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The Rank-2 Lattice-Type Vertex Operator
Algebras V" and Their Automorphism Groups

CHONGYING DoNG & ROBERT L. GRIESS, JR.

1. Introduction

This article continues a program to study automorphism groups of vertex operator
algebras (VOAs). See references in the survey [G2] and the more recent articles
[G3], [DG1], [DG2], [DGR], and [DN1].

Here we investigate the fixed point subVOA of a lattice-type VOA with respect
to a group of order 2 lifting the —1 map on a positive definite lattice. We can obtain
a definitive answer for the automorphism group of this subVOA in two extreme
cases. The first is where the lattice has no vectors of norm 2 or 4, and the second
is where the lattice has rank 2.

We use the standard notation V. for a lattice VOA based on the positive definite
even integral lattice L. For a subgroup G of Aut(L), V,% denotes the subVOA of
points fixed by G. When G is a group of order 2 lifting —1;, it is customary to
write V," for the fixed points (even though, strictly speaking, G is defined only up
to conjugacy; see the discussion in [DGH] or [GH]).

The rank-2 case is a natural extension of work on the rank-1 case, where Aut ( VLG)
was determined for all rank-1 lattices L and all choices of finite group G <
Aut(Vy). The styles of proofs are different. In the rank-1 case, there was heavy
analysis of the representation theory of the principal Virasoro subVOA on the am-
bient VOA. In the rank-2 case, there is a lot of work on idempotents and solving
nonlinear equations as well as work with several subVOAs associated to Virasoro
elements. For rank 2, the case of nontrivial degree-1 part is harder to settle than in
rank 1.

Our strategy follows this model. Let V be one of our V,". We get information
about G := Aut(V) by its action on the finite-dimensional algebra A := (V,, I*").
We take a subset S of A that is G-invariant and understand S well enough to limit
the possibilities for G (usually, there are no automorphisms besides the ones nat-
urally inherited from V. ). A natural choice for § is the set of idempotents or con-
formal vectors. Usually, S spans A or at least generates A. In the main case of
a rank-2 lattice, we prove that Aut(V) fixes a subalgebra of A that is the natural
M (1);’. The structure of V is controlled by M (1)™, which is generated by M (1)5r
and its eigenspaces, so we eventually determine G.
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For several results, we give more than one proof. For the case of a lattice L
without roots, the automorphism group of V," was studied in [S]. We thank Harm
Derksen for help with computer algebra.

2. Background Definitions and Notation

NotaTION 2.1.  Let L be an even integral lattice. For an integer m, define L, :=
{xeL]| (x,x) =2m}. Let H := C® L, the ambient complex vector space. For
a subset S of L, define rank(S) to be the rank of the sublattice spanned by S.

DEFINITION 2.2, For a lattice L, the group of automorphisms of the free abelian
group L that preserves the bilinear form is called the group of automorphisms, the
isometry group, the group of units, or the orthogonal group of L. This group is de-
noted Aut(L) or O(L). We will use the notation O(L) in this article as well as the
associated SO(L) for the elements of determinant 1, PO(L) for O(L)/{Z£1}, and
PSO(L) for SO(L)/SO(L) N {=£1}.

DEerFINITION 2.3.  For an even integral lattice L, we let L be the 2-fold cover of
L described in [DGH; FLMe; GH]. We may write bars for the map L — L. The
group of automorphisms, the isometry group, the group of units, or the orthogonal
group is the set of group automorphisms of L that preserve the bilinear form on the
quotient of L by the normal subgroup of order 2; it is denoted Aut(L) or O(L) and
has shape 2% O(L). A bar (cf. §3.2) denotes the natural map O(L) — O(L).

We next list some notation that is used for work with lattice-type VOAs.

D(L): the discriminant group of the integral lattice L is D(L) := L*/L.

e“: standard basis element for C[L].

FVOA: framed vertex operator algebra [DGH].

LVOA: lattice vertex operator algebra [ FLMe].

LVOA type: the fixed points of a lattice vertex operator algebra under a finite
group of automorphisms [DG1; DGR].

LVOAT: V," for an even lattice L.

LVOAG(L): the subgroup of Aut(V,), for an even integral lattice L, as de-
scribed in [DN1]. Itis denoted N(I:) and is an extension of the form 7. Aut(L)
(possibly nonsplit), where T is a natural copy of the torus C® L /L* obtained
by exponentiating the maps 2mx( for x € Vy; the quotient of this group by
the normal subgroup 7 is naturally 1som0rphlc to Aut(L). Also, N(L) is the
product of subgroups 7'S, where § = O(L) andSNT ={xeT |x2=1}Z
Zrzank(”. We may take S to be the centralizer in LVOAG(L) of a lift of —1;
it has the form 2™"%(X) Aut(L), and in fact any such S has this form. Denote
the groups S and T by O(L) and T(L), respectively.

LVOA group for L: this means LVOAG(L).

LVOAG: this means LVOAG(L) for some L.

LVOAG™(L): this is the centralizer in LVOAG(L) of a lift of —1 modulo the
group of order 2 generated by the lift; it has the form 2@ [Aut(L)/(—
and is the inherited group.
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LVOAG™: this means LVOAG™(L) for some L.

LVOAT group: same as LVOAG™.

M(1), M(1)™: see Section 3.

N(L): see LVOAG(L).

o: linear map from V to End(V).

O(L): see LVOAG(L).

T(L): see LVOAG(L).

Vo: ¥ +e %

X or X(L): given an even integral lattice L, this is a group of shape
for which commutation corresponds to inner products modulo 2; see an ap-
pendix of [GH].

XO or X@(i): an extension of X upward by O(L).

XPO or XPO(L): a quotient of XO by a central involution that corresponds to
—1; under the natural epimorphism to O(L).

21+rank(L)

REMARK 2.4. If (L,L) C 27Z,then L=Lx (£1). Thus O(i) contains a copy of
O(L) that complements the normal subgroup of order 2% (2) consisting of auto-
morphisms that are trivial on the quotient group L of L. This splitting passes to
the groups PO(L) and XPO(L).

3. Automorphism Group of V,;* with Ly =L, =0

In this section, we determine the automorphism group of VL+ with Ly = L, =
¢ and assume only that rank(L) > 1. The automorphism group of V," in case
rank (L) = 1is determined in [DG1] without any restriction on L. The assumption
that L; = L, = { ensures that any automorphism of VLJr preserves the subspace
M (1)F, which can be identified with the Jordan algebra S?H.

Since M (1)" is generated by M (1)7 if dim H > 1 and since V," is a direct sum
of eigenspaces for M (1);’ (cf. [AD]), the structure of Aut(VL+) can be determined
easily. We shall use a classic result.

ProOPOSITION 3.1.  The automorphism group of the Jordan algebra of symmetric
n x n matrices is PO(n, C), acting by conjugation.

Proof. See [J]. O

3.1 AuttM()h)

We first recall the construction of M (1)*. Let H be an n-dimensional complex
vector space with a nondegenerate symmetric bilinear form (-, -), and let H =
H ®C[t,t~'1@ Cc be the corresponding affine Lie algebra. Consider the induced
H-module

M) =UH) Qusciece C~ S(H®17'C[t'])  (linearly),

where H ® C[¢] acts trivially on C and where c acts as 1. Fora € H andn € Z
we set a(n) := o @ t". Let T be the automorphism of M (1) such that
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(a1 (—my) - o (—mp)) = (=DFay(—ny) - - (—ny)

fora; € H andny > --- > n; > 1. Then M(1)" is the fixed point subspace of t.
PROPOSITION 3.2.  The automorphism group of M(1)™ is PO(n, C).

Proof. We first deal with the case dim H > 1. Then M (1)* is generated by M (1);’
(cf. [DN2]), which is a Jordan algebra under u - v = uv foru,v € M(l);r. So any
automorphism of M (1) restricts to an automorphism of the Jordan algebra M (l)j.
On the other hand, the automorphism group of M (1) is O(n,C) [DM2], which
preserves M (1)*. Clearly, the kernel of the action of O(n,C) on M (1) is {41}
and so PO(n, C) is a subgroup of the automorphism group of M(1)*. By Propo-
sition 3.1, any automorphism of M (1);r extends to an automorphism of M (1)™.
We now assume that dim H = 1. Then M (1)" is not generated by M(l); By
Lemma 2.6 and Theorem 2.7 of [DG1], for any nonnegative even integer n there is
a unique lowest weight vector u” (up to scalar multiple) of weight n2, and M (1)*
is generated by the Virasoro vector and u". Using the fusion rule given in Lemma
2.6 of [DG1], we immediately see that the automorphism group of M (1) in this
case is trivial. Clearly, PO(1,C) = 1. This finishes the proof. U

3.2. Aut(V;")

First we review from [B] and [ FLMe] the construction of a lattice vertex operator
algebra V. for any positive definite even lattice L. Let H = C®y L. Recall that L
is the canonical central extension of L by the cyclic group (£1) such that the com-
mutator map is given by c(a, B) = (—1)“#). We fix a bimultiplicative 2-cocycle
e: L x L — (&£1) such that e(a, B)e(8,a) = c(a, B) for @, 8 € L. Form the
induced L-module

C{L} = C[L] ®crany C = C[L] (linearly),

where C[-] denotes the group algebra and —1 acts on C as multiplication by —1.
Fora € L, write ((a) for a ® 1 in C{L}. Then the action of L on C{L} is given by
a-u(b) =t(ab) fora,b e L.1f (L, L) C 2Z then C{L} and C[L] are isomorphic
algebras. The lattice vertex operator algebra V;, is defined to be M (1) ® C{L}, as
a vector space.

It follows that O(i,) is a naturally defined subgroup of Aut(i), that Hom (L,
7./27) may be identified with a subgroup of 0(£) (see [DN1; FLMe; GH]), and
that there is an exact sequence

1 — Hom(L,Z/2Z) — O(L) = O(L) — 1.

It is proved in [DNI1] that Aut(V, ) has shape N - 0(1:), where N is the normal sub-
group of Aut(Vy) generated by e“° for u € (V.),. Observe that Hom(L,Z/27Z)
can furthermore be identified with the intersection of N and 0(1:); see the nota-
tion listed after Definition 2.3.

Lete: L — L be a section associated to the 2-cocycle ¢, written o +— e, such
that eg = 1. Let 0 be the automorphism of L of order 2 such that fey = e_, for
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o € L. Then 6 extends to an automorphism of Vy, still denoted by 6, such that
0| mq) is identified with T and 6¢(a) = t(fa) for all a € L. Sete® = t(ey). Then
fe®* = e “.

Let V," be the fixed points of 6. In order to determine the automorphism group
of VL+, it is important to understand which automorphism of V;, restricts to an auto-
morphism of VL+. Clearly, the centralizer of 6 in Aut(V,) acts on V,", so we get an
action of O(L)/(%1) on V,*. Let h € H. Then ¢*™"© preserves V," if and only if
(h,a) = (h, —a) modulo Z for any o € L. Thatis: h € %L*, where L* is the dual
lattice of L.

LEmMMmA 3.3, The subgroup of Aut(V,f) that preserves M (1)'; is just the LVOA™
group.

Proof. Letn := dim(H), and let o € Aut(VL+) be such that aM(l)‘{ C M(l);
Then UlM(l)'zf- € PO(n,C) as in Proposition 3.2. Note that M (1)" is generated
by M (1);r as rank (L) > 1 (see the proof of Proposition 3.2). Hence o preserves
M.

Foranya € L, let VL+(ot) be the M (1)*-submodule generated by v, := e +e~ %
Then V,"(«) is an irreducible M (1)"-module, and V," (), V,"(B) are isomorphic
M (1)*-modules if and only if & = % (cf. [AD]). Moreover, if @ # 0 then VL+(oz)
is isomorphic to M (1) ® e* (cf. [AD]).

Note that V," = > ., V,"(a). Let S be a subset of L such that |S N {£a}| = 1
for any o € L. Then, for any two different «r, 8 € S, it follows that VL+(ot), Vf(ﬂ )
are nonisomorphic M (1)*-modules and that

vi=Pviw

aes

is a direct sum of nonisomorphic irreducible M (1)*-modules.

Let a € L. Because o preserves M (1), it sends VL+(oc) to VL+(,3) for some 8 €
L. The vector v, is the unique lowest weight vector (up to a scalar) of VL+(oz).
This implies that o(v,) = Avg for some nonzero scalar A € C (depending on «
and 8).

For a vertex operator algebra V and a homogeneous v € V, we set o(v) =
Vwi(w—1) and extend to all of V linearly. Note that v, is an eigenvector of o(v) for
URS M(l); Infact, o(hi(—1)hy(—1))vy = (hy, ) (h,, @)v, for h; € H. Recall the
proof of Proposition 3.2. We can regard the restriction of ¢ to (VL+)2 =M (1);r as
an element of O(n, C) that is well-defined modulo £1. Then o (h1(—1)ho(—1)) =
(oh1)(—=1)(ch,)(—1). Note that o ! is the adjoint of o. Therefore,

(hi,)(ha, a@)Avg = o ((hy, &) (ha, @)ve) = o (o(hi(=Dha(=1))ve)
= o(o(hi(=Dh2(=1))Avg = (ohi, B)(0h2, B)rvg.
Since the h; are arbitrary, we have oo« = 8. Thus o maps L onto L and so in-
duces an isometry of L that is well-defined modulo (+1).

Multiplying o by an element from LVOAG™(L) (which comes from N(I:)), we
can assume that o| )+ = idpyy+. Then ov, = A4V, for some nonzero A, € C.
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Since VL+(a) is an irreducible M (1)"-module, we see that o acts as the scalar A,
on VL+(01). Clearly, ., = X _,. Note that

Y(va, 2)vp = E~ (—a, D) (e, e PP + E™(—a,2)e(a, —p)e* Pz @P
+ E (. 2)e(—a, Be Pz @P L E-(a, 2)e(e, Ble PP,

E (a,z) = exp(Z %)

n<0

where

Thus, if n is sufficiently negative, (vy),(vg) = u + v for some nonzero u €
V" (a + B) and v € V" (—a + B). This gives AgAg = Agip = Aa—p by applying
0 10 (Vo)n(vg) = u + v. So o > A defines a character of abelian group L/2L
of order 2". Clearly, any character A: L/2L — (%1) defines an automorphism o
that acts on VL+(a) as Ay. Therefore, the subgroup of Aut(VL+) that acts trivially
on M(1)™" is isomorphic to the dual group of L/2L and is exactly the subgroup
of 0([:)/(:&:1) that we identified as Hom(L,Z/27). As a result, the subgroup of
Aut(VL+) that preserves M (1)3r is exactly the group O(E)/ (£l1), as desired. [

PROPOSITION 3.4. Let L be a positive definite even lattice such that Ly = L, =
(). Then Aut(V,") is the inherited group—that is, the LVOA™ group.

Proof. In this case we have (V,"), = M(1)}. Thus, any automorphism of V,*
preserves M (1)3. By Lemma 3.3, Aut(V,") is the LVOA™ group. O
4. Rank-2 Lattices

All lattices in this paper are positive definite; throughout, L denotes an even inte-
gral lattice. We recall a general result.

LEMMA 4.1. Let L be a lattice and M a sublattice.

(i) If |L : M| is finite, then det(M) = det(L)|L : M|*
(ii) If M is a direct summand of L, then L/[M + ann; (M )] embeds in D(M).

Proof. These are standard results. For example, see [G4]. U

We need to categorize rank-2 lattices by their configurations of norm-2 and norm-
4 elements, because such elements contribute to low-degree terms of the lattice
VOA. We shall use the notation described in 2.1.

LeEmMA 4.2, Suppose that rank (L) = 2. Then L, spans L, and L is one ofLA%
or Ly,.

Proof. The span of L, is isometric to L 2 or L4,, and each of these is a maximal
even integral lattice under containment. UJ



Automorphism Groups of Vertex Operator Algebras 697

LEmMMA 4.3.  Suppose that rank(L,) = 1. Let r € L and let s generate anny(r).
Then (s,s) > 4, and if L > span{r, s} then 14 < (s,s5) € 6 4 8Z.

Proof. Note that Zr is a direct summand of L. We have (s,s) > 4. In case L >
N := span{r,s}, L/N has order 2 by Lemma 4.1. If x represents the nontrivial
coset then (x,x) > 4 and (2x,2x) > 16; also, (2x,2x) € 8Z. Since (x,r) is odd,
if we write 2x = pr + ¢s for integers p, ¢ € Z then p is odd, so ¢ (s, s) € 6+ 8Z.
It follows that ¢ is odd and (s, s) € 6 + 8Z. O

LeEmMA 4.4.  Suppose that Ly = @ and rank(L,) = 2. If r and s are linearly in-
dependent norm-4 elements, then they span L and have Gram matrix G = (i Z)
Sfor some b € {0, £1, £2}.

Proof. If L # N := span{r, s}, then det(N) = 16 — b? is divisible by a perfect
square, whence b = 0 or b = +£2 and the index is 2. Actually, » = 0 does not
occur here because %r, %s ¢ L implies that %(r + 5) € L, a contradiction; thus
b = £2. Clearly, span{r,s} = 2L A,- However, any integral lattice containing
the latter with index 2 is odd, a contradiction. Therefore, L = N and the Gram
matrix is as shown. Positive definiteness implies that || < 4, and rootlessness

implies that b # +£3. U

LEmMMA 4.5.  Suppose that L1 = ) and rank(L,) = 1. Let r € L, and let s gen-
erate anng(x). Then (s,s) > 6 and L /span{r, s} is a subgroup of Z4. Moreover:
(a) if the order of L /span{r,s} is 2, then 8 < (s,s) €4 + 8Z.

(b) ifthe order of L/span{r, s} is 4, then 28 < (s,s) € 28 + 32Z.

Proof. Let x be in a nontrivial coset of N := span{r,s}in L.

If (x,r) € 2+ 47Z then 2x = pr + gs, where p is odd. We have (x,x) > 6 with
poddand g # 0. Therefore, (2x,2x) € 8Z and 24 < 4p? + (s,s)q> whence q is
odd and (s,s) €4 + 8Z.

If (x,r)el+2Zthen (4x,4x)€327Z. We have (x, x) > 6, whence (4x,4x) > 96.
Writing 4x = pr + gs yields 4p? + g°(s, s) € 32Z. Since p is odd, p% €1+ 8Z
and 4p? € 4 + 327. Since (s, s) is even and ¢ is odd, we have ¢> € 1 + 8Z and
(s,5) €4 + 8Z. It follows that ;¢*(s,s) € 7+ 8Z, whence ;(s,s) €7+ 8Z. O

5. Idempotents in Small-Dimensional Algebras

We can derive a lot of information about the automorphism group of a vertex oper-
ator algebra by restricting to low-degree homogeneous pieces. For the V," prob-
lem, the degree-2 piece and its product x, y > x|y give an algebra that is useful to
study. Here, for rank (L) = 2, we concentrate on some commutative algebras of
dimension about 5. Commutativity of (V15 is implied if L; = @, which holds
for b € {0, +1,£2} as in Lemma 4.4.

It does not seem advantageous to give particular values to » most of the time,
so we keep it as an unspecified constant in case these arguments might be a model
for future work. In this paper, we shall note any limits on b as needed.
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NotATION 5.1. Let S be the Jordan algebra of degree-2 symmetric matrices,
and suppose that A is a commutative 5-dimensional algebra of the form A =
S @& Cv, & Cuy. Suppose further that v, x vy, = 0 and that the notation of
Section 9 applies here, with the usual inner products and algebra product. Let
w = p + ¢, v, + c;vug be an idempotent, and suppose that ¢ is a norm-4 vector
orthogonal to r. Let ay, a,, a3 be scalars such that p = ar? + arrt + ast’.

REMARK 5.2. We note that the basis r, s of H has dual basis r*, s*, where r* =
(4r — bs)/(16 — b*) and s* = (4s — br)/(16 — b*). The identity of A is
1 1

* * 1 1 2 2
Zm(rr +s55%) = 4r=+44s= —2brs).

T 416 — b2

NoTaTION 5.3. If w is an element of A, write w = p + g for pe S?H and g €
Cv, & Cuy. Call the element w := p — g the conjugate element. The components
p and q are called (respectively) the P-part and the Q-part of w. Extend this no-
tation to subscripted elements: w; = p; 4+ ¢g; and w; = p; — ¢; for indices i.

REMARK 5.4. In 5.3, q2 € S2H because v, X v, = 0. Also, w = p + g is an
idempotent if and only if p = p?> + ¢?> and ¢ = 2p x q. Hence w = p + ¢ is an
idempotent if and only if the conjugate p — ¢ is an idempotent.

LEmMMA 5.5. Suppose that w, and w, are idempotents and that their sum is an
idempotent. Then wy x w, = 0 and (wy, w;) = 0.

Proof. We have (wi+wp)? = wl2 +2w; X wz—l—w%, whence w; x w, = 0. Also,
(w1, w2) = (W wy) = (w,wy x wp) =0. O

DEFINITION 5.6. Throughout this paper, an idempotent is neither zero nor the
identity unless the context clearly allows the possibility. We call an idempotent w
of type 0, 1, or 2 (respectively) if it has Q-part that is 0, is a multiple of v, or vy,
or is not a multiple of either v, or v.

LEMMA 5.7. (i) r? x s2 = 4brs, r> x r> = 1672, s* x s> = 1652, and rs x rs =

4r% + 45% + 2brs. Moreover, x* x v, = (x,r)%v, = %(xz,rz)v,, r2xrs =
8rs + 2b2%r2, and s* x rs = 8rs + 2b2s2; also, v, X v, = r2, v, X v; = 0, and
Vs X Uy = %

(1) (% r?) = 32 = (s452), (r% s2) = 2b2 (rs,rs) = 16 + b2 and (rs,r?) =
8b = (rs, s2); also, (vy,v,) =2 = (vs, v5) and (v,,v,) = 0.

Proof. See the Appendix (Section 9; take a = d = 4 and b # 0, +2). O

5.1. Idempotents of Type 0

REMARK 5.8.  Idempotents of type O are simply idempotents in the Jordan algebra
of symmetric matrices; they are ordinary idempotent matrices that are symmetric.
Up to conjugacy by orthogonal transformation, they are diagonal matrices whose
diagonal entries are O and 1 only.
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5.2. Idempotents of Type 1

NoOTATION 5.9. The next few results apply to the case of an idempotent of type
l—that is, of the form w = p + c,v,, where ¢, # 0. In such a case, w = w? =
pr+c2r? +c.(p,rHv, (see Section 9). From ¢, # 0 it follows that (p,r?) = 1.
‘We continue to use the notation of 5.1.

LEMMA 5.10.  Suppose ¢, # 0 and c; = 0. Then we have a; = 16a} + 4aj3 + c?,
a, = 16az(a; + az), az = 16a3 + 4a2, and (p,r?) = 1.

Proof. Compute p + c,v, = w = w? = p? + crzr2 + ¢ (p,r®)v, (see Lemma

5.7) and expand in the basis r2rt, 12 v,. O
COROLLARY 5.11. a; = %2
Proof. Wehave 1 = (p,r?) = a\(r%,r?) = 32a,, whence a; = ;. O

LEMMA 5.12.  Suppose that ¢, # 0 and c¢; = 0. Then:
(A1) a; = 16a? + 4a2 + c?;

(A2) ap = 16ay(a; + az); and

(A3) a3z = 16a§ + 4a§.

Proof. Compute p2 = (16(112 + 4(1%)r2 + 16(ayar + azar)rt + (16a§ + 461%)1‘2

and use w = w? = p% +c2r? + cv,. O
LEmMA 5.13.  Suppose that ¢, # 0 and ¢ = 0. If ap = 0, then a3 € {0, 16} and
= :i:%.

Proof. We deduce from (A3) that a; = 16a§; hence ¢, = :I:é. O

LEMMA 5.14.  Suppose that ¢, # 0 and ¢; = 0. Then a, = 0.

Proof. Ifa, # 0, then from (A2) we have 1 = 16(a; + a3) and so a3z = é Next,
use (A3) to obtam = 4a2 Finally use (Al) to get ¢, = 0. O

THEOREM 5.15.  Assume that ¢, # 0 and ¢; = 0. Then:

(1) ag = 32,612 =0, andc, = :l:— and

(ii) either (w,w) = and as = O or (w,w) = and as = 16

All of these cases occur. If an idempotent occurs, so does its complementary
idempotent.

Proof. This is a summary of preceding results. UJ

LEmMMA 5.16. If w is an idempotent of type 1, then the following statements hold.

1) If (w,w) = 16, the eigenvalues for ad(w) are 1,0,0,1
these respective eigenspaces are w,1 — w,t% rt, v;.

s 1 32b ; eigenvectors for
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i) If (w,w) = 16, the eigenvalues for ad(w) are 0,1, 1, i,l b ; eigenvec-
tors for these respective eigenspaces are w,1 — w, t% rt, vs.
If ibz #0,1, J‘, 2, then the multiplicities of 0 and 1 are (respectively) 2 and 1

in part (1) and 1 and 2 in part (ii).

Proof. This can be shown by straightforward calculation. Note that 5 b2 # 0,1,
1.3 follows if b is rational. O

COROLLARY 5.17.  Ifwisatype-1 idempotent and is the sum of two nonzero idem-
potents wl, wz, then: w has theform 1p2y4 Et +1 gUrs and w, and w, are, up

to order, ﬁr +1 gVr and ftz

Proof. If w is such a sum then each w; is in the 1-eigenspace of ad(w), which
must be more than 1-dimensional. This means that w has norm 16 and one of the
w; (say, for i = 1) has type 1 and Q-part &1 v, Therefore, w, has type 0 and

hence norm § This means that w; has norm 16, so we know that w; has shape

2
32r 24 81), and that w = Et . [

5.3. Idempotents of Type 2

HypoTHESIS 5.18.  We assume in this section that the parameter b # 0, £2, +3
(which means b = =£1). Then the algebra (V,, 1°") is commutative because V| = 0.

NOTATION 5.19. Let p = ¢(r? 4 s2) 4+ drs and v = c,v, + c,v;.

LEMMA 5.20. If ¢, and c; are nonzero, then there are at most eight possibilities
forw. In more detail there are at most two values of ¢ (and, correspondingly, of
d). We have c = c , and this common value depends on c (or on d).

Proof. Compute p 4 c,v, +cvy = w = w? = p + crzr2 + cszs2 +c (p,rov, +
cs(p,s?)vy. Since ¢, and ¢, are nonzero, (p,r?) =1= (p,s?).

Since (r% r2) = 32 = (5% 52), (rs,r2) = 8b = (rs,s2), and (r2 s2) = 16 + b2,
we have p = c(r?> 4+ s2) + drs for some scalars ¢, d. The previous paragraph then
implies that 1 = (32 + 2b2)c + 8bd. Since b # 0,

d= %(zc(:az +2b%) — 1) (5.1

is a linear expression in c.
Now, p? = (16¢% + 4d*)(r? + s%) + 2bc? + 2bd?)rs and so

w? = (16¢? + 4d* + c2)r? + (16¢* + 4d* + ¢?)s?
+ (2bc2 + 2bd2)rs + ¢, v, + cvy.

It follows that ¢? = ¢2.
Comparing the coefficients of 2, we get

¢ =16¢> +4d* + c2; (5.2)

comparing the coefficients of rs yields
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d = 2bc? + 2bd>. (5.3)

Since d is a linear expression in ¢, we know that ¢ satisfies a quadratic equation
that depends on b but not on ¢ = ¢2. The degree of this equation really is 2, since
b # 0 real implies that the top coefficient is nonzero.

It follows that the ordered pair d, ¢ has at most two possible values. For each,
there is a unique value for ¢ and hence at most two possible values for ¢, (with
the same two for ¢;). Hence there are at most eight idempotents of type 2. U

LEmMMA 5.21. ¢ #0andd # 0.

Proof. Suppose that ¢ = 0. We then have p = drs and d = —%b. On the other
hand, since w = drs + v is an idempotent, the coefficient for wlatrsisd =
8bc? 4 2bd? = 2bd?, which implies that 1 = 2bd. This is incompatible with
d = —3b.

If d = 0 then equation (5.3) implies that ¢ = 0, which is false. UJ

LEMMA 5.22. Ifw is a type-2 idempotent with w = c(r>+5%) +drs +c,v, +cyv;
and if 1 — w is the complementary idempotent, expanded similarly as 1 — w =
c'rr+s53) +d'rs + c/vy + v, then ¢ = —c, # ¢y, ¢, = —cg, ¢ #c'yand d #
d'. In particular, in the notation of Lemma 5.20, the function ¢ > c? is two-to-one
and so only one value of cr2 occurs for type-2 idempotents.

Proof. If it were true that ¢ = ¢/, then w = %]I +vandl —w = %}I — v. Since
these are idempotents, v> = %]I. But this is impossible, since b # +£2 implies that

v? is a multiple of r2 + s and since I is not a linear combination of 72 and s for

b # 0 (see Remark 5.2). O

5.4. Sums of Idempotents
HypoTHESIS 5.23.  'We continue to take b = £1. Results of Section 5.3 still apply.

In the arguments of this section, we allow the symbol b to be any odd integer,
though the lattice is positive definite only for b = =+1.

LEMMA 5.24. Suppose that wy, w, are two idempotents of type 1. If wy + wy is
an idempotent, then w, + wy does not have type I or type 2.

Proof. We use Corollary 5.17 to eliminate the sum having type 1. To eliminate a
sum having type 2, we note that for type-1 idempotents a, = 0 by Theorem 5.15,
whereas d # 0 for type-2 idempotents by Lemma 5.21. UJ

LEmMMA 5.25. If wi, w, are idempotents of type 2 and are not complementary,
then their sum is not an idempotent.

Proof. Assume that the sum w is an idempotent. From Lemma 5.24, the sum
has type 0 and so has the form %uz for some vector u € H of norm 4. The
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eigenvalues of ad(u) are 1,0, %, %(u,r)z, %(u,s)2 with respective eigenvectors
u*, 1 —u? Yuu', v,, vy, where u’ spans the orthogonal of u in H.

Now w; and w, are linearly independent (or else they are equal, which is im-
possible). This means that the eigenvalue 1 has multiplicity at least 2. Therefore,
at least one of (u,7)* and (u,s)? is 16. Since w;, w, lie in the 1-eigenspace of
ad(u) and since both w; have type 2, both these square norms must be 16; that is,
m = (u,r) = £4 and n := (u,s) = 4. Since r, s form a basis and the form is
nonsingular, this forces u = mr* + ns*, where r*,s* is the dual basis. We have
4 = (u,u) =16(r*,r*) 4+ 2mn(r*,s*) + 16(s* s*). The right side is

1
W[l6(4r —bs,4r — bs) +2mn(4r — bs,4s — br) + 16(4s — br,4s — br)].
Since b is an odd integer, the above rational number in reduced form clearly has
numerator divisible by 16 and so does not equal 4, a contradiction. O

LEMMA 5.26. The sum of a type-1 and a type-2 idempotent is not an idempotent.

Proof. Assume that w := w; + w; is an idempotent. Obviously it does not have
type 0. By Corollary 5.17, it does not have type 1.

We conclude that w has type 2. However, the coefficients of w at 7> and s> must
be equal for type 2, a contradiction since this forces the P-part of the type-1 idem-
potent to be zero. O

COROLLARY 5.27. The only idempotents that are a proper summand of some
nontrivial idempotent are the ones of type 1 and norm %. There exist four such
and they come in orthogonal pairs, which are just pairs of idempotents and their
conjugates.

COROLLARY 5.28. Aut(A) is a dihedral group of order 8.

Proof. The automorphism group preserves and acts faithfully on the set J of type-
1 idempotents of norm % (i.e., the complete set of idempotents that are proper
summands of proper idempotents) and furthermore preserves the partition defined
by orthogonality. The orthogonal in A of the nonsingular subspace span(J) is
spanned by v := r? + 52 — 1040 ®rs. We claim that if an automorphism acts triv-
ially on span(J), it acts trivially on A. This is so because rs € span{r? x s,r2, 5%}
and {rs} U J spans A.

Thus we have shown that the automorphism group of A embeds in a dihedral
group of order 8. This embedding is an isomorphism that is onto, since the LVOA™
group embeds in Aut(A). UJ

PROPOSITION 5.29.  Aut(V,") is just the LVOA™ group, isomorphic to Dihg.

Proof. In this case we have (VL+)2 =M (l); Thus, any automorphism of V,_Jr
preserves M (l)j. Now use Lemma 3.3. O
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6. Automorphism Group of VL"' with rank(L) =2

In this section we assume that the rank of L is equal to 2. If L} = L, = (J, then
the automorphism group of V,* was determined in Proposition 3.4. Hence, in this
section we assume that either L; or L, is not empty.

6.1. Ly =Wandrank(L,) =2;b =0

Note that L is generated by L,. We will discuss the automorphism group accord-
ing to the value b in the Gram matrix G (see Lemma 4.4).

First we assume that » = 0 in the Gram matrix G. Then L = /2L, L +/2Ly4,,
where L, is the root lattice of type A;. Let L = Zo @ Za, with (o, o) = 455
fori,j =1,2. Set

w1 = o (=17 + (e + e,

Wy = (=7 — 1 + 7).
We also use o5 to define w3 and w4 in the same fashion. Then w; fori =1,2,3,4
are commutative Virasoro vectors of central charge % (see [DGH] and [DMZ]). It

is well known that (VL+)2 is a commutative (nonassociative) algebraunder u x v =
uyv, since the degree-1 part is zero (cf. [FLMe]). Let X be the span of w; for all i.

LeEmmMmA 6.1.  Ifu € (V) is a Virasoro vector of central charge %, then u = w;
for some i.

Proof. The space (V) is 5-dimensional with a basis
(w1, w2, w3, w4, a1 (=D a2 (=D)}.

Let u = Z?:l ciw; + xaj(—D)ay(—1) € (V.), be a Virasoro vector of central
charge % Then u x u = 2u. Note that w; X w; = §; ;2w; fori,j =1,2,3,4,
w; x aj(=Daz(=1) = Jar(=Daz(=1), and ey (—Daz(—1) x aj(—Daz(=1) =
4a;(—1)% + 4a,(—1)% Thus we have a nonlinear system:

26‘1-=2Ci2+32.x2, i=17293947

4
2x = E XCj.
i=1

Ifx #0,then Y7 ¢; =2and2 = 3/, ¢? + 64x2
Since the central charge of u is %, we have
1 42 4
— _ Si 2 _ 2 2
Z—u3u—;4+16x and 1—;ci+64x.
This is a contradiction. So x = 0, which implies that ¢; = 0,1 and u = w; for
some i. U
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By Lemma 6.1, any automorphism o of V," induces a permutation of the four ;.

It is known from [FLMe] that (VL+)2 has a nondegenerate symmetric bilin-
ear form (-,-) given by (u,v) = usv for u,v € (VL+)2. The orthogonal com-
plement of X in (VL+)2 with respect to the form is spanned by «(—1)aa(—1).
Thus oca;(—D)ay(—1) = Aaj(—1)ay(—1) for some nonzero constant A. Hence
o (=D ez (—1) x aj(=Das(—1) = a;(=1)? + az(—1)% which is a multiple of the
Virasoro element w. This shows that A = +1.

On the other hand,

V-

+ ~ yt+ + -
i =V 4 V2La, ® VﬁLA,'

\/iLA1 ® \/ELA] ®

By [DGH, Cor. 3.3],
VL0 e L)

. . . . . . +
So if the restriction of ¢ to X is the identity, then the action of o on V 3L, ® f 3ia,
is trivial and on V ﬁ RV f 3L, is £1. Indeed, there is automorphlsm T of V+
by
the fusion rule for VE  (see [ADL1]) Smce le 5L, ® VJr is generated by w;

V2La
+ +
fori =1,2,3,4,it follows that any automorphism preserves V Vi, QV N and

. + - —
such that t acts terlally on VfL QV [L and acts as —1 on VﬁLAl ® VﬁLA,

its irreducible module VﬁLA. ® Vﬁ“l (cf. [DM1]). As a result, (t) is a normal

subgroup of Aut(VL+) that is isomorphic to Z.

Next we describe how Sym, can be realized as a subgroup of Aut(V,") by show-
ing that any permutation o € Symy gives rise to an automorphism of V,. But it
is clear that Symy acts on V,* by permuting the tensor factors. In order to see
that Symy acts on VL+ as automorphisms, it is enough to show that o (Y (u, z)v) =
Y(ou,z)ov for o € Symy and u, v € V,*. There are four different ways to choose
u,v. We discuss only the case u, v € L(%, %)®4, since the other cases can be dealt
with in a similar fashion. Letu = ' @ > @ > Q u* and v = v! ® V2 Q v>  v4,
where u;, v; are tensor factors in the ith (3, 1). Let  be a nonzero intertwining

1/2,0
operator of type (,».| /2/) oa /)2 1/2))- Then, up to a constant,

Yw,2)v =Y, 2)v @ Y(uz,2)va @ Y(usz, 2)vy @ Y(us, 2)v4

(see [DMZ]). Since ¢ is a permuation, it is trivial to verify that o (Y (u, z)v) =
Y(ou,z)ov.
Thus we have proved the following result.

PROPOSITION 6.2.  If b = 0 in the Gram matrix G, then L = /2L, L /2Ly,
andAut(VLJr) = Symy X Z.

REMARK 6.3. Here is a different proof that Aut(V,") contains a copy of Symy x
Z,, using the theory of finite subgroups of Lie groups. Our lattice L lies in M =
L a2 Take V), which is a lattice VOA. By [DN1], Vi, has automorphism group
that is isomorphic to PSL(2,C) : 2. In PSL(2, C), there is (up to conjugacy) a
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unique 4-group, and its normalizer is isomorphic to Symy4. Correspondingly, in
PSL(2,C):2 there is a subgroup isomorphic to Symy : 2. In this, take a subgroup
H of the form 2* : [Syms x 2]. Let # be an involution of H that maps to the cen-
tral involution of H/O,(H) = Symj X 2, and take R := Co,m)(t) = 22. Take
the fixed points V,X. We have that V,§f is isomorphic to our VL+. Therefore, VLJr gets
an action of H/R = 2% : [Sym;z x 2] = Symy x 2.

6.2. Ly =@ and tank(L,) = 2; b =2

Next we assume that b in the Gram matrix is 2. Then L = /2L Ay, and L =
Zay + Zay with (o, ;) = 4 and («),@2) = 2. As before, we define w, w, by
using o, w3, w4 by using a,, and ws, we by using o) + «,. Then the w; (i =
1,...,6) form a basis of (V,"),.

LEmMA 6.4. Ifuce (VL+)2 is a Virasoro vector of central charge %, then u = w;
for some i.

Proof (see Section 6.3 for an alternate proof). Letu = Z?zl c;w; for some ¢; €
C. Then u is a Virasoro vector of central charge % if and only if (u,u) = % and
u x u = 2u. Note that
1
4
(01,0 = (W2, 0) = 55, k =3,4,5,6.

(i, w;)) =7 and (wzj-1,w2;)) =0, 1<i<6, j=1,2,3;

Therefore,

6
(u,u) = % ZC,Z + % Z Z (c2j—1C20—1 + C2j—1C2k + C2jCop—1 + C2jC2x)
i=l1 j=1,2 j<k<3
1
=
In order to compute u x u, we need the following multiplication table in (VL+ )2t

w1 X wy =0, i=1,2,3;

W) X w3 = (@1 + 03 — W), Wy X w3 = § (w2 + w3 — ws),
W) X w4 = (@1 + 04 — ©5), w1 X Wy = (w3 + w4 — we),
w1 X ws = 1 (O] + 05 — ©4), Wy X 05 = § (w1 + 05 — ®3),
W) X wg = (01 + 0 — ®3), w1 X we = (w3 + w6 — wa),
w3 X 05 = {(@3+ 05 —02),  ©4xws=;(04+ 05— 0)),
w3 X wg = (w3 + w6 — 1), w2 X W6 = Hws + w6 — w2).

Then u x u = 2u if and only if
2 1
ci + z(cics + cieq + €165 + c1c6 — €366 — €4C5) = C1,

2 1
¢y + z(cac3 + cacq + 205 + €206 — €3¢5 — €4C6) = C2,
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¢ + 3(cic3 + 203 + €365 + €306 — €106 — €2C5) = c3,
Ci + i(0104 + ¢2c4 + 405+ 406 — €105 — €2C6) = Ca,
2+ }1(6165 + c2¢5 + 3¢5 + cace — cic4 — C2C3) = C5,
Cé + }1(6166 + cac6 + C3C6 + CaCe — C1C3 — CrC4) = Cg.

There are exactly six solutions to this linear system: ¢; = land ¢; = 0if j #
i where i = 1,...,6. We thank Harm Derksen for obtaining this result with the
MacCauley software package. This finishes our first proof of Lemma 6.4. UJ

PrROPOSITION 6.5. Ifb = 2 in the Gram matrix, then L = \/EL A, and Aut(VL+)
is the LVOA™ group.

Proof. First note that the Weyl group acts on L, preserving and acting as Symj; on
the set
{£on}, {Zaz}, (£ + a2)}}

Now leto € Aut(VL+). Set X; = {wj;—1, wy;} fori =1,2,3. Then X; are the only
orthogonal pairs in X = X; U X, U X3. Since X = X, we see that o induces a
permutation on the set { X, X», X3}.

The foregoing shows that @(I:) induces Syms on this 3-set. We may therefore
assume that o preserves each X;. In this case o acts trivially on «; (=D% aa (=12
(o1 + a2 ) (—1)?; that is, o acts trivially on the subVOA they generate, which is iso-
morphic to M (1)*. As aresult, o is in the LVOA™ group. O

6.3. Alternate Proof for b =2

The system of equations in the variables c; that occurred in the proof of Lemma 6.4
can be replaced by an equivalent system (Lemma 6.7) that looks more symmet-
ric. The old system was solved with the MacCauley software but not with Maple;
the new system was solved with Maple and gives the same result as before.

NOTATION 6.6. Letr and s be independent norm-4 elements such thatt := —r —s
has norm 4. Let w be an idempotent w = p + ¢, where p = ar? 4 bs? + ct? and
q = dv, + ev, + ev,, that satisfies (w, w) = %. Since (L, L) < 27, we may as-
sume that the epsilon-function is identically 1. It follows that v, x v, = v, and
similarly for all permutations of {r, s, ¢}.

2

LEmMMA 6.7. From w= = w, we have the equations

a = 16a* + 4ab + dac — 4bc + d*, (6.1)
b = 16b* + 4bc + 4ba — 4ac + €7, (6.2)
¢ =16¢* +4cq +4cb — 4ab + f2, (6.3)
d =2d(16a + 4b + 4c) + 2ef, (6.4)
e =2e(da+16b + 4c) + 2df, (6.5)

f =2f(4a + 4b + 16¢) + 2de; (6.6)



Automorphism Groups of Vertex Operator Algebras 707

and from (w, w) = % we obtain the equation
£ =32(a* 4+ b* + ¢ + 16(ab + ac + be) + 2(d* + > + f?). (6.7)
Proof. This follows in a straightforward way from material in the Appendix. [J

PROPOSITION 6.8.  There are just six solutions (a,b,c,d, e, f) € C5O 1o the equa-

tions (6.1)—(6.7). They are (35,0,0, §,0,00), (35.0,0,—,0,00), and the solu-

tions obtained from these by powers of the permutation (abc)(def).

Proof. This follows from use of the solve command in the software package
Maple. U

REMARK 6.9. If we omit (6.7), then there are infinitely many solutions with d =
e = f = 0. The reason is that the Jordan algebra of symmetric degree-2 matrices
has infinitely many idempotents. It seems possible that the system in Lemma 6.7
could be solved by hand.

6.4. Ly =Wandrank(L,) =2; b =1
‘We now deal with the cases » = 1 in the Gram matrix.
PROPOSITION 6.10.  If b = 1 in the Gram matrix, then Aut(V,") is the LVOA™
group.

Proof. By Corollary 5.27, any automorphism of V,* preserves M (1)3. The result
now follows from Lemma 3.3. O

7. Automorphism Group of V,;* with
Li=@and rank(L,) =1

Here we can assume that L, = {2y, —20}. Let o € H such that (o, ;) = §; ;.
Then (VLJr )2 is 4-dimensional with basis vq,, %al (=D2 Lo ()2 ai (=D aa(—1).

LeEmMA 7.1.  Any automorphism of VLJr preserves the subspace S*H of (VL+)2
spanned by o1 (—1)% Jaz (=D (=D aa (—1).

Proof. Since Virasoro vectors of central charge 1 in S>H span S*H, it is enough
to show that any Virasoro vector of central charge 1 lies in S?H.

Lett = di(a?/2) +d2(a3/2) +d3vaq, +dsaas be a Virasoro vector of central
charge 1 with d3 # 0. Then we must have t X t = 2¢ and (¢,¢) = % A straight-
forward computation shows that

t x t =diai +dia; +diQ2a)? +di(af +a3)
+ 4d1d3l}2a1 + 2didsoor + 2drdsagon.

This yields four equations:
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dy =d} +4d; + d2,
dy = d3 +dj,
dy =2d,d5,
dy =dids + drdy.
The relation (z,t) = % gives one more equation,
L %df v %d% +d3 +2d3,

Thus,
1=d,+d,.

Since d3 # 0, it follows that d; = % and d, = % We therefore have

1 1

i =4d; +d; and 1 =2d; +dj.
This forces d3 = 0, a contradiction. O
PROPOSITION 7.2.  In this case, Aut(V,") is the LVOA™ group.

Proof. By Corollary 5.27, any automorphism of VL+ preserves M (1)7; the result
then follows from Lemma 3.3. O

8. Automorphism Group of V;* with L # ¢

Now we are finally ready to deal with matters when L; # @. There are two cases:
rank (L) = 2 orrank(L;) = 1.

8.1. rank(L,) =2

In this case either L = L 42 Or L = L,,, because these are the only rank-2 root
lattices possible and each is a maximal even integral lattice in its rational span.

8.1.1. L of Type A?
IfL= LA% then Aut(V,) = PSL(2,C):2 and

Vv eVl ev, eV, .

Since the connected component of the identity in Aut(V, ) contains a lift of —1;,
we may assume that such a lift is in a given maximal torus and so is equal to the
automorphism e™#()/2 where f is a sum of orthogonal roots.

It follows that VLJr = Vk, where K = 2L 4 Zf. The result implies (see [DN1])
that Aut(V,") = Aut(Vk), which is the LVOA group T,.Dihs.

8.1.2. L of Type A,
Here, (VL+)1 is a 3-dimensional Lie algebra isomorphic to s1(2, C). The difficult
part in this case is determining the vertex operator subalgebra generated by (V,");.
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Let Ly, = Zay + Zoy such that (o;, ;) = 2 and (o, 02) = —1. The set of
rootsin L is L} = {£«; | i = 1,2,3}, where a3 = «; + 5. The positive roots
are {o; | i = 1,2,3}. The space (VL+)1 is 3-dimensional with a basis v,, fori =
1,2,3,and (V, ), is 5-dimensional with a basis o;(—1), @2 (—1), e* —e™% fori =
1,2,3. Itis a straightforward to verify that (vy,)_jv,, fori =1,2,3 and o;(—1)?
fori = 1,2,3 span the same space. Thus w = Jo;(—=1)*+ 35 (1 (—1) + 22 (—1))?
lies in the VOA generated by (V,);.

In order to determine the vertex operator algebra generated by (V,");, we recall
the standard modules for affine algebra:

AV =41(2,C) =s12,C) @ C[r,1 '] ® CK
(cf. [DL]). We use the standard basis {«, x4, x_4} for sI(2, C) such that
[o, x1o] = £2X 40, [*es X—o] = a.

Fix an invariant symmetric nondegenerate bilinear form on sl(2,C) such that
(a,) = 2. The level-k standard A(ll)—modules are parameterized by dominant
integral linear weights %a fori =0, ...,[ such that the highest weight of the A(ll)-
module, viewed as a linear form on Ca @ CK C sl(2, C), is given by %(x and the

correspondence K +— k. Let us denote the corresponding standard A(ll) -module by
L(k, fa). Itis well known that L(k, 0) is a simple rational vertex operator algebra
and that L (k, o) fori =0, ...,k is a complete list of irreducible L (k, 0)-modules
(cf. [DL; FZ; Li2]). Note that

Lk, l—ot) = L(k, l—a) ,

( 2 ,,690 2 Aitn

where A; = i(i+2)/4(k+2)and L (k, %a)ki% is the eigenspace of L (0) with eigen-
value A; + n (cf. [DL]). In fact, the lowest weight space L (k, %a)kl_ of L(k, fa)
is an irreducible s1(2, C)-module of dimension i + 1.

Since Vi, is a unitary module for the affine algebra A(zl) (cf. [FK]), the ver-
tex operatorAalgebra V generated by (VL+)1 is isomorphic to the standard level-k
A(ll)-module L(k,0) for some nonnegative integer k. Let {v}, v,,v3} be an or-
thonormal basis of s1(2, C) with respect to the standard bilinear form. Then ' =
2(k71+2) Zi3=1 v;(—1)?1 € V is the Segal-Sugawara Virasoro vector. Let

Y(a)’, Z) — ZL(”)/Z_H_2~
nez
Then
[L(n) — L(n),un] =0

form,n € Z and u € V. Hence L(—2) — L(—2)’ acts as a constant on V because V
is a simple vertex operator algebra. As a result, L(—2) — L(—2)" = 0, since the
left side is both a constant and an operator that shifts degree by 2. The creation ax-
iom for VOAs implies that @’ = w. Since the central charge of w is 2, the central
charge 3k/2(k + 2) of w’ is also 2. This implies that k =4 and V = L(4,0).
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Now V,* is a L(4,0)-module, and the quotient module V,*/V has minimal
weight (as inherited from VL+) greater than 1. On the other hand, the minimal
weight of the irreducible L(4,0)-module L (4, fa) is i(i + 2)/4(4 + 2), which is
less than 2 for 0 < i < 4. Since every irreducible module is one of these, we
conclude that VLJr =V = L(4,0). Since V, is an irreducible VL+-m0dule with
minimal weight 1, we immediately see that V, = L(4,2«).

Thus we have proved the following proposition.

PROPOSITION 8.1.  Suppose rank(L;) = 2.

WIfL=L 2 then VL+ is a lattice vertex operator algebra Vi, where K is gen-
erated by B, ﬂz with (B, Bi) = 4 and (B1, B2) = 0. The automorphism group of
V" is the LVOA™ group, which is isomorphic to the LVOA group for lattice K.

(2)If L = Lp,, then VL+ is isomorphic to the vertex operator algebra L(4,0)
and Aut(V,") is isomorphic to PSL(2,C), which is the automorphism group of
sl(2,C).

8.2. rank(L;) =1

8.2.1. L Rectangular
We first assume L = Zr + Zs such that (r,r) = 2, (s,s) € 6 4+ 8Z, and (r,s) =
0. ThenV, = Vi, ® Vz, and

vt = VLJ/ZI RV, @ Vi, ® Vi
LEMMA 8.2. A group of shape [((Cﬁ/ Z% ,8) -Zz] XZ» acts on VLJr as automorphisms.

Proof. We have already mentioned that VLJZI is isomorphic to Vzg for (8, ) = 8
and that V, is isomorphic to Vg, g/2 as V;f;]-modules. We also know from [DNI1]
that Aut(Vzp) is isomorphic to CB/(ZgB) - Z2, where the generator of Z is in-
duced from the —1 isometry of the lattice Z8. The action of A8 € Cp is given
by the operator ¢>"*#©_ Note that Cf acts on Vzg, g2 in the same way. But the
kernel of the action of C8 on Vg4, is Z}l B instead of Z% B. As a result, the
torus C,B/Z%,B acts on both Vzg and Vzg, /5. By [DG], Aut(VZJ;) is isomorphic
to %Zs/Zs = Z», which also acts on V. So the group [((C,B/Z}—‘ﬂ) . Zz] X 2Ly
acts on V," as automorphisms. 0

In order to determine Aut(VL+) in this case, we recall the notion of commutant
from [FZ].

DEerFINITION 8.3. LetV = (V,Y,1, w) be a vertex operator algebra, and let U =
(U,Y,1,w’) be a vertex operator subalgebra with a different Virasoro vector w’.
The commutant U¢ of U in V is defined by

={veV]|uw=0,uelUn=>0}.

REMARK 8.4. The space U is the space of vacuum-like vectors for U (see [Lil]).
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LEMMA 8.5. Let V be a vertex operator algebra. Let U' = (U',Y,1, ") be sim-
ple vertex operator subalgebras of V with Virasoro vector o' fori = 1,2 such
that ® = o' + w>. We assume that V has a decomposition

)4
v=@Prieo
i=0

as a (U' @ U*)-module such that P° = U', Q° = U?, the P! are inequivalent
U'-modules, and the Q' are inequivalent U*-modules. Then (U = U? and
(U =U

Proof. Tt is enough to prove that (U?)¢ C U'. Let v € (U?)¢. Then v is a vacuum-
like vector for U2 As a result, the U2-submodule generated by v is isomorphic
to U? (see [Lil]). Since V is a completely reducible U 2_module, it follows that
any U?-submodule isomorphic to U? is contained in U' ® U?; in particular, v €
U' ® U?. This forces ve U O

PROPOSITION 8.6.  The group Aut(VL+) is isomorphic to ((C,B/Z%,B) . Zz) X L.
This can be interpreted as an action of N(ZB) x Z,, where (§,8) = 8.

Proof. We have already shown (Lemma 8.2) that the group (((C,B / Z% ﬁ) . Zz) X
Z acts on V, as automorphisms.

Let o be an automorphism of VL+. Then oB(—1) = AB(—1) for some nonzero
L € Cas (V,;"); is spanned by B(—1). This implies that o8(n)o ! = AB(n) for
n € Z. Since V,/, is precisely the subspace of V,* consisting of vectors killed by
B(n) for n = 0, we see that oV C V. Thus o]+ is an automorphism of V.

On the other hand, V;, is the commutant of V,{ in V;" by Lemma 8.5.
The foregoing shows that ¢ induces an automorphism of the tensor factor VLJ; .
1
The restriction of o to Vi, + ® VZ; is a product o] ® o, for some o] € Aut(V+ ) and

0y € Aut(VZ’v ). Multlplylng o byo,,wecanassumethato =lonV, + . As we have
already mentioned, Aut(V,, ) is isomorphic to (CB/Zg tB) L. Since (CB/ZB)
acts trivially on g(—1) and the outer factor Z, is represented in Aut(V+) by ac-
tion of =1 on B(—1), 08(—1) = £B(—1). Now multiplying ¢ by an outer element
of (Cﬂ/Z%,B) - Z», we can assume that o8(—1) = B(-1).

Set W = M) ®e"? @V, and Wyp 50 = M) @ e"PTP2QV, forneZ,
where M(1) = C[B(—n) | n > 0]. Then V," = DB, cz/2 Wap and u,v € W, 4, for
ue W, veW, and m € Z. Note that W, is the eigenspace of 8(0) with eigen-
value (B, ). Since of(—1) = B(—1), we see that o acts on each W, as a constant

 and that A A, = A,q,. As aresult, 0 = ¢*™7© for some y € CB; that is, o
lies in C8/ Z% B. This completes the proof. UJ

8.2.2. L Not Rectangular

Next we assume that L # Zr L Zs. Then L = Zr & Z%(s + t), where (s,5) €
6 4+ 8Z and (s,s) > 14 (see Lemma 4.3). Let K = Zr & Zs. Then L =
KU (K + %(7’ + S)) and Vp = Vz, ® Vzs ® Viz+1/2)r ® Viz+1/2)s. Thus
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Vi =V5, @V, @ Vs, @V @ Vg @ Viziis © Vizayn: @ Vit
and
VL+ = VKJr & VK++(s+t)/2
As before, we note that VZJ’, is isomorphic to Vzg with (8, 8) = 8.

PropOSITION 8.7.  Assume that rank (L) = l and L # Zr + Zs with r,s as be-
fore. Then Aut(VL+) = (Cﬁ/%Zﬂ) -2y, where (B, B) = 8. The action is trivial on
the subVOA Vzﬁ and leaves VZJ; invariant. A generator of the quotient 7, comes
from the —1 isometry of %Z,B, and a € CB acts as e>™@©)

Proof. Note that V1;r is a subalgebra of VL+ and that V1(+ +(r+s)/2 18 an irreducible
V& -module. By Proposition 8.6,

Aut(V) = ((CB/LZB) - Z,) x Zs.

We have already mentioned that VZ+ is isomorphic to Vzg with (8,8) = 8 and
that V,, is isomorphic to Vzg, /2 as a Vzg-module. It is easy to see that V, (Z +1/2)p
is isomorphic to V(z+1/4)s as a Vzg-module. So the action of (C,B/Z B on V+ can-
not be extended to an action of VJr But the torus C,B/ ZB does act on VJr As a
result, N(Z B) = (CB/SZB) - Z» is a subgroup of Aut(V,").

The same argument as used in the proof of Proposition 8.6 shows that any auto-
morphism o of VLJr preserves VZ’V ® VZJQ Since VZ‘LV ® VZY, V,,, ®V,., V (Z+1/2)r ®
Viziyzs ad Vg0 ® Vi, are inequivalent irreducible (V, ® V,)-
modules (see [DLiM; DM1]), we see that o preserves

Vi =V eV iev, @Vv,.

Since (C,B/%Zﬂ - Z5 is a quotient group of (C,B/%Z,B - Z, we can multiply o by
an element of C8/ %Zﬂ - Z and assume that o acts trivially on the first tensor fac-
tor of V. If o is the identity on Vi, then o is either 1 or —1on V', o If &
is —lon Vil .\ o then o = e™PO/2 is an element of CB/3Z - Z».

If o is not the identity on VJr then we must have o = ¢™(/(5:9) on Vi -+ we will
get a contradiction in this case. Notice that the lowest weight space of V, (Z 4172 ®
Viz11/2)s 18 1-dimensional and spanned by u = (e”/? 4-e7"72) ® (e*/? 4- e7*/?).
Since o preserves V(Z+1/2)r ® V(Z+1/2)s’ it must map u to Au for some nonzero
constant A. Observe that u 4 ,4s)4—1u4 = 4; this forces A = £1. On the other

hand,
U—(r45,r+5)/4—1U = (er + eir) ® (@s + 6‘73) + -

has nontrivial projection to the —1 eigenspace of o in V. This forces A = +i, a
contradiction. O

9. Appendix: Algebraic Rules

For the symmetric matrices of degree n, there is a widely used basis, Jordan prod-
uct, and inner product that we review here. (This section is taken almost verbatim
from [G1].)
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PROPOSITION 9.1.  Let H be a vector space of finite dimension n and with non-
degenerate symmetric bilinear form (-,-). Let r, s, ... stand for elements of H and
let rs denote the symmetric tensorr @ s + s @ r. Then:

rs X pq = (r,p)sq + (r,q)sp + (s, p)rq + (s,q)rp;
(rs, pq) = (r, p)(s,q) + (r,q) (s, p);
rs X v, = (r,t)(s,t)v;.
DEFINITION 9.2 (Symmetric Bilinear Form) [FLMe, p. 217]. This form is as-

sociative with respect to the product (see Section 3). We write H for H;. The set
of all g% and x} spans Vs, and

(g% h%) =2(g,h)*,

whence
(pq.rs) =(p,r){q,s) +(p,s){q,r) for p,q,r,s €H.
Also, 5 i "
+ oty ho==xp,
(Xaoxg) = { 0 else;
(g%x7) = 0.

DEFINITION 9.3.  In addition, we have the distinguished Virasoro element w and
identity I := %w on V; (see Section 3). If h; is a basis for H and if A} is the dual
basis, then w = % > hiht
REMARK 9.4. We have:

(g% ) = (g.8):

(g% 1) = (g, 8)/2;

(LI) = dim(H)/8;
(w,w) =dim(H)/2.

If {x; | i =1,...,1} is an orthonormal basis, then
1
_ 2
I= 1 Z X7,
i=0
1
1 2
w = 5 xi .
i=0

DEFINITION 9.5.  The product on V§ comes from the vertex operations. We give
it on standard basis vectors, namely, xy € S2H, for x, y € Hj and v, := et +e
for A € L,. (This is the same as x;f , used in [FLMe].) Note that equations (9.1)
give the Jordan algebra structure on S2H; that is identified with the space of sym-
metric 8 x 8 matrices and with (x, y) = é tr(xy). The function ¢ in equation (9.3)
is a standard part of notation for lattice VOAs.
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x2xyr=4x,y)xy,  pq xy*=2(p.y)gy +2(q.y)py,

pq X rs ={p,r)qs + (p,s)qr +{q,r)ps + (q,s)pr; ©-h

X xv = (A v Xy X = (LA (A ©2)
0 if (A, w) €{0, %1, 43},

v, X vy =1 (A, mvagy, if () =-=2, 9.3)
22 if = p.

Some consequences of the foregoing may be summarized as follows.

COROLLARY 9.6. If x1,... is a basis and y1,... is the dual basis, then 1 :=
% " | xiyi is the identity of the algebra S*H. Also, (I,1) = n/8.
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