditions of simplicity giving the present result.

An inspection of the proof of Lemma 3.5 shows that the restrictions on valence
were not used there. As a result, Lemma 3.5 may be applied to nonsimple curves.

Lemma 4.2. Let G0 indicate the subtree of G that is fixed by all geometric auto-
morphisms of G. If G is optimal, then each leaf of G0 is the root of a perfect
subtree of G. Moreover, trees of types 4 and 5 may occur only when G0 is a point.

Proof. Suppose t0 is a leaf of G0 that is not the root of a perfect subtree. Since t0

is a leaf of the fixed subtree, none of its neighbors outside of the fixed subtree are
fixed. Then Lemma 3.8 states that the subtrees whose roots are these neighbors
(call them vi) have all isomorphic branches and that these branches are perfect.

We now claim that (i) the Gvi are all isomorphic and (ii) there are at most five of
them. The second claim follows from the first because, if all the branches are iso-
morphic and greater in number than five, they can be rearranged (by Lemma 2.14)
to contradict the optimality of G.

Suppose at least two of the subtrees are nonisomorphic. Then there are at least
two orbits of trees around t0. However, since the point of attachment of t0 to the
rest of the invariant tree must be fixed by any automorphism of the P1 correspond-
ing to t0 in the curve, there are not enough automorphisms of the P1 left to realize
every possible graph symmetry (since all orbits must be nontrivial). All of the
symmetries can be realized by splitting t0 and rearranging the branches, which
contradicts optimality. Consequently, there are at most five subtrees and they are
all isomorphic. The lemma follows, since these subtrees are themselves perfect.

The last part of the lemma follows also because a tree of type 4 or 5 attached
to a leaf of a nontrivial G0 cannot realize its full symmetry group . Then splitting
the tree into two trees increases the order of the automorphism group, contradict-
ing the optimality of G.
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The following definition, especially the last condition, serves to isolate the binary
pairs 10 and 11 occurring in the proof of the Main Theorem. Note the exception in
(4); without it, there is no strict optimal graph in genus 11. The upshot of this def-
inition and the proofs to follow is that the behavior in genus 7 and 11 somehow is
the whole picture.

Definition 4.3. Call a tree G strict optimal if the following statements hold.

(1) G is the union of the fixed subtree G0 and k perfect subtrees Gi whose roots
are on G0; index the Gi so that their numbers of leaves Ni are decreasing.

(2) The roots of the Gi are the leaves of G0.

(3) The valence at interior vertices of G0 is exactly 3.
(4) Ni ≥ 4Ni−1 for i = 2, . . . , k, except that Gi is type 2 with 2s+3 leaves and

Gi−1 is type 3 with 3 · 2s leaves.

Lemma 4.4. A strict optimal tree is optimal.

Proof. This follows from Lemma 3.4 (the automorphism group of a strict opti-
mal tree is the direct product of the automorphism groups of its subtrees rooted
at leaves on the invariant tree) and Definition 4.3(4), which allows us to compute
the order of the automorphism group of a strict optimal tree and see that it has the
value given in the Main Theorem.

Definition 4.5. If an optimal graph has two perfect subtreesGi andGj with 2s+2

and 3 · 2s leaves, respectively, then we define a neutral move of Type I as follows.
Remove a perfect subtree with 2s leaves from Gj (leaving it a binary tree with 2s+1

leaves) and attach it to a different vertex of G0, splitting an edge with a new vertex
if necessary to keep valence low (note in particular that a neutral move for a given
tree is not unique). Now attach the rest of Gj (the aforementioned binary tree) at
the root of Gi, resulting in a perfect subtree with 3 · 2s+1 leaves. This process will
tacitly be followed by any stabilization of the graph necessitated by bad choices.

We define a neutral move of Type II only for an (optimal) tree with precisely 2n

(n ≥ 2) leaves. In this case, if four perfect binary trees are sharing the common
root G0, then we separate two of the four trees around another rational node that
is linked by an edge to the original rational root.

The definition is easier to grasp in light of the examples of nonuniqueness in
genus 7. The left-hand example in Figure 4 is a strict optimal tree. Its invariant
subtree is the lower central segment, bearing a perfect subtree with six leaves and
also one with a single leaf. This satisfies the inequalities in the definition of strict-
ness. The right-hand example has as its most central vertical segment an invariant
subtree bearing perfect subtrees with four and three leaves. This violates strict-
ness. Here we are in the situation of the previous definition with s = 0. Remove
the highest vertical edge in the figure and place it at the lower vertex of the invari-
ant tree. All neutral moves are obtained by “doubling” this move.

Proposition 4.6. A neutral move preserves the order of the geometric automor-
phism group of the graph.
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Proof. Using Lemma 3.7 backwards, the situation of the definition of neutral
move reduces to the case of subtrees of orders 3 and 4, where the explanation of
the genus-7 example clearly shows that the automorphism group does not grow or
shrink.

Our next result shows that the Main Theorem is close to giving all maximally sym-
metric curves. The motivation is trying to reverse the formula of the Main Theo-
rem: pairing binary digits, we try to reconstruct the tree. A neutral move occurs
when a odd-length sequence of 1s (three or more) occurs in the binary expansion.
The proof follows slightly different lines.

Theorem 4.7. Every maximally symmetric genus-g curve has either a strict op-
timal dual graph or a dual graph that can be made strict optimal by a sequence
of neutral moves, valence reduction, and stabilization.

Proof. Clearly a maximally symmetric curve must have an optimal graph. As be-
fore, denote the subtrees rooted at leaves of the invariant tree G0 by G1, . . . ,Gk ,
ordered so that the number of leaves in these subtrees is decreasing. Since the Gi

are rooted at invariant nodes, no two have the same number of leaves. If they did
then, since the Gi are perfect, they would be isomorphic and so the graph could
be rearranged to be more symmetric. Therefore, N1 > N2 > · · · > Nk. We also
have Aut0G = ∏k

i=1 Aut0Gi.

If G itself is a perfect tree then it can have 2n, 3 · 2n, or 5 · 2n leaves. In the last
two cases (or in the first when n = 1) there are no other optimal graphs possible, by
Lemma 3.8. In the first case with n ≥ 2, there are two possibilities, (i) min(oE) =
4 or (ii) min(oE) = 2. For (i) we do a neutral move of Type II to obtain a strictly
optimal graph; with (ii), the graph is already strictly optimal.

IfG is not a perfect tree then we have at least two distinct leaves inG0. Moreover,
valence considerations ensure that none of the Gi can be perfect of type 4 or 5.
By induction, we may remove the subtree G1 and assume that the tree remaining
is optimal and satisfies the conclusion of the theorem.

Let G1 be perfect of type 3 with N1 = 3 · 2s leaves.

1. If G2 is of type 2 and N2 = 2p then p ≤ s + 1; if p = s + 1 or p = s, then G

is not optimal (“undouble” and rearrange). Therefore, N1 ≥ 6N2 > 4N2.

2. If G2 is of type 3 and N2 = 3 · 2p then p ≤ s − 1; an undoubling argument
shows that if p = s − 1 then G is not optimal, as in the first case. Therefore,
again we have N1 ≥ 4N2.

Consequently, if G1 is of type 3 then G is strict optimal by induction.
Now let G1 be of type 2 with N1 = 2s+2 leaves (the case g = 2 is clear).

1. If G2 is of type 2 and N2 = 2p then p < s + 1 (by optimality), so N1 ≥ 4N2.

2. If G2 is of type 3 and N2 = 3 · 2p then we have the following subcases.
(a) p < s − 1: N1 ≥ 4N2.

(b) p = s − 1: N1 = 8
3N2 (this is the “exception” in the condition of strictness).

(c) p = s: do a neutral move to change N1 to 3 · 2s+1 and N2 to 2s; then, in
the new tree, N1 ≥ 4N2.
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Having achieved the numerical condition, it is easy to achieve valence 3 at every
interior vertex of the fixed tree. A perfect subtree attached to an interior node may
be branched out so that it is rooted at a leaf (the new edge will also be invariant).

Remark 4.8. In many cases, the number of maximally symmetric curves is finite
(in some cases—notably 5 · 2n, 3 · 2n, and 2n—it is unique). But there are cases
of a positive-dimensional family of maximally symmetric curves (exactly when
k(g)+ l(g)+ g −N(g)− 3 is positive, in which case this quantity is the dimen-
sion of the family of maximally symmetric stable curves). The easiest example
to see is probably in genus 1 + 4 + 16 + 64. By the Main Theorem, a maximally
symmetric curve is constructed by first arranging a binary tree with 64 leaves, then
attaching to its root a maximally symmetric curve of genus 1+ 4 +16, and so on.
In the end, there is a root connected to binary trees with 1, 4, 16, and 64 leaves. As
in the previous theorem, this root could be split to yield strict optimal trees (note
in particular that strict optimal trees are not unique in a given genus), but this does
not affect automorphisms and so we might as well keep all four branches tied to
a single root. However, the automorphism group of P1 is only three-point transi-
tive: after attaching the first three branches, there are infinitely many choices for
the point of attachment of the fourth branch.
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