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The Multipole Lempert Function Is
Monotone under Inclusion of Pole Sets

Nikolai Nikolov & Peter Pflug

Let D be a domain in C
n and let A = (aj)

l
j=1, 1 ≤ l ≤ ∞, be a countable (i.e.

l = ∞) or nonempty finite (i.e. l ∈ N) subset of D. Moreover, fix a function
p : D → R+ with

|p| := {a ∈D : p(a) > 0} = A;
p is called a pole function for A on D and |p| its pole set. When B ⊂ A is a
nonempty subset we put pB := p on B and pB := 0 on D \ B. Then pB is a pole
function for B.

For z∈D we set

lD(p, z) = inf

{ l∏
j=1

|λj |p(aj)
}

,

where the infimum is taken over all subsets (λj)lj=1 of D (in this paper, D is the open
unit disc in C) for which there is an analytic disc ϕ ∈ O(D,D) with ϕ(0) = z and
ϕ(λj) = aj for all j. Here we call lD(p, ·) the Lempert function with p-weighted
poles at A ([8; 9]; see also [5], where this function is called the Coman function
for p).

Wikström [8] has proved that, if A and B are finite subsets of a convex domain
D ⊂ C

n with ∅ �= B ⊂A and if p is a pole function forA, then lD(p, ·)≤ lD(pB , ·)
on D.

On the other hand, in [9] Wikström gave an example of a complex space for
which this inequality fails to hold, and he asked whether it remains true for an
arbitrary domain in C

n. The main purpose of this note is to present a positive an-
swer to that question, even for countable pole sets. (In particular, it follows that
the infimum in the definition of the Lempert function is always taken over a non-
empty set.)

Theorem 1. For any domain D ⊂ C
n, any countable or nonempty finite subset

A of D, and any pole function p for A, we have

lD(p, ·) = inf{lD(pB , ·) : ∅ �= B a finite subset of A}.
Therefore,

lD(p, ·) = inf{lD(pB , ·) : ∅ �= B ⊂ A}.
The proof of this result will be based on the following theorem.
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Theorem (Arakelian’s theorem [2]). Let E ⊂ � ⊂ C be a relatively closed
subset of the domain �. Assume that �∗ \E is connected and locally connected.
(Here �∗ denotes the one-point compactification of �.)

If f is a complex-valued continuous function on E that is holomorphic in the
interior of E and if ε > 0, then there is a g ∈ O(�) with |g(z) − f(z)| < ε for
any z∈E.

Proof. Fix a point z∈D. First, we shall verify the inequality

lD(p, z) ≤ inf{lD(pB , z) : ∅ �= B a finite subset of A}. (1)

Take a nonempty proper finite subset B of A. We may assume without loss of
generality that B = Am := (aj)

m
j=1 for a certain m ∈ N, where A = (aj)

l
j=1 for

m < l ≤ ∞.

Now, let ϕ : D → D be an analytic disc with ϕ(λj) = aj (0 ≤ j ≤ m), where
λ0 := 0 and a0 := z. Fix t ∈ [max0≤j≤m|λj |,1) and put λj := 1 − (1 − t)/j 2, j ∈
A(m), where A(m) := {m + 1, . . . , l} if l < ∞ or A(m) := {j ∈ N : j > m} if
l = ∞. Consider a continuous curve ϕ1 : [t,1) → D such that ϕ1(t) = ϕ(t) and
ϕ1(λj) = aj for j ∈A(m). Define

f =
{
ϕ|

tD

ϕ1|[t,1)

on the set Ft := tD ∪ [t,1) ⊂ D. Observe that Ft satisfies the geometric condition
in Arakelian’s theorem.

Since (λj)lj=0 satisfy the Blaschke condition, for any k we may find a Blaschke
product Bk with zero set (λj)lj=0,j �=k. Moreover, we denote by d the function
dist(∂D, f ) on Ft , where the distance arises from the l∞-norm. Let η1, η2 be
continuous real-valued functions on Ft with

η1, η2 ≤ log
d

9
, η1, η2 = min

tD

log
d

9
on (tD),

η1(λj) = η2(λj) + log(2−j−1|Bj(λj)|), j ∈A(m).

Applying Arakelian’s theorem three times, we can find functions ζ1, ζ2 ∈ O(D)

and a holomorphic mapping h on D such that

|ζ1 − η1| ≤ 1, |ζ2 − η2| ≤ 1,

|h − f | ≤ ε|eζ1−1| ≤ εeη1 on Ft ,

where ε := min{|Bj(λj)|/2j+1 : j = 0, . . . ,m} < 1 (in the last case apply Ara-
kelian’s theorem componentwise to the mapping e1−ζ1f ).

In particular, we have

|h − f | ≤ d

9
on Ft ,

|γj | ≤ eη1(λj)2−j−1|Bj(λj)| = eη2(λj)2−j−1|Bj(λj)|, j = 0, . . . ,m,

|γj | ≤ eη1(λj) ≤ eη2(λj)2−j−1|Bj(λj)|, j ∈A(m);
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here γj := h(λj) − f(λj) with j ∈ Z+ if l = ∞ or with 0 ≤ j ≤ l if l ∈ N. Then,
by virtue of eη2(λj) ≤ e1+Re ζ2(λj), the function

g := eζ2

l∑
j=0

Bj

eζ2(λj)Bj(λj)
γj

is holomorphic on D with g(λj) = γj , and

|g| ≤ eRe ζ2+1 ≤ eη2+2 ≤ e2

9
d on Ft ;

for qt := h − g it follows that qt(λj) = f(λj) and

|qt − f | ≤ e2 + 1

9
d < d on Ft .

Thus we have found a holomorphic mapping qt on D with qt(λj) = aj and
qt(Ft ) ⊂ D. Hence there is a simply connected domain Et such that Ft ⊂ Et ⊂ D

and qt(Et ) ⊂ D.

Let ρt : D → Et be the Riemann mapping with ρt(0) = 0, ρ ′
t(0) > 0, and

ρt(λ
t
j ) = λj . Considering the analytic disc qt � ρt : D → D, we deduce that

lD(p, z) ≤
l∏

j=1

|λtj |p(aj) ≤
m∏

j=1

|λtj |p(aj).

Note that, by the Carathéodory kernel theorem, ρt tends (locally uniformly) to
the identity map of D as t → 1. This shows that the last product converges to∏m

j=1|λj |p(aj). Since ϕ was an arbitrary competitor for lD(pAm
, z), inequality (1)

follows.
On the other hand, the existence of an analytic disc whose graph contains A and

z implies that
lD(p, z) ≥ lim sup

m→∞
lD(pAm

, z),

which completes the proof.

Remark 2. In the foregoing proof we have demonstrated an approximation and
simultaneous interpolation result—that is, the constructed function qt approxi-
mates and interpolates the given function f.

We first mention that the proof of Theorem 1 could be simplified by using
a nontrivial result of Carleson on interpolation sequences (see e.g. [1, Chap. 7,
Thm. 3.1]). Moreover, it is possible to prove the following general result, which
extends an approximation and simultaneous interpolation result of Gauthier and
Hengartner [4] and Nersesyan [6].

Let D ⊂ C be a domain, E ⊂ D a relatively closed subset satisfying the condi-
tion in Arakelian’s theorem, and # ⊂ E such that # has no accumulation point in
D and #∩ intE is a finite set. Then, for given functions f ,h∈ C(E)∩ O(intE),
there exists a g ∈ O(D) such that
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|g − f | < eReh on E and f(λ) = g(λ), λ∈#.

It is even possible to prescribe a finite number of the derivatives for g at all the
points in #.

As a by-product, we have the following result.

Corollary 3. Let D ⊂ C
n be a domain and let p, q : D → R+ be two pole

functions on D, where p ≤ q with |q| at most countable. Then lD(q, z) ≤ lD(p, z)
for z∈D.

Hence, the Lempert function is monotone with respect to pole functions having a
support that is at most countable.

Remark 4. In general, the Lempert function is not strictly monotone under in-
clusion of pole sets. For example, take D := D × D and A := {a1, a2} ⊂ D with
a1 �= a2 , and observe that lD(p, (0, 0)) = |a1| where p := χ |A×{a1} (use the prod-
uct property from [3; 5; 7]).

Remark 5. Let D ⊂ C
n be a domain, let z ∈ D, and let now p : D → R+ be

a “general” pole function (i.e., |p| is uncountable). Then there are two cases as
follows.

1. There exists a ϕ ∈ O(D,D) with ϕ(λϕ,a) = a, λϕ,a ∈ D, for all a ∈ |p| and
ϕ(0) = z. If we define

lD(p, z) := inf

{∏
|λψ,a|p(a) : ψ ∈ O(D,D) with

ψ(λψ,a) = a for all a ∈ |p|, ψ(0) = z

}
,

then lD(p, z) = 0. Observe that lD(p, z) = inf{lD(pB , z) : ∅ �= B a finite subset
of A}.

2. There is no analytic disc as in case 1; hence, in this case we may define

lD(p, z) := inf{lD(pB , z) : ∅ �= B a finite subset of A}
(cf. the definition of the Coman function in [5]).

Example 7 may show that the definition in case 2 is more sensitive than the one
used in [5].

Before giving the example, we use our preceding definition of lD(p, ·) for an
arbitrary pole function p to conclude as follows.

Corollary 6. Let D ⊂ C
n be a domain and let p, q : D → R+ be arbitrary

pole functions with p ≤ q. Then lD(q, ·) ≤ lD(p, ·).
Example 7. Put D := D×D and let A ⊂ D be uncountable—for example, A =
D. Then there is no ϕ ∈ O(D,D) passing through A × {0} and (0,w) with w ∈
D∗. Put p := χ |A×{0} on D as a pole function.
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Let B ⊂ A be a nonempty finite subset. Then, applying the product property
(see [3; 5; 7]), we obtain

log lD(pB×{0}, (0,w)) = gD(B × {0}, (0,w)) = max{gD(B, 0), gD(0,w)},
where gD(A, ·) denotes the Green function in D with respect to the pole set A.

Therefore, lD(p, (0,w)) = |w|.
To conclude this note we mention that the Lempert function is not holomorphi-
cally contractible, even if the holomorphic map is a proper covering.

Example 8. Let π : D∗ → D∗ with π(z) := z2. Obviously, π is proper and a
covering. Fix two different points a1, a2 ∈ D∗ with a2

1 = a2
2 =: c. Let z∈ D∗ with

z �= aj , j = 1, 2. Recalling how to calculate the classical Lempert function via the
covering map π, we have

lD∗(χ |{c}, z2) = min{lD∗(χ |{a1}, z), lD∗(χ |{a2}, z)}
> lD∗(χ |{a1}, z)lD∗(χ |{a2}, z),

where χ |B is the characteristic function for the set B ⊂ D∗. On the other hand,
we can see (using e.g. [7, Prop. 2]) that the last product is equal to lD∗(χ |{a1,a2}, z).
Hence, lD∗(p,π(z)) > lD∗(p � π, z) for p := χ |{c}.

Therefore, the Lempert function with a multipole behaves worse than the Green
function with a multipole.
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Added in Proof. After we submitted this paper for publication, the preprint
“Holomorphic discs with dense images” by F. Forstnerič and J. Winkelmann ap-
peared (arXiv:math.CV/0410390; see also Math. Res. Lett. 12 (2005), 265–268).
There—using an idea similar to that in the proof of our Theorem 1 and replacing
Arakelian’s theorem by an approximation theorem due to Forstnerič—the follow-
ing result is proved.

Let M be a connected complex manifold endowed with a complete Riemannian
metric, d the induced distance, A a countable subset of M, f ∈ O(D,X), and r ∈
(0,1). Then there exists a g ∈ O(D,X) such that A ⊂ g(D) and d(f(z), g(z)) <
1 − r for any z∈ rD.

A slight modification to the proof of this result may show that, if (in addition to
A, f , r) a finite subset # of D is given, then one can provide a function g as be-
fore and a sequence (µλ)λ∈# ⊂ D, r|µλ| < |λ|, such that f(λ) = g(µλ) for
λ∈#. Letting r → 1, this implies that Theorem 1 still holds for connected com-
plex manifolds.
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