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The Space of Doubly Periodic
Minimal Tori with Parallel Ends:

Standard Examples

M. Magdalena Rodríguez

1. Introduction

Scherk [10] presented in 1835 the first properly embedded minimal surface in R
3

that was invariant by two linearly independent translations; we will shorten by say-
ing a doubly periodic minimal surface. (Unless explicitly mentioned, all surfaces
in this paper are presumed to be connected and orientable.) This surface is known
as Scherk’s first surface, and it fits naturally into a 1-parameter family F = {Fθ}θ
of examples known as doubly periodic Scherk minimal surfaces. In the quotient
by its more refined period lattice (i.e., the period lattice generated by its shortest
period vectors), eachFθ has genus 0 and four asymptotically flat annular ends: two
top and two bottom ones, provided that the period lattice is horizontal. This kind
of annular end is called a Scherk-type end. The parameter θ in this family F is the
angle between top and bottom ends of Fθ . We can clearly consider the quotient of
these Fθ by a less refined period lattice to have two top and 2k bottom ends for any
natural k, keeping genus 0 in the quotient. Lazard-Holly and Meeks [5] proved that
these are the only possible examples in this setting; that is, if the quotient of a dou-
bly periodic minimal surfaceM ⊂ R

3 has genus 0, thenM must be a doubly peri-
odic Scherk minimal surface up to translations, rotations, and homotheties. More-
over, the angle map θ : F → (0,π) is a diffeomorphism. Hence the moduli space
of properly embedded minimal surfaces with genus 0 in T×R, T a flat torus, is dif-
feomorphic to (0,π) after identifying by rotations, translations, and homotheties.

In 1988, Karcher [3] defined another 1-parameter family of doubly periodic min-
imal surfaces, called toroidal half-plane layers, with genus 1 and four Scherk-type
parallel ends in its smallest fundamental domain (these examples will be denoted
as Mθ,0,0 in Section 2). Furthermore, he exposed two distinct 1-parameter defor-
mations of each toroidal half-plane layer and so obtained other doubly periodic
minimal tori with parallel ends (denoted as Mθ,α,0 and Mθ,0,β , with β < θ, in
Section 2). We generalize these Karcher’s examples in Section 2 by obtaining a
3-parameter family.

Theorem 1. There exists a 3-parameter family K = {Mθ,α,β}θ,α,β of properly
embedded doubly periodic minimal surfaces with genus 1 and four parallel ends
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in the quotient by their more refined period lattices. This family K can be en-
dowed with a natural structure of a real-analytic 3-dimensional manifold with the
topology of the uniform convergence on compact sets. Furthermore, the following
statements hold.

1. The isometry group of any surface Mθ,α,β ∈ K is isomorphic to (Z/2Z)2,
(Z/2Z)3, or (Z/2Z)4, depending on the values of α and β, and it contains
an orientation-reversing involution without fixed points producing a quotient
Klein bottle with two parallel ends.

2. K is self-conjugate in the sense that the conjugate surface of any example in K
also belongs to K. (Two minimal surfaces M1,M2 ⊂ R

3 are conjugate if the
coordinate functions ofM2 are harmonic conjugate to the coordinate functions
ofM1.)

3. The possible limits of surfaces in K are the catenoid, the helicoid, any singly
or doubly periodic Scherk minimal surface, any Riemann minimal example, or
another surface in K.

We refer to the examplesMθ,α,β in K as standard examples. It is clear that we can
consider quotients of the standard examples by less refined period lattices to have
4k ends for any natural k, keeping genus 1. Pérez, Rodríguez, and Traizet [9] have
proved that these are the only possible examples in this setting.

Theorem 2 [9]. If M ⊂ R
3 is a doubly periodic minimal surface with parallel

ends and genus 1 in the quotient, then M must be a standard example in K up to
translations, rotations, and homotheties.

Meeks and Rosenberg [7] developed a general theory for doubly periodic minimal
surfaces having finite topology in the quotient. They used an approach of mini-
max type to prove the existence of new minimal examples with parallel ends and
genus 1 in the quotient, besides those given by Karcher. After studying in detail
the surfaces in K, the uniqueness Theorem 2 assures that Meeks and Rosenberg’s
examples are nothing but Mθ,0,β for β < θ. Thus at least two of the most sym-
metric 1-parameter families in K were known by Karcher [3; 4] and by Meeks and
Rosenberg [7] (although our approach here is different from theirs). For this rea-
son, the surfaces in K also appear sometimes in the literature as KMR examples.

We will construct all standard examples as branched coverings of the sphere S
2

by their Gauss maps. The spherical configuration of a standard example, defined
as the position in S

2 of the branch values of its Gauss map, allows us to read all
the information concerning the minimal surface; see Section 2. Besides giving a
unified method to produce all standard examples and studying their geometry, our
motivation for writing this paper was to study the topology of K.

Theorem 3. The space K of properly embedded minimal surfaces with genus 1
and parallel ends in T × R, T a 2-dimensional flat torus, is diffeomorphic to R ×
(R2 − {(±1, 0)}).
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The proof of Theorem 3 is inspired by the arguments of Pérez, Rodríguez, and
Traizet [9] to prove Theorem 2 (they follow the ideas of Meeks, Pérez, and Ros
[6]). We model the family K of standard examples as an analytic subset in a
complex manifold W of finite dimension (roughly, W consists of all admissible
Weierstrass data for our problem). In the boundary of K in W, we can find the
1-parameter family S of singly periodic Scherk minimal surfaces [3; 10]. We con-
sider the classifying map C : K̃ → � = R

+ × S
1 × R, defined on K̃ = K ∪ S,

which associates to each surface in K̃ two geometric invariants: its period at the
ends and its flux along a nontrivial homology class with vanishing period vector.
Theorem 3 is a simple consequence of the following statements.

1. C : K̃ →� is a proper map.
2. C : K̃ →� is a local diffeomorphism.
3. There exists x ∈� such that C−1(x) consists of only one surface in K̃.
4. C(S ) is a proper, divergent curve in �.

The paper is organized as follows. In Section 2 we study the family K of stan-
dard examples. Section 3 is devoted to introducing the space W of admissible
Weierstrass data and the classifying map C that we use as a tool to demonstrate
Theorem 3; we also prove thatC is a proper map. The goal of Section 4 is to prove
the second statement above (i.e., that C is a local diffeomorphism). Finally, The-
orem 3 is proved in Section 5.

I sincerely want to thank Joaquín Pérez for his invaluable help along these years
and for leading me through this work.

2. Standard Examples (Proof of Theorem 1)

We dedicate this section to introducing the 3-parameter family K of standard ex-
amples appearing in Theorem 1, to which the uniqueness Theorem 2 applies. First,
let us point out some general facts. Let M̃ ⊂ R

3 be a doubly periodic minimal
surface with period lattice P. Such M̃ induces a properly embedded minimal sur-
face M = M̃/P in the complete flat 3-manifold R

3/P = T × R, where T is a
2-dimensional flat torus. Conversely, ifM ⊂ T×R is a properly embedded nonflat
minimal surface, then its lift M̃ ⊂ R

3 is a connected doubly periodic minimal sur-
face by the strong half-space theorem of Hoffman and Meeks [2]. Assume that the
topology ofM is a finitely punctured torus and that its ends are parallel. Then, by
Meeks and Rosenberg [7],M must have finite total curvature and 4k Scherk-type
ends for some natural k. Hence M is conformally equivalent to a torus M minus
4k punctures. If we consider P to be the more refined period lattice of M̃, then
Theorem 2 implies that k = 1.

SinceM has finite total curvature, its Gauss map g extends meromorphically to
M. After a rotation so that the ends ofM are horizontal, g takes values 0, ∞ at the
punctures, and the third coordinate function h (which is not well-defined on M)
defines a univalent holomorphic 1-form dh on M, which we will call the height
differential. Meeks and Rosenberg [7] proved that one of the two meromorphic
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differentials g dh, dh
g

has a simple pole at each puncture. Since dh has no zeros
on M (it has no poles), we conclude that g is unbranched at the ends and has de-
gree 2. The Riemann–Hurwitz formula implies that the total branching number of
g is 4.

Any standard example will be given in terms of the branch values of its Gauss
map, which will consist of two pairs of antipodal points D,D ′,D ′′,D ′′′ in the
sphere S

2. We label those points so that D ′′ = −D and D ′′′ = −D ′. Because the
Gauss map is unbranched at the ends (which are horizontal), we require that these
branch values be different from the North and South Poles. We denote by e ⊂
S

2 the equator that contains D,D ′,D ′′,D ′′′ and by P ∈ e the point that bisects
the angle 2θ between D and D ′, θ ∈ (

0, π2
)
. By a spherical configuration we will

mean any set {D,D ′,D ′′,D ′′′ } as just described.

2.1. Toroidal Half-Plane LayersMθ,0,0

With the foregoing notation, given θ ∈ (
0, π2

)
we set the equator e to be the inverse

image of the imaginary axis iR̄ ⊂ C̄ through the stereographic projection from the
North Pole, and we set P = (0, 0,1); see Figure 1 left. After stereographic projec-
tion we have D = −λi, with λ = λ(θ) = cot θ2 , and the remaining branch values
of the Gauss map of the example Mθ,0,0 we are constructing are the four roots of
the polynomial (z2 + λ2)(z2 + λ−2). Thus the underlying conformal compactifi-
cation of the potential surfaceMθ,0,0 is the rectangular torus

�θ = {(z,w)∈ C̄
2 | w2 = (z2 + λ2)(z2 + λ−2)}.

The degree-2 extended Gauss map of Mθ,0,0 is g(z,w) = z, the punctures corre-
spond to (0, ±1), (∞, ±∞) ∈ �θ , and the height differential must be dh = µ

dz

w

for certain µ = µ(θ)∈ C
∗.

We consider µ ∈ R
∗. Then the set {(z,w) | |z| = 1} corresponds on Mθ,0,0 to

two closed horizontal geodesics that are the fixed point set of reflection symmetries
S3 in two horizontal planes (the reflections in both planes induce the same isom-
etry S3 of the quotient surface); the set {(z,w) | z ∈ R} corresponds on Mθ,0,0 to

Figure 1 Left: Spherical configuration of Mθ,0,0 Center: The biholomorphism ξ

between the shaded regions Right: The conformal torus �θ , where Fix(·) denotes
fixed point set
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four geodesics traveling from a zero to a pole of the Gauss map g that are the fixed
point set of a reflection symmetry S2 across two planes orthogonal to the x2-axis;
and the set {(it,w) | t ∈ R, λ−1 ≤ |t | ≤ λ} corresponds to two geodesics that are
the fixed point set of a reflection symmetry S1 in a vertical plane orthogonal to the
x1-axis. These last two geodesics cut orthogonally four straight lines, parallel to
the x1-axis and contained in Mθ,0,0, that correspond to the set {(it,w) | |t | ≤ λ−1

or |t | ≥ λ}. We will denote by RD the π -rotation around any such straight line
(see Figure 4 left).

We now construct a different model of �θ : as a quotient of the ξ -plane C over
a rectangular lattice. Let  ⊂ �θ be one of the two components of g−1

({|z| > 1,
−π

2 < arg(z) < 0
})
. Here  is topologically a disk, and its boundary contains

the branch point corresponding to the branch value D of g and one of the ends
corresponding to a pole of g. Let R be an open rectangle in the ξ -plane of con-
secutive vertices A,B,C,D ∈ C, with the segment AB horizontal, such that there
exists a biholomorphism ξ :

{|z| > 1, −π

2 < arg(z) < 0
} → R with boundary

values ξ(∞) = A, ξ(1) = B, ξ(−i) = C, and ξ(−λi) = D. Then the compo-
sition of g with ξ defines a biholomorphism between  and R. After symmetric
extension of this biholomorphism across the boundary curves, we will get a biholo-
morphism from�θ to the quotient of the ξ -plane modulo the translations given by
four times the sides of the rectangle R.We abuse notation by usingD,D ′,D ′′,D ′′′
to label also the points of the ξ -plane that correspond to the branch values of g.

The deck transformation (z,w)
D�→ (z, −w) of �θ corresponds in the ξ -plane to

the π -rotation about the branch points of g. It will be also useful to see �θ as a
branched 2 : 1 covering of C̄ through the map (z,w) �→ z—that is, two copies
C̄1, C̄2 of C̄ glued along common cuts from D to D ′ and from D ′′ to D ′′′, both
contained in the imaginary axis.

In the ξ -plane model of�θ : S3 corresponds to the reflection across the line pass-
ing through B,C (or across its parallel line after translation by half a horizontal
period—see Figure 1 right); S2 is the reflection across the line passing through
A,B (or across its parallel line after translation by half a vertical period); S1 is
the reflection across the line passing throughD,D ′′′ (or throughD ′,D ′′); and RD
is the reflection across the line passing through D,D ′ (or through D ′′,D ′′′). It is
easy to see that Iso(Mθ,0,0) coincides with the group of conformal transformations
of the underlying conformal torus �θ , which is isomorphic to (Z/2Z)4 with gen-
erators S1, S2 , S3,RD.

Remark 1. All surfaces Mθ,α,β ∈ K to be defined will have the same conformal
compactification�θ asMθ,0,0. So from now on the sixteen elements in Iso(Mθ,0,0)

generated byS1, S2 , S3,RD will be seen as conformal transformations of�θ. Those
that leave invariant the distribution of zeros and poles of the Gauss map ofMθ,α,β

will be precisely the isometries of this last surface.

Concerning the period problem forMθ,0,0, let γ1, γ2 be the simple closed curves in
�θ obtained as quotients of the horizontal and vertical lines in the ξ -plane passing
throughD,D ′′′ and throughC,B respectively (see Figure 1 right). Clearly {γ1, γ2}
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is a basis ofH1(�θ , Z). We normalize so that
∫
γ 2
dh = 2πi, which determines dh

or (equivalently) the value of µ:

µ = µ(θ) = π csc θ

K(sin2 θ)
, (1)

where

K(m) =
∫ π/2

0

1√
1 −m sin2 u

du, 0 < m < 1,

is the complete elliptic integral of the first kind. With this choice of µ, the period
and flux vectors ofMθ,0,0 along a small loop γA around the end A = (∞, +∞)∈
�θ ofMθ,0,0 are respectively

PγA = (0,πµ, 0) and FγA = (πµ, 0, 0). (2)

The remaining ends ofMθ,0,0 are

A′ = (S1 � S2 � S3)(A), A′′ = D(A) = (S1 � RD)(A), A′′′ = D(A′)

(see Figure 1 right). From the behavior of the Weierstrass form ( = ( 1
2

( 1
g

− g),
i

2

( 1
g

+ g),1
)
dh under pullback by S1, S2 , S3,RD , one obtains that

ResA( = −ResA′ ( = −ResA′′ ( = ResA′′′ (, (3)

where ResX denotes the residue at the point X ∈�θ. Note that (2) and (3) deter-
mine completely the periods and fluxes at A′,A′′,A′′′:

PγA = PγA′ = −PγA′′ = −PγA′′′ , FγA = −FγA′ = −FγA′′ = FγA′′′ . (4)

Similar arguments imply that the periods and fluxes along the homology basis
are

Pγ1 = (0, 0, f1), Fγ1 = −FγA = (−πµ, 0, 0),

Pγ 2 = (0, 0, 0), Fγ 2 = (0, 0, 2π),
(5)

where

f1 = f1(θ) = −4µ
∫ λ

1

dt√
(t 2 − λ−2)(λ2 − t 2) < 0. (6)

From equations (2), (4), and (5) we conclude that Mθ,0,0 is a complete immersed
minimal surface invariant by the rank-2 lattice generated by PγA,Pγ1 . Moreover,
Mθ,0,0 has genus 1 and four horizontal Scherk-type ends in the quotient, and it can
be decomposed into 16 congruent disjoint pieces. Karcher [3] proved that each of
these pieces is the conjugate surface of certain Jenkins–Serrin graph defined on a
convex domain. In particular,Mθ,0,0 is embedded.

Next we study the limit surfaces of the examples in the family
{
Mθ,0,0 | θ ∈(

0, π2
)}
. When θ goes to 0, the function λ(θ) diverges to +∞. After changing

variables (z,w) ∈ �θ for (z,w1) with w1λ(θ) = w, it is easy to see that �θ de-
generates as θ → 0+ into two spheres {(z,w1) | w2

1 = z2}. The limiting Gauss
map ofMθ,0,0 as θ → 0+ is g(z,w1) = z, and the height differential dh ofMθ,0,0

converges smoothly to dz

w1
= ± dz

z
. Hence, when θ → 0+, the exampleMθ,0,0 con-

verges smoothly to two vertical catenoids with flux (0, 0, 2π); see Figure 2 left.
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Figure 2 Mθ,0,0 for θ = π

50 (left) and for θ = 24π
50 (right)

If θ → (
π

2

)−
, then λ(θ) → 1 and �θ degenerates into two spheres {(z,w) |

w2 = (z2 + 1)2}. In this case, the limiting Gauss map is g(z,w) = z and the
height differential collapses to zero because the limit of µ(θ) when θ → (

π

2

)−

vanishes. After scaling, it holds that 1
µ(θ)
dh → ± dz

z2+1
as θ → (

π

2

)−
. Therefore,

after blowing up,Mθ,0,0 converges smoothly as θ → (
π

2

)−
to two doubly periodic

Scherk minimal surfaces with two horizontal and two vertical ends (see Figure 2
right).

2.2. The ExamplesMθ,α,β

Given θ ∈ (
0, π2

)
, α ∈ [

0, π2
]
, and β ∈ [

0, π2
]

with (α,β) �= (0, θ), we consider the
equator e to be the rotated image of the imaginary axis in the sphere by angle α
around the x2-axis. If we denote by Q the rotated point by angle α around the
x2-axis of the North Pole, then our new point P will be the rotation ofQ by angle
β along e; see Figure 3 left. Note that if (α,β) = (0, θ) thenD ′ coincides with the
North Pole, which is not allowed in this setting. Also note that the spherical con-
figuration {D,D ′,D ′′,D ′′′ } associated to θ,α,β is nothing but the rotated image of
that of Mθ,0,0 by the Möbius transformation φ corresponding to the composition
of the rotation of angle β around the x1-axis with the rotation of angle α around
the x2-axis. Consequently, we define the Gauss map g = gθ,α,β of the standard
exampleMθ,α,β we want to construct as g = φ � gθ,0,0; that is,

g(z,w) = σz+ δ
i(σ̄ − δ̄z)

Figure 3 Left: Spherical configuration ofMθ,α,β Right: The ξ -plane model of �θ ,
where the dotted line represents the isometry F and where α ∈ (

0, π2
)
, β ∈ [

0, π2
]
, and

0 < β1 < θ < β2 <
π

2
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for (z,w)∈�θ , whereσ = cos
( α+β

2

)+ i cos
( α−β

2

)
and δ = sin

( α−β
2

)+ i sin
( α+β

2

)
.

Since g depends analytically on α,β, the same holds for its zeros and poles. We
will denote by {A,A′,A′′,A′′′ } = g−1({0, ∞}) the ends of Mθ,α,β , understanding
that each zero or pole of g is defined by analytical continuation of the correspond-
ing zero or pole of gθ,0,0. Choosing the same homology class [γ2 ] ∈H1(�θ , Z) as
in Section 2.1, we obtain that the height differential of Mθ,α,β is dh = µ

dz

w
, with

µ = µ(θ) as in (1). Thus, the Weierstrass data of Mθ,α,β coincides with those of
Mθ,0,0 when α = β = 0.

The group Iso(Mθ,α,β) of isometries of the induced metric by (g, dh) always
contains the deck transformation D = S1 � RD (we follow the notation in Sec-
tion 2.1; see Remark 1). Furthermore, the antipodal map in S

2 leaves invariant the
spherical configuration of Mθ,α,β , so Iso(Mθ,α,β) also contains two antiholomor-
phic involutions without fixed points, E and F = E � D. It is straightforward to
check that we can label E = S1 � S2 � S3 and hence F = RD � S2 � S3. This infor-
mation is enough to solve the period problem forMθ,α,β.

The period and flux vectors ofMθ,α,β at the end A are given by

PγA = πµ sin θ(iE(θ,α,β), 0) and FγA = πµ sin θ(E(θ,α,β), 0), (7)

where we have used the identification of R
3 with C × R by (a, b, c) ≡ (a+ ib, c),

and
E(θ,α,β) = 1√

sin2 θ cos2 α + (sinα cosβ − i sinβ)2
.

The periods and fluxes at the remaining ends A′ = E(A), A′′ = D(A), and A′′′ =
F(A) can be obtained from the equations in (4), which are still valid.

We choose the homology classes [γ1], [γ2 ] ∈H1(�θ , Z) as in Section 2.1
(
note

that we can even take the same curve representatives γ1, γ2 as in the case α = β =
0 except when α = π

2 or β = π

2

)
. In particular, the third coordinate (Pγ1)3 of

the period of Mθ,α,0 along γ1 equals f1, given by (6), so PγA and Pγ1 are linearly
independent. Also,

E ∗( = −(̄, E∗γ1 = −γ1 − γA − γA′′′ , E∗γ2 = γ2 , (8)

where ( denotes the Weierstrass form forMθ,α,β. Equalities in (8) and (3) imply

that
∫
γ1
( = ∫

γ1
(+ ∫

γA
(− ∫

γA
( and

∫
γ 2
( = −∫

γ 2
(, from which we deduce

Fγ1 = −FγA and Pγ 2 = (0, 0, 0). (9)

All of these facts imply thatMθ,α,β is a complete immersed minimal torus invari-
ant by the rank-2 lattice generated by PγA,Pγ1, which has four horizontal Scherk-
type ends in the quotient. Since Mθ,0,0 is embedded and since the heights of the
ends of Mθ,α,β depend continuously on (α,β), which are in the connected set[
0, π2

]2 − {(0, θ)}, we deduce thatMθ,α,β is embedded outside a fixed compact set.
This fact together with a standard application of the maximum principle ensures
thatMθ,α,β is embedded for all values of θ,α,β.

We next discuss what constitutes the list of isometries of Mθ,α,β for different
values of θ,α,β. As mentioned previously, Iso(Mθ,α,β) always contains the sub-
group {identity, D, E , F }, which is isomorphic to (Z/2Z)2 with generators D, F.
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The deck transformation D represents in R
3 a central symmetry about any of the

four branch points of g, and F consists of a translation by 1
2 (PγA + Pγ1). In par-

ticular, the ends of Mθ,α,β are equally spaced. If 0 < β < π

2 and 0 < α < π

2 ,
then the puncture A = A(α,β) lies on the open rectangle R̃ = S2(R); see Fig-
ure 3 right. By Remark 1, Iso(Mθ,α,β) does not contain either S1, S2 , S3, orRD for
these values of θ,α,β and so Iso(Mθ,α,β) = {identity, D, E , F }. Thus it remains
to study the special cases α ∈ {

0, π2
}

and β ∈ {
0, π2

}
. We proceed in six steps as

follows.
1. The case α = β = 0 was studied in Section 2.1.
2. Suppose that α = 0 and that 0 < β < π

2 for β �= θ. In the ξ -plane model of
�θ , the punctureAmoves vertically from its original position at the upper left cor-
ner of R̃ when β = 0 downward until collapsing for β = θ with the branch point
D ′. Next it goes on moving horizontally to the right until reaching the lower right
corner of R̃ for β = π

2 (see Figure 3 right). The group of isometries Iso(Mθ,0,β)

is isomorphic to (Z/2Z)3 with generators S1, RD , and R1 = S2 � S3. Here S1 rep-
resents in R

3 (as in Section 2.1) a reflection symmetry across a plane orthogonal
to the x1-axis, and R1 corresponds to a π -rotation in R

3 around a line parallel to
the x1-axis that cuts the surface orthogonally. When 0 < β < θ

(
resp. θ < β <

π

2

)
, Mθ,0,β contains four (resp. two) straight lines parallel to the x1-axis; see Fig-

ure 4 right (resp. Figure 5 left). In both cases, RD is the π -rotation around any
such line.

3. In the case where α = 0 and β = π

2 , the punctureA coincides with the lower
right corner of R̃ , and Iso(Mθ,0,π/2) = Iso(Mθ,0,0). The isometry S1 represents in
R

3 a reflection symmetry across a plane orthogonal to the x1-axis. In this case, S3

Figure 4 Left:Mθ,0,0 for θ = π

4 Right:Mθ,0,β for θ = π

4 and β = π

8

Figure 5 Left:Mθ,0,β for θ = π

4 and β = 3π
8 Right:Mθ,0,β for θ = π

4 and β = π

2
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(resp. S2) represents in R
3 a π -rotation around one of the four (resp. two) straight

lines parallel to the x2-axis (resp. x3-axis) contained on Mθ,0,π/2; see Figure 5
right.

4. If 0 < α < π

2 and β = π

2 then S3 is an isometry of (g, dh), since A moves
from the lower right corner of R̃ to its upper right corner as α varies from 0 to
π

2 . And Iso(Mθ,α,π/2) is isomorphic to (Z/2Z)3 with generators S3, D, and R3 =
S1 � S2. Now S3 represents in R

3 a π -rotation around any of the four straight lines
parallel to the x2-axis contained on Mθ,α,π/2 , and R3 is the composition of a re-
flection symmetry across a plane orthogonal to the x2-axis with a translation by
half a horizontal period; see Figure 6.

Figure 6 The standard exampleMθ,α,β for θ = α = π

4 and β = π

2

5. Suppose now that 0 < α < π

2 and β = 0. Then the puncture A moves hori-
zontally to the right running along the upper boundary side of R̃. Thus Iso(Mθ,α,0)

is isomorphic to (Z/2Z)3, with generators S2 , D, andR2 = S1 �S3. As in the case
ofMθ,0,0, here S2 represents in space a reflection symmetry across two planes or-
thogonal to the x2-axis, and R2 is a π -rotation around a line parallel to the x2-axis
that cutsMθ,α,0 orthogonally; see Figure 7 left.

6. If α = π

2 , then Mθ,π/2,β is nothing but the rotated image of Mθ,π/2,0 by
angle β around the x3-axis. Hence we reduce the study to β = 0. Now A lies on
the upper right corner of R̃ , so all S1, S2 , S3,RD leave invariant the distribution of
zeros and poles of the Gauss map ofMθ,π/2,β , and Iso(Mθ,π/2,β) = Iso(Mθ,0,0). In

Figure 7 Left: Mθ,α,0 for θ = α = π

4 Right: Mθ,α,0 for θ = π

4 and α = π

2
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this case S2 represents a reflection symmetry across two planes orthogonal to the
x2-axis, S3 (resp. S1) represents in R

3 a π -rotation around one of the four (resp.
two) straight lines parallel to the x1-axis (resp. x3-axis) contained onMθ,π/2,0, and
RD corresponds to a reflection symmetry across two horizontal planes; see Fig-
ure 7 right.

Next let us show a uniqueness result used in the proof of Theorem 3 (Section 5).

Lemma 1. With notation as before, Fγ 2 = (0, 0, 2π) if and only if α = β = 0.

Proof. From (5) we know that Fγ 2 = (0, 0, 2π) when α = β = 0. Now suppose
that Fγ 2 = (0, 0, 2π) and let us conclude that both α and β vanish.

If β = π

2 , thenR3 is an isometry ofMθ,α,β and we have γ2 −(R3)∗γ2 = γA′ −γA
and R∗

3( = (φ1, −φ2 ,φ3). Moreover, we obtain from (4) and (7) that PγA = PγA′

and −FγA = FγA′ = (0,πa, 0), with a = (µ sin θ)
/√

1 − sin2 θ cos2 α > 0. Thus∫
γ 2

( =
∫
γ 2

(φ1, −φ2 ,φ3)+ 2i(0,πa, 0),

and the second component of Fγ 2 equals πa �= 0, which is not possible. There-
fore, β �= π

2 . SinceMθ,π/2,β differs fromMθ,π/2,π/2 in a rotation about the x3-axis,
we also have α �= π

2 . That is, α,β ∈ [
0, π2

)
, and we can choose for every α,β

the same curve representative γ2 as in the case α = β = 0 (i.e., γ2 = {z ∈ C̄1 |
|z| = 1}).

Since Pγ 2 = (0, 0, 0), it follows that Fγ 2 = (
i
∫
γ 2
g dh, 2π

) ∈ C × R and

0 =
∫
γ 2

g dh = −2µ
∫ π

−π
cosβ sin t + i(sinα sinβ sin t − cosα cos t)

|σ − δe−it|2
√
λ2 + λ−2 + 2 cos(2t)

dt. (10)

Therefore, we deduce from �( ∫
γ 2
g dh

) = 0 that
∫ π

0

(
1

|σ − δe−it|2 − 1

|σ − δeit|2
)

sin t√
λ2 + λ−2 + 2 cos(2t)

dt

= 4 sinβ
∫ π

0

sin2 t

|σ − δe−it|2|σ − δeit|2
√
λ2 + λ−2 + 2 cos(2t)

dt = 0.

The only possibility is then β = 0, and equation (10) reduces to

2µi cosα
∫ π

−π
cos t

|σ − δe−it|2
√
λ2 + λ−2 + 2 cos(2t)

dt = 0.

This is equivalent to∫ π

0

(
1

|σ − δe−it|2 + 1

|σ − δeit|2
)

cos t√
λ2 + λ−2 + 2 cos(2t)

dt

= 2 sinα
∫ π/2

0

(
1

|σ−δe−it |2|σ+δe it |2 + 1

|σ−δe it |2|σ+δe−it |2
)

cos t√
λ2 + λ−2 + 2 cos(2t)

dt = 0,

which is satisfied only for α = 0. Hence α = β = 0, as we wanted to prove.
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We finalize this section by listing the possible degenerate limits of the standard
examples Mθ,α,β , all of which can be directly computed by using the Weierstrass
data.

• If (θ,β) → (θ0, θ0) for some θ0 ∈ (
0, π2

)
, then Mθ,0,β converges smoothly to a

Riemann minimal example.
• If θ → 0+ and (α,β) → (0, 0), then Mθ,α,β converges smoothly to two

catenoids with flux (0, 0, 2π); see Figure 2 left.
• If θ → 0+ and (α,β) → (α0,β0) �= (0, 0), thenMθ,α,β converges smoothly to

two copies of the singly periodic Scherk minimal surfaces with four ends, two
of them horizontal, and with angle arccos(cosα0 cosβ0); see Figure 8. (Here
the angle of any singly or doubly periodic Scherk minimal surface is the angle
between its nonparallel ends.)

Figure 8 Rotated image ofMθ,0,β (left) and two copies of the half of such a rotated
Mθ,0,β (right) for θ = π

200 and β = 9π
20

Figure 9 Mθ,0,β for θ = 19π
40 and β = π

2

• If θ → (
π

2

)−
and (α,β) → (

0, π2
)
, thenMθ,α,β converges smoothly (after blow-

ing up) to two vertical helicoids spinning oppositely; see Figure 9.
• If θ → (

π

2

)−
and (α,β) → (α0,β0) �= (

0, π2
)
, thenMθ,α,β converges smoothly

(after blowing up) to two copies of the doubly periodic Scherk minimal surfaces
with four ends, two of them horizontal, and with angle arccos(cosα0 sinβ0);
see Figure 2 right.

Remark 2. We have defined the 3-parametric family {Mθ,α,β | (θ,α,β)∈ I1} of
doubly periodic minimal surfaces with

I1 = {
(θ,α,β)∈ (

0, π2
) × [

0, π2
]2 | (α,β) �= (0, θ)

}
,
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and in this range of parameters the end A = A(θ,α,β) runs entirely along the
closure of R̃ except for its lower left corner D ′. We can identify R̃ conformally
through the z-map with an octant of S

2. It is easy to extend the range of parame-
ters so thatA runs entirely along the sphere minus the branch values of the z-map,
which can be achieved by varying (θ,α,β) in

I2 = {
(θ,α,β)∈ (

0, π2
) × [−π

2 , π2
] × [−π,π] | (α,β) �= (0,±θ), (0,±(π − θ))}.

We can define Mθ,α,β for (θ,α,β) ∈ I2 similarly as for (θ,α,β) ∈ I1, yet it is
straightforward to check that—up to translations, rotations, and homotheties—the
following statements hold.

• Mθ,−π/2,β coincides withMθ,π/2,β , which does not depend on β.
• Mθ,−α,0 is the reflected image ofMθ,α,β with respect to a plane that is orthogonal

to the x1-axis.
• Mθ,α,β±π coincides withMθ,α,β.

• Mθ,0,−β is the reflected image ofMθ,α,β with respect to a plane that is orthogonal
to the x2-axis.

Therefore, we define the family of standard examples as K = {Mθ,α,β | (θ,α,β)∈
I }, where

I = {
(θ,α,β)∈ (

0, π2
) × (−π

2 , π2
) × [0,π) | (α,β) �= (0, θ), (0,π − θ)}

∪ {(
θ, π2 , 0

) | θ ∈ (
0, π2

)}
. (11)

We choose this space of parameters to avoid repeating surfaces twice; see Re-
mark 2.

Remark 3. By construction, the branch values of the Gauss mapN ofMθ,α,β are
contained in a spherical equator of S

2, so a consequence of [8, Thm. 14] assures
that the space of bounded Jacobi functions on M coincides with the space of lin-
ear functions ofN, {〈N,V 〉 | V ∈ R

3} (in particular, such space is 3-dimensional).
In the literature, this condition is usually referred to as the nondegeneracy of
Mθ,α,β , which can be interpreted by means of an implicit function theorem argu-
ment to obtain that K is a 3-dimensional real analytic manifold (see Hauswirth
and Traizet [1]).

2.3. The Space of Standard Examples Is Self-Conjugate

In the previous section we defined the family K = {Mθ,α,β | (θ,α,β) ∈ I } of
standard examples. GivenMθ,α,β ∈ K with Weierstrass data (g, dh), we letM ∗

θ,α,β

denote the conjugate surface ofMθ,α,β , with Weierstrass data (g, idh). Taking into
account that the flux vector (resp. the period vector) of the conjugate surface along
a given curve in the parameter domain equals the period vector (resp. the opposite
of the flux vector) of the original surface along the same curve, we deduce from
(4), (7), and (9) that M ∗

θ,α,β is a complete immersed torus invariant by the rank-2
lattice generated by the horizontal vector P ∗

γA = −FγA and P ∗
γ 2 = −Fγ 2 (whose

third coordinate is −2π) and that it has four horizontal Scherk-type ends in the
quotient. Moreover, M ∗

θ,α,β is embedded thanks to the maximum principle, since



116 M. Magdalena Rodríguez

the heights of its ends depend continuously on (α,β) and sinceM ∗
θ,0,0 is embedded

(it is composed of congruent blocks that are Jenkins–Serrin graphs).
Note that, by (9), the period vector of M ∗

θ,α,β along γ ∗
2 = γ1 + γA vanishes

and that the third component of the flux ofM ∗
θ,α,β along γ ∗

2 equals f1(θ) as given
by (6). The next lemma ensures that, after scaling and rotating the surfaces around
the x3-axis, the families K and K∗ = {M ∗

θ,α,β | (θ,α,β) ∈ I } coincide; this will
finish the proof of Theorem 1.

Lemma 2. Given (θ,α,β)∈ I1, the surfaceMπ/2−θ,α,β+π/2 coincides withM ∗
θ,α,β

up to normalizations.

Proof. It is easy to see that �π/2−θ = {(z̃, w̃) | w̃2 = (z̃2 − 1)2 + 4z̃2 sec2 θ}.
Since the Möbius transformation ϕ(z) = 1−iz

z−i takes the set of branch points of
the z-projection of �θ bijectively to the set of branch points of the z̃-projection of
�π/2−θ , it follows that 6(z,w) = (ϕ(z), w̃(ϕ(z))) is a biholomorphism between
�θ and �π/2−θ . On the other hand, it is straightforward to check that gθ,α,β =
gπ/2−θ,α,β−π/2 � 6, where the subindex indicates the parameters of the standard
example Mθ,α,β for which the corresponding gθ,α,β is the Gauss map. Denoting
by dhθ its height differential (recall that it depends only on θ), a direct computa-
tion gives

6∗dhπ/2−θ = −
µ

(
π

2 − θ)
µ(θ) tan θ

idhθ = −K(sin2 θ)

K(cos2 θ)
idhθ .

Hence Mπ/2−θ,α,β−π/2 = M ∗
θ,α,β up to normalizations. Since Mπ/2−θ,α,β−π/2 =

Mπ/2−θ,α,β+π/2 by Remark 2, the lemma is proved.

3. The Classifying Map

The surfaces in K can be naturally seen inside the 4-dimensional complex man-
ifold W consisting roughly of all admissible Weierstrass data in the setting of
Theorem 2.

Definition 1. We denote by W the space of tuples (M, g;p1,p2 , q1, q2 , [γ ]),
where g is a degree-2 meromorphic map defined on a torus M that is unbranched
at its zeros p1,p2 and at its poles q1, q2 and where [γ ] is a homology class in
M − {p1,p2 , q1, q2} that is not trivial in H1(M, Z).

See [9] for a detailed description of W. We will simply use g to denote the
elements in W and call them marked meromorphic maps. Each g = (M, g;
p1,p2 , q1, q2 , [γ ]) ∈ W determines a unique holomorphic differential φ = φ(g)

on M such that ∫
γ

φ = 2πi, (12)

since the complex space of holomorphic differentials on M has dimension 1. Thus
each g ∈ W can be seen as the Weierstrass data (g,φ), defined on g−1(C∗), of a
potential surface in the setting of Theorem 2. Equation (12) means that the period
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vector of (g,φ) along γ is horizontal and that its flux along γ has third coordi-
nate 2π.

Definition 2. We will say that g ∈ W closes periods when the following equa-
tions hold:∫

γ

φ

g
=

∫
γ

gφ and Resp1

φ

g
= −Resq1(gφ) = a for some a ∈ R

+. (13)

Note that the first equation in (13), together with (12), says that Pγ = (0, 0, 0) and
Fγ = (

i
∫
γ
gφ, 2π

) ∈ C × R. The next lemma justifies the preceding definition of
closing periods.

Lemma 3 [9]. If g ∈ W closes periods, then (g,φ) is the Weierstrass pair of a
properly immersed minimal surface M ⊂ T × R, for a certain flat torus T, with
total curvature 8π and four horizontal Scherk-type ends. Furthermore, the fluxes
at the ends pj , qj are equal to (−1)j+1(πa, 0, 0) for the positive real number a
appearing in (13) for j = 1, 2.

Next we describe how to see each standard example Mθ,α,β as an element of W
that closes periods. In a first step we rotate Mθ,α,β about the x3-axis so that the
period PγA at its end A (we follow the notation in Section 2) is (0,πa, 0) for cer-
tain a > 0. Now we associate toMθ,α,β the marked meromorphic map

(�θ , g;A′′′ = F(A), A′ = E(A), A,A′′ = D(A), [γ2 ]),

where everything has been already defined in Section 2.2 except the homology
class [γ2 ]. Recall that the endsA,A′,A′′,A′′′ depend continuously on α,β and that
we described explicitly the loop γ2 for α = β = 0. For the remaining values of
α,β, we take an embedded closed curve γ2 ⊂ �θ − {A,A′,A′′,A′′′ } depending
continuously on α,β such that [γ2 ] remains constant in H1(�θ , Z).

3.1. The Ligature Map

We define the ligature map to the holomorphic map L : W → C
4 given by

L(g) =
(

Resp1

φ

g
, Resq1(gφ),

∫
γ

φ

g
,
∫
γ

gφ

)
,

which clearly distinguishes when a marked meromorphic map closes periods:

A marked meromorphic map g ∈ W closes periods if and only if there
exist a ∈ R

+ and b ∈ C such that L(g) = (a, −a, b̄, b).

Since the residues of a meromorphic differential on a compact Riemann surface add
up to zero, if the second equation in (13) holds then Resp2

φ

g
= −Resq2(gφ) = −a.

Let S = {Sρ | ρ ∈ (0,π)} be the 1-dimensional moduli space of singly periodic
Scherk minimal surfaces with two horizontal ends, with the vertical part of the
flux at its two nonhorizontal ends equal to 2π and with period vector in the direc-
tion of the x2-axis. For each ρ ∈ (0,π), let Sρ ∈ S be the singly periodic Scherk
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Figure 10 The Riemann surface Mρ with nodes tan ρ

2 , −cot ρ2 and the embedded
closed curve γρ ⊂ C̄1

surface of angle ρ. The limiting normal vectors of Sρ at its nonhorizontal ends
project stereographically to tan ρ

2 and −cot ρ2 . Recall that we can obtain two copies
of Sρ by taking limits from standard examples (see Section 2.2). We identify Sρ
with the list (Mρ , g; 01, 02 , ∞1, ∞2 , [γρ]), where:

• Mρ is a Riemann surface with nodes constructed by gluing two copies C̄1, C̄2

of C̄ with nodes tan ρ

2 and −cot ρ2 (see Figure 10);
• g : Mρ → C̄ is the map that associates to each point in Mρ its complex value as

a point in C̄j , j = 1, 2 (in particular, the degree of g equals two);
• 0j , ∞j are respectively the zero and infinity in C̄j , j = 1, 2; and
• γρ ⊂ C1 is an embedded closed curve in the homology class [=1] + [=2 ], where
=1 (resp. =2) is a small loop in C̄1 around 01

(
resp. tan ρ

2

)
with the positive

orientation.

Given this identification, we can see S in ∂K ⊂ ∂W. From Lemma 6 and
Theorem 2 of [9], one deduces that W̃ = W ∪ S is a 4-dimensional complex
manifold where L extends holomorphically, and this extended ligature map is a
biholomorphism in a small neighborhood of S in W̃. A straightforward computa-
tion gives us

L(Sρ) = (
2 csc ρ, −2 csc ρ, −2πi tan ρ

2 , 2πi tan ρ

2

)
. (14)

3.2. The Classifying Map

In this section we study the topology of the space K, and the key ingredient for this
study will be the classifying map C that associates roughly to each marked stan-
dard surface its period at the ends and the horizontal component of its flux along
a nontrivial homology class with zero period vector.

Definition 3. Let K̃ = K ∪ S and define the classifying map C : K̃ → R
+ × C

byC(M) = (a, b), where a := Resp1
dh

g
and b := ∫

γ
g dh (henceFγ = (ib, 2π)∈

C × R), provided thatM = (M, g;p1,p2 , q1, q2 , [γ ]) and dh is the height differ-
ential ofM.
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Let M = (M, g;p1,p2 , q1, q2 , [γ ]) be a marked surface in K̃ and let C(M) =
(a, b). Denote by γX a small loop around X ∈ M, oriented positively. If M̃ =
(M, g;p1,p2 , q1, q2 , [γ̃ ])with [γ̃ ] = [γ ] +n([γp1 ] + [γq1 ])+m([γp2 ] + [γq2 ]),
thenC(M̃ ) = (a, b+2πa(n−m)); see Lemma 3. Since we want to avoid associ-
ating more than one different image to the same geometrical surface, it is necessary
to restrict

C : K̃ → � = {(a, b)∈ R
+ × C | 0 ≤ �(b) < 2πa} ≡ R

+ × S
1 × R.

Recall that K is a 3-dimensional real analytic manifold (see Remark 3). It is
clear from the foregoing definition that C|K is smooth. Also note that C is essen-
tially L|K̃. Since L extends as a biholomorphism in a small neighborhood of S
in W̃, it follows that K̃ can be endowed with a structure of a 3-dimensional real
analytic manifold and that C : K̃ → � is also smooth. Observe that C|K is not
proper, since S is contained in the boundary of K in W̃ but C(S ) ⊂ �. More pre-
cisely, by (14) we have

C(Sρ) = (
2 csc ρ, 2πi tan ρ

2

)
. (15)

Proposition 1. The classifying map C : K̃ → � is proper.

Proof. Take a sequence {Mn}n ⊂ K̃ such that {C(Mn) = (an, bn)}n converges to
some point (a, b) ∈�. We shall prove that a subsequence of {Mn}n converges to
a surface in K̃.

First suppose that, after passing to a subsequence, Mn ∈ K for every n, and let
(θn,αn,βn)∈ I (see (11)) be the angles that determine the spherical configuration
ofMn = Mθn,αn,βn . Extracting a subsequence, we can assume that (θn,αn,βn) →
(θ∞,α∞,β∞)∈

[
0, π2

]× [−π

2 , π2
]× [0,π]. By equation (7) we deduce that a(Mn)

equals the modulus of µ(θn) sin θnE(θn,αn,βn)∈ C. As a result:

• If θ∞ = π

2 , then a(Mn) → 0. These limits correspond, after blowing up, to two
vertical helicoids when α∞ = 0 and β = π

2 or else to two copies of a doubly
periodic Scherk minimal surface (see Section 2.2).

• If θ∞ �= π

2 but α∞ = 0 and β∞ ∈ {θ∞,π − θ∞}, then a(Mn) → ∞. These
limits correspond to the vertical catenoid when θ∞ = 0 or else to a Riemann
minimal example.

Therefore, the only possibilities are as follows.

• θ∞ = 0 and (α∞,β∞) /∈ {(0, 0), (0,π)}; then {Mn}n converges to two copies of
a singly periodic Scherk minimal surface.

• (θ∞,α∞,β∞)∈ I, so {Mn}n converges to the standard exampleMθ∞,α∞,β∞ ∈ K.
• α∞ = ±π

2 ; henceMn → Mθ∞,±π/2,β∞ = Mθ∞,π/2,0 (see Remark 2).
• β∞ = π; henceMn → Mθ∞,α∞,π = Mθ∞,α∞,0.

Hence {Mn}n admits a subsequence converging in K̃ (this can be also obtained by
arguing as in the proof of [9, Thm. 5]).

Thus it suffices to prove that C|S is proper, but this is clear by (15). This fact
completes the proof of Proposition 1.
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4. The Classifying Map Is a Local Diffeomorphism

Proposition 2. The classifying map C : K̃ → � is a local diffeomorphism.

Proof. The relationship between C and L|K̃ allows us to assure that C is a diffeo-

morphism in a small neighborhood of S in K̃. Thus it only remains to demonstrate
that C|K is a local diffeomorphism. Consider a standard example M ∈ K and
denote by M̃ its lifting to R

3. It suffices to check that if u : M̃ → R is a Jacobi
function that lies in the kernel of dCM , then u = 0.

We can write u = 〈
d

dt

∣∣
0M̃t ,N

〉
for certain variation {M̃t } ⊂ K of M̃t=0 = M̃.

Let Pt be the period lattice of M̃t ⊂ R
3, Mt = M̃t/Pt , and (at , bt ) = C(Mt) ∈

R
+ × C. Since u∈ ker(dCM), it follows that

d
dt

∣∣
t=0at = 0 and d

dt

∣∣
t=0bt = 0. (16)

By Lemma 2 and after normalizations, the conjugation map ∗ : K → K, which
associates to each standard example its conjugate surface, is a well-defined map.
Furthermore, ∗ is clearly differentiable because it is the restriction to K of the map
(g,φ) → (g, iφ) on the space of allowed Weierstrass data. Since clearly ∗ � ∗ =
identity, we may deduce that ∗ is a diffeomorphism. Hence it suffices to prove
that the tangent vector v defined as the image of u by the differential of ∗ vanishes
identically. Notice that v = 〈

d

dt

∣∣
t=0M̃

∗
t ,N

〉
, where M̃ ∗

t is the conjugate surface of

M̃t . In particular, v is a Jacobi function on M̃ ∗, which is moreover bounded be-
cause all the M̃ ∗

t have horizontal ends.
First suppose that v is a bounded Jacobi function on the quotientM ∗ of M̃ ∗ by

its period lattice. By Remark 3 we know that v is of the kind v = 〈N,V 〉 for some
V ∈ R

3. Theorem 3 in [8] assures that there exists a unique elementXv of the space
of complete branched minimal immersions into R

3 (including the constant maps)
with finite total curvature and planar ends whose extended Gauss map is N and
such that 〈Xv ,N〉 = v. ThusXv is constantlyV, and v corresponds to a translation
of M̃ ∗ in R

3. Because we are considering the surfaces in K up to translations, it fol-
lows that v = 0. Hence we have only to prove that v descends to the quotientM ∗.

Recall that the flux of M̃t at its ends is (up to sign) Ht = (πat , 0, 0) and that
its flux along the homology class in the last component (viewed as a marked stan-
dard example) is Tt = (ibt , 2π) ∈ C × R ≡ R

3. Therefore, the period lattice
of M̃ ∗

t (before normalization) is generated by Ht and Tt . We parameterize M̃ ∗
t

by ψ∗
t : M̃ → M̃ ∗

t and we denote by S1,t , S2,t : M̃ → M̃ the diffeomorphisms in-
duced by Ht , Tt—that is, those satisfying

ψ∗
t � S1,t = ψ∗

t +Ht and ψ∗
t � S2,t = ψ∗

t + Tt . (17)

By (16), d
dt

∣∣
t=0Ht = d

dt

∣∣
t=0Tt = �0. Therefore,

v � S1,0 = 〈
d

dt

∣∣
t=0ψ

∗
t ,N

〉 � S1,0 = 〈
d

dt

∣∣
t=0(ψ

∗
t � S1,t ),N

〉
(17)= 〈

d

dt

∣∣
t=0ψ

∗
t ,N

〉 + 〈
d

dt

∣∣
t=0Ht ,N

〉 = v.
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Analogously, v � S2,0 = v. Thus v descends to the quotient and Proposition 2 is
proved.

5. The Topology of K (Proof of Theorem 3)

By Propositions 1 and 2, C : K̃ → � is a proper local diffeomorphism and so is
a finite sheeted covering map. We deduce from Lemma 1, Remark 2, and equa-
tion (15) that the only surfaces M ∈ K̃ with C(M) = (a, 0), for some a > 0, are
the standard examples Mθ,0,0. Since a(Mθ,0,0) = µ(θ) is a strictly decreasing
function in θ, the number of sheets of the covering map C is one; hence it is a dif-
feomorphism. Moreover, the set C(S ) consists of the proper arc ρ ∈ (0,π) �→(
2 csc ρ, 2πi tan ρ

2

)
, whereby we deduce that K is diffeomorphic to the comple-

ment in� of such an arc, which in turn is diffeomorphic to R × (R2 − {(±1, 0)}).
This proves Theorem 3.

Remark 4. Since C : K → C(K) ≡ R × (R2 − {(±1, 0)}) is a diffeomorphism,
any standard example is completely determined by its image through C. This jus-
tifies the words classifying map for C.

Recall that we can identify some standard examples in K by symmetries (see Re-
mark 2). Since there are standard examples invariant by such symmetries, we de-
duce that the quotient of K by these symmetries has the structure of a 3-dimensional
orbifold. Notice that this quotient space is the moduli space of doubly periodic
minimal surfaces with parallel ends and genus 1 in the quotient.
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