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Dynamics of Symmetric Polynomial
Endomorphisms of C2
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1. Introduction

We study dynamics of symmetric polynomial endomorphisms of C2 and attempt to
define an analogue of the Mandelbrot set in complex two-dimensional dynamics.

The Mandelbrot set M of the quadratic family pc(z) = z2 + c is defined by

M = {c ∈C : the orbit {pn
c (0)} is bounded}.

But here we consider quadratic polynomials of the form

qc(z) = z2 + cz, (1.1)

since it is convenient to extend them to polynomial endomorphisms of C2. The
connectedness locus of qc(z) is known as the double Mandelbrot set (see [M]).

Ueda [Ue] classified 4 types of holomorphic maps of degree 2 in P2. The types
are classified by an equivalence relation ∼ defined by f ∼ g if and only if there
exist linear maps L1 and L2 satisfying

L−1
2 � f � L1 = g.

Four types are written as

(1) (x : y : z) 	→ (x 2 : y2 : z2)

(2) (x : y : z) 	→ (x 2 + yz : y2 : z2)

(3) (x : y : z) 	→ (x 2 + cyz : y2 + cxz : z2)

(4) (x : y : z) 	→ (x 2 + cxy + y2 : z2 + xy : yz).

The dynamics of maps of type (1) is trivial. Maps of type (2) are polynomial
skew products and their dynamics is studied in [J]. In this paper we begin a study
of maps of type (3). When z �= 0, they are maps on C2 given by

fc(x, y) = (x 2 + cy, y2 + cx).

The maps fc(x, y) restricted to the line (x = y) are the maps qc(z).
Let �c be the critical set of fc(x, y) in C2. We denote the set of points with

bounded orbits of fc(x, y) by K(fc). As in [FS2], we define the Mandelbrot set
M of fc by

M = {c ∈C : K(fc) ∩ �c �= ∅}.
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The critical set �c of fc(x, y) is an algebraic curve given by

4xy = c2.

We parameterize this algebraic curve by a parameter t. That is, we represent �c by

x = − c

2
t, y = − c

2t
, where t ∈C − {0}.

Our aim is to generate the Mandelbrot set of fc(x, y) by a computer. One of the
problems is how to check the condition

K(fc) ∩ �c �= ∅. (1.2)

By symmetry (see Lemma 2.4), we know (see Proposition 3.2 and notes after it)
that it is enough to check condition (1.2) for all parameters t satisfying

1

6
≤ |t | ≤ 1 and 0 ≤ arg t <

π

3
. (1.3)

And it is also easily seen (see Lemma 3.1) that

max{|x|, |y|} > |c| + 1 �⇒ ‖f n
c (x, y)‖ → ∞ (n → ∞). (1.4)

We therefore select about 150 values of the parameter t, including t = 1, that sat-
isfy (1.3) and then check condition (1.4) for each point (supposedly for a finite
number of iterates). Figure 1.1 consists of the values of c such that there exists at
least one of our selected t-values satisfying that, for all n (1 ≤ n ≤ 50),

|un|, |vn| ≤ |c| + 1, where (un, vn) := f n
c

(
− c

2
t,− c

2t

)
.

Figure 1.1 The Mandelbrot set of fc(x, y)
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The figure consists of two clusters intersecting at c = 1. Both clusters are sim-
ilar but the left part (Re c ≤ 1) is a little bigger than the right part (Re c ≥ 1). A
surprising fact is that the right part looks like a half of the double Mandelbrot set.
Compare Figure 1.1 with the double Mandelbrot set in [M]. One of our conjec-
tures is that if Re c ≤ 1 then the dynamics of fc(x, y) is complex two-dimensional,
whereas if Re c ≥ 1 then the dynamics is essentially one-dimensional.

Uchimura [U3] studies the dynamics of fc(x, y) restricted on {x = ȳ} when c

is real. The function fc admits an invariant plane (x = ȳ ) on which it acts as

gc(x) = x 2 + cx̄.

The map
gc(z) = z2 + cz̄

has a connection with a physical model when c = −2; it is Chebyshev map

g−2(z) = z2 − 2z̄.

Lopes [L1; L2] considered the dynamics of g−2 as a special kind of Potts model
and showed that triple point phase transition (three equilibrium states) exists. He
conjectured that if c < −2 then a Cantor set with expanding dynamics exists. For
expanding systems, equilibrium states are unique.

Uchimura [U3] gave an affirmative answer to this conjecture of Lopes.

Theorem 1 [U3]. K(gc) is connected with the simply connected complement in
P1 if and only if −2 ≤ c ≤ 4.

Theorem 2 [U3]. If c < −2, then:

(1) K(gc) is a Cantor set and expanding dynamics exists;
(2) the two-dimensional Lebesgue measure of K(gc) is 0;
(3) gc restricted to K(gc) is topological conjugate to the shift on four symbols.

In this paper, we extend some of these results to polynomial endomorphisms of C2.

In Section 2 we study fixed points and periodic points of period 2 of fc(x, y).
When Re c ≥ 1, the nonrepelling hyperbolic periodic points of period ≤ 2 are sad-
dles, and their stable manifolds on (x = y) include the attractive basins of qc(x).
When Re c ≤ 1, attractive periodic points exist and the domain’s “fingers” appear
in the c-plane.

In Section 3 we show that, if c < −2 or c > 2 + 2
√

2, then K(fc) ∩ �c = ∅
and K(fc) is a Cantor set that lies on the real plane (x = ȳ ). Note that the double
Mandelbrot set restricted on the real axis is the interval [−2, 4]. Then the dynam-
ics of fc(x, y) with c < −2 correspond to the dynamics of qc(z) with c < −2.
We shall also show if −2 ≤ c ≤ 4 then K(fc) ∩ �c �= ∅.

In Section 4, we consider J. Hubbard’s conjectures concerning the dynamics of
fc(x, y).

(1) If c = 2 then the saddle (−1,−1) is isolated.
(2) Let U := {c ∈ C : the set K(fc) ∩ �c consists of three points}. Then U is a

nonempty set containing 2 in its interior.
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We show that these conjectures can be answered in the affirmative. Assume that
c is a complex number near 2. The saddle (−c + 1,−c + 1) is isolated in the
non-wandering set. The set K(fc) ∩ �c consists of three points and the forward
orbits of those points approach the three saddles. Further, all periodic points other
than those three saddles are repelling. This supports our observation that the right
half of Figure 1.1 looks like a half of the double Mandelbrot set.

Figure 1.2 The second Julia set of f2

S. Ushiki produced Figure 1.2, which consists of iterated preimages of a re-
pelling fixed point (0, 0) under the map f2(x, y). Note that the exceptional set of
f2 is empty (see [BCSh]). You can see three circles intersecting at (0, 0). Uchimura
[U4] shows that the second Julia set of f2 is connected.

Figure 1.2 looks like a Julia set in complex one-dimensional dynamics. Com-
pare the second Julia sets in [DH]. Denker and Heinemann’s paper [DH] shows
that, in our setting, if c is near 0 then the second Julia set is homeomorphic to the
torus.

2. Fixed Points and Periodic Points of Period 2

We consider the polynomial endomorphisms of C2,

fc(x, y) = (x 2 + cy, y2 + cx).

We shall demonstrate some properties of fixed points and periodic points of pe-
riod 2 of the map fc, and we shall show the intimate relation between those periodic
points of fc and those of qc.

The fixed points of fc(x, y) may be listed as follows:

P0 = (0, 0),

P1 = (−c + 1,−c + 1),

P2 = (
1
2

(
1+ c −√

(c + 1)(1− 3c)
)
, 1

2

(
1+ c +√

(c + 1)(1− 3c)
))

,

P3 = (
1
2

(
1+ c +√

(c + 1)(1− 3c)
)
, 1

2

(
1+ c −√

(c + 1)(1− 3c)
))
.
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Table 2.1

Eigenvalues Eigenvectors

P0 −c (−1,1)
c (1,1)

P1 −c + 2 (1,1)
−3c + 2 (−1,1)

P2 1+ c −√
1− 2c − 2c2

(√
1− 2c − 3c2 +√

1− 2c − 2c2,−c
)

1+ c +√
1− 2c − 2c2

(√
1− 2c − 3c2 −√

1− 2c − 2c2,−c
)

P3 1+ c −√
1− 2c − 2c2

(−√
1− 2c − 3c2 +√

1− 2c − 2c2,−c
)

1+ c +√
1− 2c − 2c2

(−√
1− 2c − 3c2 −√

1− 2c − 2c2,−c
)

Clearly, P0 and P1 lie on the diagonal (x = y). This corresponds to 0 and −c+1
being fixed points of qc. The eigenvalues and eigenvectors are listed in Table 2.1.

Next we show the periodic points of period exactly 2. There are twelve such
points:

P0 = {− 1
2 (−c + 1)+ 1

2 i
√

3(−c + 1),− 1
2 (−c + 1)− 1

2 i
√

3(−c + 1)
}
,

P1 =
{− 1

2 (−c + 1)− 1
2 i
√

3(−c + 1),− 1
2 (−c + 1)+ 1

2 i
√

3(−c + 1)
}
,

P2 = {
1
4

(−c − 1−√
3(c + 1)(3c − 1)

)− 1
4 i
(√

3(−c − 1)+√
(c + 1)(3c − 1)

)
,

1
4

(−c − 1−√
3(c + 1)(3c − 1)

)+ 1
4 i
(√

3(−c − 1)+√
(c + 1)(3c − 1)

)}
,

P3 = {
1
4

(−c − 1+√
3(c + 1)(3c − 1)

)+ 1
4 i
(√

3(−c − 1)−√
(c + 1)(3c − 1)

)
,

1
4

(−c − 1+√
3(c + 1)(3c − 1)

)− 1
4 i
(√

3(−c − 1)−√
(c + 1)(3c − 1)

)}
,

P4 = {
1
4

(−c − 1+√
3(c + 1)(3c − 1)

)− 1
4 i
(√

3(−c − 1)−√
(c + 1)(3c − 1)

)
,

1
4

(−c − 1+√
3(c + 1)(3c − 1)

)+ 1
4 i
(√

3(−c − 1)−√
(c + 1)(3c − 1)

)}
,

P5 = {
1
4

(−c − 1−√
3(c + 1)(3c − 1)

)+ 1
4 i
(√

3(−c − 1)+√
(c + 1)(3c − 1)

)
,

1
4

(−c − 1−√
3(c + 1)(3c − 1)

)− 1
4 i
(√

3(−c − 1)+√
(c + 1)(3c − 1)

)}
,

P6 = {
1
2

(−c − 1−√
(c + 1)(c − 3)

)
, 1

2

(−c − 1−√
(c + 1)(c − 3)

)}
,

P7 = {− 1
4

(−c − 1+√
(c + 1)(c − 3)

)+ 1
4 i
√

3
(−c − 1+√

(c + 1)(c − 3)
)
,

− 1
4

(−c − 1+√
(c + 1)(c − 3)

)− 1
4 i
√

3
(−c − 1+√

(c + 1)(c − 3)
)}

,

P8 = {− 1
4

(−c − 1+√
(c + 1)(c − 3)

)− 1
4 i
√

3
(−c − 1+√

(c + 1)(c − 3)
)
,

− 1
4

(−c − 1+√
(c + 1)(c − 3)

)+ 1
4 i
√

3
(−c − 1+√

(c + 1)(c − 3)
)}

,

P9 = {
1
2

(−c − 1+√
(c + 1)(c − 3)

)
, 1

2

(−c − 1+√
(c + 1)(c − 3)

)}
,
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Table 2.2

Eigenvalues Eigenvectors

P0 & P1 (c − 2)2
( 1

2

(−1−√
3i
)
, 1
)

(3c − 2)2
( 1

2

(
1+√

3i
)
, 1
)

P2 & P3
(
1+ c −√

1− 2c − 2c2
)2 (

2
(−√

(c + 1)(3c − 1)+ c
√
(c + 1)(3c − 1)

− i
√

1− 5c2 − 6c3 − 2c4
)
,√

3(c2 + c)− i(c2 + c)
)

(
1+ c +√

1− 2c − 2c2
)2 (

2
(−√

(c + 1)(3c − 1)+ c
√
(c + 1)(3c − 1)

+ i
√

1− 5c2 − 6c3 − 2c4
)
,√

3(c2 + c)− i(c2 + c)
)

P4 & P5
(
1+ c −√

1− 2c − 2c2
)2 (

2
√
(c + 1)(3c − 1)− c

√
(c + 1)(3c − 1)

− i
√

1− 5c2 − 6c3 − 2c4,√
3(c2 + c)− i(c2 + c)

)
(
1+ c +√

1− 2c − 2c2
)2 (

2
√
(c + 1)(3c − 1)− c

√
(c + 1)(3c − 1)

+ i
√

1− 5c2 − 6c3 − 2c4,√
3(c2 + c)− i(c2 + c)

)
P6 & P9 −c2 + 2c + 4 (1,1)

3c2 + 6c + 4 (−1,1)

P7 & P11 −c2 + 2c + 4
( 1

2

(−1+√
3i
)
, 1
)

3c2 + 6c + 4
( 1

2

(
1−√

3i
)
, 1
)

P8 & P10 −c2 + 2c + 4
( 1

2

(−1−√
3i
)
, 1
)

3c2 + 6c + 4
( 1

2

(
1+√

3i
)
, 1
)

P10 = {− 1
4

(−c − 1−√
(c + 1)(c − 3)

)+ 1
4 i
√

3
(−c − 1−√

(c + 1)(c − 3)
)
,

− 1
4

(−c − 1−√
(c + 1)(c − 3)

)− 1
4 i
√

3
(−c − 1−√

(c + 1)(c − 3)
)}

,

P11 =
{− 1

4

(−c − 1−√
(c + 1)(c − 3)

)− 1
4 i
√

3
(−c − 1−√

(c + 1)(c − 3)
)
,

− 1
4

(−c − 1−√
(c + 1)(c − 3)

)+ 1
4 i
√

3
(−c − 1−√

(c + 1)(c − 3)
)}
.

The periodic points P6 and P9 lie on the plane (x = y).

We obtain these periodic points of period 2 as follows. In [U2] we find twelve
periodic points of

gc(z) = z2 + cz̄.

Let u+ iv ∈C be a periodic point of period 2 of gc(z). Then, we construct a new
point P = (u + iv, u − iv) in C2 and verify that f 2

c (P ) = P. The eigenvalues
and eigenvectors of the periodic points can be computed directly and are listed in
Table 2.2.



Dynamics of Symmetric Polynomial Endomorphisms of C2 489

We divide the parameter space of the map fc into two parts, {Re c > 1} and
{Re c ≤ 1}. We show that the dynamics of fc with Re c > 1 differs from the dy-
namics of fc with Re c ≤ 1. First we consider the case when Re c > 1.

Lemma 2.1. If Re c > 1, then the following inequalities hold:

|3c − 2| > 1,
∣∣1+ c −

√
1− 2c − 2c2

∣∣ > 1,∣∣1+ c +
√

1− 2c − 2c2
∣∣ > 1, |3c2 + 6c + 4| > 1.

The proof is obtained by direct calculation.

Proposition 2.2. Assume that Re c > 1. Then the following statements hold.

(1) All the fixed points of fc are repelling except for P1. The fixed point P1 is a
saddle if and only if |c − 2| < 1.

(2) All the periodic points of period exactly 2 are repelling except for P0 and P1,
P6 and P9, P7 and P11, and P8 and P10. The periodic points P0 and P1 are
saddle if and only if |c − 2| < 1. The periodic points P6 and P9, P7 and P11,
and P8 and P10 are saddles if and only if |−c2 + 2c + 4| < 1.

(3) When |c − 2| < 1, a local stable manifold of the saddle fixed point P1 lies
on the line (x = y). (The map fc(x, y) restricted on the line (x = y) is the
map qc(x).) The local stable manifold of P1 lies on the line (x = y) and is in-
cluded in the attractive basin of the fixed point −c+1 of the one-dimensional
map qc(x). A similar statement is true for the periodic points P6 and P9.

The proofs of (1) and (2) follow from the eigenvalues of periodic points and
Lemma 2.1. The proof of (3) follows from the eigenvectors of periodic points.

Figure 2.1 The circular domains

The region {|c − 2| < 1} is a unit disk, and Figure 2.1 depicts the circular do-
mains {|−c2 + 2c + 4| < 1}. We consider the case when Re c ≤ 1. In this case,
there exist attractive periodic points.

Proposition 2.3. Assume that Re c ≤ 1. Then the following statements hold.

(1) The fixed point P0 is attractive if and only if |c| < 1. The fixed points P2 and
P3 are attractive if and only if c lies in the domains

D1,2 = {
c ∈C :

∣∣1+ c −
√

1− 2c − 2c2
∣∣ < 1 and∣∣1+ c +

√
1− 2c − 2c2

∣∣ < 1
}
.

There are no other attractive fixed points.
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(2) The periodic points of period 2 (P2 and P3, P4 and P5) are attractive if and
only if c lies in the domains D1,2. The periodic points P6 and P9, P7 and P11,
and P8 and P10 are attractive if and only if c lies in the domains

D2,1 = {c ∈C : |−c2 + 2c + 4| < 1 and |3c2 + 6c + 4| < 1}.
There are no other attractive periodic points of period exactly 2.

Next we explain Figure 2.2, beginning with an explanation of the domains D1,2.

Set
ϕ(z) = 1+ z−

√
1− 2z− 2z2,

and let D be the unit disk. Then it can be easily proved that ϕ−1(D) → D is a 2-fold
branch covering and that ϕ−1(D) consists of two components. One is a domain
bounded by a dot-dashed curve in Figure 2.2, and the other is a domain bounded
by an outer thick gray curve. A branch point lies in the latter component. Hence
it can be easily seen that D1,2 is equal to the domain bounded by an inner thick
gray curve. If c is in D1,2 then periodic points of period 2, P2 and P3 as well as
P4 and P5, are attractive. This can be seen from the following lemma.

-1.5-1.25 -1 -0.75-0.5-0.25 0.25

-0.75

-0.5

-0.25

0.25

0.5

0.75

Figure 2.2 Points c for which fc(x, y) has an attracting periodic orbit

Lemma 2.4. Let (xn, yn) := f n(x, y).

(1) If n is even, then f n(ωx,ω2y) = (ωxn,ω2yn).

(2) If n is odd, then f n(ωx,ω2y) = (ω2xn,ωyn).

Here ω is a cubic root of unity.

The proof is obvious.
In Figure 2.2, we see that the domains

{c ∈C : |3c2 + 6c + 4| < 1}
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are the sets bounded by the dotted curves. The domain bounded by the black curve
is one of the components of {c ∈ C : |−c2 + 2c + 4| < 1}. From these observa-
tions, you can find domains D2,1 in Figure 2.2.

Remark 2.5. In Figure 2.2 we can see three fingers (Hubbard’s terminology) in-
tersecting at c = −1. One finger is a domain bounded by an inner thick gray curve
and other fingers are domains bounded by a black curve and dotted curves. The
inner thick gray curves and the dotted curves have two common tangents. The
slopes of the tangents are −1 and 1, and the outer thick gray curve is tangent to the
vertical line through the point c = −1.

When c = −4/3, c is in D1,2 and so there are two attractive fixed points and four
attractive periodic points of period 2. They all lie in the plane (x = ȳ ). The dy-
namics of f−4/3(x, y) restricted on the plane (x = ȳ ) is studied in [U2].

3. Critical Sets and K Sets

In this section we show that if c < −2 then the set of points with bounded forward
orbits for fc(x, y) is a Cantor set. Here fc(x, y) = (x 2 + cy, y2 + cx). Let

K(fc) = {(x, y)∈C2 : {f n
c (x, y) : n = 1, 2, . . . } is bounded}.

We shall characterize the set of points with bounded orbits K(fc). Let �c be the
critical set of fc(x, y) in C2. Our aim is to show that

c < −2 ∨ c > 2 + 2
√

2 �⇒ K(fc) ∩ �c = ∅
and

−2 ≤ c ≤ 4 �⇒ K(fc) ∩ �c �= ∅.
Set (xn, yn) = f n

c (x0, y0). Then we have the following lemma.

Lemma 3.1. If max{|x0|, |y0|} > |c| + 1 and λ = max{|x0|, |y0|} − |c|, then

max{|xn|, |yn|} > (|c| + 1)λn.

Furthermore, when c �= 0, there exist subsequences {|xnj |} and {|ynk |} such that
|xnj | → ∞ and |ynk | → ∞.

Proof. We prove the inequality by induction on n. Assume without loss of gener-
ality that max{|x0|, |y0|} = |x0|. Then

|x1| ≥ |x0|2 − |c||y0| ≥ |x0|2 − |c||x0| > (|c| + 1)λ.

Next we assume that |xn| = max{|xn|, |yn|} > (|c| + 1)λn. Then

|xn+1| ≥ |xn|(|xn| − |c|) ≥ λ|xn|.
Suppose that c �= 0 and that the set {|xn|} is bounded. Consider the inequality

|xn+1| ≥ |c||yn| − |xn|2.
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Since
|yn| → ∞,

the right-hand side of the inequality tends to infinity—a contradiction.

The critical set of the map fc is an algebraic curve xy = c2

4 . We parameterize the
curve by a complex variable t :

x = − c

2
t, y = − c

2

1

t
.

We denote the curve by �c; that is,

�c =
{(

− c

2
t,− c

2

1

t

)
: t ∈C − {0}

}
.

We say that f n
c (�c) tends to infinity, denoted by f n

c (�c) → ∞ (n → ∞), if∥∥∥∥f n
c

(
− c

2
t,− c

2

1

t

)∥∥∥∥→ ∞

for any point
(− c

2 t,− c
2

1
t

)∈�c with respect to the Euclidean norm.
Denote

f n
c

(
− c

2
t,− c

2

1

t

)
= (un(t), vn(t)).

Clearly, un(t) and vn(t) are rational functions of t and satisfy

vn(t) = un

(
1

t

)
. (3.1)

Set Dδ = {t ∈C : δ ≤ |t | ≤ 1} for δ > 0.

Proposition 3.2. If |un(t)| → ∞ (n → ∞) for any t in Dδ with δ =
|c|/(2|c| + 1)), then the set f n

c (�) tends to infinity.

Proof. We assume that |un(t)| → ∞ for t ∈Dδ. Then∥∥∥∥f n
c

(
− c

2
t,− c

2

1

t

)∥∥∥∥→ ∞.

If |t | < δ, then ∣∣∣∣ c2 1

t

∣∣∣∣ > |c| + 1

and so, by Proposition 3.1, it follows that∥∥∥∥f n
c

(
− c

2
t,− c

2

1

t

)∥∥∥∥→ ∞.

If |t | > 1 then from (3.1) we obtain

vn(t) = un

(
1

t

)
→ ∞.

Hence
∥∥f n

c

(− c
2 t,− c

2
1
t

)∥∥ → ∞.
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Here we explain why it is enough to check condition (1.2) only for those t satisfy-
ing 1

6 ≤ |t | ≤ 1.
If |c| < 1, then the one-dimensional map qc(x) = x 2 + cx has an attractive

fixed point 0 that attracts a critical point − c
2 . We therefore set t = 1. Then

f n
c

(
− c

2
,− c

2

)
→ (0, 0)

and hence K(fc)∩�c �= ∅. Thus we need only consider the case |c| ≥ 1. Observe
that

fc

(
− c

2
t,− c

2

1

t

)
=
(
c2

4

(
t 2 − 2

t

)
,
c2

4

(
1

t 2
− 2t

))
.

If |t | < 1
6 , then ∣∣∣∣c2

4

(
1

t 2
− 2t

)∣∣∣∣ > |c| + 1.

Hence, ∥∥∥∥f n
c

(
− c

2
t,− c

2

1

t

)∥∥∥∥→ ∞.

Next we shall prove that if c < −2 then un(t) has no zeros in the set

D∗ = {t ∈C : 0 < |t | ≤ 1}.
The rational function un(t) is holomorphic in D∗ and has a pole at t = 0. To prove
our claim, we use the argument principle. Let W(γ,p) be the winding number of
a closed curve γ around a point p. We denote the unit circle {eiθ : 0 ≤ θ < 2π}
by S1. We study the winding numbers W(un(S

1), 0). Let gc(z) = z2 + cz̄, and set

− c

2
S1 =

{
− c

2
eiθ : 0 ≤ θ < 2π

}
.

Although the relation from un(t) to un+1(t) is not a mapping, we can use the map-
ping gn

c to study un(e
iθ ).

Proposition 3.3. If c is real, then

W(un(S
1), 0) = W

(
gn
c

(
− c

2
S1
)

, 0
)
.

Proof. We claim that
un(e

iθ ) = gn
c

(
− c

2
eiθ
)
. (3.2)

Indeed, by definition we have

f n
c

(
− c

2
eiθ,− c

2
e−θi

)
= (un(e

iθ ), vn(e
iθ )).

Hence, from (3.1),

un+1(e
θi) = (un(e

θi))2 + cvn(e
θi)

= (un(e
θi))2 + cun(e

−θi)

= (un(e
θi))2 + cūn(e

θi).

Then (3.2) follows by induction.
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Proposition 3.4. If c < −2, then

W
(
gn
c

(
− c

2
S1
)

, 0
)
= −2n−1.

Proof. We use ' to denote the closed domain bounded by Steiner’s hypocycloid:

{e2θi − 2e−θi : 0 ≤ θ < 2π}.
Then

gc

(
− c

2
S1
)
= c2

4
∂' and W

(
gc

(
− c

2
S1
)

, 0
)
= −1

(see [U3]).
Next we consider the case when n ≥ 2. It is known that gc

((− c
2

)
'
) = c2

4 '.

In [U3, Prop. 2.4] it is shown that the map gc from C − (− c
2

)
' to C − c2

4 ' is
a 2-fold covering mapping. Let γ be a simple path in C − (− c

2

)
' whose initial

point lies on the negative real axis, whose final point lies on the positive real axis,
and whose intermediate points lie in the upper half-plane. Then we can prove that
W(gc(γ ), 0) = −1. The same holds for a path in C − (− c

2

)
' whose intermediate

points lie in the lower half-plane. Then we have

W
(
g2
c

(
− c

2
S1
)

, 0
)
= −2.

By a similar method we can prove

W
(
gn
c

(
− c

2
S1
)

, 0
)
= −2n−1.

From Propositions 3.3 and 3.4 it follows that

W(un(S
1), 0) = −2n−1 when c < −2.

We have also shown that un(t) does not have any zeros on the unit circle S1.

Next we consider the multiplicity of the pole of un(t) at t = 0.

Proposition 3.5. The multiplicity of the pole of un(t) at t = 0 is at most 2n−1.

Proof. It suffices to show that

un(t) = a(2n)t 2n + · · · + a0 + a(−1)t−1 + · · · + a(−2n−1)t−2n−1
,

where a(k) is a polynomial in the variable c with −2n−1 ≤ k ≤ 2n. The equality
can be proved by induction on n, because

un+1(t) = un(t)
2 + cvn(t) = un(t)

2 + cun

(
1

t

)
.

We can apply the argument principle to the function un(t) on the unit circle S1:

W(un(S
1), 0) = N −M,

where N is the number of zeros in the unit disk D and M is the number of poles
in D.

Combining Propositions 3.3, 3.4, and 3.5 yields the following proposition.
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Proposition 3.6. If c < −2, then un(t) has no zeros in the unit disk D.

Next we will show that if c < −2 then f n
c (�c) → ∞. It is enough to show that if

c < −2 then
|un(t)| → ∞ for any t ∈Dδ

with a small positive number δ. The functions un(t) in Dδ are holomorphic and
have no zeros. Therefore, |un(t)| has its minimum value on the boundary ∂Dδ. On
the boundary {|t | = δ}, |un(t)| is large. Hence |un(t)| takes its minimum value on
the unit circle {|t | = 1}. Then proving our initial statement requires only proving
that if c < −2 then

un(e
iθ ) → ∞ as n → ∞, with 0 ≤ θ < 2π.

Lemma 4.1 in [U3] tells us that if c < −2 then

gn
c

(
− c

2
eiθ
)
→ ∞ as n → ∞.

Hence, by (3.2), we conclude that if c < −2 then

un(e
iθ ) → ∞ as n → ∞.

We have thus proved that if c < −2 then

f n
c (�c) → ∞.

This is equivalent to the following result.

Proposition 3.7. If c < −2, then

K(fc) ∩ �c = ∅.
Theorem 3.8 of [FS2] reads as follows. Let ϕ be a polynomial map from Ck to
Ck that extends as a holomorphic map into P k, and let � be the critical set for ϕ.
Assume K(ϕ) ∩ � = ∅. Then the following statements hold.

(1) The map ϕ is strictly expanding on K(ϕ).

(2) Repelling periodic points are dense in K(ϕ).

(3) K(ϕ) = supportµ, where µ is an invariant measure of maximal entropy.

Since the map fc satisfies conditions (1)–(3), those assertions hold for fc.

Based on these results, we show that if c < −2 then K(fc) is a Cantor set and
lies on the real plane (x = ȳ ).

We begin with the study of the periodic points. From [FS1, Cor. 3.2] we know
that the number of periodic points of period n of fc is 4n.

Lemma 3.8. If c < −2, then there exist 4n periodic points of period n of the
function gc(z) = z2 + cz̄.

Proof. By [U3, Prop. 2.2] we know that (a) the map gc(z) restricted to
(− c

2

)
',

gc|(− c
2 )
' :

(
− c

2

)
' → c2

4
',
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is a 4-fold covering map such that
(− c

2

)
' = '0 ∪'1 ∪'2 ∪'3 and (b) gc|'k

is

a homeomorphism from 'k onto c2

4 ' for any k = 0,1, 2, 3. Then there exist in-

verse maps ϕk , k = 0,1, 2, 3, from c2

4 ' to 'k such that the composition gc � ϕk is
an identity map. Hence

ϕk

(c2

4
'
)
= 'k ⊂

(
− c

2

)
' ⊂ c2

4
'.

Clearly c2

4 ' is a closed topological disk. Applying the fixed point theorem to ϕk

yields a fixed point pk in 'k , and then gc(pk) = pk. Hence we have four fixed
points of gc. By a similar argument, we can prove this lemma when n > 1.

From Lemma 3.8 we obtain the following proposition.

Proposition 3.9. If c < −2, then any periodic point of fc(x, y) lies on the plane
(x = ȳ ) and belongs to the set K(gc).

Uchimura [U3, Thm. 5.1] shows that if c < −2 then K(gc) is a Cantor set. Hence
Fornæss and Sibony’s statements (1) and (2), together with Proposition 3.9, allow
us to conclude as follows.

Theorem 3.10. If c < −2, then:

(1) K(fc) = supportµ ⊂ (x = ȳ );
(2) K(fc) = K(gc) is a Cantor set.

Proof. We have

K(fc) ⊂ {repelling periodic points of fc}
⊂ {periodic points of fc} ⊂ K(gc) ⊂ K(fc).

Next, we study the dynamics of fc when c > 2 + 2
√

2.

Theorem 3.11. If c > 2 + 2
√

2, then:

(1) K(fc) ∩ �c = ∅;
(2) K(fc) = supportµ ⊂ (x = ȳ );
(3) K(fc) = K(gc) is a Cantor set.

The proof of this theorem is similar to that of Proposition 3.7 and Theorem 3.10.
However, we need two additional lemmas to prove the result that is similar to
Proposition 3.7.

Lemma 3.12 [U3, Prop. 4.1]. If c > 2+2
√

2 then, for any point z∈(gc)n(− c
2S

1)
with n ≥ 1, we have |z| > |c| + 1.

Lemma 3.13. Assume that c > 0. Set

Aj =
{
z∈C : |z| ≥ |c| + 1,

j − 1

3
π ≤ arg z ≤ j

3
π

}
, j = 1, 2, . . . , 6.
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Then

gc(Aj ) ⊆
{

A2j−1 ∪ A2j if 1 ≤ j ≤ 3,

A2(j−3)−1 ∪ A2(j−3) if 4 ≤ j ≤ 6.

Furthermore, if r ≥ |c| + 1 then

arg

(
gc

(
r exp

(
kπi

3

))
= 2kπ

3
, k = 0,1, . . . , 5.

From these two lemmas it follows that, for n ≥ 1,

c > 2 + 2
√

2 �⇒ W

(
gn
c

(
− c

2
S1

)
, 0

)
= −2n−1.

Then, by an argument similar to that used in the proof of Proposition 3.7, we can
prove Theorem 3.11.

Finally, we consider the relation between K(fc) and �c when −2 ≤ c ≤ 4.

Proposition 3.14. If −2 ≤ c ≤ 4, then

K(fc) ∩ �c �= ∅.
Proof.

Case 1: −2 ≤ c ≤ 2
3 . From [U3, Prop. 3.2] we have

gn
c

(
c2

4
'

)
⊂ D(0, |c| + 1) for any n∈N,

where D(0, |c| + 1) = {z∈C : |z| < |c| + 1}. Since

gc

(
− c

2
S1
)
= ∂

c2

4
' ⊂ c2

4
', (3.3)

it follows that

gm
c (�c ∩ (x = ȳ )) = gm

c

(
− c

2
S1
)
⊂ D(0, |c| + 1).

Then
K(gc) ∩ (�c ∩ (x = ȳ )) �= ∅

and so
K(fc) ∩ �c �= ∅.

Case 2: 2
3 ≤ c ≤ 4. Clearly the point

(− c
2 ,− c

2

)
belongs to the set �c and

lies on the line (x = y), so we consider the function qc(x) = x 2 + cx. Since
qc([−c, 0]) ⊂ [−c, 0], the orbit

{
qn
c

(− c
2

)
: n = 0,1, . . .

}
is bounded.

We have shown that

c > 2 + 2
√

2 ∨ c < −2 �⇒ K(fc) ∩ �c = ∅
and

−2 ≤ c ≤ 4 �⇒ K(fc) ∩ �c �= ∅.

When c < −2, the dynamics of fc(x, y) is analogous to that of pc(z).
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4. Hubbard’s Conjectures

In this section, we consider J. Hubbard’s conjectures concerning the dynamics of
fc(x, y).

(1) In the case c = 2, the saddle (−1,−1) is isolated.
(2) Let U := {c ∈ C : the set K(fc) ∩ �c consists of three points}. Then U is a

nonempty set containing 2 in its interior.

We give affirmative answers to these conjectures. Let

D(z0, r) = {z∈C : |z0 − z| < r}.
Theorem 4.1. There exists a small positive number δ such that, for any c ∈
D(2, δ), a saddle (−c + 1,−c + 1) is isolated in the non-wandering set of fc.

Theorem 4.2. There exists a small positive number δ such that, if c = 2 + ε ∈
D(2, δ), then

K(fc) ∩ �c

= {(−1− ε
2 ,−1− ε

2

)
,
((−1− ε

2

)
ω,
(−1− ε

2

)
ω2), ((−1− ε

2

)
ω2,

(−1− ε
2

)
ω
)}

,

where ω is a cubic root of unity.

Theorems 4.1 and 4.2 imply the following.

Theorem 4.3. There exists a small positive number δ such that, if c ∈D(2, δ),
then any periodic point other than the three saddles

(−c + 1,−c + 1), (ω(−c + 1),ω2(−c + 1)), (ω2(−c + 1),ω(−c + 1))

is repelling.

We first prove Theorem 4.1 and then use its proof to show Theorem 4.2. Given
both theorems, we then prove Theorem 4.3.

Theorem 4.2 tells us that, when c is near 2, the setK(fc)∩�c consists essentially
of the critical point − c

2 of qc(z) in (1.1). See Lemma 2.4. Hence the dynamics of
fc(x, y) is similar to that of the function qc(z).

In Proposition 2.2, we showed that the fixed point P1 = (−c + 1,−c + 1) is a
saddle when |c − 2| < 1. Its eigenvalues are −c + 2 and −3c + 2 and its respec-
tive eigenvectors are (1,1) and (−1,1). In the special case c = 2 we have that f2

restricted to (x = y) is q2(x) = x 2 + 2x. Then the stable manifold of (−1,−1)
includes the attractive basin of q2 at the fixed point −1. Clearly q2(x) is conju-
gate to p0(z) = z2. Hence the attractive basin of q2(x) is a unit disk |x + 1| <
1 and repelling periodic points are dense on the boundary. The eigenvalues of
Df2(z, z) are 2z + 2 and 2z − 2, and their respective eigenvectors are (1,1) and
(−1,1). Therefore, in C2, the stable manifold of the saddle (−1,−1) is a unit disk
on (x = y).

The iterated preimages of a repelling fixed point (0, 0) under the map f2(x, y)
are depicted in Figure 1.2.
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We begin with the proof of Theorem 4.1. We change the coordinate system
(x, y) into another coordinate system (ξ, η) so that the saddle (−c + 1,−c + 1)
becomes the origin (0, 0) in the (ξ, η) coordinate; then ξ and η correspond to the
directions of the eigenvectors (1,1) and (−1,1). We use the abbreviation f for fc

in this section.
Set c = 2 + ε with |ε| < δ. Set(

ξ

η

)
= ϕ

(
x

y

)
,

where

ϕ

(
x

y

)
= 1√

2

(
1 1
1 −1

)(
x + 1+ ε

y + 1+ ε

)
. (4.1)

Then

ϕ � f � ϕ−1

(
ξ

η

)
=
( 1√

2
(ξ 2 + η2)− εξ

√
2ξη − 4η − 3εη

)
.

Thus we define the endomorphism k on C2 in this coordinate by

k(ξ, η) =
(

1√
2
(ξ 2 + η2)− εξ,

√
2ξη − 4η − 3εη

)
. (4.2)

In this section, we assume that |ε| is sufficiently small.
From (4.1) it follows that(

x

y

)
=
( 1√

2
(ξ + η)− 1− ε

1√
2
(ξ − η)− 1− ε

)
.

We set
ξ = ξ1 + iξ2, η = η1 + iη2, ε = ε1 + iε2,

where ξj , ηj , and εj are real. Then

|x|2 + |y|2 = (
ξ1 +

√
2(−1− ε1)

)2 + (
ξ2 −

√
2ε2

)2 + η2
1 + η2

2.

Therefore,
|η|2 > 2(|c| + 1)2 �⇒ max{|x|, |y|} > |c| + 1. (4.3)

If (4.3) holds then |x| and |y| satisfy the condition in Lemma 3.1. As a result,

‖f n(x, y)‖ → ∞ (n → ∞).

We consider the dynamics in the (ξ, η) coordinate. Let

B((a, b), r) = {(ξ, η)∈C2 : |ξ − a|2 + |η − b|2 < r 2}.
To show Theorem 4.1, it suffices to prove the following proposition.

Proposition 4.4. Let (ξ, η) be an element in B((0, 0), 0.1). If η �= 0, then there
exists a positive integer n satisfying

|ηn| >
√

2(|c| + 1), where (ξn, ηn) := kn(ξ, η).

If η = 0, then kn(ξ, 0) → (0, 0) (n → ∞).
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Before starting the proof, we describe the stable manifold and the unstable mani-
fold of the saddle (0, 0). The local stable manifold is included in the line η = 0;
the local unstable manifold is orthogonal to the line η = 0. We shall show that any
orbit {kn(x, y)} of a point (x, y) in the local unstable manifold tends to infinity.

To prove this proposition, we need four lemmas.

Lemma 4.5. Let

V1 = {(ξ, η)∈B((0, 0), 0.1) : |η| ≤ 1
50 or 4.3|η| ≤ |ξ|}.

Assume that (ξ, η)∈V1. If η �= 0, then there exists a positive integer n such that

kn(ξ, η)∈B((0, 0), 0.1) \V1.

If η = 0, then (ξ, 0) lies in the stable manifold of the saddle (0, 0).

Proof. We first consider the case η �= 0. Set (ξ1, η1) = k(ξ, η). Then by (4.2)
we have

|ξ1| < 0.8 × (0.1)2 and 3.85|η| < |η1| < 4.15|η|.
If |η| ≤ 1

50 , then

|ξ1|2 + |η1|2 < (0.1)2

(
0.82 × 0.12 +

(
4.15

5

)2)
< (0.1)2.

Similarly, we have (ξ1, η1) ∈ B((0, 0), 0.1) for the case where 4.3|η| ≤ |ξ|. Since
|η1| > 3.85|η|, we get an integer n satisfying kn(ξ, η) /∈V1.

For the case η = 0, (ξ, 0) lies on the line (η = 0). Since |ξ| ≤ 0.1, it follows
that ξ is contained in the attractive basin of a fixed point 0 on the line.

Lemma 4.6. If a point (ξ, η) is in B((0, 0), 0.1) \V1 then k(ξ, η) is in the interior
(V2)

◦, where

V2 := {
(ξ, η)∈B((0, 0), 0.44) : |η| ≥ 2.7|ξ| and |η| ≥ 1

50

}
.

Proof. Set (ξ1, η1) := k(ξ, η). Then, by (4.2),

|ξ1| ≤ 1√
2
(4.32 + 1)|η|2 + 4.3|ε||η| < (1.3782 + 4.3|ε|)|η|.

Hence |η1|
2.7

>
3.85

2.7
|η| > (1.3782 + 4.3|ε|)|η| > |ξ1|.

Other properties can be easily verified.

Lemma 4.7. If a point (ξ, η) is in V2 then k(ξ, η)∈ (V16)
◦, where

V16 := {(ξ, η)∈C2 : |η|2 ≥ 16|ξ| and η �= 0}.
Proof. Set (ξ1, η1) := k(ξ, η). Clearly,

|ξ1| ≤ 1√
2

(
1

2.72
+ 1

)
|η|2 + |η|

2.7
|ε|.
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Since 0.442 ≥ |ξ|2 + |η|2 and |η| ≥ 2.7|ξ|, we have |ξ| < 0.1529. Thus

|η1| > |η|(4 −√
2|ξ| − 3|ε|) > 3.77|η| ≥ 3.77 × 1

50
≥ 0.0754.

Therefore,

1

16
|η1|2 >

3.772

16
|η|2 ≥ 0.888|η|2 >

1√
2

(
1

2.72
+ 1

)
|η|2 + |ε|

2.7
|η| ≥ |ξ1|.

Lemma 4.8. If a point (ξ, η) is in V16, then there exists a positive integer n

satisfying

|ηn| >
√

2(|c| + 1), where (ξn, ηn) := kn(ξ, η).

Proof. Let

V3 :=
{
(ξ, η)∈C2 : |ξ| ≤ |η|2

16
, 0 < |η| ≤ 2

}
.

We first demonstrate the following claim.

Claim. If (ξ, η)∈V3, then k(ξ, η)∈ (V16)
◦ and |η1| > 3|η|.

Indeed, set (ξj , ηj ) := kj(ξ, η). Then

|ξ1| ≤ 1

256
√

2
|η|4 + 1√

2
|η|2 + |ε|

16
|η|2,

|η1| ≥ |η|
(

4 −
√

2

16
|η|2 − 3|ε|

)
.

To prove this claim, it suffices to prove the inequality

1

16

(
4 −

√
2

16
|η|2 − 3|ε|

)2

≥ |η|2
256

√
2
+ 1√

2
+ |ε|

16
. (4.4)

See Figure 4.1. Clearly, if 0 < |η| ≤ 2 then the inequality (4.4) holds for small
|ε|. The inequality |η1| > 3|η| is obvious.

Figure 4.1 t 2

2008 − (√2
32 + 1

25b
√

2

)
t + (1− 1√

2

)
, 0 ≤ t ≤ 4
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From the claim we see that there exists a smallest positive integer q such that

kq(ξ, η)∈V16 \V3.

If |ηq| >
√

2(|c| + 1), then Lemma 4.8 follows. Next we consider the case

(ξq , ηq)∈V16 ∩ {(ξ, η)∈C2 : 2 ≤ |η| ≤ 5}.
Since

|ξq| ≤ |ηq|2
16

,

it follows that

|ηq+1| ≥ |ηq|
(

4 −
√

2

16
|ηq|2 − 3|ε|

)
. (4.5)

Finally, we consider the real function

Q(x) = x

(
4 −

√
2

16
x 2

)
.

If 2 ≤ x ≤ 5, then Q(x) ≥ 7. Hence, if 2 ≤ |ηq| ≤ 5 then by (4.5) we have

|ηq+1| ≥ 6 >
√

2(|c| + 1).

This completes the proof of Proposition 4.4 and so that of Theorem 4.1. We note
that, when ε = 0, the conditions |η| ≤ 1

50 and |η| ≥ 1
50 in the definitions of V1 and

V2 (respectively) are not needed.
Now we begin the proof of Theorem 4.2. We consider the dynamics of the map in

the (x, y) coordinate system. The key observation is that, when c = 2, the critical
set xy = 1 passes through the saddle point (−1,−1) and is near the unstable man-
ifold of the saddle. In the statement of Theorem 4.2, the point

(−1− ε
2 ,−1− ε

2

)
corresponds to the point

(− c
2 t,− c

2
1
t

)
with t = 1. This point is included in the stable

manifold of the saddle (−1− ε,−1− ε). Observe that B((0, 0), 0.1) in the (ξ, η)
coordinate is equivalent to B((−1− ε,−1− ε), 0.1) in the (x, y) coordinate.

Lemma 4.9. We assume that c = 2. The set{(−t,−1
t

)
: t ∈D(1, 0.068)

}
is included in the ball B((−1,−1), 0.1). Hence, for any element t in the set with
t �= 1,

‖(un(t), vn(t))‖ → ∞ (n → ∞).

Proof. Set t = 1+ re iθ with 0 ≤ r < 0.068. Then

d

(
(−1,−1),

(
−t,−1

t

))2

= r 2 + r 2

1+ r 2 + 2r cos θ
,

where d(·, ·) is the Euclidean distance. Hence,

d

(
(−1,−1),

(
−t,−1

t

))
≤ d

(
(−1,−1),

(
r − 1,

1

r − 1

))
.

If 0 ≤ r < 0.068, then
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d

(
(−1,−1),

(
r − 1,

1

r − 1

))
< d

(
(−1,−1),

(
−0.932,− 1

0.932

))
< 0.1.

The intersections of the critical set xy = 1 and the line x = y are (−1,−1) and
(1,1). Hence, in the ball B((−1,−1), 0.1), the only intersection is (−1,−1). The
second assertion then follows from Lemma 3.1 and Proposition 4.4.

We note that this lemma also holds when c = 2 + ε with |ε| sufficiently small.
In the t-plane we consider the following closed domain 7. Let

A =
{
t ∈C :

1

4
≤ |t | ≤ 1, 0 ≤ arg t ≤ 2π

3

}
.

We set
7 = A−D(1, 0.068)−D(ω, 0.068).

If |t | < 1
4 then, by Lemma 3.1,∥∥∥∥f n

(
− c

2
t,− c

2

1

t

)∥∥∥∥→ ∞.

From Lemma 4.9 we also know that any point t in D(1, 0.068) with t �= 1 satisfies
this property.

When c = 2, we consider the potential function

P(t) = |u3(t)|2 + |v3(t)|2,
where

(u3(t), v3(t)) = f 3

(
−t,−1

t

)
.

See Figure 4.2.

Figure 4.2 The potential function P(t)

Proposition 4.10. Assume that c = 2. If t ∈7, then

P(t) ≥ 20.

From this proposition and Lemma 3.1 it follows that, if t ∈7, then∥∥∥∥f n

(
−t,−1

t

)∥∥∥∥→ ∞.
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First, we show a symmetry. Let t = re iθ. Then

P(r exp(iθ)) = P

(
r exp

((
2π

3
− θ

)
i

))
, (4.6)

since

P(r exp(iθ)) = P(ωr exp(iθ)) and P(r exp(iθ)) = P(r exp(−iθ)).

For the proof of Proposition 4.10, we need two lemmas.

Lemma 4.11. Assume that t = re iθ ∈7. Then the following statements hold:

0 ≤ θ ≤ π

3
�⇒ ∂P

∂θ
≥ 0;

π

3
≤ θ ≤ 2π

3
�⇒ ∂P

∂θ
≤ 0.

Proof. By symmetry, it suffices to prove

t = re iθ ∈7 ∧ 0 ≤ θ ≤ π

3
�⇒ ∂P

∂θ
≥ 0. (4.7)

Direct calculation yields

∂P

∂θ
= 96

r13
sin 3θ × (a0T

3 + a1T
2 + a2T + a3),

where T = cos 3θ and

a0 = −76r9(1+ r8),

a1 = 12r6(7 + 38r6 + 38r8 + 7r14),

a2 = −2r 3(11+ r6(205 + 418r 2 + 418r6 + 205r8 + 11r14)),

a3 = 1+ r6(67 + 266r 2 + 502r6 + 502r8 + 266r12 + 67r14 + r 20).

Set p(T, r) := a0T
3 + a1T

2 + a2T + a3. Proving (4.7) requires only that we es-
tablish the following claims.

Claim 1. If 0 ≤ r ≤ 1 and −1 ≤ T ≤ 1, then p(T, r) > 0.

To prove Claim 1, it suffices to prove that

p1 := ∂p

∂T
< 0 and p(1, r) > 0.

Claim 2. If 0 ≤ r ≤ 1 and −1 ≤ T ≤ 1, then p1(T, r) < 0.

To prove Claim 2, it suffices to prove that

p2 := ∂p1

∂T
> 0 and p1(1, r) < 0.

Claim 3. If 0 ≤ r ≤ 1 and −1 ≤ T ≤ 1, then p2(T, r) > 0.

We begin with the proof of Claim 3. By direct calculation, we have

p2(T, r) = 96(−456r9(1+ r8)T + 24r6(7 + 38r6 + 38r8 + 7r14)).
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Then we can prove Claim 3 easily. Hence, to prove Claim 1, it suffices to show
that p(1, r) > 0 and p1(1, r) < 0. These inequalities can be verified by direct
calculation.

From Lemma 4.11, we know that P(t) has its minimum value on the boundary
∂7. Thus, to prove Proposition 4.10 it suffices to prove

t ∈ ∂7 ∧ 0 ≤ arg t ≤ π

3
�⇒ P(t) ≥ 20. (4.8)

To prove this, we modify the boundary ∂7. In place of a part of the boundary{
t ∈R : 1

4 ≤ t ≤ 0.932
} ∪ (7 ∩ ∂D(1, 0.068)),

we consider the following curves:

γ0 = {
t ∈R : 1

4 ≤ t ≤ 0.95
}
,

γ1 = {0.95 exp(iθ) : 0 ≤ θ ≤ σ, σ = 0.0472885},
γ2 = {r exp(iσ) : 0.95 ≤ r ≤ 1}.

Observe that, in 7, the intersection of the circles ∂D(0, 0.95) and ∂D(1, 0.068) is
the point 0.95 exp(i × 0.0472885 . . . ). Hence, by Lemma 4.11, to prove (4.8) we
need only prove the following lemma.

Lemma 4.12. If t ∈ γ0 ∪ γ2, then P(t) ≥ 20.

Proof.

Case 1: t ∈ γ0. By direct calculation, we have following properties:

(1) if 1
4 ≤ t ≤ 0.75, then u3(t) > 16;

(2) if 0.75 ≤ t ≤ 0.935, then u3(t)
2 + v3(t)

2 > 30;
(3) if 0.935 ≤ t ≤ 0.95, then u3(t)

2 > 12 and v3(t)
2 > 8.

Case 2: t ∈ γ2. We shall prove that, if 0.95 ≤ r ≤ 1, then

dP(reiσ )

dr
≤ 0 (4.9)

and so P(reiσ ) ≥ P(eiσ ) > 23.
First we note that dP(reiσ )/dr is divisible by (r 2 − 1). We set

q(r) = dP(reiθ )

dr
× r17

16(r 2 − 1)
;

here q(r) is a polynomial of degree 32 with real coefficients. Set

q(j)(r) = djq(r)

drj
(j = 1, . . . ,15).

Then it can be easily proved that, if 0.95 ≤ r ≤ 1, then q(j)(r) is positive and
monotone increasing for any j (1 ≤ j ≤ 15). Hence we have (4.9). Direct com-
putation then yields

P(eiσ ) = 23.9245 . . . .



506 Keisuke Uchimura

This completes the proof of Proposition 4.10 when c = 2. When c = 2+ ε, where
|ε| is sufficiently small, we can prove that P(t) ≥ 19. Hence, in this case

P(t) ≥ 2(|c| + 1)2.

We can therefore extend Proposition 4.10 to the case c = 2 + ε provided |ε| is
sufficiently small. As noted previously, the point

(− c
2 ,− c

2

)
in �c lies in the stable

manifold of the saddle (−1− ε,−1− ε).

Combining Lemma 2.4 and the extended versions of Lemma 4.9 and Proposi-
tion 4.10, we obtain Theorem 4.2.

Finally, we prove Theorem 4.3. We begin by making three key observations.

(i) The postcritical set

P(fc) =
⋃
n>0

f n
c (�c)

is controlled.
(ii) Let W be a set of points (x, y) such that f n

c (x, y) converges to one of the
three saddles

(−c + 1,−c + 1), (ω(−c + 1),ω2(−c + 1)), (ω2(−c + 1),ω(−c + 1))

or to the line at infinity as n → ∞. Then

f −2
c ((D(0, |c| + 1)×D(0, |c| + 1)) \W) ∩ P(fc) = ∅.

(iii) We may define the infinitesimal Kobayashi metric on f −2
c ((D(0, |c| + 1)×

D(0, |c| + 1)) \W) and then prove that fc is strictly expanding.

We next define several sets via the (x, y) coordinate:

EX := C2 \ (D(0, |c| + 1)×D(0, |c| + 1)),

V := B((−c + 1,−c + 1), 0.1) ∪V2 ∪V16,

V(ω) := {(xω, yω2) : (x, y)∈V },
V(ω2) := {(xω2, yω) : (x, y)∈V },

W := EX ∪V ∪V(ω) ∪V(ω2).

Note that W is a closed set. We assume that c = 2 + ε with |ε| sufficiently small,
and we use f and � to abbreviate fc and �c (respectively).

Lemma 4.13. Let notation be as before.

(1) f(EX ∪V ∪V(ω) ∪V(ω2)) ⊂ (EX ∪V ∪V(ω) ∪V(ω2))◦.
(2) f 2(∂EX) ⊂ EX; hence f 2(W ) ⊂ (W )◦.

Proof. To prove assertion (1), it suffices to prove the following properties:

(1-1) f(EX) ⊂ EX,
(1-2) f(V ) ⊂ (EX ∪V )◦,
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(1-3) f(V(ω)) ⊂ (V(ω2) ∪ EX)◦,
(1-4) f(V(ω2)) ⊂ (V(ω) ∪ EX)◦.
Property (1-1) follows from Lemma 3.1. To prove (1-2), we assume that (x, y) ∈
V. Then, by Lemmas 4.5–4.8, we have

f(x, y)∈ (EX ∪V )◦.

Clearly (ω(−1−ε),ω2(−1−ε)) and (ω2(−1−ε),ω(−1−ε)) are periodic saddle
points of period 2. Hence we can prove (1-3) and (1-4) similarly.

Next we prove assertion (2). Set

(xn, yn) := f n(x, y).

If |x| = |c| + 1 and |y| < |c| + 1, then |x1| > |c| + 1. Hence we assume that

x = eiα(|c| + 1) and y = eiβ(|c| + 1).

Let c = eiθ|c|. Here 0 ≤ α,β, θ < 2π. If α �= θ or β �= θ, then max{|x1|, |y1|} >
|c| + 1. Therefore, (x1, y1)∈EX. If α = β = θ, then max{|x2|, |y2|} > |c| + 1.

Lemma 4.13 yields the following statement.

Proposition 4.14. Let (x, y)∈W. Then f n(x, y) converges to one of the points

(−1− ε,−1− ε), (ω(−1− ε),ω2(−1− ε)), (ω2(−1− ε),ω(−1− ε))

or to the line at infinity.

Next we show that the postcritical set P(f ) is controlled.

Proposition 4.15. For any n ≥ 3,

f n(�) ⊂ (EX ∪V ∪V(ω) ∪V(ω2))◦.

Proof. Let φ(t) = (− c
2 t,− c

2
1
t

)
. By Proposition 4.10, if n ≥ 3 then

f n(φ(7)) ⊂ EX.

Similarly,
f 3(φ(ω7)) ⊂ EX and f 3(φ(ω27)) ⊂ EX.

Set �∗ := φ(D(1, 0.068)∩D(0,1)). Then it follows from the extended version
of Lemma 4.9 that

�∗ ⊂ B((−1− ε,−1− ε), 0.1) ⊂ V.

Hence, from Lemma 4.13, we deduce that

f n(�∗) ⊂ (EX ∪V )◦ for n ≥ 1.

Now set

�∗(ω) = φ(D(ω, 0.068) ∩D(0,1)),

�∗(ω2) = φ(D(ω2, 0.068) ∩D(0,1)).
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Then

�∗(ω) ⊂ {(xω, yω2) : (x, y)∈B((−1− ε,−1− ε), 0.1)} ⊂ V(ω)

and �∗(ω2) ⊂ V(ω2). Hence, by Lemma 4.13, we have

f(�∗(ω) ∪ �∗(ω2)) ⊂ (EX ∪V(ω) ∩ V(ω2))◦

and so

f n(�∗(ω) ∪ �∗(ω2)) ⊂ (EX ∪V(ω) ∪V(ω2))◦ for n ≥ 1.

Since

φ
({
t ∈C : 1

4 ≤ |t | ≤ 1
}) = �∗ ∪ �∗(ω) ∪ �∗(ω2) ∪ φ(7) ∪ φ(ω7) ∪ φ(ω27),

it follows that

f n(φ({t ∈C : 1
4 ≤ |t | ≤ 1

})) ⊂ (EX ∪V ∪V(ω) ∪V(ω2))◦ for n ≥ 3.

As a result,

f n(�) ⊂ (EX ∪V ∪V(ω) ∪V(ω2))◦ for n ≥ 3.

Combining Lemma 4.13 and Proposition 4.15 now yields the following lemma.

Lemma 4.16.
f 2(W ∪ f(�) ∪ f 2(�)) ⊂ (W )◦.

Now consider the set G defined by

G := (D(0, |c| + 1)×D(0, |c| + 1)) \W.

We aim to show that f is strictly expanding on f −2(G). From Lemma 4.13, it
follows that f −2(G) ⊂ G.

Lemma 4.17. (1) Let P(f ) be the postcritical set. Then

f −2(G) ∩ P(f ) = ∅.
(2) Let p be any periodic point of f other than the three saddles

(−c + 1,−c + 1), (ω(−c + 1),ω2(−c + 1)), (ω2(−c + 1),ω(−c + 1)).

Then p lies in the set f −2(G).

Proof. By Lemma 4.15, the set
∞⋃
n=1

f n(�)

is included in the closed set

W ∪ f(�) ∪ f 2(�).

Then part (1) follows from Lemma 4.16. For part (2), note that the periodic point
p does not lie in the set W. Hence, f 2(p) /∈W.
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Let G0 be any component of f −2(G).

Lemma 4.18. The domain G0 is Kobayashi hyperbolic.

Proof. Since
G0 ⊂ G ⊂ D(0, |c| + 1)×D(0, |c| + 1),

G0 is a bounded domain of C2 and hence G0 is Kobayashi hyperbolic.

Lemma 4.19. (1) With notation as before, we have

G0 ⊂⊂ G.

(2) Let Gn be any component of f −n(G0), and let Gn+1 be any component
f −1(Gn). Then

Gn+1 ⊂⊂ Gn.

Proof. Part (1) follows from f 2(∂W ) ⊂ (W )◦, and part (2) follows from (1).

To complete the proof of Theorem 4.3, we use Fornæss and Sibony’s argument in
[FS2, Thm. 3.8].

Proof of Theorem 4.3. Since G0 is Kobayashi hyperbolic, we can define the in-
finitesimal Kobayashi metric K0(x, ξ) at a point x in G0 and a tangent vector ξ.
Consider the map

f : Gn+1 → Gn.

From Lemma 4.17 we know that f is a holomorphic unramified covering map.
Let Km denote the infinitesimal Kobayashi metric for Gm. Then, for z∈Gn+1,

Kn+1(z, ξ) = Kn(f(z),Df(z)ξ).

By Lemma 4.19,

Kn+1(z, ξ) ≥ (1+ a)Kn(z, ξ) for a constant a > 0

and hence
Kn(f(z),Df(z)ξ) ≥ (1+ a)Kn(z, ξ). (4.10)

By Lemma 4.17(2), we know that any periodic point p of period l satisfying the
condition of Theorem 4.3 lies in a component of f −2(G). Hence we may use
(4.10) to conclude that all eigenvalues of Df l(p) have modulus greater than 1.

We now extend Theorem 4.3. Let

U := {c ∈C : the set K(fc) ∩ �c consists of three points}.
Let U0 be the connected component of U ∩D(2,1) containing the value 2. Theo-
rem 4.2 guarantees that U0 is not empty.

Corollary 4.20. For any c ∈U0, any periodic point other than

(−c + 1,−c + 1), (ω(−c + 1),ω2(−c + 1)), (ω2(−c + 1),ω(−c + 1))

is repelling.
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Proof. We consider three cases.
(1) Suppose that, for some c in U0, fc has another saddle periodic point p. Any

hyperbolic periodic point attracts a point from a critical set of fc, so there is a point
q in �c such that f n

c (q) → p (n → ∞). Then q ∈�c ∩K(fc). When c ∈D(2,1),
the three periodic points displayed in our statement of the corollary are saddles.
Each saddle attracts a point in �c and so �c ∩ K(fc) contains four points—and a
contradiction follows.

(2) Suppose that, for some c in U0, fc has an attracting periodic point. By the
same argument as in (1), a contradiction follows.

(3) Suppose that, for some c in U0, fc has a nonhyperbolic periodic point p. Let
the eigenvalues of Dfc(p) be λ1 and λ2, and assume that |λ1| = 1. LetV be a small
neighborhood of the point c included in U0. Then λ1 is a holomorphic function of
z inV and does not vanish there. When λ1(z) is not a constant function, |1/λ1(z)|
has the maximum on the boundary ∂V. Then case (1) or (2) occurs. When λ1(z)

is constant, a contradiction follows from Theorem 4.3.

Uchimura [U4] shows that, if c ∈D(2, δ) for some small positive number δ, then
the following statements hold:

(1) the second Julia set of fc(x, y) is connected;
(2) fc(x, y) is an Axiom A endomorphism of C2 with f −1S2 = S2.

For more details, see [U4].

Acknowledgments. The author thanks Prof. J. Hubbard for his helpful sugges-
tions as well as Prof. S. Ushiki for providing the interesting computer graphics.
The author is also thankful to the referee for helping to improve the paper.

References

[BCSh] J.-Y. Briend, S. Cantat, and M. Shishikura, Linearity of the exceptional set for
maps of Pk(C), Math. Ann. 330 (2004), 39–43.

[DH] M. Denker and S. Heinemann, Jordan tori and polynomial endomorphisms in
C2, Fund. Math. 157 (1998), 139–159.

[FS1] J. Fornæss and N. Sibony, Complex dynamics in higher dimension I, Astérisque
222 (1994), 201–231.

[FS2] , Dynamics of P2 (Examples), Contemp. Math., 269, pp. 47–85, Amer.
Math. Soc., Providence, RI, 2001.

[J] M. Jonsson, Dynamics of polynomial skew products on C2, Math. Ann. 314
(1999), 403–447.

[L1] A. O. Lopes, Dynamics of real polynomials on the plane and triple point phase
transition, Math. Comput. Modelling 13 (1990), 17–32.

[L2] , On the dynamics of real polynomials on the plane, Comput. Graphics 16
(1992), 15–23.

[M] J. Milnor, Dynamics in one complex variable, Vieweg, Weisbaden, 1999.
[U1] K. Uchimura, The dynamical systems associated with Chebyshev polynomials in

two variables, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), 2611–2618.
[U2] , Attractive basins of certain non-holomorphic maps, Internat. J. Bifur.

Chaos Appl. Sci. Engrg. 8 (1998), 1517–1526.



Dynamics of Symmetric Polynomial Endomorphisms of C2 511

[U3] , The sets of points with bounded orbits for generalized Chebyshev mappings,
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), 91–107.

[U4] , Axiom A endomorphisms of C2 each of which has the connected J2 set and
three saddles, preprint.

[Ue] T. Ueda, Critically finite maps on the complex projective space, Research on
complex dynamical systems: Current state and prospects (Kyoto, 1998), RIMS
Kokyuroku 1087 (1999), 132–138.

Department of Mathematics
Tokai University
Hiratsuka, 259-1292
Japan

uchimura@keyaki.cc.u-tokai.ac.jp


