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Magnus Intersections in One-Relator Products

James Howie

1. Introduction

Recall that a groupG is locally indicable if each of its nontrivial, finitely generated
subgroups admits an infinite cyclic homomorphic image. A one-relator product
of groups Aλ (λ∈�) is a quotient

G = (∗λ∈�Aλ)/〈〈R〉〉
of their free product by the normal closure of a word R, which is called the rela-
tor, and is assumed not to be conjugate to an element of one of the Aλ. Let A� :=
∗λ∈�Aλ. Then, by the Freiheitssatz for locally indicable groups [3] (see Theo-
rem 2.1 to follow), a free factorAM := ∗µ∈MAµ ofA� embeds inG provided that
R is not conjugate in A� to an element of AM. The image of this embedding is
called the Magnus subgroup corresponding to the subsetM ⊂ �.

The purpose of this paper is to examine the intersection of two Magnus sub-
groups of a one-relator product of locally indicable groups. SupposeM andN are
two subsets of �. Then clearly the Magnus subgroup AM∩N is contained in the
intersection of Magnus subgroups AM ∩ AN. In almost all cases it turns out that

AM ∩ AN = AM∩N ,

but it is easy to construct examples where this equation fails.
In the special case where the Aλ are all infinite cyclic (so thatG is a one-relator

group), Collins [5] has proved the following result.

Theorem A. LetAM andAN be Magnus subgroups of a one-relator groupG =
A�/〈〈R〉〉. Then

AM ∩ AN = AM∩N ∗ I,
where I is a free group of rank 0 or 1.

Both possibilities occur, but the most usual situation is that I has rank 0. If I has
rank 1 then we say that AM and AN have exceptional intersection. In this case,
nontrivial elements of I are called exceptional elements.

The purpose of this paper is twofold: to generalize Theorem A to the case of
arbitrary locally indicable factors; and to investigate precisely under what circum-
stances an exceptional intersection can occur.
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We prove the following results. The first is a generalization of a result of New-
man [11] for the case of a one-relator group with torsion.

Theorem B. LetG be a one-relator product of locally indicable groups in which
the relator is a proper power. Then Magnus subgroups of G have no exceptional
intersection.

Next is our main result.

Theorem C. Let G = A�/〈〈R〉〉 be a one-relator product of locally indicable
groups, and let AM and AN be Magnus subgroups that have exceptional intersec-
tion in G. Then one of the following is true.

(1) Some conjugate R ′ of R is contained in a subgroup of A� of the form D ∗E,
whereD andE are finitely generated subgroups ofAM andAN (respectively)
and where Dab and Eab have torsion-free rank 1. In this case

AM ∩ AN = AM∩N ∗ I,
where I is the intersection of D and E in (D ∗ E)/〈〈R ′ 〉〉.

(2) Some conjugateR ′ ofR is contained in a subgroup ofA� of the formD∗〈xy〉,
where D is a finitely generated subgroup of AM∩N with Dab of torsion-free
rank 1 and where x ∈AM and y ∈AN. In this case, either

AM ∩ AN = AM∩N ∗ 〈x〉
or

AM ∩ AN = AM∩N ∗ x−1Ix,

where I is the intersection of D and (xy)D(xy)−1 in (D ∗ 〈xy〉)/〈〈R ′ 〉〉.
As a consequence, we can derive the following analogue of Theorem A.

Theorem D. Let G = A�/〈〈R〉〉 be a one-relator product of locally indicable
groups, and let AM and AN be Magnus subgroups. Then

AM ∩ AN = AM∩N ∗ I,
where I is a free group of rank 0 or 1.

In the special case where the Aλ are all cyclic, we can use the classification of ex-
ceptional intersections given in Theorem C to obtain a solution to the algorithmic
problem of recognizing when two Magnus subgroups admit an exceptional inter-
section and, if so, of finding a generating word for the exceptional factor I.

Theorem E. There is an algorithm for determining and computing exceptional
intersections of Magnus subgroups in one-relator groups, in the following sense.
Suppose we are given a finite presentation 〈a1, . . . , ak , b1, . . . , bl , c1, . . . , cm |
R = 1〉 of a one-relator group G, where the relator R contains at least one
letter a±1

i and at least one letter c±1
i . Then the algorithm decides whether or

not the intersection of the Magnus subgroups M1 = 〈a1, . . . , ak , b1, . . . , bl〉 and
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M2 = 〈b1, . . . , bl , c1, . . . , cm〉 in G contains exceptional elements. If so, the algo-
rithm finds a word u in the generators {a1, . . . , ak , b1, . . . , bl}, and a word v in the
generators {b1, . . . , bl , c1, . . . , cm}, such that u = v inG and {b1, . . . , bl , u} is a free
basis for the intersection ofM1 andM2 in G.

There are two obstructions to extending this theorem to the general locally indi-
cable case. One is the standard counting argument: there are uncountably many
locally indicable groups but only countably many algorithms. The second is the
absence of a suitable analogue—for more general one-relator products of locally
indicable groups—of a key ingredient of our algorithm: the Baumslag–Taylor al-
gorithm [1] for identifying the center of a one-relator group.

In practice, we restrict attention to the case where |�| = 3, � = M ∪ N, and
|M| = |N | = 2. The general case can readily be seen to reduce to this special
case.

The remainder of the paper is organized as follows. In Section 2 we review a
number of known results and standard techniques that we will use in the sequel.
In Section 3 we focus attention on minimal intersection van Kampen diagrams,
which arise whenever an exceptional intersection occurs, and prove a number of
structural properties of such diagrams. In Section 4, the technique of towers is ap-
plied to our intersection diagrams in order to show that an exceptional intersection
can occur only when the relator word R lies in a rank-2 subgroup of the free prod-
uct ∗�Aλ of a certain form. In Section 5 we classify all such rank-2 subgroups
and deduce the main results. Finally, in Section 6 we restrict our attention to the
classical case of a one-relator group and prove that the problem of recognizing
and finding a generator for an exceptional intersection subgroup is algorithmically
soluble, following the guideline of the Baumslag–Taylor algorithm [1] for finding
the center of a one-relator group.

Acknowledgment. It is a pleasure to acknowledge the help and encourage-
ment of Don Collins toward this work, which grew out of conversations with him
about [5]. In particular, the proofs in Section 5 would have been much longer and
less elegant without his insights.

2. Preliminaries

2.1. Properties of Locally Indicable Groups

Throughout this paper, we will make extensive use of the following facts about
one-relator products of locally indicable groups.

Theorem 2.1 (Freiheitssatz) [3]. LetG = (A∗B)/〈〈R〉〉 be a one-relator prod-
uct of locally indicable groups A,B such that the relator R is not conjugate in
A ∗ B to an element of A ∪ B. Then the natural maps A → G and B → G are
injective.

Theorem 2.2 [6]. Let G = (A ∗ B)/〈〈R〉〉 be a one-relator product of locally
indicable groups A,B such that the relator R is neither conjugate in A ∗ B to an
element of A ∪ B nor a proper power in A ∗ B. Then G is locally indicable.
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Theorem 2.3 [6]. LetA,B be locally indicable groups, let R = a1b1 · · · akbk ∈
A ∗ B with ai ∈A \ {1} and bi ∈B \ {1}, and letG = (A ∗ B)/〈〈R〉〉 be the corre-
sponding one-relator product. Then the 2k initial segments S2i−1 = a1b1 · · · bi−1ai
and S2i = a1b1 · · · aibi (i = 1, . . . , k) represent pairwise distinct elements of G.

Theorem 2.4 [4]. Locally indicable groups are right orderable.

Recall that a right ordering on a group G is a linear ordering < on G such that
x < y ⇒ xg < yg for all x, y, g ∈G. A group G is right orderable if there exists
a right ordering onG. In general, a right ordering is not unique. (For example, the
abelian group Z2 has uncountably many right orderings.) At one point in our de-
liberations it will be important that we have some freedom in the choice of right
ordering.

A particular type of right ordering arises from a homomorphism φ : G → H,
whereH and Ker(φ) are equipped with right orderings (both denoted<). We de-
fine a right ordering on G lexicographically: x < y if either (i) φ(x) < φ(y) in
H or (ii) φ(x) = φ(y) and xy−1 < 1 in Ker(φ).

We say that the resulting right ordering on G is dominated by the right order-
ing on H via the homomorphism φ. In particular, if G is a right orderable group
and if φ : G → H is any homomorphism to a group with a given right ordering,
then any right ordering on G restricts to one on Ker(φ) and so there exists a right
ordering on G that is dominated by the right ordering on H via φ.

2.2. Van Kampen Diagrams

Recall that one may associate, to any group presentation P, a 2-dimensional CW-
complexX = X(P) (usually with a single 0-cell) whose fundamental groupπ1(X)

is isomorphic to the group G = G(P) defined by the presentation. Recall also
[9] that a van Kampen diagram over P consists of a simply connected, compact,
planar 2-complex # and a combinatorial (or cellular) map f : # → X(P). The
complement of # in the plane is an open annulus, one of whose ends describes a
closed edge-path P0 in the 1-skeleton of #, called the boundary path. The image
of P0 in the 1-skeleton #(1) of # is called the boundary of #, denoted ∂#. In the
1-skeletonX(1) ofX, the image f(P ) of any path P in the#(1) can be expressed as
a word λ(P ) in the generators of the presentation P, called the label ofP. In partic-
ular, λ(P0) is called the boundary label of the van Kampen diagram. Each 2-cell
(or region) α of# is an open disc whose unique end describes a closed edge-path
Pα in#(1). We denote the image of Pα in#(1) by ∂α and call it the boundary of α.
We also refer to λ(Pα) as the label of α. Since f is a cellular map, it follows that
f(α) is one of the 2-cells of X, so λ(Pα) is a conjugate of one of the relators of
the presentation P or of the inverse of a relator.

Note that the paths P0 and Pα are not entirely well-defined. They depend, in
general, on a choice of starting point, which we call the base-points of the diagram
as a whole and of α, respectively, and on a direction of travel. In this paper we will
make the convention that the base-points of α are chosen such that λ(α) is equal
to a relator or to the inverse of a relator, for each region α, and that the direction
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of travel is clockwise around # and α (with respect to some fixed orientation of
the plane). We will also assume that λ(α) is always a cyclically reduced word.

Since# is simply connected, it follows that the boundary pathP0 of the diagram
is null-homotopic in # and so λ(P0) represents the identity element of π1(X) =
G. Conversely, given any wordW in the generators of P that represents the iden-
tity element ofG, one can find a van Kampen diagram whose boundary label (with
respect to some choice of base-point) is equal toW.

Finally, suppose that the boundary paths of two regions α and β in # have a
point v in common, and suppose that the cyclic conjugates of their labels as read
from v are mutually inverse words in the generators of P. Then there is a process
of cancellation by which α and β can be removed from #, and their boundaries
sewn together, to produce an amended diagram with the same boundary label but
fewer regions.

For details on these matters and for more about van Kampen diagrams in the
general context, see [9].

2.3. Intersection Diagrams

Now let us turn to the situation considered in this paper. We have a one-relator
product G = (A ∗ B ∗ C)/〈〈R〉〉 of locally indicable groups A, B, and C, and we
wish to study the intersection in G of the Magnus subgroups A ∗ B and B ∗ C.
Choose presentations PA, PB , PC for A,B,C (respectively) satisfying the follow-
ing assumption.

Assumption A. Each letter of the word R is (uniquely) either a generator or the
inverse of a generator in one of the presentations PA, PB , PC.

It is easy to check that presentations satisfying Assumption A exist. (For unique-
ness, this requires the fact that locally indicable groups have no 2-torsion.) Now
we can take the disjoint union P̂ as a presentation for the free product A ∗ B ∗
C. The resulting complex X(P̂) is just the one-point union of the 2-complexes
X(PA),X(PB),X(PC). However, we choose a slightly different topological model
X̂ for P̂: namely, the disjoint union of X(PA), X(PB), and X(PC) together with
two oriented 1-cells, labeled a and c, that we use to join the base-point of X(PB)
to those of X(PA) and X(PC), respectively. Note that the 1-cells a and c form
a maximal tree T in the 1-skeleton of X̂ and that the quotient space X̂/T is ex-
actly X(P̂). (An algebraic analogue of this model is to consider R as a word in
(aAa−1) ∗ B ∗ (cCc−1) ⊂ A ∗ B ∗ C ∗ 〈a, c〉.)

We then use Assumption A to obtain a canonical choice of a cyclically reduced
word in the generators of P̂ representingR ∈A∗B ∗C—namely, the one in which
each letter of R is represented by a generator or the inverse of a generator. We add
this canonical word as an additional defining relator to P̂ in order to obtain a pre-
sentation P of G. (We will abuse notation by using R for this additional relator
of P as well as for the original element of A ∗B ∗C.) Note that this presentation
satisfies the following.
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Property B. Suppose that two subwords U,V of R or R−1 represent the same
element of A ∗ B ∗ C. Then U and V are identically equal as words in the gener-
ators of P.
To form our 2-complex model for P, we attach a 2-cell to X̂ along the edge-path
representing R. Notice that this edge-path will involve the edges a and c as well
as those labeled by generators of P. We call the resulting 2-complex X.

Suppose that there are elements u∈ (A ∗ B) \ B and v ∈ (B ∗ C) \ B such that
u = v in G. Then we may choose words U,V in the generators of P that repre-
sent u and v (respectively) as well as a van Kampen diagram f : # →X(P) with
boundary label UV −1. We will call such a van Kampen diagram an intersection
van Kampen diagram and the equation u = v an intersection equation. We will
denote the images of the paths U and V in ∂# as ∂+# and ∂−#, respectively.

Note that, by Theorem 2.3 and the fact that # is simply connected, the bound-
ary path of any region α of# is a simple closed path in#(1), so that the closure of
α is a closed disc.

If, amongst all intersection van Kampen diagrams, for all intersection equations
u = v (with u ∈ (A ∗ B) \ B and v ∈ (B ∗ C) \ B) the number of regions in #
is smallest possible, and if the total number of cells is smallest possible subject to
the minimality of the number of regions, then we will call f : # → X a minimal
intersection van Kampen diagram and u = v a minimal intersection equation.

There are four different types of 2-cells in the 2-complex X = X(P): those
coming from X = X(PA), X = X(PB), and X = X(PC); and the single 2-cell
corresponding to the additional relatorR.We refer to the regions of a van Kampen
diagram f : # → X as A-, B-, C-, and R-regions according to the type of their
images in X. The edges f −1(a) and f −1(c) of # will be called a- and c-edges,
respectively. Note that only R-regions have a- or c-edges in their boundaries.

2.4. Ordering of Regions

Let G = (A ∗ B ∗ C)/〈〈R〉〉 be a one-relator product of locally indicable groups
A,B,C, where R is not conjugate to an element ofA, B, or C. Then we may write
(uniquely) R = R̄m for some m ≥ 1 and some R̄ ∈A ∗ B ∗ C that is not a proper
power.

By Theorem 2.2, the quotient group Ḡ = (A ∗ B ∗ C)〈〈R̄〉〉 of G is locally in-
dicable and hence, by Theorem 2.4, right orderable. Choose a right ordering< of
Ḡ, which we will regard as fixed for the rest of this section (although later we re-
quire the freedom to vary the right ordering). We use< to define a partial ordering
of the R-regions in a van Kampen diagram f : # →X as follows.

Suppose that α,β are two R-regions of #. Choose an edge-pathQ = Q(α,β)
in #(1) from the base-point of α to the base-point of β. We say that α < β if
λ(Q) > 1. (Note that this definition is independent of the choice of the path Q,
since # is simply connected.) An R-region of # is called minimal or maximal if
it is minimal or maximal with respect to this partial ordering of R-regions. It is
called locally minimal (resp., locally maximal ) if it is no greater than (resp., no
less than) any other R-region with which it shares an a- or c-edge. Clearly, mini-
mal (resp. maximal) R-regions are also locally minimal (resp. locally maximal).
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Without loss of generality, we assume that the attaching path in X of the 2-cell
corresponding to R begins and ends at the base-point for X(PB), so that we may
think of R and R̄ as cyclically reduced words in (aAa−1) ∗ B ∗ (cCc−1) (with
R = R̄m).

The occurrences of a in R̄ correspond to initial segments of R̄ considered as a
word in (aAa−1) ∗ (B ∗ cCc−1). By Theorem 2.3, these segments represent pair-
wise distinct elements of the right-ordered group Ḡ. We denote by amin and amax

the occurrences of a in R̄ corresponding to the least and greatest of the initial seg-
ments of Ḡ (with respect to the chosen right ordering <); we define occurrences
cmin and cmax of c in R in an analogous way.

Since R = R̄m, we can naturally regard R as containing m occurrences each of
amin, amax, cmin, and cmax. These occur in a pattern that is repeated m times. In
particular, for example, the m occurrences of amax and cmax in R alternate.

In our van Kampen diagram f : # → X, each region has precisely m edges of
each type amin, amax, cmin, and cmax, corresponding to its labeling R±1 = R̄±m.

Lemma 2.5. Let α and β be regions of the minimal intersection van Kampen di-
agram #. If some amax- or cmax-edge of α is also an edge of β, or if some amin-
or cmin-edge of β is also an edge of α, then α < β.

Proof. We assume that an amax-edge of α is also an edge of β. The other cases
are similar. There is a path in ∂α from the base-point of α to the start of the given
amax edge that has label R̄iSM for some i = 0, . . . ,m − 1, where SM is the great-
est initial segment of R̄ (with respect to the right ordering of Ḡ). There is a path
in ∂β from the base-point of β to the start of this same a-edge that has label R̄jSp
for some j,p, where Sp is also an initial segment of R̄.

Note that p �= M, since otherwise α and β would cancel, contradicting the min-
imality of #. Hence Sp < SM. The concatenation of these two paths is a pathQ,
from the base-point of α to the base-point of β, whose label λ(Q) is equal in Ḡ to
SMS

−1
p > 1. Hence α < β as claimed.

Corollary 2.6. Let f : # → X be a minimal intersection van Kampen dia-
gram, and let α be a locally minimal (resp. locally maximal )R-region of#. Then
each amin- (resp. amax-) edge of α belongs to ∂+# and each cmin- (resp. cmax-)
edge of α belongs to ∂−#.

Proof. We assume that α is locally maximal; the other case is similar. Let e be
one of the amax-edges of α. If e is also an edge of another region β of#, then α <
β by Lemma 2.5. But this contradicts local maximality of α, so e ∈ ∂#. But e /∈
∂−#, since e is an a-edge, so e ∈ ∂+#. Similarly, every cmax-edge of α belongs
to ∂−#.

This allows us to prove the first of our main results.

Proof of Theorem B. In the setup we have described, we need to show that the in-
tersection of (A ∗ B) and (B ∗ C) in G is equal to B if m ≥ 2. If not, then there
exists a minimal intersection van Kampen diagram f : # → X. Clearly # must
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contain at least one R-region, for otherwise the intersection equation given by ∂#
is a consequence of the relators of PA, PB , and PC. But then the intersection of
(A ∗ B) and (B ∗ C) in A ∗ B ∗ C would be strictly greater then B, which is ab-
surd. Since # contains at least one R-region, it contains a maximal one, α say.
Then α is also locally maximal. By Corollary 2.6, every amax-edge of α belongs
to ∂+# and every cmax-edge of α belongs to ∂−#. But the m ≥ 2 amax-edges of
α alternate with the m cmax-edges, so this is impossible. This contradiction com-
pletes the proof.

2.5. Gurevich Regions

Let X = X(P) be the 2-complex model for G = (A ∗ B ∗ C)/〈〈R〉〉 constructed
in Section 2.2. Suppose that φ : # →X is a van Kampen diagram and that α is a
region of#. A Gurevich path for α is an edge-pathQ in ∂α ∩ ∂# that contains at
least one edge labeled a±1 and at least one edge labeled c±1. A Gurevich region of
# is a region (necessarily anR-region) admitting a Gurevich path. See Figure 2.1.

Figure 2.1

The following is essentially a special case of a result from [8].

Theorem 2.7. Let φ : # →X be a minimal van Kampen diagram with no bound-
ary B-regions. Then the following statements hold.

1. If # has precisely one R-region, then that R-region is a Gurevich region.
2. If# has more than oneR-region, then# contains at least two Gurevich regions.

Sketch of Proof. In the language of [8], let K be the (staggered) generalized 2-
complex whose 1-skeleton is the graph of groups (with trivial edge groups)

•
A

a
•
B

c
•
C

and a single 2-cell c(R). We can amend φ : # → X to a diagram #̄ over K by
absorbing any A-, B-, or C-regions into neighboring R-regions. The regions of
#̄ are then in one-to-one correspondence with R-regions of #. By [8, Thm. 3.1],
either #̄ has precisely one region and that region admits a Gurevich path, or there
are at least two regions of #̄ that admit Gurevich paths. It therefore suffices to
show that, if a region ᾱ of #̄ admits a Gurevich path, then so does the correspond-
ing region α of #.
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LetQ be a Gurevich path of shortest length in ∂ᾱ. Then (with a suitable choice
of orientation)Q has label a−1b1 · · · bkc for some b1, . . . , bk ∈B. The first and last
edges ofQ are necessarily in ∂#. If the other edges ofQ are not contained in ∂#
then they, together with a path in ∂#, bound a union of B-regions that become ab-
sorbed into ᾱ in the passage from# to #̄. But the latter possibility contradicts the
condition that # has no boundary B-regions.

3. Analysis of Minimal Intersection Diagrams

Lemma 3.1. Let# be a minimal intersection van Kampen diagram over the one-
relator product G = (A ∗ B ∗ C)/〈〈R〉〉 of locally indicable groups A, B, and C.
Suppose ∂# is the union of two paths ∂+# and ∂−#, with a common initial point
p0 and a common terminal point p1, labeled u∈ (A ∗B) \B and v ∈ (B ∗C) \B
(respectively) and such that u · v−1 is the boundary label of #.

1. # is a topological disc, or (equivalently) ∂# is a simple closed path.
2. Each boundary region of # is an R-region.
3. If# has more than oneR-region, then it has precisely two GurevichR-regions.

The boundary of one of these contains p0 and the boundary of the other con-
tains p1.

4. Each Gurevich region α of # is locally minimal or locally maximal. More
precisely, each α admits a Gurevich path containing either the amax- and cmax-
edges of α or its amin- and cmin-edges.

5. If # has a locally minimal (resp. maximal ) Gurevich region, then any locally
minimal (resp. maximal ) region of # is a Gurevich region.

Proof. 1. Suppose first that ∂+# is not a simple path. Then there is a closed sub-
path, labeled (say) u′ ∈A ∗B, that bounds a subdiagram#′ of#; hence u′ = 1 in
G. By the Freiheitssatz (Theorem 2.1), u′ = 1 in A ∗ B, so we can delete #′ from
# to get a smaller diagram with the same boundary label (evaluated inA∗B ∗C),
contrary to the minimality hypothesis.

Hence we may assume that ∂+# is a simple path, and similarly ∂−#. Next sup-
pose that these paths have an intermediate vertex in common. Then u = u1u2 and
v = v1v2 in such a way that uiv

−1
i is the boundary label of a subdiagram #i of

# for i = 1, 2. Clearly, each #i has strictly fewer cells than #, while at least one
of the intersection equations ui = vi is nontrivial (since the equation u = v is
nontrivial), contradicting the minimality of # once again.

2. Suppose that some boundary region α is not an R-region. Clearly α cannot
be the whole of#. Hence ∂α contains an arc γ that meets ∂# only in its endpoints.
See Figure 3.1.

Figure 3.1
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Since α is not an R-region, λ(γ ) is a word in the generators of PA, or of PB , or
of PC. Cutting # along γ yields two smaller diagrams #1 and #2 , at least one of
which is a nontrivial intersection diagram, contradicting the minimality of #.

3. Since# has no boundary B-regions,# has at least two Gurevich regions by
Theorem 2.7. But any Gurevich path in ∂# contains edges with labels a and c.
Such a path intersects both ∂+# and ∂−# and so must contain (in its interior) one
of p0,p1. The result follows.

4. If # has only one R-region, then it is simultaneously a minimal, maximal,
and Gurevich region, so there is nothing to prove. We will therefore assume that
# has at least two R-regions.

By definition, the amax-edge of any locally maximal R-region of # belongs to
∂+#, as does the amin-edge of any locally minimal R-region. Consider the col-
lection e1, . . . , ek of edges of this type (in the order in which they occur in ∂+#).
Since# has at least one minimal and one maximalR-region, it follows that k ≥ 2.
We will show that e1 and ek belong to the two Gurevich regions.

Consider the R-region α to which e1 belongs. This region is either locally min-
imal or locally maximal, so it meets both parts of ∂#. We assume that α is locally
maximal; the other case is similar.

Let P denote the subpath of ∂# whose first and last edges are (respectively) the
amax- and cmax-edges of α and that passes through p0. If P ⊂ ∂α, then P is a
Gurevich path containing the amax- and cmax-edges of α, as required.

Figure 3.2

If P �⊂ ∂α, choose an edge e of P with e /∈ ∂α, remove α and the interior of
∂α ∩ ∂# from #, and consider the component #1 of what remains that contains
e. See Figure 3.2. Now #1 contains at least one R-region (e.g., the boundary re-
gion that meets e). Hence it contains an R-region β that is minimal in #1. The
only region of#\#1 with which β can share an a- or c-edge is α, and if this hap-
pens then β < α by local maximality of α. Combining this with the minimality of
β in #1, it follows that β is locally minimal in #. But then, by Corollary 2.6, the
amin-edge of β lies in ∂+# between p0 and e1, a contradiction.

We have shown (a) that the region containing e1 is the Gurevich region con-
taining p0 and (b) that this region admits a Gurevich path containing either its
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amax- and cmax-edges or its amin- and cmin-edges. A similar argument applies to
the region containing ek.

5. Suppose# has two locally minimalR-regions α and β, and suppose that α is
a Gurevich region. Then, by part 4 of the Lemma, α admits a Gurevich path P ⊂
∂α containing both the amin- and cmin-edges of α. LetQ be the (oriented) subpath
of P whose first edge is the amin-edge of α and whose last edge is the cmin-edge
of α. Then the label w = λ(Q) ofQ belongs to (A ∗ B) · (B ∗ C).

There is a path Q′ ∈ ∂β whose label λ(Q′) is also equal to w and whose first
and last edges are the amin- and cmin-edges of β, respectively. In particular, Q′
joins the two parts of ∂#. LetQ′′ be a subpath ofQ′ that joins the two parts of ∂#
and is minimal with respect to that property; then its label λ(Q′′) also belongs to
(A ∗B) · (B ∗C). IfQ′′ consists of a single point, then β is a Gurevich R-region,
as claimed.

Figure 3.3

Otherwise, cutting alongQ′′ divides # into two subdiagrams #1 and #2 , each
with boundary label in (A ∗B) · (B ∗C) and so each representing an exceptional
intersection equation. At least one of these equations is nontrivial, contradicting
the minimality of #. See Figure 3.3.

Theorem 3.2. Let # be a minimal intersection van Kampen diagram. Then #
has a unique minimal R-region and a unique maximal R-region, each of which is
a Gurevich R-region.

Proof. In the free product A ∗B ∗C we have (A ∗B)∩ (B ∗C) = B, so# must
contain at least one R-region and hence, by Theorem 2.7, at least one Gurevich
R-region. If# has a single R-region then there is nothing to prove. From now on
we will assume that# has more than one R-region and hence that it has precisely
two Gurevich R-regions; by Lemma 3.1, each of these is either locally minimal or
locally maximal.

Suppose that one of the Gurevich R-regions is locally minimal and the other is
locally maximal. By Lemma 3.1, any locally maximal or locally minimalR-region
is a GurevichR-region, so there is precisely one locally minimalR-region and pre-
cisely one locally maximal R-region. Since minimal (resp. maximal) R-regions
are locally minimal (resp. locally maximal), the result follows in this case.
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Next suppose that the two Gurevich R-regions of # are locally minimal (and
that neither is locally maximal). We will show that this is impossible by deriving a
contradiction. By symmetry, the same argument will apply to the case where both
Gurevich R-regions are locally maximal and not locally minimal.

By Lemma 3.1, only the Gurevich R-regions are locally minimal. Moreover,#
has at least one maximal R-region, say α. Since α is maximal, it is locally maxi-
mal and hence not a Gurevich R-region. See Figure 3.4.

Figure 3.4

Also, α meets both sides of the boundary of #: the edges amax and cmax of α
belong to ∂+# and ∂−#, respectively. Hence, by removing α and the edges and
intermediate vertices in ∂α ∩ ∂#, we disconnect # into two subdiagrams #1 and
#2. Note that, for i = 1, 2, the diagram #i has the following properties.

(1) ∂#i is the union of three arcs: ∂#i ∩ ∂+#, ∂#i ∩ ∂−#, and ∂#i ∩ ∂α. Hence
the boundary label of #i has the form uiviwi, where ui ∈A ∗ B is a terminal
segment of u±1, v−1

i ∈ B ∗ C is a terminal segment of v±1, and wi is a cyclic
subword of R±1.

(2) #i contains one of the Gurevich R-regions of#, so in particular it has at least
one R-region.

The cyclic subwords w1 and w2 of R are disjoint. Indeed, there is a cyclic per-
mutation of R±1 of the form

x1ax
−1
2 w

−1
2 y

−1
2 cy1w1,

where a is precisely the letter amax of R and c is precisely the letter cmax; x1, x2 ∈
A ∗ B; and y1, y2 ∈B ∗ C.

Consider A ∗ B ∗ C as a free product of A ∗ B and B ∗ C, amalgamating B:

A ∗ B ∗ C = (A ∗ B) ∗
B
(B ∗ C).

Without loss of generality, we will assume that the length of the normal form of
z1 := cy1w1x1a in this amalgamated free-product structure is less than or equal
to that of z2 := c−1y2w2x2a

−1. Note that this length is even, since z1 begins with
c and ends with a. Moreover, it is strictly greater than 2, since otherwise z1 and
hence also w1 belong to (B ∗ C) · (A ∗ B). But if w1 = v ′u′ with u′ ∈A ∗ B and
v ′ ∈B ∗ C, then the subdiagram #1 has boundary label
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v1v
′u′u1 ∈ (B ∗ C) · (A ∗ B),

contradicting the minimality of #.
If the lengths of the normal forms of z1 and z2 are equal then we may assume,

also without loss of generality, that the length of z1 as a word in the free product
A ∗ B ∗ C is no greater than that of z2.

Since #1 has R-regions, it has at least one maximal R-region—say, β.

Claim. β ∩ ∂#1 is connected.

Proof. Otherwise, removing β and the interior of β ∩ ∂#1 from #1 leaves two or
more components, each of which contains 2-cells. Taking #0 to be a component
that does not contain a Gurevich region of #, let γ be a minimal R-region of #0.

Then the only regions of#\#0 with which γ can share a- or c-edges are α and β;
and γ < α and γ < β by the maximality of α in # and of β in #1, respectively.
Hence γ is a locally minimal region of# but not a Gurevich region, contradicting
Lemma 3.1.

Thus we see that#0 contains noR-regions and hence, by Lemma 3.1, no bound-
ary regions of #. Hence ∂#0 ⊂ ∂α ∪ ∂β and so the boundary label of #0 has
the form s1s2 , where each si is a subword of R±1. By Property B (see Section
2.3), s1s2 is freely equal to the empty word in the generators of the presentation
P; hence#0 can be deleted from#, contrary to the minimality assumption. This
proves the claim.

The edge amax of β lies on ∂#1\ ∂−# = ∂#1 ∩ (∂+# ∪ ∂α). Similarly, the edge
cmax of β lies in ∂#1 ∩ (∂−# ∪ ∂α). There are four possibilities, as follows.

(i) The amax- and cmax-edges of β both belong to ∂α (see Figure 3.5).

Figure 3.5

Then the amax- and cmax-edges of β both belong to a path Q in ∂α ∩ ∂β ⊆
∂#1 ∩ ∂α. Hence its label is a subword of w1. RegardingQ as part of ∂β, we see
that it contains a subword z±1

1 or z±1
2 .

Since w1 is a proper subword of z1, it cannot contain a subword equal to z±1
1 ,

while for w1 (and hence z1) to contain a subword equal to z±1
2 would contradict

the length assumptions on z1 and z2.
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(ii) The amax- and cmax-edges of β both belong to ∂# (Figure 3.6).

Figure 3.6

Then ∂α ∩ ∂#1 ⊂ ∂β. Thus w1 is identified with a subword of z2 (if β has the
same orientation as α) or z1 (otherwise). Now w1 occurs precisely once as a sub-
word of z1 (e.g., because the first A-letter of z1 is the first A-letter of w1). Hence,
if α and β have opposite orientations in # then they can be canceled to yield a
smaller diagram (also representing the equation u = v).

On the other hand, if α and β have the same orientation in # then we can con-
struct a smaller diagram than # by identifying β ∈ #1 with α ∈ (# \ #1); see
Figure 3.7.

Figure 3.7

(iii) The amax-edge of β belongs to ∂α, while the cmax-edge belongs to ∂#
(Figure 3.8).

Figure 3.8
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Then there is a pathQ in ∂α∩ ∂β joining ∂−# to the edge amax of β. Regarding
Q as part of ∂#1 ∩ ∂α, we see that its label is an initial segment w ′, say, of w1.

Regarding Q as part of ∂β, we see that there exists a word y ∈ B ∗ C such that
c±1yw ′a±1 ∈ {z1, z2}.

Write w1 = w ′w ′′. It follows from the length assumptions on z1 and z2 that
w ′′ ∈ A ∗ B. Cutting # along the arc in ∂α ∪ ∂#1 labeled a±1w ′′ creates a new
diagram #′ with the same number of regions as #. The boundary label of #′ is
not cyclically reduced, but it is equal in A ∗ B ∗ C to that of #. Nevertheless,
the regions α and β in #′ satisfy the conditions of (ii), so we may either cancel
or identify α and β (as in (ii)) to obtain a diagram with fewer R-regions than #.
This diagram may not have cyclically reduced boundary label, but by performing
folds along the boundary we can obtain another intersection diagram, again with
fewer R-regions than #, that does have cyclically reduced boundary label. This
contradicts the assumption of minimality.

(iv) The cmax-edge of β belongs to ∂α, while the amax-edge belongs to ∂#. This
is the same as case (iii) with A and C interchanged.

In all cases we have obtained a contradiction, and the result follows.

4. Towers and Magnus Intersections

Recall [7] that a tower of 2-complexes is a map q : X → Y between 2-complexes
that is a composite of a finite number of maps, each of which is either the in-
clusion of a subcomplex or a covering projection. One can restrict attention to
classes of towers in which restrictions are placed on the subcomplexes and/or on
the coverings arising in this decomposition of q. For our purposes, the coverings
in the tower will always be infinite cyclic; that is, they are connected regular cov-
erings with infinite cyclic covering transformation group. (An infinite cyclic cov-
ering of a path-connected space Y is determined by the kernel of an epimorphism
π1(Y ) → Z.)

If f : # → Y is a cellular map of 2-complexes (such as, e.g., a van Kampen
diagram), then a tower lift of f is a cellular map f̄ : # → Ȳ such that f = q � f̄
for some tower q : Ȳ → Y. Since the composite of two towers is a tower, it fol-
lows that a tower lift of a tower lift is a tower lift. A tower lift f̄ of f with f =
q � f̄ is proper if q is not an isomorphism of 2-complexes and is maximal if f̄
itself has no proper tower lift.

It is shown in [7] that every combinatorial map f : # → Y of 2-complexes,
defined on a finite 2-complex #, admits a maximal tower lift.

Lemma 4.1. Let L ⊂ K be a pair of 2-complexes such that:

(i) K \ L consists of two 1-cells a and c and a 2-cell ρ;
(ii) each component of L has locally indicable fundamental group; and

(iii) each 1-cell a, c occurs in the attaching path for the 2-cell ρ.

Let φ : # → K be a minimal van Kampen diagram for a minimal equation be-
tween a path in X := L ∪ a and a path in Y := L ∪ c. Then there is a tower lift
φ̄ : # → K̄ of φ such that



612 James Howie

(1) K̄ has finite 1-skeleton,
(2) K̄ \ φ̄−1(L) has a single 2-cell, and
(3) β1(K̄) ≤ 1.

Proof. Note first that we may assume that φ restricts to a surjective map #(1) →
K(1) of 1-skeleta and hence that K(1) and L(1) are finite. To see this, first replace
K by the finite subcomplex K ′ = φ(#) and L by L′ = L ∩ K ′. In general, it
will not be true that the components of L′ will have locally indicable fundamen-
tal groups, since the inclusion-induced maps π1(L

′, x) → π1(L, x) (for x ∈L) are
not necessarily injective. However, we may add (possibly infinitely many) 2-cells
to L′ to form a 2-complex L′′, with finite 1-skeleton, such that π1(L

′′, x) is isomor-
phic to the image of π1(L

′, x) → π1(L, x) for each 0-cell x. Now replace K by
K ′′ = K ′ ∪L′ L′′.

By minimality of the van Kampen diagram φ, it follows that # is a topologi-
cal disc (see Lemma 3.1). Let R ∈ π1(K ∪ a ∪ c) be the attaching path for ρ. If
# contains a single R-region, then any maximal tower lifting of φ will satisfy the
conclusions of the Lemma (with β1 = 0).

Hence we may assume that there exist at least two R-regions in # and hence
at least two Gurevich R-regions. By Lemma 3.1 and Theorem 3.2, # contains
precisely one maximal R-region and one minimal R-region, and these are the
two Gurevich R-regions. Moreover, this holds for the ordering of 2-cells in-
duced by any right ordering of G = π1(K). We argue by induction on v1(φ) :=
v0(#)− v0(K), where v0(·) denotes the number of 0-cells.

If β1(K) := dim(H1(K; Q)) ≤ 1 then we may take K̄ = K and φ̄ = φ. In
particular, this applies if v1(φ) = 0, for then φ has no proper tower lifting and so
β1(K) = 0. This starts the induction. For the inductive step, assume that β1(K) ≥
2. Then H1(K; Q) = Hom(G, Q) has dimension at least 2. Choose a path P
in # between the base-points of the two Gurevich R-regions. Then we may find
a nonzero homomorphism ψ : G → Q such that ψ(φ∗(P )) = 0. The image of
ψ is infinite cyclic (since G is finitely generated). Now choose a right order-
ing of G dominated by the standard ordering of Q (via the homomorphism ψ).

If α is a 2-cell of # and if P+ and P− are paths joining the base-point of α to
those of the maximal and minimal 2-cells, respectively, then ψ(φ∗(P+)) ≥ 0 and
ψ(φ∗(P−)) ≤ 0 by definition of maximality and minimality. On the other hand,#
is simply connected and so ψ(φ∗(P−))− ψ(φ∗(P+)) = ±ψ(φ∗(P )) = 0. Hence
ψ(φ∗(P−)) = ψ(φ∗(P+)) = 0.

Let p : K̃ → K denote the (infinite cyclic) regular covering of K correspond-
ing to Ker(ψ), let φ̃ : # → K̃ be a lift of φ, and define L′

1 = p−1(L) and K ′
1 =

L′
1 ∪ φ̃(#). Now take K1 to be the path component of K ′

1 containing φ̃(#), and
define L1 = L′

1 ∩K1. It follows from our previous remarks that K1\ L1 has only
one 2-cell. By standard arguments, the restriction p : K1 → K is strictly surjec-
tive, so that v0(K1) > v0(K) and v1(φ̃) < v1(φ).

Now apply the inductive hypothesis to φ̃ : # → K1 (with respect to the unique
2-cell ρ̃ ∈ p−1(ρ) and to any choice ã ∈ p−1(a) and c̃ ∈ p−1(c) of 1-cells that are
involved in the attaching map for ρ̃ ). Since any tower lift of φ̃ is a tower lift of φ,
we are done.
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Corollary 4.2. Let G = (A ∗ B ∗ C)/〈〈R〉〉 be a one-relator product of lo-
cally indicable groups A,B,C, and let uv−1 be the boundary label of a minimal
exceptional intersection van Kampen diagram, where u ∈ (A ∗ B) \ B and v ∈
(B ∗ C) \ B. Then some cyclic conjugate R ′ of R is contained in a subgroup F0

of A ∗ B ∗ C such that

1. F0 is finitely generated,
2. β1(F0) ≤ 2,
3. uv−1 ∈F0, and
4. uv−1 is a consequence of R ′ in F0.

Proof. We may clearly assume thatR is a cyclically reduced word involving each of
the free factorsA,B, andC. LetL be the disjoint union of 2-complexesLA,LB ,LC
with fundamental groups A,B,C, respectively. Form a 2-complex K from L by
attaching a 1-cell a joining LA to LB , a 1-cell c joining LB to LC , and a 2-cell ρ
with attaching map in the class

R ∈π1(LA ∪ a ∪ LB ∪ c ∪ LC) = A ∗ B ∗ C.
Let φ : # → K be a minimal intersection van Kampen diagram with boundary
label uv−1. Then the hypotheses of Lemma 4.1 are satisfied.

Hence we have a tower lift φ̄ : # → K̄ of φ satisfying the conclusions of
Lemma 4.1. Let p0 be the common initial point of ∂+# and ∂−# (which have
labels u and v, respectively). By Lemma 3.1, p0 lies on the boundary of a Gure-
vich R-region α of #. The boundary label of α, read from p0, is a cyclic conju-
gate R ′ of R. Fix x := φ̄(p0) as a base-point of K̄. Then the single 2-cell ρ̄ of
K̄ \ q−1(L) (where q : K̄ → K is the tower map) is attached by a closed path P
based at x, with q∗(P ) = R ′. Define F0 = q∗(π1(K̄ \ ρ̄ )) ⊆ A ∗ B ∗ C to obtain
the result. (Note that β1(F0) ≤ 2 since β1(K̄) ≤ 1 and that F0 is finitely gener-
ated because K̄ has finite 1-skeleton.)

5. Rank-2 Subgroups

Following Corollary 4.2, it is useful to be able to classify the groups F0 that can
arise.

Lemma 5.1. Let F be a finitely generated subgroup of the free productA∗B ∗C
of locally indicable groups A,B,C such that β1(F ) ≤ 2 and F contains a word
of the form uv−1, with u∈ (A ∗B) \B and v ∈ (B ∗C) \B. Then F has one of the
following forms:

(a) 〈uv−1〉 ∗D for some D ⊂ A ∗ B ∗ C with β1(D) ≤ 1;
(b) D ∗ E, where u∈D ⊂ (A ∗ B) and v ∈E ⊂ (B ∗ C);
(c) 〈xy〉 ∗xDx−1, where x ∈ (A∗B)\B, y ∈ (B ∗C)\B, u∈ xDx−1, v ∈ y−1Dy,

and D ⊂ B.

Proof. By the Kuroš subgroup theorem, F is a free product F = ∗λ∈�Fλ, with
each Fλ either infinite cyclic or a (nontrivial) conjugate of a subgroup of A, B, or
C. Moreover, each Fλ is finitely generated and hence indicable. Since β1(F ) ≤
2, it follows that |�| ≤ 2.



614 James Howie

Suppose first that |�| = 1. Since uv−1 ∈F is neither a proper power inA∗B ∗C
nor conjugate to an element ofA,B, orC, it follows that F = 〈uv−1〉 = 〈uv−1〉∗D
with D = {1}. Hence we may assume that |�| = 2, and we write F = F1 ∗ F2

with β1(F1) = β1(F2) = 1.
We can expressA∗B ∗C as the fundamental group of a graph of groups, where

the underlying graph is the tree > of Figure 5.1, the vertex groups are A,B,C as
indicated, and the edge groups are trivial. By Bass–Serre theory [12], A ∗ B ∗ C
acts on a tree T with quotient >. The action is free on the edges, and the vertex sta-
bilizers are the conjugates ofA, B, and C. We can speak ofA-, B-, and C-vertices
of T (and of a- and c-edges) according to the image in >.

•
A

a
•
B

c
•
C

Figure 5.1

Without loss of generality, we may assume that uv−1 is cyclically reduced as
written. Let t denote the vertex of T whose stabilizer is B. Then the geodesic P
from t to u(t) in T consists only of a-edges, while the geodesicQ from t to v(t)
consists only of c-edges (since u∈A ∗ B and v ∈B ∗ C).

By Bass–Serre theory again, F is the fundamental group of a graph of groups
whose underlying graph is T/F. Since F is finitely generated with β1(F ) = 2,
it follows that F is actually the fundamental group of a graph of groups whose
underlying graph is a finite subgraphX of T/F with β1(X) ≤ 2. The various pos-
sibilities are illustrated in Figures 5.2, where the solid discs represent the images
in X of vertices of T whose stabilizers have nontrivial intersection with F.

Let P̄ and Q̄ denote the images of P and Q in T/F. Since uv−1 ∈ F, each
of P̄, Q̄ is a path joining the image x of t to the common image y of u(t) and
v(t), and the path P̄ · Q̄−1 is contained in X. Moreover, the paths P̄ and Q̄ have
no common edges, since one contains only a-edges and the other contains only
c-edges.

Figure 5.2a
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Figure 5.2b

There are essentially three possibilities as follows.

Case 1: x �= y (see Figures 5.3). Then F can be rewritten as F1 ∗ 〈uv−1〉.

Figure 5.3a



616 James Howie

Figure 5.3b

Case 2: x = y is a separating vertex of X (Figure 5.4). In this case we can
write F = F1 ∗ F2 , with u∈F1 ⊂ A ∗ B and v ∈F2 ⊂ B ∗ C.

Figure 5.4
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Case 3: x = y is a nonseparating vertex of X (Figure 5.5). In this case the
solid vertex z must be a B-vertex, and we can write u ∈UDU−1 and v ∈ V −1DV

for someU ∈A∗B, V ∈B ∗C, andD ⊂ B. Moreover, F = UDU−1 ∗〈UV 〉.

Figure 5.5

We are now ready for the proof of Theorem C. We begin with some lemmas.

Lemma 5.2. LetA be a one-relator group, and letR be a cyclically reduced word
in A ∗ 〈t〉 such that t = 1 in the one-relator product G = (A ∗ 〈t〉)/〈〈R〉〉. Then
R = t±1.

Proof. By Brodskiı̆’s Freiheitssatz for one-relator products of locally indicable
groups (Theorem 2.1), since the natural map 〈t〉 → G is not injective, R must
be conjugate to an element of 〈t〉. Since also R is cyclically reduced, R = t n for
some n. Then G = A ∗ 〈t | t |n|〉, and the result follows.

Lemma 5.3. Let G = (A ∗ B ∗ C)/〈〈R〉〉 be a one-relator product of locally in-
dicable groups A,B,C such that the relator R has the form uv−1, with u∈A ∗ B
and v ∈ B ∗ C. Then the intersection of A ∗ B and B ∗ C in G has the form
B ∗ 〈u〉 = B ∗ 〈v〉.
Proof. The one-relator product structure expressesG as a free product with amal-
gamation

(A ∗ B) ∗
B∗〈u〉=B∗〈v〉 (B ∗ C),

and the result follows trivially.

Lemma 5.4. Let G = (A ∗ B ∗ C)/〈〈R〉〉 be a one-relator product of locally in-
dicable groups A,B,C such that the relator R is contained in a finitely generated
subgroupD ∗E of the free product A ∗B ∗C, whereD ⊂ A ∗B and E ⊂ B ∗C
are subgroups such that β1(D) = β1(E) = 1 with D �⊂ B and E �⊂ B. Then the
intersection ofA∗B withB ∗C inG has the formB ∗I, where I is the intersection
of D and E in the one-relator product G0 = (D ∗ E)/〈〈R〉〉.
Proof. Note that D cannot be a free product, since it is a finitely generated and
locally indicable group with β1(D) = 1. HenceD is either free (of rank 1) or con-
tained in a conjugate ofA orB. SinceD �⊂ B, it follows that the subgroup ofA∗B
generated byD ∪B is a free productD ∗B. Similarly, the subgroup generated by
E ∪ B is a free product B ∗ E.
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Hence we may write G as a stem product

(A ∗ B) ∗
D∗B (G0 ∗ B) ∗

E∗B (B ∗ C),
and the result follows.

Lemma 5.5. LetG = (A∗B ∗C)/〈〈R〉〉 be a one-relator product of locally indi-
cable groups A,B,C such that the relator R is contained in a subgroup 〈xy〉 ∗D
of the free product A ∗ B ∗ C, where x ∈ (A ∗ B) \ B, y ∈ (B ∗ C) \ B, and D ⊂
B. Then either R is conjugate to (xyd)±1 for some d ∈D, or the intersection of
(A ∗ B) with (B ∗ C) in G has the form B ∗ (x−1Ix), where I ⊂ D is the inter-
section of D with (xy)D(xy)−1 in (〈xy〉 ∗D)/〈〈R〉〉.
Proof. Write R as a word R0 = R0(z,D) in the free product 〈z〉 ∗D ⊂ 〈z〉 ∗ B,
where z = xy. Now form a one-relator product

G0 = (〈x0, y0〉 ∗D)/〈〈R0(x0y0,D)〉〉.
Then we can express G as a stem product

G = (A ∗ B) ∗〈x〉∗B=〈x0〉∗B G1 ∗〈y0〉∗B=〈y〉∗B (B ∗ C),
where G1 is a free product with amalgamation G1 = G0 ∗D B. Thus the intersec-
tion of A ∗B and B ∗C inG has the form E ∗D B, where E is the intersection of
〈x0〉 ∗D and 〈y0〉 ∗D in G1.

But we can write G0 as a free product G2 ∗ 〈t〉, where G2 = (〈z0〉 ∗ D)/
〈〈R0(z0,D)〉〉, z0 = x0y0, and t = x0. Suppose U ∈ 〈x0〉 ∗D,V ∈ 〈y0〉 ∗D, and
U = V in G0. We can write U,V in the following form:

U = g0x
ε(1)
0 · · · xε(k)0 gk ,

with gi ∈D and ε(i) = ±1 for each i; and

V = h0y
η(1)
0 · · · yη(l)0 hl ,

with hi ∈D and η(i) = ±1 for each i.
Comparing U and V in G2 ∗ 〈t〉 using D ⊂ G2 and using x0 = t and y0 =

t−1z0 ∈ t−1G1, we see that l = k and that η(i) = −ε(i) for each i. Moreover,
if ε(i) = −1 = ε(i + 1) for some i, then U = V implies that gi = z0hi in
G2. But 〈z0〉 ∗ D = 〈z0hig

−1
i 〉 ∗ D, since gi,hi ∈ D. By Lemma 5.2, R0 must

be a cyclic conjugate of (z0hig
−1
i )

±1. Hence R is a cyclic conjugate of xyd with
d = hig

−1
i ∈D.

A similar argument applies if ε(i) = +1 = ε(i + 1) for some i, or if ε(1) = +1
or ε(k) = −1.

We may therefore assume that k = 2m is even and that ε(i) = (−1)i for all i.
In this case, comparing U with V in G2 ∗ 〈t〉 shows that gi = hi in D for even i,
while gi = z0hiz

−1
0 in G2 for odd i.

Hence U = V ∈D ∗ x−1
0 Ix0, where I is the intersection of D with z0Dz

−1
0 in

G2. It follows that the intersection of A ∗ B with B ∗ C in G has the form
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E ∗D B = (D ∗ x−1
0 Ix0) ∗D B = B ∗ x−1Ix.

This completes the proof.

Proof of Theorem C. LetG = A�/〈〈R〉〉 be a one-relator product of locally indica-
ble groups as in the statement of the theorem. Clearly there is no loss of generality
in assuming that R is a cyclically reduced word involving all the factors Aλ, λ ∈
�. It also follows from Brodskiı̆’s Freiheitssatz (Theorem 2.1) that M ∪ N = �

(for otherwise AM∪N embeds in G and there is no exceptional intersection).
Hence we can express G in the form (A ∗ B ∗ C)/〈〈R〉〉, where A = AM\N ,

B = AM∩N , and C = AN \M. Let u = v be a minimal intersection equation with
u∈ (A ∗ B) \ B and v ∈ (B ∗ C) \ B.

By Corollary 4.2, there is a finitely generated subgroup F0 of A ∗ B ∗ C, with
β1(F0) ≤ 2, that contains both uv−1 and a conjugate R ′ of R and such that uv−1 =
1 in G0 = F0/〈〈R ′ 〉〉.

By Lemma 5.1, F0 has one of three possible forms, which we now consider
separately.

(a)F0 = 〈uv−1〉∗D with β1(D) ≤ 1. ThenR ′ (and hence alsoR) is conjugate to
(uv−1)±1, by Lemma 5.2. By Lemma 5.3 we see that conclusion (1) of Theorem C
holds with X = 〈u〉 and Y = 〈v〉.

(b) F0 = D ∗ E, where u ∈D ⊂ A ∗ B and v ∈E ⊂ B ∗ C. In this case, nei-
ther D nor E is trivial, since u ∈D and v ∈ E. Since F0 is finitely generated, so
are D and E. Since they are also locally indicable, it follows that β1(D) ≥ 1 and
β1(E) ≥ 1. But then β1(D)+β1(E) = β1(F0) ≤ 2 and so we must have β1(D) =
β1(E) = 1. By Lemma 5.4, we see that conclusion (1) of Theorem C holds with
X = D and Y = E.

(c) F0 = 〈xy〉 ∗ xDx−1, where x ∈ (A ∗ B) \ B, y ∈ (B ∗ C) \ B, u ∈ xDx−1,
v ∈ y−1Dy, and D ⊂ B. By Lemma 5.5, either R ′ (and hence R) is conjugate to
(xyd )±1 for some d ∈ D, or the intersection of (A ∗ B) with (B ∗ C) in G has
the form B ∗ (x−1Ix), where I ⊂ D is the intersection ofD with (xy)D(xy)−1 in
(〈xy〉 ∗D)/〈〈R ′ 〉〉. The first of these possibilities reduces to case (a), with (say)
u = x−1 and v = yd. The second gives conclusion (2) of Theorem C.

Proof of Theorem D. A theorem of Brodskiı̆ [2] states that, in a one-relator prod-
uct G = (X ∗ Y )/〈〈R〉〉 of locally indicable groups X and Y, the intersection
X ∩ Y is cyclic—as is the intersection X ∩ g−1Xg for any g ∈G \ X. The result
now follows directly from Theorem C.

6. Algorithms

We now restrict attention to one-relator groups in order to consider the problem
of algorithmically recognizing and identifying any exceptional intersection of two
Magnus subgroups. It is clear from Lemma 5.4 that a solution of this problem
will include the ability to recognize the intersection of two cyclic Magnus sub-
groups 〈x〉 ∩ 〈y〉 in a two-generator, one-relator group G = 〈x, y | R〉, which
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will in particular be central. There is an algorithm due to Baumslag and Taylor [1]
for computing the center of a one-relator group, but technically this is not exactly
what we require. The Baumslag–Taylor algorithm will provide a generator for
Z(G) (which is always cyclic except in the case whereG is free abelian of rank 2
[10]) as a word in x and y, but we need further to decide which powers of x and of
y belong to the center. A slight variation of the Baumslag–Taylor algorithm does
just that; we include it here for completeness.

Lemma 6.1. LetG = 〈x, y | R(x, y)〉 be a two-generator, one-relator group, and
let M be the Magnus subgroup M = 〈x〉 of G. Then the intersection M ∩ Z(G)
is algorithmically computable.

Proof. By a theorem of Murasugi [10], M ∩ Z(G) is trivial unless there is a ho-
momorphism ε : G → Z that is injective onM. Put t = |ε(x)| > 0, and let G1 =
〈z, y | R(zt, y)〉 be the one-relator group obtained from G by adjoining a t th root
to x:

G1 = 〈z〉 ∗
zt=x

G.

Then ε extends to an epimorphismG1 → Z (with ε(z) = ±1), and 〈z〉∩Z(G1) =
〈x〉 ∩ Z(G). Hence, without loss of generality we may assume that our origi-
nal homomorphism ε : G → Z restricts to an isomorphism on M, so that G =
Ker(ε) �M. We may also assume without loss of generality that ε(y) = 0. (If
not, use Tietze transformations to replace y by yx s for s = −ε(y)∈ Z.)

Murasugi’s theorem [10] tells us further that Z(G) is trivial unless F = Ker(ε)
is free and of finite rank. But standard rewriting techniques show that G is an
HNN extension of a one-relator group G2 = 〈y0, y1, . . . , yk | R2〉, where the as-
sociated subgroups are the Magnus subgroupsM1 = 〈y0, y1, . . . , yk−1〉 andM2 =
〈y1, . . . , yk〉. We thus require that the inclusions M1,M2 → G2 be isomorphisms
or (equivalently) that R2 involve each of the letters y0 and yk exactly once.

The rewriting R2 is algorithmically computable from R, so it is visibly check-
able whether or not R2 has the necessary form. If so, then we can rewrite the
relation R2 = 1 as yk = W = W(y0, y1, . . . , yk−1). Then the automorphism θ of
F = M1 arising from conjugation by x in G is

y0 �→ y1 �→ · · · �→ yk−1 �→W. (∗)
Then 〈x〉∩Z(G) is nontrivial if and only if θ has finite order (m, say) inAut(F ),

in which case 〈x〉 ∩ Z(G) = 〈xm〉. But there is a computable upper bound for
the order of a torsion element of Aut(F ) [1; 14]: indeed, any finite subgroup of
Aut(F ) maps isomorphically (since F is torsion-free) to a subgroup of the same
order in Out(F ), and the order of such a subgroup is at most 2n · n!.

The rule (∗) allows us to compute θm for all positive m up to this upper bound
and hence to determine 〈x〉 ∩ Z(G), as required.

Corollary 6.2. Let G = 〈x, y | R〉 be a two-generator, one-relator group.
Then the intersection of the Magnus subgroups 〈x〉 and 〈y〉 in G is algorithmi-
cally computable.
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Proof. Clearly, we may ignore the case whereG/[G,G] is free abelian of rank 2,
so Z(G) is cyclic by Murasugi’s theorem [10]. As remarked previously, the
intersection of 〈x〉 and 〈y〉 in G is central. By Lemma 6.1 we can compute natu-
ral numbersm, n such that 〈x〉 ∩Z(G) = 〈xm〉 and 〈y〉 ∩Z(G) = 〈y n〉. Ifmn =
0 then 〈x〉 ∩ 〈y〉 is trivial. Otherwise, by [10] there is an epimorphism ε : G → Z

that is injective on Z(G) and hence also on 〈x〉 and on 〈y〉.
This epimorphism is unique up to multiplication by ±1 in Z , sinceG/[G,G] has

torsion-free rank 1, so it can be computed. In particular we can compute ε(x) =
a and ε(y) = b. Note that, for s, t ∈ Z , x s = yt if and only if s ∈mZ , t ∈ nZ , and
as = bt. Thus 〈x〉 ∩ 〈y〉 = 〈xmk〉, where k is the least positive integer for which
amk is divisible by bn (which is clearly computable).

We are now ready to prove the main algorithmic theorem.

Proof of Theorem E. By Corollary 4.2 and Lemma 5.1, the intersection can contain
exceptional elements only if R is contained in a rank-2 subgroup F0 = 〈x, y〉 of

F = 〈a1, . . . , ak , b1, . . . , bl , c1, . . . , cm〉
such that either:

(a) x ∈A ∗ B and y ∈B ∗ C; or
(b) x ∈B and y ∈ (A ∗ B) · (B ∗ C).
LetX be the single-vertex graph with an edge for each of the generators a1, . . . , ak ,
b1, . . . , bl , c1, . . . , cm of F (so that F = π1X). Then each two-generator subgroup
F0 arises as π1(X0, v) for some finite graph X0 (with β1(X0) ≤ 2) that admits an
immersion η : X0 →X and for some vertex v of X0 [13].

Without loss of generality, we may assume that R = η∗(R ′) for some closed
path R ′ in X0, based at v, that involves all the edges of X0. This provides an up-
per bound on the number of edges of X0 and hence a finite list of candidates for
X0, v, and η.

For each (X0, v, η) in our finite list, we can check for closed paths x ′, y ′ ∈
π1(X0, v) such that x ′, y ′ generate π1(X0, v) and such that x = η(x ′) and y =
η(y ′) satisfy conditions (a) or (b). Note that, since R = η(R ′) is a cyclically re-
duced word involving all the generators ofF, the path x ′ must represent a primitive
element of π1(X) and must omit at least one edge of X0 that occurs in R ′. In case
(a), a similar argument applies to y ′; in case (b), we may deduce the same con-
clusion by choosing y ′ of minimal length in the double coset 〈x ′ 〉 · y ′ · 〈x ′ 〉. This
gives an upper bound (of twice the number of edges in X0) for the lengths of x ′
and y ′, so again we are reduced to checking a finite list of potential candidates.

Given a choice of x, y satisfying (a), Lemma 5.3 tells us that (A∗B)∩(B∗C) =
B ∗ I, where I is the intersection of 〈x〉 and 〈y〉 in the one-relator group G0 :=
〈x, y | R(x, y)〉, which is computable by Corollary 6.2.

Hence, for the rest of this proof we may assume that case (a) does not occur for
any of our finite list of potential candidate triples (X0, v, η). We may assume that,
for some (X0, v, η), there is a pair x ′, y ′ of paths giving rise to x, y ∈F satisfying
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the conditions of case (b). Then, by Lemma 5.5, the intersection (A∗B)∩ (B ∗C)
has the form B ∗ I, where I is conjugate to the intersection of 〈x〉 and 〈yxy−1〉
in G0.

Suppose that y occurs inG0 with exponent sum zero. Then the standard Magnus
rewriting method allows us to express some conjugate ofR as a cyclically reduced
word R1 in {xi; i = 0, . . . , k} for some k ≥ 1, where xi = yixy−i. By choos-
ing k as small as possible, we can also assume that both x0 and xk occur in R1, in
which case G0 is an HNN extension of the one-relator group G1 = 〈x0, . . . , xk |
R1〉. Note that k > 1, for otherwise we have R1 ∈ 〈x0, x1〉. Since y = U · V
with U ∈ (A ∗ B) and V ∈ (B ∗ C), it follows that R is conjugate to a word in
〈U−1xU〉 ∗ 〈VxV −1〉 with U−1xU ∈ A ∗ B and VxV −1 ∈ B ∗ C. This falls into
case (a), contrary to assumption.

Moreover, the intersection of 〈x〉 with 〈yxy−1〉 inG0 is equal to the intersection
of 〈x0〉 and 〈x1〉 in G1. This intersection is trivial, since R1 /∈ 〈x0, x1〉.

Hence we may assume that the exponent sum of y in R is nonzero. There is
a unique epimorphism ε : G0 → Z (up to composition with ±id : Z → Z), and
ε(x) �= 0. Now note that, if xm = yxny−1 for some m, n, then

mε(x) = ε(xm) = ε(yxny−1) = nε(x)

and hence we have m = n and xm ∈Z(G0).

Conversely, if xm ∈ Z(G0) then xm = yxmy−1, so xm ∈ 〈x〉 ∩ 〈yxy−1〉. Thus
〈x〉 ∩ 〈yxy−1〉 = 〈x〉 ∩ Z(G0), which is computable by Lemma 6.1.
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