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0. Introduction

Let M be a complex manifold. Then H(M,M) is the set of holomorphic maps
from M to M, that is, the set of endomorphisms of M. A special case of endomor-
phisms are automorphisms of M, Aut(M) ⊂ H(M,M).

Definition 0.1. A set K ⊂ M is called a determining subset of M with respect
to Aut(D) (H(M,M) resp.) if, whenever g is an automorphism (endomorphism
resp.) such that g(k) = k for all k ∈K, then g is the identity map of M.

The notion of a determining set was first introduced in a paper written by the first
two authors in collaboration with Steven G. Krantz and Kang-Tae Kim [F+1]. That
paper was an attempt to find a higher-dimensional analog of the following result
of classical function theory [PL]: If f : M → M is a conformal self-mapping of
a plane domain M that fixes three distinct points, then f(ζ) = ζ.

This one-dimensional result is true even for endomorphisms of a bounded do-
main D ⊂⊂ C. To prove this, one may first use the well-known theorem stating
that if an endomorphism of D fixes two distinct points then it is an automorphism;
then use the [PL] theorem. In the n-dimensional case, determining sets (for auto-
morphisms and endomorphisms) of bounded domains in C

n have been investigated
in [F+2; FMa; KiKr; V1; V2].

Let Ws(M) denote the set of s-tuples (x1, . . . , xs), where xj ∈ M, such that
{x1, . . . , xs} is a determining set with respect to Aut(M). Similarly, Ŵs(M) de-
notes the set of s-tuples (x1, . . . , xs) such that {x1, . . . , xs} is a determining set with
respect to H(M,M). Hence Ŵs(M) ⊆ Ws(M) ⊆ Ms. We now introduce two val-
ues s0(M) and ŝ0(M). If Aut(M) = id then s0(M) = 0; otherwise, s0(M) is
the least integer s such that Ws(M) 
= ∅. If Ws(M) = ∅ for all s then s0(M) =
∞. Analogously, ŝ0(M) denotes the least integer s such that Ŵs(M) 
= ∅; if no
such integer exists (i.e., if Ŵs(M) = ∅ for all s) then ŝ0(M) = ∞. In all cases
s0(M) ≤ ŝ0(M).

The main objectives of this paper are (1) to generalize the results for bounded
domains in C

n to hyperbolic manifolds and (2) to illustrate that the results are
quite different for the nonhyperbolic manifolds.
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The Bergman metric on a bounded domain in C
n proved quite useful for the in-

vestigation related to determining sets. However, such a Riemannian metric is not
always available on a hyperbolic manifold M. In order to overcome this obstacle,
we construct for any point x ∈M an invariant (with respect to Aut(M)) Hermitian
metric in a neighborhood (open but not necessarily connected) of that point.

The paper is roughly divided into three parts. First we introduce the Hermitian
metric just mentioned. Second, we completely resolve the case for a hyperbolic
manifold. Third, we prove (two) theorems to show that the case of nonhyperbolic
manifolds is remarkably different.

Here is a brief description of the second and third parts of the paper. In [V2]
the estimate ŝ0(D) ≤ n + 1 was established for all bounded domains in C

n. In
Section 2 we generalize this result by proving the same inequality for hyperbolic
manifolds of dimension n. This certainly implies the same inequality for automor-
phisms of a hyperbolic manifoldM, s0(M) ≤ n+1.Yet we can provide much more
information for automorphisms. The value of s0(M) depends on how large the
group Aut(M) is, and corresponding estimates on s0(M) are given in Section 3.
In Section 4 we show that if dim(M) = n then the general estimate (s0(M) ≤
n+1) can be refined to s0(M) ≤ n for domains that are not biholomorphic to the
unit ball Bn ⊂ C

n (i.e., the only hyperbolic manifolds for which s0(M) = n + 1
are those biholomorphic to the ball).

For any positive integer s ≥ s0(M) we have Ws(M) 
= ∅, so there are s points
such that if an automorphism of M fixes these points it will fix any point of M.

Now the question arises as to whether the choice of these s points is generic. The
answer is positive for any hyperbolic manifold M: Ws(M) ⊆ Ms is open and
dense if not empty (Section 5). Similar topological properties for the determining
sets of endomorphisms of a general hyperbolic manifold do not hold. We address
related questions in the concluding part of Section 5.

Section 6 is devoted to examining the situation for nonhyperbolic manifolds.
We first give a complete description of the value for ŝ0(M) for a one-dimensional
manifoldM (Theorem 6.1). Then for higher-dimensional manifolds we prove that
ŝ0(M) = ∞ for a general Stein manifold M that has the following property: Any
finite number of points lie in a one-dimensional submanifold (for the precise state-
ment see Theorem 6.2).

1. Construction of a Locally Invariant Hermitian Metric

Our main effort in this section will be the construction of a locally invariant (with
respect to the automorphism group) metric in a neighborhood of any point in a
general hyperbolic manifold. Throughout this section, M denotes a hyperbolic
manifold of finite dimension, and Aut(M) is its group of holomorphic automor-
phisms. First we present some preliminary statements.

Lemma 1.1. Aut(M) is a normal family.

Various versions of this statement have been used before. However, we cannot find
a direct reference to this result in the literature, so a brief proof is presented here.
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Proof of Lemma 1.1. It suffices to prove that if x0 ∈ M, if fj ∈ Aut(M) is a se-
quence such that the closure Q of the set {fj(x0) : j ∈ N} is compact, and if K is
a compact subset of M, then

S :=
∞⋃
j=1

fj(K) ⊂⊂ M.

Let d(·, ·) denote the Kobayashi distance. For x ∈ M and r > 0, let b(x, r) =
{y ∈M : d(x, y) < r}. Let ψ(x) = sup{r > 0 : b(x, r) ⊂⊂ M}. Now we set

m = max{d(x0, x) : x ∈K}, δ = min{ψ(x) : x ∈K},
and

P = {x ∈M : d(x,Q) ≤ m,ψ(x) ≥ δ}.
Then P is compact and S ⊂ P.

Now we note the following. Let a ∈M and let f : M → M be a holomorphic map
such that f(a) = a. Consider a small Kobayashi ball b = b(a, ε) that is biholo-
morphic to a bounded domain in C

n and whose closure is compact inM. Since the
Kobayashi distance is nonincreasing under holomorphic maps, we have f : b →
b. If f ∈ Aut(M), then f |b ∈ Aut(b). The following three statements (cf. [V1])
hold for bounded domains in C

n; by using this remark one can prove them for any
hyperbolic manifold.

Lemma 1.2. Let a ∈ M and let f : M → M be a holomorphic map such that
f(a) = a and f ′(a) = id. Then f = id.

Lemma 1.3. Let a ∈M, f ∈Aut(M), and f(a) = a. Then all the eigenvalues of
f ′(a) are of modulus 1 and the matrix f ′(a) is diagonalizable.

Corollary 1.4. In the assumption of Lemma 1.3, if f 
= id then one can find an
appropriate power k such that the kth iteration of f , f k = h∈Aut(M), will have
the properties that h(a) = a and h′(a) has at least one eigenvalue with nonposi-
tive real part.

Let z ∈ M. Hereafter we use the notion of an isotropy group Iz(M) = {g ∈
Aut(M) : g(z) = z}.
Lemma 1.5 [C1, p. 80]. Let D ⊂⊂ C

n, let z ∈ D, and let Iz = Iz(D) be the
isotropy subgroup at z of the automorphism group of D. Then there exists a holo-
morphic map φ : D → C

n such that φ(z) = 0 and φ ′(z) = id and such that, for
all f ∈ Iz, one has φ � f = f ′(z) � φ.
As in [V1, Thm. 2.3], for the proof of this lemma we define φ : D → C

n by

φ(ζ) =
∫
Gz

f ′(z)−1(f(ζ)− z) dµ(f ),

where dµ is the Haar measure on Iz. Then φ(z) = 0, φ ′(z) = id (and so φ is
locally biholomorphic), and φ � g = g ′(z) � φ for each g ∈ Iz.
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Let M again be a hyperbolic manifold. For x ∈M, let TxM be the tangent space
of M at x and let Ix = Ix(M) be the isotropy subgroup fixing x. The compact
group Ix acts on T as differential maps: for g ∈ Ix and v ∈ T, we have g∗(v) =
dg(x)v. Since Lemma 1.5 can be considered in a small neighborhood of x and
since T is isomorphic to C

n, the following statement holds.

Lemma 1.6. For any point x ∈M, there exists a small neighborhood V � x such
that there is an injective holomorphic map φ : V → T with g∗ �φ = φ � g for g ∈
Ix and dφ(x) = id, the identity map of T = TxM.

Finally we introduce a Hermitian invariant metric on a neighborhood of any point
in M.

Lemma 1.7. Let M be a hyperbolic manifold, let G = Aut(M), and let x ∈ M.

Then there exist a neighborhoodU of x such thatG(U) = U and aC∞ Hermitian
metric on U that is invariant under G.

Proof. SinceM is hyperbolic, the automorphism groupG is a Lie group (see [Ko])
and the isotropy group Ix is a compact subgroup of G. The orbit G(x) is an em-
bedded submanifold of M. Let T = TxM be the tangent space of M at x. Then
T is a complex vector space and is isomorphic to C

n. The elements of the com-
pact group Ix act on T as differential maps: for g ∈ Ix , g∗(v) = dg(x)v. Let h
be a Hermitian metric on T invariant under Ix. By Lemma 1.6, there exist a small
neighborhood V of x in M and an injective holomorphic map φ : V → T such
that g∗ � φ = φ � g for g ∈ Ix and dφ(x) = id, the identity map of T = TxM. The
real subspace P of T consisting of vectors tangent to G(x) is invariant under Ix.
Hence the orthogonal complement (with respect to the real part of h) Q of P is
also invariant under Ix.

Let S1 = {v ∈Q : ‖v‖ < δ}, where ‖·‖ is the norm induced by the Hermitian
metric h, and choose δ > 0 so small that S1 ⊂⊂ φ(V ). Note that S1 is invari-
ant under Ix. Let S = φ−1(S1); then Ix(S) = S. Furthermore, for g ∈ G, we
have g(S) ∩ S 
= ∅ if and only if g ∈ Ix. The tube G(S) is diffeomorphic to the
normal bundle of G(x) in M and to the twisted product G ×Is S. The pull-back
h0 = (φ|S)∗h is a Hermitian metric on the restriction to S of the tangent bundle
TM. Now we define a Hermitian metric h1 on U = G(S) as follows. If y ∈ U

and u, v ∈ Ty , then there is a g ∈ G such that g(y) ∈ S and we define h1(u, v) =
h0(g∗u, g∗v). One can see that h1 is well-defined, since if g(y), g ′(y) ∈ S then
g ′g−1 ∈ Ix. Now h1 is a C∞ metric on U that is invariant under G.

2. An Estimate for ŝ0(M)

We need the following lemma [V2, Thm. 5.2].

Lemma 2.1. LetD be a bounded domain in C
n. If a ∈D then there is an openU ⊂

Dn such that (a, . . . , a)∈ Ū and, for all (z1, . . . , zn)∈U, (a, z1, . . . , zn)∈ Ŵn+1(D).

Theorem 2.2. Let M be a hyperbolic manifold of complex dimension n. Then
ŝ0(M) ≤ n+ 1.
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Proof. Pick a point a ∈ M. Let f : M → M be a holomorphic map such that
f(a) = a. Consider a small Kobayashi ball b = b(a, ε) whose closure is compact
in M and such that b is biholomorphic to a bounded domain D in C

n; let h : b →
D be such a biholomorphic map. Observe that, since the Kobayashi distance is
nonincreasing under holomorphic maps, we have f : b → b and therefore g =
h � f � h−1 : D → D. Using Lemma 2.1, we can pick n points z1, . . . , zn ∈D such
that Z = (h(a), z1, . . . , zn)∈ Ŵn+1(D). Consider the set of n+1 points h−1(Z) =
(a,h−1(z1), . . . ,h−1(zn)) ⊂ b. If our function f ∈H(M,M) (in addition to a) is
also fixing all points h−1(zj ) (i.e., if f |h−1(Z) = id), then g|Z = id and therefore
g = id. We conclude that f |b = id and consequently f = id. Hence, h−1(Z) ∈
Ŵn+1(M) and so ŝ0(M) ≤ n+ 1.

3. Estimates for s0(M)

The goal of this section is to provide estimates for s0(M) for a hyperbolic mani-
fold M, dim(M) = n. Since s0(M) ≤ ŝ0(M), Theorem 2.2 implies the following
statement.

For any hyperbolic manifoldM of complex dimension n, s0(M)≤ n+1.

Remark. In the next section we prove a refined inequality s0(M) ≤ n for M not
biholomorphic to the unit ball in C

n.

If H is (isomorphic to) a subgroup of the unitary group U(n), let k(H ) denote
the least number k of vectors u1, . . . , uk such that, if h ∈H and if h(uj ) = uj for
j = 1, . . . , k, then h = id. For x ∈ M the isotropy group Ix(M) is isomorphic
to the group of its differentials at x, and these differentials are unitary with re-
spect to the locally defined Hermitian inner product (whose existence was proved
in Lemma 1.7) on the tangent space Tx(M). So Ix(M) is isomorphic to a subgroup
of U(n).

Theorem 3.1. s0(M) ≤ 1 + min{k(Ix(M)) : x ∈M}.
Proof. Choose x ∈ M so that k(Ix(M)) = min{k(Ix(M)) : x ∈ M}. Denote that
number by k. Let u1, . . . , uk be vectors in TxM such that, if h ∈ Ix(M) and if
dh(x)(uj ) = uj for j = 1, . . . , k, then dh = id (hence h = id). For each uj , let xj
be a point on the geodesic through x in the direction uj and so close to x that the
geodesic is the unique length-minimizing geodesic from x to xj . Let f be an auto-
morphism of M fixing x, x1, . . . , xk. Then df(x) fixes u1, . . . , uk. It follows that
df(z) = id and f = id. Therefore, s0(M) ≤ 1 + min{k(Ix(M)) : x ∈M}.
Let G be a subgroup of Aut(M). By s0(M,G) we denote the minimum number
of distinct points in M such that, if g ∈ G and g fixes all these points, then g =
id. Thus, s0(M) = s0(M,Aut(M)).

Lemma 3.2. Let M be a hyperbolic manifold, let G be a subgroup of Aut(M),
and let q = dimG. If q ≥ 1 then s0(M,G) ≤ q; if q = 0 then s0(M,G) ≤ 1.
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Proof. First we consider the case where q ≤ 1. Let e denote the identity element of
G, and let Q = G\{e}. For each g ∈Q, the set {x ∈M : g(x) = x} is an analytic
set of M of dimension ≤ 2n − 2. The set W1 := {(g, x) ∈Q × M : g(x) = x} is
an analytic set of Q × M of dimension ≤ (2n − 2) + q ≤ 2n − 1 < dimM. Let
W denote the set of fixed points of nontrivial elements of G. Since W = π(W1),
where π : Q×M → M is the projection, and since dimW1 < dimM, we see that
W 
= M. Therefore, s0(M,G) ≤ 1.

Now assume that q ≥ 2. There must be an orbit Q of G of positive dimension.
Let x ∈ Q, and let H := Gx be the subgroup of G consisting of elements g sat-
isfying g(x) = x. Then dimH < dimG. By the induction hypothesis, it follows
that s0(M,H ) ≤ dimG− 1. Therefore, s0(M,G) ≤ 1 + s0(M,H ) ≤ dimG.

As a corollary we obtain our next theorem.

Theorem 3.3.

dim(Aut(M)) ≥ 1 �⇒ s0(M) ≤ dim(Aut(M));
dim(Aut(M)) = 0 �⇒ s0(M) ≤ 1.

4. A Characterization of the Ball in Cn

This section is devoted to the proof of the following statement, which is a gener-
alization of [FMa, Thm. 1.1].

Theorem 4.1. Let M be a hyperbolic manifold of dimension n. Then s0(M) =
n+ 1 if and only if M is biholomorphic to the unit ball Bn in C

n.

The estimate s0(B
n) = n+ 1 can be easily verified (see e.g. [FMa]).

The rest of this section will be devoted to proving that s0(M) = n + 1 implies
that M is biholomorphic to the unit ball. For this we shall need the following two
lemmas.

Lemma 4.2. Let M be a hyperbolic manifold and let x ∈ M. Suppose that the
isotropy group Ix is transitive on the (real) directions at x. Then M is biholomor-
phic to the unit ball in C

n.

Proof. Since Ix is transitive on the directions at x, the group Aut(M) is not finite.
Since the automorphism group of a compact hyperbolic manifold must be finite
(see [Ko, p. 70]), we see that M is noncompact. By the main theorem in [GrKr],
M is biholomorphic to C

n.

For a subgroup H of the unitary group U(n) we use the notion k(H ) introduced
at the beginning of Section 3. The following lemma was proved as Lemma 1.4
in [FMa].

Lemma 4.3. If H is a subgroup of U(n) with n ≥ 2 and if H is not transitive on
S 2n−1, then k(H ) ≤ n− 1.

We are now ready to prove the remaining portion of Theorem 4.1 (i.e., s0(M) =
n+ 1 implies that M is biholomorphic to the unit ball).
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Proof of Theorem 4.1. Let s0(M) = n + 1. If n = 1 then the statement (M is bi-
holomorphic to the unit disc B1) is true. Indeed, if M is not biholomorphic to the
disc or the annulus then its automorphism group is discrete. For each element g ∈
Aut(M), g 
= id, the set of fixed points is discrete. Hence there is a point x ∈
M that is not a fixed point of any nontrivial automorphism. This point will then
form a determining set, so s0(M) ≤ 1. For the annulus, s0(M) = 1. Therefore, if
s0(M) = 2 then M is biholomorphic to the unit disc.

Consider now the case wheren ≥ 2. Let z∈M and suppose thatM is not biholo-
morphic to Bn. Then Iz(M) is not transitive on the directions at z, by Lemma 4.2.
Since Iz(M) is (isomorphic to) a subgroup of U(n), by Lemma 4.3 we have
k(Iz(M)) ≤ n − 1. It follows (see Theorem 3.1) that s0(M) ≤ 1 + k(Iz(M)) ≤ n

if M is not biholomorphic to Bn.

5. Determining Sets Ws(M) Are Open and Dense

Our aim in this section is to prove the following theorem.

Theorem 5.1. Let M be a hyperbolic manifold and let s ≥ 1. Then Ws(M) ⊂
Ms is open. If, in addition, Ws(M) 
= ∅, then Ws(M) is dense in Ms.

Denote W = Ws(M). First we prove that W ⊂ Ms is open.

Proof of Theorem 5.1 ( first part). Suppose W is not open. Then one can find a
sequence of s-tuples Zj = (x1, . . . , xjs )∈Ms that converges to Z = (x1, . . . , xs)∈
Ms and such that Zj is not a determining set for M but Z is. For each j there
is an fj ∈ Aut(M) with fj |Zj = id but fj 
= id. By Corollary 1.4 (replacing fj
by an appropriate iteration of fj if needed) we may assume that the real part of at
least one eigenvalue of f ′

j (x
j

1 ) is nonpositive. Switching again to a subsequence
if necessary, we find a sequence of automorphisms whose limit (see Lemma 1.1)
is g ∈Aut(M) and such that g|Z = id and one of the eigenvalues of g ′(x1) is non-
positive. Therefore g 
= id, which contradicts the original assumption that Z is a
determining set for M.

Remark. The foregoing proof of the theorem for a bounded domain is given
in [V1, Thm. 3.1]. One can also prove Theorem 5.1 by using the idea of [FMa,
Lemma 2.3].

Now suppose that W 
= ∅. We need to prove that W is dense in Ms.

First we introduce some notation. IfG is a subgroup of Aut(M) thenWs(M,G)
denotes the set of s-tuples (x1, . . . , xs), where xj ∈M, such that each element g ∈
M satisfying g(xj ) = xj for j = 1, . . . , s must be the identity. Let ρx(·, ·) denote
the metric introduced in Lemma 1.7 for a point x ∈M. Let b(x, r) denote the ball
with center x and radius r in that metric, and let b̄(x, r) be the closure of b(z, r)
in M.

Lemma 5.2. Suppose that G is a subgroup of Aut(M). If W1(M,G) 
= ∅, then
W1(M,G) is dense in M.
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Proof. In this proof we put W = W1(M,G). Suppose that W is not dense in M;
then the closure K of W in M is not equal to M. Let p be a boundary point of K
in M and put ρ(·, ·) = ρp(·, ·). Choose r > 0 such that the closure of b(p, 4r)
in U is compact, where U is a neighborhood from Lemma 1.7 (chosen for the
point p) and such that each pair of points of b(p, 4r) is connected by a unique
length-minimizing geodesic segment in that metric. Then there exist points z,w
such that ρ(z,p) < r, ρ(w,p) < r, w ∈ W, and z /∈ K. Observe that G(w), the
orbit of w, is a subset of W.

Let Q = G(w)∩ b̄(p, 4r). Then Q is compact and Q ⊂ W. Let u be a point of
Q nearest to z. Then u is also a point of G(w) nearest to z, and R := ρ(z, u) ≤
ρ(z,w) < 2r. Choose a point y on the unique length-minimizing geodesic seg-
ment from z to u such that y /∈K and y 
= z. For each point x ofG(w), we see that

ρ(z, y)+ ρ(y, x) ≥ ρ(z, x) ≥ ρ(z, u)

and that the two equalities hold simultaneously only if x = u. Hence, ρ(z, y) +
ρ(y, x) > ρ(z, u) = R for each x ∈G(w) with x 
= u. It follows that ρ(y, x) >
R − ρ(z, y) = ρ(y, u) for each x ∈G(w) with x 
= u. Therefore, u is the unique
point of G(w) nearest to y. Since y /∈ K, there is a nontrivial g ∈ G such that
g(y) = y. Now ρ(y, u) = ρ(g(y), g(u)) = ρ(y, g(u)) forces g(u) = u. Since
u∈W it follows that the map g must be the identity, contradicting the nontrivial-
ity of g. Therefore, W1(M,G) is dense in M.

Proof of Theorem 5.1 (second part). We have already proved that Ws(M) is open
in Ms. Suppose now that Ws(M) 
= ∅. For g ∈ Aut(M), let Qs(g) denote the
mapping

Qs(g) : Ms → Ms, Qs(g)(z1, . . . , zs) = (g(z1), . . . , g(zs)).

Let G = {Qs(g) : g ∈Aut(M)}. Then G ⊂ Aut(M s ) and W1(M
s,G) = Ws(M).

By Lemma 5.2, Ws(M) is dense in Ms.

Using the same approach as in [V2, Thm. 5.1] allows us to establish the following
result.

Theorem 5.3. If M is a taut manifold, then Ŵs(M) is open in Ms for all s ≥ 1.

In general Ŵs(M) need not be open in Ms (see [FMa]) nor be dense in Ms (cf.
[FMa; V2]).

6. Results Concerning the Nonhyperbolic Case

6.1. One-Dimensional Manifolds

Theorem 6.1. For a one-dimensional complex manifold M, ŝ0(M) = 2 or ∞.

More precisely, if M is holomorphically equivalent to the complex plane C, the
truncated complex plane C

∗, or the Riemann sphere P, then ŝ0(M) = ∞; other-
wise, ŝ0(M) = 2.
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Proof. It is well known that either M is biholomorphic to C, C
∗, P, or a torus or

else it is a hyperbolic manifold.
Suppose S = {x1, . . . , xk} is a finite set in C, and choose y ∈ C \ S. Let f be

a polynomial such that f(xj ) = xj and f(y) = y + 1. Then f is a nonidentity
holomorphic self-map of C fixing each point of S. Therefore, ŝ0(C) = ∞.

We now consider P. Note that the map f in the previous paragraph is also a holo-
morphic self-map of P fixing the point at infinity. Thus we see that ŝ0(P) = ∞.

Suppose S = {x1, . . . , xk} is a finite set in C
∗. Choose yj so that xj = exp yj . Let

g be a polynomial such that g(xj ) = yj and let f(z) = exp g(z). Then f is a non-
identity holomorphic self-map of C

∗ fixing each point of S. Hence ŝ0(C
∗) = ∞.

Consider a torus T corresponding to a lattice L in the complex plane. Let
π : C → T be the projection. It is well known that each holomorphic self-map of
T has the form f(π(z)) = π(λz + b), where b ∈ C and λ ∈7 := {x ∈ C : xL ⊂
L}. Clearly f is the identity if and only if λ = 1 and b ∈L. Let F be the field gen-
erated by L ∪ 7; then F is countable. Choose r ∈ C \ F. Let x = π(0) and y =
π(r), and suppose that f(x) = x and f(y) = y. Then

λ · 0 + b = 0 + p and λr + b = r + q

for some p, q ∈L. It follows that b ∈L and

(λ− 1)r = q − p.

Now (λ − 1) ∈ F and (q − p) ∈ F but r /∈ F. It follows that λ − 1 = 0 and f =
id. Therefore, ŝ0(T ) = 2.

If M is a hyperbolic manifold M of dimension 1, then ŝ0(M) = 2 by Theo-
rem 2.2.

6.2. Higher-Dimensional Manifolds

The main statement in this section is the following theorem.

Theorem 6.2. Let M be a Stein manifold with dim(M) ≥ 2 and such that, for
any k distinct points {x1, . . . , xk} ∈ M, there is a holomorphic map g : C → M

such that g(C) ⊃ {x1, . . . , xk}. Then ŝ0(M) = ∞.

To prove this we need the following two lemmas.

Lemma 6.3. SupposeM is a complex manifold, dim(M) ≥ 2. Suppose also that,
for any distinct k points {x1, . . . , xk} ∈M, the following statements are true:

1. there is a holomorphic map f : M → C such that f(xi) 
= f(xj ) if i 
= j ;
2. there is a holomorphic map g : C → M such that g(C) ⊃ {x1, . . . , xk}.
Then ŝ0(M) = ∞.

Proof. For any given k points {x1, . . . , xk} ∈ M, fix wj ∈ g−1(xj ). Now consider
: = g � ϕ � f : M → M, where ϕ : C → C is the Lagrange polynomial, such
that ϕ(f(xj )) = wj . Then : 
= id is a holomorphic endomorphism of M fixing
the given points.
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Lemma 6.4. Let M be a complex manifold such that, for any two points p 
= q ∈
M, there exists a holomorphic function h : M → C such that h(p) 
= h(q). Then,
for any finite number of distinct points {x1, . . . , xk} ∈ M, there exists a holomor-
phic function f : M → C that separates these points: f(xi) 
= f(xj ) for i 
= j.

Proof. We proceed by induction. Suppose the statement holds for k ≥ 2. Note
that we may assume without loss of generality that, if a function separates k given
points, then its values at these points can be preassigned as we please. Now let
the points {x1, . . . , xk+1} ∈ M be given. For m = 1, . . . , k + 1, consider func-
tions fm : M → C such that fm(xs) = s for s 
= m. If no fm separates all k + 1
points, then for all m the value fm(xm)must be an integer (moreover, fm(xm) ∈
{1, . . . , k+1}\{m}). Let α1, . . . ,αk+1 be a set of linearly independent numbers over
Z , the ring of integers. Consider f = ∑k+1

m=1 αmfm. We claim that f does the
trick. Indeed, for i 
= j we have

f(xi)− f(xj ) =
∑
m 
=i,j

αm(i − j)+ αi(fi(xi)− j)+ αj(i − fj(xj )) 
= 0,

since the number of nonzero coefficients (equal to (i − j)) is at least k − 1 ≥ 1.

By the definition of a Stein manifold, any two points can be separated by a holomor-
phic function. Hence, by Lemma 6.4, any finite number of points in such a mani-
fold can be separated. The proof of Theorem 6.2 now follows from Lemma 6.3.

Remark. The property described in Theorem 6.2 leads to the following natural
question, which seems to be open. Find the necessary and sufficient conditions
for a complex manifold M to have the geometric property that any finite number
of points can be connected by an analytic curve on M.
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