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On the Homotopy Lie Algebra
of an Arrangement

Graham Denham & Alexander I . Suciu

1. Definitions and Statement of Results

1.1. Holonomy and Homotopy Lie Algebras

Fix a field k of characteristic 0. Let A be a graded, graded-commutative algebra
over k with graded piece Ak , k ≥ 0. We will assume throughout that A is locally
finite, connected, and generated in degree 1. In other words, A = T(V )/I, where
V is a finite-dimensional k-vector space, T(V ) = ⊕

k≥0V
⊗k is the tensor alge-

bra on V, and I is a two-sided ideal generated in degrees 2 and higher. To such
an algebra A, one naturally associates two graded Lie algebras over k (see e.g.
[3; 14]).

Definition 1.1. The holonomy Lie algebra hA is the quotient of the free Lie al-
gebra on the dual of A1 modulo the ideal generated by the image of the transpose
of the multiplication map µ : A1 ∧ A1 → A2; thus,

hA = Lie(A∗
1)/ideal(im(µ∗ : A∗

2 → A∗
1 ∧ A∗

1)). (1)

Note that hA depends only on the quadratic closure of A: if we put Ā = T(V )/(I2)

then hA = hĀ.

Definition 1.2. The homotopy Lie algebra gA is the graded Lie algebra of prim-
itive elements in the Yoneda algebra of A:

gA = Prim(ExtA(k, k)). (2)

In other words, the universal enveloping algebra of the homotopy Lie algebra is
the Yoneda algebra:

U(gA) = ExtA(k, k). (3)

The algebra U = ExtA(k, k) is a bigraded algebra; let us write Upq to denote
cohomological degree p and polynomial degree q. Then Upq = 0 unless −q ≥
p. The subalgebra R = ⊕

p≥0 U
p,−p is called the linear strand of U. For conve-

nience we will let Up
q = Up,−p−q, where the lower index q is called the internal
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degree. Then U is a graded R-algebra with R = U0. Note that U+ = ⊕
q>0 Uq is

an ideal in U with U/U+ ∼= R.

The relationship between the holonomy and homotopy Lie algebras of A is pro-
vided by the following well-known result.

Lemma 1.3 (Löfwall [19]). The universal enveloping algebra of the holonomy
Lie algebra, U(hA), equals the linear strand, R = ⊕

p≥0 U
p

0 , of the Yoneda alge-
bra U = U(gA).

Particularly simple is the case when A is a Koszul algebra. By definition this
means that the homotopy Lie algebra gA coincides with the holonomy Lie alge-
bra hA (i.e., U = R). Alternatively, A is quadratic (i.e., A = Ā) and its quadratic
dual, A! = T(V )/(I⊥

2 ), coincides with the Yoneda algebra: A! = U. For an ex-
pository account of Koszul algebras, see [13].

As a simple (yet basic) example, take E = ∧
V, the exterior algebra on V. Then

E is Koszul and its quadratic dual is E! = Sym(V ∗), the symmetric algebra on
the dual vector space. Moreover, gA = hA is the abelian Lie algebra on V.

1.2. Main Result

The computation of the homotopy Lie algebra of a given algebra A is, in general,
a very hard problem. Our goal here is to determine gA under certain homological
hypotheses. First, we need one more definition.

Let B = Ā be the quadratic closure of A. View J = ker(B � A) as a graded
left module over B.

Definition 1.4. The homotopy module of a graded algebra A is

MA = ExtB(J, k) (4)

viewed as a bigraded left module over the ring R = U(hA) = ExtB(k, k) via the
Yoneda product.

Theorem 1.5. Let A be a graded algebra over a field k with quadratic closure
B = Ā and homotopy module M = MA. Assume B is a Koszul algebra and as-
sume there exists an integer � such that Mq = 0 unless � ≤ q ≤ � + 1. Then, as
graded Hopf algebras,

U(gA) ∼= T(MA[−2]) ⊗̂k U(hA). (5)

Here M [q] is the graded R-module with M [q]r = Mq+r; T(M [−2]) ⊗̂k R is the
“twisted” tensor product of algebras with underlying vector space T(M [−2])⊗kR

and multiplication (m⊗ r) · (n⊗ s) = (−1)|r||n|((m⊗n)⊗ rs+ (m⊗nr)⊗ s). In
turn, R acts on T(M [−2]) by extending its action on M [−2] via the Leibniz rule.

Taking the Lie algebras of primitive elements in the respective Hopf algebras,
we obtain the following.

Corollary 1.6. Given Theorem 1.5, the homotopy Lie algebra of A splits as a
semi-direct product of the holonomy Lie algebra with the free Lie algebra on the
(shifted ) homotopy module:
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gA
∼= Lie(MA[−2]) � hA, (6)

where the action of h on Lie(M) is given by [h,m] = hm for h∈ h and m∈M.

As pointed out to us by S. Iyengar, Theorem 1.5 implies that, in the case we con-
sider, the projection map U(gA) → U(hA) is a Golod homomorphism. Therefore,
the semi-direct product structure of gA also follows from results of Avramov [1; 2].

1.3. Hyperplane Arrangements

Let A = {H1, . . . ,Hn} be an arrangement of hyperplanes in C� with intersection
lattice L(A) and complement X(A). The cohomology ring A = H •(X(A), k)
admits a combinatorial description (in terms of L(A)) due to Orlik and Solomon:

A = E/I, (7)

whereE is the exterior algebra over k on generators e1, . . . , en in degree1and where
I is the ideal generated by all elements of the form

∑r
q=1(−1)q−1ei1 · · · êiq · · · eir

for which rk(Hi1 ∩ · · · ∩ Hir ) < r; see [22].
The holonomy Lie algebra of the Orlik–Solomon (OS) algebra also admits an

explicit presentation, this time solely in terms of L≤2(A). Identify Lie(A∗
1) with

the free Lie algebra over k on generators xH = e∗
H , H ∈ A. Then

hA = Lie(A∗
1)
/

ideal

{[
xH ,

∑
H ′∈A : H ′⊃F

xH ′

] ∣∣∣ F ∈L2(A) and F ⊂ H

}
. (8)

As shown in Section 5, the homotopy Lie algebra gA also admits a finite pre-
sentation for a certain class of hypersolvable arrangements that we shall define.

Question 1.7. Do there exist arrangements for which gA is not finitely presented
or for which the (bigraded) Hilbert series of U(gA) is not a rational function?

1.4. Hypersolvable Arrangements

An arrangement A is called supersolvable if its intersection lattice admits a max-
imal modular chain. The OS algebra of a supersolvable arrangement has a qua-
dratic Gröbner basis and thus is a Koszul algebra (this result, implicit in Björner
and Ziegler [4], was proved in Shelton and Yuzvinsky [30]).

An arrangement A is called hypersolvable if it has the same intersection lattice
up to rank 2 as that of a supersolvable arrangement. This “supersolvable defor-
mation”, B, is uniquely defined and has the property that the two complements
have isomorphic fundamental groups (see Jambu and Papadima [16; 17]). Let A =
H •(X(A), k) and B = H •(X(B), k) be the respective OS algebras. It is readily
seen that B = Ā; thus, A and B share the same holonomy Lie algebra: h = hA =
hB. Furthermore, since B is Koszul it follows that gB = h.

The hypotheses of Theorem1.5 hold in two nice situations, which can be checked
combinatorially; see Sections 4.2 and 4.3 for precise definitions.

Theorem 1.8. Let A be an arrangement, and let A be its Orlik–Solomon alge-
bra. Suppose:
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(i) A is hypersolvable and its singular range has length 0 or 1; or
(ii) A is obtained by fibered extensions of a generic slice of a supersolvable

arrangement.

Then gA
∼= Lie(MA[−2]) � hA.

An explicit finite presentation for gA is given in Theorem 5.1 for the case when A is
a generic slice of a supersolvable arrangement. The Eisenbud–Popescu–Yuzvinsky
resolution [8] permits us to compute the Hilbert series of MA (and hence that of
gA) for the case when A is a 2-generic slice of a Boolean arrangement.

Theorem 1.8 allows us to distinguish between hyperplane arrangements whose
holonomy Lie algebras are isomorphic. In Example 6.2, we exhibit a pair of
2-generic 4-dimensional sections of the Boolean arrangement in C7; the two ar-
rangements have the same fundamental group, the same Poincaré polynomial, and
the same holonomy Lie algebra, yet they have different homotopy Lie algebras.

In Section 7 we provide some topological interpretations. As noted in [5; 24],
the holonomy Lie algebra of a supersolvable arrangement equals (up to a rescaling
factor) the topological homotopy Lie algebra of the corresponding “redundant”
subspace arrangement. We extend this result, relating the homotopy Lie algebra
of an arbitrary hyperplane arrangement to the topological homotopy Lie alge-
bras of the redundant subspace arrangement. As a consequence, we find a pair
of codimension-2 subspace arrangements in C8 whose complements are simply
connected and have the same homology groups yet have distinct higher homotopy
groups.

2. Some Homological Algebra

2.1. The Homotopy Module

Let A be graded, graded-commutative, connected, locally finite algebra. Assume
that A is generated in degree 1 and that its quadratic closure, B = Ā, is a Koszul
algebra. Let E be the exterior algebra on A1 = B1. Let I and J be the kernels of
the respective natural surjections E � B and B � A, giving the exact sequences

0 −−→ I −−→ E −−→ B −−→ 0, (9)

0 −−→ J −−→ B −−→ A −−→ 0. (10)

In what follows we will record some homological properties of the ring A when
viewed as a B-module. Recall that, if N is a B-module, then the Yoneda prod-
uct gives ExtB(N, k) the structure of a left module over the ring R = U(hA) =
ExtB(k, k). An object of primary interest for us will be the homotopy module ofA:

M = MA = ExtB(J, k). (11)

This bigraded R-module will play a crucial role in the determination of the homo-
topy Lie algebra gA.

Our grading conventions shall be as follows. Suppose V and W are Z-graded
k-vector spaces. Then f ∈ Homk(V,W) has degree r if f : V q → Wq+r for all
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q. For any Z-graded k-vector space V we shall let V ∗ denote the graded k-dual
of V. In particular, then, (V ∗)q = Homk(V

−q, k). If V has finite k-dimension in
each graded piece, then (V ∗)∗ ∼= V.

We shall treat all boundary maps in chain complexes as having polynomial de-
gree 0 and homological degree +1. Then chain complexes will be regarded as
cochain complexes in negative degree. We shall indicate shifts of polynomial
grading by defining V(q)r = V q+r and (analogously) shifts of homological grad-
ing by V [q].

Following these conventions, Mpq = ExtpB(J, k)q is nonzero only for q ≤ −p.

Then, taking M
p
q = Mp,−p−q (the internal grading), we have M

p
q �= 0 only for

q ≥ 0. The grading is such that, for each fixed q, the action of R on M satisfies
Rr ⊗ M

p
q → M

r+p
q .

Lemma 2.1. ExtB(A, k) ∼= k ⊕ M [−1] as graded R-modules.

Proof. Consider the long exact sequence for ExtB(−, k) applied to (10):

· · · −−→ Extq−1
B (J, k) −−→ ExtqB(A, k) −−→ ExtqB(B, k) −−→ · · · . (12)

Since Ext0
B(A, k) ∼= Ext0

B(B, k) ∼= k and ExtqB(B, k) = 0 for all q > 0, it follows
that the map ExtB(B, k) → ExtB(J, k) is zero. Hence the long exact sequence
breaks into short exact sequences that we will write, using (11), as a single short
exact sequence of graded R-modules:

0 −−→ M [−1] −−→ ExtB(A, k) −−→ k −−→ 0. (13)

For each q, one of the two maps is zero and the other is an isomorphism, so the
short exact sequence splits.

2.2. Injective Resolutions

For any E-module N, let

N ◦ = {a ∈E : ax = 0 for all x ∈N}, (14)

the annihilator of N in E. Later we shall require explicit injective resolutions.

Lemma 2.2. Suppose the ring B = E/I is an arbitrary quotient of a finitely gen-
erated exterior algebra E. If

0 ←−− k ←−− B ⊗k F
0 ←−− B ⊗k F

1 ←−− · · · (15)

is a minimal free resolution of k over B, then

0 −−→ k −−→ B∗ ⊗k (F
0)∗ −−→ B∗ ⊗k (F

1)∗ −−→ · · · (16)

is an injective resolution of k over B.

Proof. The resolution (15) is an acyclic complex of E-modules and so its vector
space dual (16) is an acyclic complex as well, since eachF i has finite k-dimension.

NowB∗ ∼= I ◦(n) asE-modules via the determinantal pairing inE. On the other
hand, E is injective as a module over itself and so I ◦ is injective as an E-module;
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see [29, Prop. 2.27]. Since each F i has finite k-dimension, each B∗ ⊗k (F i)∗ is
injective.

Lemma 2.3. Let A and B be two algebras with Ā = B Koszul. Write B = E/I,
A = B/J, h = hA = hB , and R = U(h). Then:

(i) the complex

0 −−→ k −−→ I ◦(n) ⊗k R
0 −−→ I ◦(n) ⊗k R

1 −−→ · · · (17)

is an injective resolution of k over B with boundary map as described in the
proof ; and

(ii) ExtqB(A, k) ∼= Hq(J ◦(n) ⊗k R
•) for all q ≥ 0.

Proof. The Koszul complex K∗ = B ⊗k R∗ is a free B-module resolution of k,
so it is also an acyclic complex of E-modules with boundary map induced from

∂∗ : 1 ⊗ x∗
i �→ ei ⊗ 1. (18)

Then Homk(B ⊗k R
∗, k) = B∗ ⊗k R is an injective resolution by Lemma 2.2.

To establish (2), it suffices to note that HomB(A, I ◦) ∼= J ◦.

3. Proof of the Main Result

Our approach to the proof of Theorem 1.5 is to construct a spectral sequence com-
paring the minimal resolution and the Koszul complex of A. In Proposition 3.2 we
show that the spectral sequence collapses at E2 under suitable hypotheses though
not in general (Example 3.3). This collapsing is enough to prove the theorem via
Proposition 3.1.

3.1. A Spectral Sequence

Using the previous notation, A ⊗k U
∗ → k → 0 is a minimal free resolution of

k over A. It is filtered by degree, and the linear strand is A ⊗k R
∗. That is, there

exists a short exact sequence of chain complexes

0 −−→ A ⊗k R
∗ 1⊗ε∗−−→ A ⊗k U

∗ −−→ A ⊗k U
∗+ −−→ 0. (19)

Now B ⊗k R∗ is a free resolution of k over B, since B is Koszul. Using
Lemma 2.1, we find that the homology of the linear strand (Koszul complex) is

H•(A ⊗ R∗) ∼= TorB(A, k)

∼= ExtB(A, k)∗

∼= k ⊕ M [−1]∗. (20)

The long exact sequence in homology then reveals that

H•(A ⊗k U
∗
+) ∼= M [−2]∗ (21)

as A-modules. Recall that A acts trivially on M (and hence on M [−2]∗), so

HomA(H•(A ⊗k U
∗
+), k) ∼= M [−2]. (22)
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On the other hand, since our complex is a quotient of a minimal resolution,

H•(HomA(A ⊗k U
∗
+ , k)) ∼= U+. (23)

Comparing (22) and (23) gives a universal coefficients spectral sequence of the
form

E
pq

2 = ExtpA((M [−2]∗)q, k) ∼= M [−2]q ⊗k U
p �⇒ U

p+q
+ . (24)

The spectral sequence is used as follows.

Proposition 3.1. If E∞ = E2 in the spectral sequence (24), then

0 −−→ M [−2] ⊗k U
φ−−→ U

ε−−→ R −−→ 0

is an exact sequence of (left) R-modules, and the conclusion of Theorem 1.5 holds.

Proof. If E∞ = E2 then M [−2] ⊗ U ∼= U+ as a (left) R-module. Now U+ =
ker ε, giving the short exact sequence. Since h is a Lie subalgebra of g, it follows
that R = U(h) is a Hopf subalgebra of U = U(g) and so the sequence splits. The
isomorphism of Theorem 1.5 can then be obtained by induction.

3.2. Collapsing Conditions

In order to show that the higher differentials in the spectral sequence (24) vanish,
we use a degree argument that begins by considering the E0 term. Since

0 −−→ k −−→ A∗ ⊗k U
0 −−→ A∗ ⊗k U

1 −−→ · · · (25)

is an injective resolution of k overA (Lemma 2.2), we consider the double complex

Cpq = HomA(A ⊗k (U
q)∗+ ,A∗ ⊗k U

p)

∼= U
q
+ ⊗k A

∗ ⊗k U
p, (26)

with induced boundary maps ∂h and ∂v. Then our spectral sequence (24) is ob-
tained by filtering C •• by columns. Checking the grading, we see that

∂v : Uq
+ ⊗k (A

∗)s ⊗k U
p → U

q+1
+ ⊗k (A

∗)s+1 ⊗k U
p (27)

and
∂h : Uq

+ ⊗k (A
∗)s ⊗k U

p → U
q
+ ⊗k (A

∗)s+1 ⊗k U
p+1. (28)

By inspection of E2 and ∂v we see that necessarily E1 = E2.

We first consider the case where the ideal J has a (shifted) linear resolution.

Proposition 3.2. Suppose A is a hypersolvable arrangement for which M
p
q =

0 unless q = � for some fixed �. Then E2 = E∞.

Proof. In this case, M [−2]qr = 0 unless r = � − 2. Then Hq(Cp•, ∂v)r = 0 un-
less r = � − 2.

First we observe that (U+)
q
t = 0 unless t ≥ � − 2. This follows because, by

(24), U+ is a graded subquotient of M [−2] ⊗k U ; the support of M [−2] is as just
described, and U

p
q = 0 unless q ≥ 0.
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Regard A∗ as a chain complex concentrated in homological degree 0. Then note
that, by our first observation, the internal degree of a nontrivial cocycle represen-
tative in (U+)

q
t ⊗k (A∗)s is s + t = � − 2, and it follows that s ≤ 0. However,

(A∗)s = 0 unless 0 ≤ s ≤ �, so the representative of a nonzero homogeneous
E2-cocycle in E0 must have s = 0.

Now suppose that x ∈E
pq

2 is such a cocycle with representative x̃ in Cpq. The
foregoing implies that x̃ ∈ U

q
+ ⊗k (A∗)0, so ∂h(x̃) = 0 in Cp+1,q by (28). This

means that d2(x) = 0, and similarly for higher differentials.

Proof of Theorem 1.5. Given Proposition 3.1, we need only show that the spectral
sequence collapses when M

p
q = 0 unless 0 ≤ � − q ≤ 1 for some �. In this case,

let N = M� denote the R-submodule of M of internal degree �.

By the same reasoning as in the proof of Proposition 3.2, N [−2] ⊗U ⊆ ker dk
for k ≥ 2. Now N [−2] ∼= N [−2] ⊗ U 0 is a submodule of the p = 0 column
of E2. Since N [−2] is (trivially) not in the image of any nonzero differentials, it
must be an R-submodule of U.

Let K denote the Hopf subalgebra of U generated by R and N [−2]. By [20,
Thm. 4.4], U is a free K-algebra. It follows that K ∼= T(N [−2]) ⊗k R. In the
notation of Proposition 3.2, any nontrivial differential dk with k ≥ 2 would lift in
E0 to a map U+ ⊗ (A∗)1 ⊗ U → U+ ⊗ (A∗)0 ⊗ U. We have shown that the tar-
gets of these maps are unchanged between E2 and E∞, so it follows that also the
maps themselves must all be zero.

3.3. A Noncollapsing Spectral Sequence

Calculations with the Macaulay 2 package [15] show that the hypotheses of Theo-
rem 1.5 cannot in general be relaxed: differentials in the spectral sequence (24)
may not be zero.

Example 3.3. Consider the arrangement defined by the polynomial

Q = xyz(x − w)(y − w)(z − w)(x − u)(y − u).

Let A be the Orlik–Solomon algebra and M = MA its homotopy module. It is
readily seen thatMq �= 0 for q = 3, 4, 5. An Euler characteristic calculation shows
that the spectral sequence (24) must have a nonzero differential

d 04
2 : M [−2]4

6 ⊗k U
0 → M [−2]3

5 ⊗k U
2.

It follows that the Hopf algebra U(gA) will not have the structure we find in The-
orem 1.5.

4. Hypersolvable Arrangements

In this section, we apply our main result to certain classes of hypersolvable
arrangements.

4.1. Solvable Extensions

We start by reviewing in more detail the notion of a hypersolvable arrangement, in-
troduced by Jambu and Papadima in [16]. Roughly, a hypersolvable arrangement
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is a linear projection of a supersolvable arrangement that preserves intersections
through codimension 2.

Definition 4.1 [16]. An arrangement A is hypersolvable if there exist sub-
arrangements {0} = A1 ⊂ A2 ⊂ · · · ⊂ Am = A such that each inclusion
A i ⊂ A i+1 is solvable. In turn, an inclusion of hyperplane arrangements A ⊂ B
is called a solvable extension if:

(i) there are no hyperplanes H ∈ B \ A and H ′,H ′′ ∈ A with H ′ �= H ′′ and
rk(H ∩ H ′ ∩ H ′′) = 2;

(ii) for any H,H ′ ∈ B \A , there is exactly one H ′′ ∈ A with rk(H ∩H ′∩H ′′) =
2, denoted by f(H,H ′); and

(iii) for anyH,H ′,H ′′ ∈ B\A , one has rk(f(H,H ′)∩f(H,H ′′)∩f(H ′,H ′′)) ≤
2.

It turns out that, if A is hypersolvable with a sequence of solvable extensions as
defined here, then for all i the rank of A i and A i+1 differ by at most 1. If the ranks
are equal, the extension is said to be singular; otherwise, the extension is nonsin-
gular (or fibered in the sense of Falk and Randell [11]).

If s denotes the number of singular extensions, then rk A = m − s. One can
replace the singular extensions by nonsingular ones in order to construct a super-
solvable arrangement B of rank m that projects onto A , preserving the intersection
lattice through rank 2. This was shown by Jambu and Papadima [17] as follows.

Theorem 4.2. An arrangement A is hypersolvable if and only if there exists a
supersolvable arrangement B and a linear subspace W for which A = B∩W and
L(A)≤2

∼= L(B)≤2.

Proof. The “only if” claim is Theorem 2.4 of [17]. The “if”, due to Jambu (private
communication), runs as follows. Suppose B is supersolvable and there exists a
subspace W as described in the theorem. By definition, B has a maximal modu-
lar chain F1 < F2 < · · · < Fm. Putting Bi = BXi

yields a sequence of solvable
extensions for B, all of which are fibered. For 1 ≤ i ≤ m, let A i = Bi ∩W. Since
collinearity relations are preserved, each A i ⊂ A i+1 is also a solvable extension
and so A is hypersolvable.

We remark that, in the above proof, A i ⊂ A i+1 is a singular extension if and only
if Fi ∩W = Fi+1 ∩W. The arrangement B is called the supersolvable deformation
of A. For example, any arrangement A for which no three hyperplanes intersect in
codimension 3 is hypersolvable, and its supersolvable deformation is the Boolean
arrangement in Cn, where n = |A|.
Lemma 4.3. Suppose A′ ⊂ A is a fibered extension. The projection p : X(A) →
X(A′) induces an inclusion A′ ↪→ A of the respective Orlik–Solomon algebras
that makes A into a free A′-module of rank k = |A \ A′|.
Proof. The projection p : X → X ′ is a bundle map with fiber C \ {k points}. As
noted by Falk and Randell [11], this bundle admits a section and thus the Serre spec-
tral sequence collapses at the E2 term. Hence H •(X) ∼= H •(X ′) ⊗ H •(∨k

S1
)
.

The result follows.
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4.2. Singular Range

We now give some easy-to-check combinatorial conditions ensuring that a hyper-
solvable arrangement satisfies the hypotheses of Theorem 1.5. We start by attach-
ing a pair of relevant integers to a hypersolvable arrangement.

Definition 4.4. Suppose that A is hypersolvable with supersolvable deforma-
tion B and that A �= B. Let c be the least integer for which L(A)≤c �∼= L(B)≤c.

Since A �= B, there is a largest integer i for which the extension A i ⊂ A i+1 is sin-
gular. Let d the rank of these two arrangements. We will call the pair (c, d) the
singular range of the arrangement A and call |d − c| the length of this range.

Lemma 4.5. If A is hypersolvable with singular range (c, d), then 3 ≤ c ≤ d.

Proof. The inequality c ≥ 3 follows from Theorem 4.2. Suppose d < c; then
L(A)≤d

∼= L(B)≤d . It follows that L(A d+1)≤d
∼= L(Bd+1)≤d , whence A d+1 =

Bd+1 because the arrangements are central. However, since d is greater than or
equal to the index of the last singular extension, it follows that A i = Bi for d+1 ≤
i ≤ m and so A = B, a contradiction.

Let A = H •(X(A), k) and B = H •(X(B), k) be the respective Orlik–Solomon
algebras. Since L(A)≤2

∼= L(B)≤2 and since the OS algebra of a supersolvable
arrangement is quadratic, the algebra B = E/I is the quadratic closure of A.

Let J = ker(B � A), and let M = ExtB(J, k) viewed as a module over R =
ExtB(k, k). Since B is supersolvable, the algebra B is Koszul (see [30]); thus,
R = B!.

Lemma 4.6. If A is a hypersolvable arrangement with singular range (c, d), then
M

p
q = 0 unless p ≥ 0 and c ≤ q ≤ d.

Proof. The ideal J has a minimal (infinite) free resolution over B of the form

0 ←−− J ←−− B ⊗k (M
0,−)∗ ←−− B ⊗k (M

1,−)∗ ←−− · · · . (29)

Recall that J is generated by Orlik–Solomon relations. By Definition 4.4, the least
degree of a generator of J is c; hence M 0

c �= 0 and M 0
q = 0 for q < c. Thus

M
p
q = 0 for q < c, establishing the first inequality.
In order to show thatMp

q = 0 forq > d, too, let i be the largest index of a singular
extension A i ⊂ A i+1. Let Bi+1 = H •(X(Bi+1), k) and Ai+1 = H •(X(A i+1), k),
and let B ′

i+1 = H •(X(B ′
i+1), k) be the cohomology ring of the projectivization

(decone) of Bi+1. Recall from [22] that X(Bi+1) = X(B ′
i+1)× C×. From the Kün-

neth formula we obtain the following exact sequence of B ′
i+1-modules:

0 −−→ B ′
i+1 −−→ Bi+1 −−→ B ′

i+1(−1) −−→ 0. (30)

Let Ji+1 denote the kernel of the canonical projection Bi+1 � Ai+1. If we let
J ′ = Ji+1 ∩B ′

i+1 then Ji+1 = Bi+1 ⊗B ′
i+1

J ′ as a module over Bi+1. Since A , B are
obtained from A i+1, Bi+1 (respectively) by a sequence of fibered extensions, we
have J = B ⊗Bi+1 Ji+1.
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On the other hand, Bi+1 is a free module over B ′
i+1, and applying Lemma 4.3

inductively shows that B is free over Bi+1. Hence B ′
i+1 → B is a flat change of

rings, and it is enough to check that

ExtpB ′
i+1
(J ′, k)q = 0 (31)

if q > d. By Lemma 2.1, ExtpB ′
i+1
(J ′, k)q = Extp+1

B ′
i+1
(A′

i+1, k)q−1. Since B ′
i+1 is

Koszul and since (A′
i+1)q = 0 for q > d − 1, the rank of the arrangement, it fol-

lows by [18, Lemma 2.2] that the groups (31) are zero for q > d.

Lemma 4.1 means in particular that the B-module J(−c) has Castelnuovo–
Mumford regularity no greater than the length of the singular range, d − c.

Moreover, the lemma gives a combinatorial condition for the hypotheses of Theo-
rem 1.5 to be satisfied.

Corollary 4.7. If A is hypersolvable and its singular range has length 0 or 1,
then gA

∼= Lie(M [−2]) � hA.

Example 4.8 (2-generic arrangements of rank 4). Suppose A is a central ar-
rangement in C4 with the property that no three hyperplanes contain a common
plane. Such an arrangement is hypersolvable, by Theorem 4.2, with supersolv-
able deformation B a Boolean arrangement. From Definition 4.4 and Lemma 4.5
we have 3 ≤ c ≤ d ≤ 4, so the singular range has length 0 or 1.

On the other hand, the arrangement from Example 3.3 is hypersolvable with sin-
gular range (3, 5), and Corollary 4.7 does not apply (indeed, its conclusion fails).

4.3. Generic Slices of Supersolvable Arrangements

Lemma 4.6 provides bounds on the polynomial degrees of the homotopy mod-
ule M, bounds that cannot be improved without imposing further restrictions on
the arrangement. In general, it is not obvious how to characterize the support of
M combinatorially; the problem seems similar to that of characterizing which ar-
rangements have quadratic defining ideals (see [6;10]). Toward this end, we isolate
a class of hypersolvable arrangements for which the situation is more manageable.

Definition 4.9. A codimension-k linear space W is said to be generic with re-
spect to an arrangement B if rk(X ∩ W) = rkX + k for all X ∈ L(B) with
rkX ≤ rk B − k.

If B is an essential and supersolvable arrangement of rankm and if W is a proper
linear space of dimension � ≥ 3, then by Theorem 4.2 the arrangement A =
B ∩W is hypersolvable. We call such an arrangement a generic (hypersolvable)
slice of rank �.

Not every hypersolvable arrangement is a generic slice—see Example 4.15 from
[23].

Lemma 4.10. Let B be a rank-m supersolvable arrangement and A a rank-�
generic slice. Then the singular range of A is (�, �).
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Proof. The assumption of genericity means thatL(A)≤�−1
∼= L(B)≤�−1. However,

X∩W = 0 for all X ∈L(B)� and so, since W is proper and B is essential, the sin-
gular range of A is (�, d) for some d. On the other hand, rk A� = rk Am = �, so
the last m − � extensions are all singular and d = �.

This is to say that, for generic slice arrangements, the module J(−�) has a linear
resolution. We can state this somewhat more generally as follows.

Proposition 4.11. Let A be a rank-� hypersolvable arrangement, and suppose
there exist a generic slice C and fibered extensions C = Am−i ⊂ · · · ⊂ Am−1 ⊂
Am = A for some i ≥ 0. Then the singular range of A is (�, �).

Proof. We may (as in the proof of Lemma 4.6) reduce to the case where A = C, a
generic slice of rank �. Let B be the supersolvable deformation of A. Denote by
A′ and B ′ the OS algebras of the respective decones, and let J ′ = ker(B ′ � A′).

Let R ′ = (B ′)!, and let K = R ′ ⊗k (B ′)∗ be the corresponding Koszul com-
plex. That is, Kq = R ′(−q) ⊗k (B ′q)∗ for q ≥ 0 with differential ∂ : e∗

i ⊗ 1 �→
1 ⊗ xi. Since B ′ is a Koszul algebra, it follows that K is a free resolution of k
over R ′.

Let M ′ be the �th syzygy module in the resolution K → k → 0. That is,
M ′ is the cokernel of ∂�+1, a left R ′-module, which means M ′ has minimal free
resolution

0 −−→ Km ∂m−−→ · · · −−→ K�+1 ∂�+1−−→ K� η−−→ M ′ −−→ 0. (32)

From this we see that M ′ is concentrated in internal degree � and ExtR ′(M ′, k) ∼=
J ′ as a B ′-module. Since Koszul duality is an involution we have ExtB ′(J ′, k) ∼=
M ′ as a left R ′-module, and M ′ is bigraded as claimed.

The proposition gives another criterion for the hypotheses of Theorem 1.5 to be
satisfied, as follows.

Corollary 4.12. If A is obtained by fibered extensions of a generic slice of a
supersolvable arrangement, then gA

∼= Lie(M [−2]) � hA.

4.4. Hilbert Series

Expressions for the Hilbert series of the graded module M = ExtB(J, k) are not
known in general (cf. [28]). However, a simple formula exists for generic slices
that can be extended to fibered extensions of generic slices.

Let βi denote the ith Betti number of B ′, so that h(B ′, t) = ∑m
i=0 βit

i is its
Hilbert series. The following is well known (see [22]).

Lemma 4.13. There exist positive integers 1 = d1 ≤ d2 ≤ · · · ≤ dm for which

h(B ′, t) =
m∏

j=2

(1 + dj t).
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Taking the Euler characteristic of (32) we note that, for a generic slice of dimen-
sion �,

hR(M, t) = hR ′(M ′, t) = h(R ′, t)
m−�∑
i=0

(−1)iβi+� t
i. (33)

More generally, a fibered extension results in the same formula.
The hypotheses of Theorem 1.5, together with (33), yield the following.

Corollary 4.14. If h(U, t, u) = ∑
p,q dimk U

p
q t

puq is the bigraded Hilbert
series of U = U(gA), then

h(U, t, u) = h(R, t)(1 − u−2hR(M, t, u))−1. (34)

In the case of a generic slice of dimension �,

h(U, t, u) = h(R, t)

(
1 − t 2u−2h(R, t)

m−�∑
i=0

(−1)iβi+� t
i

)−1

. (35)

5. A Presentation for the Homotopy Lie Algebra

For the hypersolvable arrangements satisfying the hypotheses of Theorem 1.8, the
problem of writing an explicit presentation for the homotopy Lie algebra gA is
equivalent to that of presenting the homotopy module MA = ExtB(J, k). We carry
out this computation for generic slices of supersolvable arrangements.

Let A = {H1, . . . ,Hn} be a hypersolvable arrangement with supersolvable de-
formation B. As usual, let h denote the holonomy Lie algebra and R = U(h) its
enveloping algebra. Recall that h has a presentation with n generators x1, . . . , xn
in degree (1, 0), one for each hyperplane Hi ∈ A , and for each flat F ∈L2(A) =
L2(B), the relations [

xi,
∑
j∈F

xj

]
= 0 (36)

for all i for which i ∈F (i.e., F ⊂ Hi).

Now assume that A is a generic slice of a supersolvable arrangement. Then the
resolution (32) gives a presentation of the (deconed) homotopy module M ′ as an
R ′-module. In order to use this presentation explicitly, we will choose the basis
for B ′∗ given by identifying it with the flag complex of B ′ (see [6] for details).

Recall that Flp is a free k-module on “flags” (F1, . . . ,Fp), where Fi ∈ Li(B ′)
for 1 ≤ i ≤ p and where Fi < Fi+1 modulo the relations∑

G : Fi−1<G<Fi+1

(F1, . . . ,Fi−1,G,Fi+1, . . . ,Fp) (37)

for each i, 1 < i < p. Moreover, the map f : Flp → (B ′p)∗ given by

f : (F1, . . . ,Fp) �→
(∑

i∈F1

e∗
i

)( ∑
i∈F2−F1

e∗
i

)
· · ·
( ∑

i∈Fp−Fp−1

e∗
i

)
(38)

is an isomorphism (cf. [27, dual of (2.3.2)]).
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Under the identification Fl ∼= B ′∗, the boundary map in the Koszul complex is
transformed as follows. Given a flag F = (F1, . . . ,Fp) and i ∈ Fp, define an ele-
ment F − i ∈ Flp−1 by finding the integer j for which i ∈Fj − Fj−1 and letting

F − i = (−1)j−1
∑

(F1, . . . ,Fj−1,Gj ,Gj+1, . . . ,Gp−1), (39)

where the sum is taken over all flags with the property that i /∈ Gp−1 and Gk <

Fk+1 for all k (j ≤ k < p). Then the boundary map is given by extending

∂ : (F1, . . . ,Fp) �→
∑
i∈Fp

(F − i) ⊗ xi (40)

R-linearly.
For each element F ∈ Fl�, let yF denote the corresponding element of M ′; that

is, yF = η $ (f ⊗ 1)(F ⊗ 1). In particular, we find a minimal generating set for
M ′ by choosing a set of β� flags of length � in L(B) appropriately. In particular,
one may construct a basis for Fl� using “nbc” sets (see e.g. [6, Lemma 3.2]).

Then the relations in M ′ are given by the image of ∂�+1 in (32). For each flag
F = (F1, . . . ,F�+1) we have a relation in M ′ of the form∑

i∈F�+1

yF−i xi . (41)

It follows that in gA, for each flag F = (F1, . . . ,F�+1), we have a relation∑
i∈F�+1

[xi, yF−i]. (42)

Because M ′ is the restriction of the module M from R to R ′, we can use the pre-
ceding paragraphs to derive a presentation for M as well, noting that the central
element

∑n
i=1 xi in R acts trivially. One can find a minimal set of relations just

by taking the flags F to come from a basis of Fl�+1. We summarize this discussion
as follows.

Theorem 5.1. Let A = {H1, . . . ,Hn} be a generic slice of a supersolvable ar-
rangement, and let A be the Orlik–Solomon algebra of A. Then the homotopy Lie
algebra gA has presentation with generators

• xi in degree (1, 0) for each i ∈ [n] and
• yF in degree (2, � − 2) for each F ∈ Fl�

and the relations

•
[
xi,

∑
j∈F xj

] = 0 for each flat F ∈L2(A) and each i ∈F,
•
∑

i∈F�+1
[xi, yF−i] = 0 for each flag F = (F1, . . . ,F�+2)∈ Fl�+1, and

•
[∑n

i=1 xi, yF
] = 0 for each F ∈ Fl�.

We illustrate this theorem with an example.

Example 5.2. Consider the arrangement A defined by the polynomial

QA = xyz(x − z)(y − z)(2x − y − 4z)(2x − y − 5z)(x + 5y + 2z)(x + 5y + z).
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This is a generic slice of the supersolvable arrangement B, the cone over the ar-
rangement defined by the polynomial QB ′ = vwxy(x −1)(y −1)(v −1)(w −1).
The Poincaré polynomials of the deconed arrangements are given by

π(A′, t) = 1 + 8t + 24t 2 and

π(B ′, t) = (1 + 2t)4 = 1 + 8t + 24t 2 + 32t 3 + 16t 4.

Thus the homotopy module M ′ has 32 generators and 16 relations, which can be
described as follows.

Label the hyperplanes of B ′ as 00,10, 20, 30, 01,11, 21, 31, in the order of the fac-
tors of QB ′ . A basis of 32 flags of length 3 can be constructed by choosing three
intersecting hyperplanes ia , jb, kc with 0 ≤ i < j < k ≤ 3 and a, b, c ∈ {0,1}
and then forming a flag by successively intersecting the hyperplanes from right to
left; we call this flag Fiajb kc . Likewise, a basis of 16 flags of length 4 in B ′ is con-
structed by choosing four intersecting hyperplanes 0a ,1b, 2c, 3d for all choices of
a, b, c, d ∈ {0,1} and again forming a flag by successive intersection.

Let gA be the holonomy Lie algebra of A. Then gA has one generator xH for each
hyperplane H together with 32 additional generators yiajb kc in degree (2,1)—as
well as the relations

[x0a , y1b2c3d ] − [x1b , y0a2c3d ] + [x2c
, y0a1b3d ] − [x3d , y0a1b2c

]

for each a, b, c, d ∈ {0,1}—in addition to the holonomy relations (8) and the
relations [ ∑

H∈A
xH , yiajb kc

]
for each choice of i, j, k and a, b, c.

6. 2-Generic Arrangements of Rank 4

We now present a method for computing the Hilbert series of the homotopy Lie al-
gebra of a particularly nice class of arrangements: rank-4 arrangements for which
no three hyperplanes contain a common plane.

For any rank-� arrangement A with n hyperplanes, let E = ∧
k
(e1, . . . , en) be

the exterior algebra, A = E/I the Orlik–Solomon algebra, and S = k[x1, . . . , xn]
the polynomial algebra. We recall the following.

Theorem 6.1 (Eisenbud–Popescu–Yuzvinsky [8]). The complex of S-modules

0 ←−− F(A) ←−− A� ⊗ S ←−− · · · ←−− A1 ⊗ S ←−− A0 ⊗ S ←−− 0

is exact, where boundary maps are induced via multiplication by
∑n

i=1 ei ⊗ xi
and where the S-module F(A) is taken as the cokernel of the map A�−1 ⊗ S →
A� ⊗ S.

It follows from Bernstein–Gelfand–Gelfand duality that, for each p ≥ 0, there is
a graded isomorphism of S-modules:
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ExtpE(A, k)q = Ext�−q

S (F(A), S)p+q . (43)

We refer to [28] for the case of the smallest q > 0 for which this is nonzero. De-
tails will appear in further work.

Now let A be a 2-generic arrangement. Notice that B = E and U(h) = B! =
S. Then, applying Lemma 2.1 to (43), we obtain

Mp
q = Ext�−q+1

S (F(A), S)p+q (44)

for p ≥ 0 and 0 ≤ q ≤ �. As a result, presentations for the S-modules Mq can be
obtained computationally for specific examples using formula (44).

We recall from Example 4.8 that, if the rank of the arrangement � = 4, then A
satisfies hypothesis (i) of Theorem 1.8: Mq = 0 unless q = 3 or q = 4; that is,
the singular range of A is (3, 4).

Example 6.2. Consider arrangements A1 and A2 defined by the polynomials

Q1 = xyzw(x + y + z)(y + z + w)(x − y + z + w),

Q2 = xyzw(x + y + z)(y + z + w)(x − y + z − w).

Both arrangements have 7 hyperplanes and 5 lines that each contain 4 hyperplanes,
so the characteristic polynomials are π(A1, t) = π(A2 , t) = 1 + 7t + 21t 2 +
30t 3 + 15t 4. Since there are no nontrivial intersections in codimension 2, it fol-
lows that the fundamental group of both complements is Z7 and that R = U(h) is
a polynomial ring.

We now use (44) to compute the Hilbert series of the graded modules M3 and
M4 (recalling Mq = 0 for q �= 3, 4). With the help of Macaulay 2, we find for A1

that

h(M3, t) = (5 + 2t)/(1 − t)3 = 5 + 17t + 36t 2 + 62t 3 + · · · and

h(M4, t) = (2 − t)(1 + 2t + 2t 2)/(1 − t)6 = 2 + 15t + 62t 2 + 185t 3 + · · · ;
for A2 ,

h(M3, t) = (5 + t)/(1 − t)3 = 5 + 16t + 33t 2 + 56t 3 + · · · and

h(M4, t) = (1 + 6t − t 2 − t 3)/(1 − t)6 = 1 + 12t + 56t 2 + 175t 3 + · · · .
Using formula (34), this yields expressions for the Hilbert series of U(g1) and
U(g2). Comparing these Hilbert series shows that U(g1) �∼= U(g2) and so the two
arrangements must have nonisomorphic homotopy Lie algebras.

Example 6.3. In 1946, Nandi [21] showed that there are exactly three inequiv-
alent block designs with parameters (10,15, 6, 4, 2). Each block is described in
Figure 1. Each block design gives rise to a rank-4 matroid on ten points by tak-
ing the dependent sets to be those subsets that either contain one of the blocks or
contain at least five elements.

By construction, there are no nontrivial dependent sets of size 3, so each ar-
rangement is 2-generic.
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D1 {abcd, abef , aceg, adhi, bchi, bdgj, cdfj, afhj, agij,
behj, bfgi, ceij, cfgh, defi, degh}

D2 {abcd, abef , aceg, adhi, bcij, bdgh, cdfj, afhj, agij,
aehj, bfgi, cehi, cfgh, defi, degj}

D3 {abcd, abef , acgh, adij, bcij, bdgh, cdef , aegi, afhj,
behj, bfgi, cehi, cfgj, degj, dfhi}

Figure 1

If we label the corresponding OS algebras A1, A2 , and A3, then it is straight-
forward to calculate that h(Ai, t) = 1 + 10t + 45t 2 + 105t 3 + 69t 4 for i =
1, 2, 3. In each case, the singular range is (3, 4). The ideals J1, J2 , J3 have dif-
fering resolutions, however, from which it follows that gA1 , gA2 , gA3 are pairwise
nonisomorphic.

7. Topological Interpretations

7.1. Generic Slices

A particularly simple situation, analyzed in detail by Dimca and Papadima [7], is
when A is a generic slice of rank � > 2 of a supersolvable arrangement B. Let A′
and B ′ be the respective decones with complements X = X(A′) and Y = X(B ′).
The two spaces share the same fundamental group, π, and the same integral holo-
nomy Lie algebra, h.

In Theorems 18(ii) and 23 of [7], Dimca and Papadima establish the following
facts. The universal enveloping algebra U(h) is isomorphic (as a Hopf algebra)
to the associated graded algebra grIπ(Zπ), where Zπ is the group ring of π with
filtration determined by the powers of the augmentation ideal Iπ. The first non-
vanishing higher homotopy group of X is π�−1(X); when viewed as a module over
Zπ, it has resolution of the form

0 −→ Hm(Y ) ⊗ Zπ −→ · · · −→ H�(Y ) ⊗ Zπ −→ π�−1(X) −→ 0. (45)

Finally, the associated graded module of π�−1(X), with respect to the filtration by
powers of Iπ, has Hilbert series

h(gr•
Iπ π�−1(X), t) = (−1/t)�

(
1 −

∑�−1
j=0(−1)jβj t j∑m
j=0(−1)jβj t j

)
, (46)

where βj are the Betti numbers of Y.
Consider the integral cohomology rings A = H •(X, Z) and B = H •(Y, Z).

We have (Bi)∗ = Hi(Y, Z), since the homology of an arrangement complement
is torsion-free. Thus, tensoring with k and passing to the associated graded mod-
ules in resolution (45) recovers resolution (32). As a consequence, we obtain the
following.
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Proposition 7.1. Let A be a generic slice of rank � > 2 of a supersolvable ar-
rangement, and let X = X(A′) be the complement of its decone. The homotopy
module of the algebra A = H •(X, k) is isomorphic to the graded module associ-
ated to the the first nonvanishing higher homotopy group of X:

MA
∼= gr•

I π�−1(X) ⊗ k. (47)

7.2. Rescaling

Fix an integer q ≥ 1. The q-rescaling of a graded algebra A is the graded alge-
bra A[q], with A

[q]
i(2q+1) = Ai and A

[q]
j = 0 if (2q + 1) � j and with multiplication

rescaled accordingly. When taking the Yoneda algebra of A[q], the internal de-
gree of the Yoneda algebra of A gets rescaled while the resolution degree stays
unchanged:

ExtA[q](k, k) = ExtA(k, k)[q]. (48)

Similarly, the q-rescaling of a graded Lie algebra L is the graded Lie algebra
L[q], with L

[q]
2iq = Li and L

[q]
j = 0 if 2q � j and with Lie bracket rescaled accord-

ingly. Rescaling works well with the holonomy and homotopy Lie algebras:

hA[q] = h
[q]
A , gA[q] = g

[q]
A . (49)

The Hilbert series of the enveloping algebras of g
[q]
A and gA are related as follows:

h(U(g
[q]
A ), t, u) = h(U(gA), tu

2q, u2q+1). (50)

Now let X be a connected finite-type CW-complex. A simply-connected finite-
type CW-complex Y is called a q-rescaling of X (over a field k) if the cohomology
algebra H •(Y, k) is the q-rescaling of H •(X, k); that is,

H •(Y, k) = H •(X, k)[q]. (51)

Rational rescalings always exist: take a Sullivan minimal model for the 1-
connected finite-type differential graded algebra (H •(X, Q)[q], d = 0), and use
[31] to realize it by a finite-type 1-connected CW-complex Y. The space that is so
constructed is the desired rescaling. Moreover, Y is formal—that is, its rational ho-
motopy type is a formal consequence of its rational cohomology algebra. Hence Y
is uniquely determined, up to rational homotopy equivalence, among spaces with
the same cohomology ring (though there may be other, nonformal rescalings of
X; see [24]).

Proposition 7.2. Let X be a finite-type CW-complex with cohomology algebra
A = H •(X; Q), and let Y be a finite-type simply connected CW-complex with
H •(Y ; Q) ∼= A[q]. If Y is formal, then

π•(?Y ) ⊗ Q ∼= g
[q]
A . (52)

Proof. Since Y is formal, the Eilenberg–Moore spectral sequence of the path fi-
bration ?Y → PY → Y collapses, yielding an isomorphism of Hopf algebras
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between theYoneda algebra of H •(Y ; Q) and the Pontryagin algebra H•(?Y ; Q).

From the rescaling assumption we obtain

ExtA[q](Q, Q) ∼= H•(?Y ; Q), (53)

and by Milnor–Moore [20] we find that gA[q] ∼= π•(?Y ) ⊗ Q as Lie algebras.
Using (49) finishes the proof.

As a consequence, we obtain a quick proof of a special case of Theorem A from
[24].

Corollary 7.3 (Papadima–Suciu [24]). Suppose X and Y are spaces as de-
scribed in Proposition 7.2. If both X and Y are formal and A is Koszul, then

π•(?Y ) ⊗ Q ∼= (gr•(π1X) ⊗ Q)[q]. (54)

Proof. Since A is Koszul, gA = hA; since X is formal, gr•(π1X) ⊗ Q ∼= hA (cf.
[31]). The conclusion follows from (52).

Remark 7.4. When X is formal (but not necessarily simply connected), a the-
orem of Papadima and Yuzvinsky [25] states that the cohomology algebra A =
H •(X; Q) is Koszul if and only if the Bousfield–Kan rationalization XQ is aspher-
ical. Now, by a classical result of Quillen [26], U(hA) ∼= grIπ Qπ1(XQ). More
generally, it seems likely that

U(gA) ∼= U(π•(?X̃Q)) ⊗̂ grIπ Qπ1(XQ) (55)

in view of a result due to Félix and Thomas [12]. (Here again, Qπ1(XQ) acts on
the left-hand factor by the action induced from π1(XQ) on the universal cover X̃Q.)

However, ifX is a hyperplane arrangement complement, thenX is not in general
a nilpotent space. This means that we can expect to find such spaces X for which
πi(XQ) �∼= πi(X) ⊗ Q. The first such example was found by Falk [9], who noted
that the complement X of the D4 reflection arrangement is aspherical whereas its
Bousfield–Kan rationalization XQ is not. In general, then, we know of no way to
relate gA with the topological homotopy Lie algebra π•(?X) ⊗ Q.

7.3. Redundant Subspace Arrangements

Let A = {H1, . . . ,Hn} be an arrangement of hyperplanes in C�. If q is a positive
integer, then A(q) = {H×q

1 , . . . ,H×q
n } is an arrangement of codimension-q sub-

spaces in Cq�. For example, if A is the braid arrangement in C� with complement
equal to the configuration space of � distinct points in C, then the complement of
A(q) is the configuration space of � distinct points in Cq.

Proposition 7.5. Let A be a hyperplane arrangement with Orlik–Solomon al-
gebra A = H •(X; Q). Fix q ≥ 1, and let Y = X(A(q+1)) be the complement of
the corresponding subspace arrangement. Then

π•(?Y ) ⊗ Q ∼= g
[q]
A . (56)
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Proof. Clearly, Y is simply connected. As shown in [5], H •(Y ; Q) is the q-
rescaling of H •(X; Q). Since A(q+1) has geometric intersection lattice, its com-
plement Y is formal (see [32, Prop. 7.2]). The conclusion then follows from Propo-
sition 7.2.

Corollary 7.6. Let A be a hypersolvable arrangement satisfying either of the
hypotheses of Theorem 1.8. Then

π•(?Y ) ⊗ Q ∼= (Lie(MA[−2]) � hA)
[q].

Example 7.7. Let A1 and A2 be the hyperplane arrangements from Example 6.2.
Denote by gi = gAi

the respective homotopy Lie algebras, i = 1, 2. Consider the
redundant subspace arrangements A(2)

1 and A(2)
2 ; both are arrangements of seven

codimension-2 complex subspaces of C8. Denoting their complements by Y1 and
Y2 (respectively), we have π1(Y1) = π1(Y2) = 0 and H∗(Y1) ∼= H∗(Y2) as graded
abelian groups.

Let π•(?Yi) ⊗ Q be the respective (topological) homotopy Lie algebras. By
Proposition 7.2, π•(?Yi)⊗ Q ∼= g[1]

i . Making use of our previous calculations for
the arrangements A1 and A2 together with formula (50) yields that, for i = 1, 2
both, U(g[1]

i )p has rank 1, 0, 7, 0, 28, 0, 84, 5, 210 (respectively) for 0 ≤ p ≤ 8. It
follows that, for p ≤ 9, the group πp(Yi) ⊗ Q = 0 except for π3(Yi) ⊗ Q ∼= Q7

and π8(Yi) ⊗ Q ∼= Q5.

For p = 9, however, the rank of U(g[1]
i )p is 52 and 51 for i = 1, 2, respectively.

Hence
π10(Y1) ⊗ Q ∼= Q17 and π10(Y2) ⊗ Q ∼= Q16,

so Y1 �% Y2.
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