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Exceptional Values in Holomorphic Families
of Entire Functions

Alexandre Eremenko

In 1926, Julia [5] studied singularities of implicit functions defined by equations
f(z,w) = 0, where f is an entire function of two variables such that f(·,w) �≡ 0
for everyw ∈ C.Among other things, he investigated the exceptional setP consist-
ing of those w for which such an equation has no solutions z. In other words, P is
the complement of the projection of the analytic set {(z,w) : f(z,w) = 0} onto the
second coordinate. Julia proved that P is closed and cannot contain a continuum
unless it coincides with the w-plane. Lelong [6] and Tsuji [12; 13, Thm. VIII.37]
independently improved this result by showing that the logarithmic capacity of P
is zero if P �= C. In the opposite direction, Julia [5] proved that every discrete set
P ⊂ C can occur as the exceptional set. He writes: “Resterait à voir si cet ensem-
ble, sans être continu, peut avoir la puissance du continu.” (It remains to be seen
whether this set, without being a continuum, can have the power of a continuum.)

According to Alan Sokal (private communication), the same question arises in
holomorphic dynamics when one tries to extend to holomorphic families of tran-
scendental entire functions a result of Lyubich [8, Prop. 3.5] on holomorphic fam-
ilies of rational functions.

In this paper we show that, in general, the result of Lelong and Tsuji is best pos-
sible: every closed set of zero capacity can occur as an exceptional set (Theorem1).
Then we study a related problem of dependence of Picard exceptional values of
the function z 	→ f(z,w) on the parameter w (Theorem 2).

It is known that the exceptional set P is discrete in the important case where
z 	→ f(z,w) are functions of finite order. This was discovered by Lelong in [6];
the result was later generalized to the case of a multidimensional parameter w in
[7, Thm. 3.44].

We also mention that the set P must be analytic in certain holomorphic families
of entire functions with finitely many singular values, a situation that was consid-
ered in [1; 2]. These families may consist of functions of infinite order.

We begin with a simple proof of a version of Lelong’s theorem on functions of
finite order.

Proposition 1. Let D be a complex manifold and f : C ×D → C an analytic
function such that the entire functions z 	→ f(z,w) are not identically equal to
zero and are of finite order for all w ∈D. Then the set
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P = {w ∈D : f(z,w) �= 0 ∀z∈ C} (1)

is analytic.

Corollary. Let D be a region in C and f : C ×D → C an analytic function
such that entire functions z 	→ f(z,w) are of finite order for all w ∈ D. Then
either the set P as in (1) is discrete or D\P is discrete.

Indeed, the set A = {w ∈ D : f(·,w) ≡ 0} is discrete (unless f = 0, in which
case there is nothing to prove). Hence there exists a function g holomorphic inD
whose zero set is A and such that f/g satisfies all the conditions of Proposition 1.

Remarks. 1. In general, if D is of dimension > 1 and the set A is not empty,
then one can prove only that A ∪ P is contained in a proper analytic subset of D
(unless A ∪ P = D) [7, Thm. 3.44].

2. If the order of f(·,w) is finite for all w ∈D, then this order is bounded on
compact subsets of D [7, Thm. 1.41].

Proof of Proposition 1. We assume without loss of generality that

f(0,w) �= 0 for w ∈D (2)

(shift the origin in Cz and shrinkD, if necessary) and that the order of the function
f(·,w) does not exceed λ for all w ∈D (see Remark 2).

Let p be an integer, p > λ. Then, for each w, f has the Weierstrass represen-
tation

f(z,w) = ec0+···+cp zp ∏
a :f(a,w)=0

(
1 − z

a

)
ez/a+···+zp/pap,

where a are the zeros of f(·,w) repeated according to their multiplicities and
where cj and a depend on w. Taking the logarithmic derivative, differentiating it
p times, and substituting z = 0, for each w ∈D we obtain

Fp(w) = dp

dzp

(
df

f dz

)∣∣∣∣
z=0

= p!
∑

a :f(a,w)=0

a−p−1.

The series on the right-hand side is absolutely convergent owing to our choice of
p. The functions Fp are holomorphic in D in view of (2). Clearly, w ∈P implies
Fp(w) = 0 for all p > λ. In the opposite direction, that Fp(w) = 0 for all p >
λ means all but finitely many derivatives with respect to z at z = 0 of the func-
tion df/f dz meromorphic in C are equal to zero, so this meromorphic function is
a polynomial and thus f(z,w) = exp(c0 + · · ·+ cpzp); that is, w ∈P. Therefore,
P is the set of common zeros of Fp for p > λ.

The following result is due to Lelong and Tsuji. However, they state it only for
the case dimD = 1 whereas we need a multidimensional version for the proof of
Theorem 2 to follow.
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Proposition 2. Let D be a connected complex manifold and f : C × D → C
an analytic function such that the entire functions z 	→ f(z,w) are not identically
equal to zero. Then the set

P = {w ∈D : f(z,w) �= 0 ∀z∈ C}
either is closed and pluripolar or coincides with D.

We recall that a set X is called pluripolar if there is a neighborhood U of X and a
plurisubharmonic function u in U such that X ⊂ {z : u(z) = −∞}.

Proof of Proposition 2. Suppose that P �= D. It is enough to show that every
pointw0 ∈D has a neighborhood U such that P ∩U is pluripolar. By shifting the
origin in Cz and shrinking U, we may assume that f(0,w) �= 0 for all w ∈U. Let
r(w) be the smallest of the moduli of zeros of the entire function z 	→ f(z,w).
If this function has no zeros, we set r(w) = +∞. We shall prove that log r is a
continuous plurisuperharmonic function.

First we prove the continuity of r : U→ (0, +∞]. Indeed, suppose that r(w0)<

∞ and let k be the number of zeros of f(·,w0) on |z| = r(w0), counting multiplic-
ity. Let ε > 0 be so small that the number of zeros of f(·,w0) in |z| ≤ r(w0)+ ε
equals k. Then ∫

|z|=r(w0)±ε
df

f dz
dz =

{
2πik,

0.

Because the integrals depend on w0 continuously, we conclude that r is continu-
ous at w0. Consideration of the case r(w0) = +∞ is similar.

Now we verify that the restriction of log r to any complex line is superharmonic.
Let ζ → w(ζ) be the equation of such a line, where w(0) = w0. Let z0 be a zero
of f(·,w0) of the smallest modulus. We verify the inequality for the averages of
log r over the circles |ζ| = δ where δ is small enough. According to the Weier-
strass preparation theorem, the set Q = {(z, ζ) : f(z,w(ζ)) = 0} is given in a
neighborhood of (z0, 0) by an equation of the form

(z− z0)
p + bp−1(ζ)(z− z0)

p−1 + · · · + b0(ζ) = 0,

where the bj are analytic functions in a neighborhood of 0, bj(0) = 0. We rewrite
this as

zp + cp−1(ζ)z
p−1 + · · · + c0(ζ) = 0, (3)

where the cj are analytic functions and

c0(0) = (−z0)
p. (4)

Let V be a punctured disc around 0; we choose its radius so small that c0(ζ) �=
0 in V. For ζ in V let zi(ζ), i = 1, . . . ,p, be the branches of the multivalued func-
tion z(ζ) defined by equation (3). Then
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1

2π

∫ π

−π
log r(w(δeiθ )) dθ ≤ 1

2π

∫ π

−π
min
i

log|zi(δe iθ )| dθ

≤ 1

2πp

∫ π

−π
log

∏
i

|zi(δe iθ )| dθ

= 1

2πp

∫ π

−π
log|c0(δe

iθ )| dθ = log|z0| = log r(w0),

where we have used (4) and the harmonicity of log|c0| inV ∪ {0}. This completes
the proof of plurisuperharmonicity. Since P = {w : log r(w) = +∞}, we con-
clude that P is pluripolar.

Our first theorem answers the question of Julia; it shows that the restriction of
finiteness of order cannot be removed in Proposition 1 and that Proposition 2 is
best possible—at least when dimD = 1.

Theorem 1. LetD ⊂ C be the unit disc, and let P be an arbitrary compact sub-
set ofD of zero capacity. Then there exists a holomorphic function f : C ×D →
C such that, for every w ∈P, the equation f(z,w) = 0 has no solutions while for
each w ∈D\P it has infinitely many solutions.

It is not clear whether a similar result holds with multidimensional parameter space
D and arbitrary closed pluripolar set P ⊂ D.
Proof of Theorem 1. Let φ : D → D\P be a universal covering, and let S be the
set of singular points of φ on the unit circle. Then S is a closed set of zero Lebesgue
measure.

(We recall a simple proof of this fact. As a bounded analytic function, φ has ra-
dial limits almost everywhere. It is easy to see that a point where the radial limit
has absolute value 1 is not a singular point of φ. Hence the radial limits exist and
belong to P almost everywhere on S. Let u be the “Evans potential” of P : a har-
monic function in D\P that is continuous in D̄ and such that u(ζ) = 0 for ζ ∈
∂D and u(ζ) = −∞ for ζ ∈P. Such a function exists for every compact set P of
zero capacity. Now v = u � φ is a negative harmonic function in the unit disc and
whose radial limits on S are equal to −∞; thus |S| = 0 by the classical unique-
ness theorem.)

According to a theorem of Fatou (see e.g. [3, Chap. VI]), for every closed set S
of zero Lebesgue measure on ∂D there exists a holomorphic function g in D that
is continuous in D̄ and such that

{ζ ∈ D̄ : g(ζ) = 0} = S.
In particular, g has no zeros in D.

Now we define the setQ ⊂ C ×D as follows:

Q = {(1/g(ζ),φ(ζ)) : ζ ∈D}.
It is evident that the projection of Q on the second coordinate equals D\P. It re-
mains to prove that the set Q is analytic. For this, it is enough to establish that
the map
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( : D → C ×D, ((ζ) = (1/g(ζ),φ(ζ)),
is proper. Let K ⊂ C × D be a compact subset. Then the closure of (−1(K) in
D̄ is disjoint from S because g is continuous and 1/g(ζ)→ ∞ as ζ → S. On the
other hand, for every point ζ ∈ ∂D\S, the limit

lim
ζ→ζ0

φ(ζ)

exists and has absolute value 1. Hence (−1(K) is compact in D.
Now the existence of the required function f follows from the solvability of the

second cousin problem (see [4, Sec. 5.6]).

Notice that the map ( constructed in the proof is an immersion.
We recall that a point a ∈ C is called an exceptional value of an entire function

f if the equation f(z) = a has no solutions. Picard’s little theorem states that a
nonconstant entire function can have at most one exceptional value.

Let f be an entire function of z depending on the parameterw holomorphically,
as in Propositions 1 and 2, and assume in the rest of the paper that, for all w ∈D,
f(·,w) �= const. Let n(w)∈ {0,1} be the number of exceptional values of f(·,w).
Question 1. What can be said about n(w) as a function of w?

Example 1. f(z,w) = ez + wz. We have n(0) = 1 and n(w) = 0 for w �= 0.

Example 2. f(z,w) = (ewz − 1)/w for w �= 0, and f(z, 0) = z. We have
n(0) = 0, while n(w) = 1 for w �= 0. The exceptional value a(w) = −1/w tends
to infinity as w → 0.

Thus n is neither upper nor lower semicontinuous.

Example 3. Let

f (z,w) =
∫ z

−∞
(ζ + w)e−ζ2/2 dζ,

where the contour of integration consists of the negative ray, passed left to right,
followed by a curve from 0 to z. We have f(z, 0) = −e−z2/2, which has excep-
tional value 0, so n(0) = 1. It is easy to see that there are no exceptional values
for w �= 0, so n(w) = 0 for w �= 0. Thus n(w) is the same as in Example 1, but
this time we have the additional feature that the set of singular values of f(·,w)
is finite for all w ∈ C: there is one critical value, f(−w,w), and two asymptotic
values, 0 and

√
2πw.

Question 2. Suppose that n(w) ≡ 1, and let a(w) be the exceptional value of
f(·,w). What can be said about a(w) as a function of w?

For functions of finite order, Question 2 was addressed by Nishino, who proved
the following in [9].

Let f be an entire function of two variables such that z 	→ f(z,w) is
a nonconstant function of finite order for all w. If n(w) = 1 for all w
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in some set having a finite accumulation point, then there exists a mero-
morphic function ã(w) such that (i) a(w) = ã(w)when a(w) �= ∞ and
(ii) f(·,w) is a polynomial when ã(w) = ∞.

Example 4 (Nishino). Let f(z,w) = (ewez −1)/w forw �= 0 and let f(z, 0) =
ez. Then f is an entire function of two variables and n(w) ≡ 1. However, a(w) =
−1/w for w �= 0 and also a(0) = 0, so a is a discontinuous function of w.

Nishino also proved that, for an arbitrary entire function f of two variables with
n(w) = 1 in some regionD, the set of discontinuity of the function a(w) is closed
and nowhere dense in D.

Our Theorem 2 gives a complete answer to Question 2. We first prove the fol-
lowing semicontinuity property of the set of exceptional values; it holds for all
meromorphic functions that depend holomorphically on a parameter. We always
assume that z 	→ f(z,w) is nonconstant for all w. Let

A(w) = {a ∈ C̄ : f(z,w) �= a ∀z∈ C}.
Proposition 3. For every w0 ∈ D and every ε > 0, there exists a δ > 0 such
that |w−w0| < δ impliesA(w) is contained in the ε-neighborhood ofA(w0) with
respect to the spherical metric.

Proof. Let U be the open ε-neighborhood ofA(w0). ThenK = C̄\U is compact,
so there exists an r > 0 such that the image of the disc |z| < r under f(·,w0)

contains K. Then Hurwitz’s theorem shows that, for every w close enough to w0,
the image of the disc |z| < r under f(·,w) will also contain K.

Corollary 1. The set of meromorphic functions having no exceptional values
on the Riemann sphere is open in the topology of uniform convergence on compact
subsets of C with respect to the spherical metric in the image.

The set of entire functions whose only exceptional value is ∞ is not open, as Ex-
ample 2 shows.

Corollary 2. Suppose that f(·,w) is entire and has an exceptional value
a(w) ∈ C for all w on some subset E ⊂ D. If a(w) is bounded on E then its
restriction on E is continuous.

Example 4 shows that a can be discontinuous.

Theorem 2. Let f : C × D → C be a holomorphic function, where D is a re-
gion in C and z 	→ f(z,w) is not constant for all w ∈D. Assume that, for some
function a : D → C, we have f(z,w) �= a(w) for all z∈ C.

Then there exists a discrete set E ⊂ D such that a is holomorphic in D\E and
such that a(w)→ ∞ as w → w0 for every w0 ∈E.
As a result, the singularities of a can only be of the type described in Example 4.

The main ingredient in the proof of Theorem 2 is the following result of
Shcherbina [11].
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Theorem A. Let h be a continuous function in a region G∈ Cn. If the graph of
h is a pluripolar subset of Cn+1, then h is analytic.

Proof of Theorem 2. Consider the analytic set

Q = {(z,w, a)∈ Cz ×D × Ca : f(z,w)− a = 0}.
LetR be the complement of the projection ofQ ontoD×Ca. Then it follows from
the assumptions of Theorem 2 and Picard’s theorem thatR is the graph of the func-
tion w 	→ a(w). Hence R is a nonempty proper subset of D × Ca. Proposition 2
implies that R is closed in D × Ca and pluripolar.

It follows from Proposition 3 that w 	→ |a(w)| is lower semicontinuous, so
the sets

En = {w ∈D : |a(w)| ≤ n}, where n = 1, 2, 3, . . .

are closed. We have E1 ⊂ E2 ⊂ · · · , and the assumptions of Theorem 2 imply
that D = ⋃

Ej . Let E 0
j be the interiors of Ej ; then E 0

1 ⊂ E 0
2 ⊂ · · · , and the set

G = ⋃
E 0
j is open.

We claim thatG is dense in D. Indeed, otherwise there would exist a disc U ⊂
D disjoint from G. But then the closed sets Ej\E 0

j with empty interiors would
cover D, which is impossible by the Baire category theorem. This proves the
claim.

Since a is locally bounded on G, Corollary 2 implies that a is continuous in
G; hence, by Shcherbina’s theorem, a is analytic in G. It follows from the defi-
nition of G that a does not have an analytic continuation from any component of
G to any boundary point of G. Our goal is to prove that D\G consists of isolated
points.

If G has an isolated boundary point w0, then

lim
w→w0

a(w) = ∞. (5)

Indeed, by Proposition 3, the limit set of a(w) as w → w0 (w ∈G) consists of at
most two points, a(w0) and ∞. On the other hand, this limit set is connected and
so the limit exists. If the limit is finite, then it is equal to a(w0) and the removable
singularity theorem gives an analytic continuation of a to G ∪ w0, contradicting
our previous statement that there is no such continuation. Therefore, the limit is
infinite and (5) holds.

We add to G all its isolated boundary points, thus obtaining a new open set G′
containing G. Our function a has a meromorphic continuation to G′ that we call
ã. This meromorphic continuation coincides with a in G but does not coincide at
the added points G′ \G.

We claim thatG′ has no isolated boundary points. Indeed, suppose thatw0 is an
isolated boundary point ofG′. By the same argument as before, the limit (5) exists
and is infinite. Then ã can be extended to w0 such that the extended function has
a pole at w0, but then w0 would be an isolated boundary point of G (poles can-
not accumulate to a pole) and so w0 ∈G′ by definition of G′. This contradiction
proves the claim.
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Let F ′ be the complement of G′ with respect to D. Then F ′ is a closed and
nowhere dense subset of D. Furthermore, F ′ has no isolated points because such
points would be isolated boundary points ofG′. Hence F ′ is perfect or empty. Our
goal is to prove that F ′ is empty.

Assume, to the contrary, that F ′ is perfect. Then the closed setsEn would cover
the locally compact space F ′ and so, by the Baire category theorem, one of these
En contains a relatively open part of F ′. This means that there exists a positive
integer n and an open disc U ⊂ D intersecting F ′ and such that

|a(w)| ≤ n for w ∈U ∩ F ′. (6)

By Corollary 2, this implies that the restriction of a on U ∩ F ′ is continuous.
We shall prove that ã has a continuous extension fromG′ toU ∩F ′ and that this

extension agrees with the restriction of a on U ∩ F ′. LetW be a point of U ∩ F ′,
and let (wk) be a sequence in G′ tending toW. Choosing a subsequence, we may
assume that there exists a limit

lim
k→∞ ã(wk), (7)

finite or infinite. By a small perturbation of the sequence that does not change the
limit of ã(wk), we may assume the wk are not poles of ã and so a(wk) = ã(wk).
By Proposition 3, the limit (7) can only be a(W ) or ∞.

In order to prove continuity, we must exclude the latter case. So suppose that

lim
k→∞ ã(wk) = ∞. (8)

Let Ck be the component of the set

G′ ∩ {w ∈U : |w −W | < 2|wk −W |}
that contains wk , and let

mk = inf{|ã(w)| : w ∈Ck}. (9)

We claim that mk → ∞. Indeed, suppose this is not so; then, by choosing a sub-
sequence, we may assume thatmk ≤ m for somem > n. Then there exists a curve
in Ck connecting wk to some point w ′

k ∈Ck such that |ã(w ′
k )| ≤ m+ 1. Because

|a| is continuous in Ck , (8) implies that this curve contains a point yk such that
|ã(yk)| = m+ 1. By selecting another subsequence we obtain

lim
k→∞ ã(yk) = y, where |y| = m+ 1> n.

Since |a(W )| ≤ n, we obtain a contradiction with Proposition 3, proving our claim
that mk → ∞ in (9).

We can thus assume that

mk ≥ n+ 1 for all k. (10)

Let us show that this leads to a contradiction. Fix k, and consider the limit set of
ã(w) as w → ∂Ck ∩ U from Ck ∩ U. In view of (6), (10), and Proposition 3, this
limit set consists of a single point—namely, ∞. To see that this is impossible, we
use the following lemma.
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Lemma. Let V and C be two intersecting regions in C, and let g be a meromor-
phic function in C such that

lim
w→W,w∈C g(w) = ∞ for all W ∈V ∩ ∂C.

Then V ∩ ∂C consists of isolated points in V, and g has a meromorphic extension
from C to V ∪ C.
Proof. By shrinkingV, we may assume that |g(w)| ≥ 1 for w ∈C ∩ V. Then h =
1/g has a continuous extension from C to C ∪V if we set h(w) = 0 forw ∈V \C.
The extended function is holomorphic on the set

{w ∈C ∩ V : h(w) �= 0}
and so, by Rado’s theorem [10, Thm. 3.6.5], h is analytic in V ∪ C; hence 1/g
gives the required meromorphic extension of g.

Resuming the proof of Theorem 2, we now apply this lemma with

C = Ck , V = {w ∈U : |w −W | < 2|wk −W |},
and g = ã while taking into account that ∂Ck ∩ V ⊂ F ′ and F ′ has no isolated
points. We thus arrive at a contradiction, which completes the proof that ã has a
continuous extension to F ′ ∩ U that agrees with a on F ′ ∩ U.

By Theorem A, a is analytic on F ′ ∩U, which contradicts the fact (stated in the
beginning of the proof ) that a has no analytic continuation from G. This contra-
diction shows that F ′ = ∅, proving the theorem.
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