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A Linear Bound for Frobenius Powers and
an Inclusion Bound for Tight Closure

Holger Brenner

Introduction

Let R denote a Noetherian ring, let m denote a maximal ideal in R, and let I de-
note an m-primary ideal. This means by definition that m is the radical of I. Then
there exists a (minimal) number k such that mk ⊆ I ⊆ m holds. If R contains a
field of positive characteristic p then the Frobenius powers of the ideal I, that is,

I [q] = {f q : f ∈ I }, q = pe,

are also m-primary and hence there exists a minimal number k(q) such that mk(q) ⊆
I [q] holds. In this paper we deal with the question of how k(q) behaves as a func-
tion of q; in particular, we look for linear bounds for k(q) from above. If mk ⊆ I

and if l denotes the number of generators for mk, then we obtain the trivial linear
inclusion (mk )lq ⊆ (mk )[q] ⊆ I [q].

The main motivation for this question comes from the theory of tight closure.
Recall that the tight closure of an ideal I in a domain R containing a field of pos-
itive characteristic p is the ideal

I ∗ = {f ∈R : ∃0 	= c ∈R such that cf q ∈ I [q] for all q = pe}.
A linear inclusion relation mλq+γ ⊆ I [q] for all q = pe implies the inclusion
mλ ⊆ I ∗, since then we can take any element 0 	= c ∈ mγ to show for f ∈ mλ that
cf q ∈ mλq+γ ⊆ I [q] and hence f ∈ I ∗. The trivial bound mentioned previously
yields mkl ⊆ I ∗, but this does not yield anything of interest because, in fact, we
have already mkl ⊆ mk ⊆ I.

We restrict our attention in this paper to the case of a normal standard-graded
domain R over an algebraically closed field K = R0 of positive characteristic p

and to a homogeneous R+-primary ideal I. The question is then to find the min-
imal degree k(q) such that R≥k(q) ⊆ I [q] or at least to find a good linear bound
k(q) ≤ λq + γ. In this setting we work mainly over the normal projective va-
riety Y = ProjR endowed with the very ample invertible sheaf OY (1). If I =
(f1, . . . , fn) is given by homogeneous ideal generators fi of degree di = deg(fi),
then on Y we have the following short exact sequences of locally free sheaves:

0 −−→ Syz(f q

1 , . . . , f q
n )(m) −−→

n⊕
i=1

OY (m − qdi)
f

q

1 ,...,f
q
n−−−−−→ OY (m) −−→ 0.
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Another homogeneous element h ∈ R of degree m yields a cohomology class
δ(h) ∈ H1(Y, Syz(f q

1 , . . . , f q
n )(m)), and therefore the question of whether h ∈

(f
q

1 , . . . , f q
n ) = I [q] is equivalent to the question of whether δ(h) = 0. Since

Syz(f q

1 , . . . , f q
n )(0) = F ∗e(Syz(f1, . . . , fn)(0)) is the pull-back under the eth ab-

solute Frobenius morphism F e : Y → Y, our question is an instance of the follow-
ing more general one: Given a locally free sheaf S on a normal projective variety
(Y, OY (1)), find an (affine-linear) bound �(q) such that for m ≥ �(q) we have
H1(Y, S q(m)) = 0, where we set S q = F e∗(S ). Using a resolution G• −→ S −→ 0
with Gj = ⊕

(k,j) OY (−αk,j ), we can shift the problem (at least if Y = ProjR
with R Cohen–Macaulay, so that H i(Y, OY (m)) = 0 for 0 < i < dim(Y )) to the
problem of finding a bound such that H t(Y, S q

t (m)) = 0, where St = kern(Gt −→
Gt−1) and t = dim(Y ). By Serre duality this translates to Hom(S q

t (m),ωY ) = 0.
Now the existence of such mappings is controlled by the minimal slope of S q

t (m).

Let µ̄min(St ) = lim infq=pe µmin(S q
t )/q and set ν = −µ̄min(St )/deg(Y ). With

this notation applied to S = Syz(f1, . . . , fn)(0), our main results are the following
theorems (Theorems 2.2 and 2.4).

Theorem 1. Let R denote a standard-graded normal Cohen–Macaulay domain
over an algebraically closed field K of characteristic p > 0. Suppose that the
dualizing sheaf ωY of Y = ProjR is invertible, and let I denote a homogeneous
R+-primary ideal. Then R>qν+deg(ωY )/deg(Y ) ⊆ I [q].

From this linear bound for the Frobenius powers we derive the following inclusion
bound for tight closure.

Theorem 2. Under the assumptions of Theorem 1 we have the inclusion R≥ν ⊆
I ∗, where I ∗ denotes the tight closure of I.

This theorem generalizes [2, Thm. 6.4] from dimension 2 to higher dimensions.
We also obtain an inclusion bound for the Frobenius closure (Corollary 2.12) and
a linear bound for the Castelnuovo–Mumford regularity of the Frobenius powers
I [q] (Theorem 3.1), which improves a result of Chardin [6].

I thank M. Blickle for useful remarks.

1. Some Projective Preliminaries

Let K denote an algebraically closed field, and let Y denote a normal projective
variety over K of dimension t together with a fixed ample Cartier divisor H with
corresponding ample invertible sheaf OY (1). The degree of a coherent torsion-
free sheaf S (with respect to H ) is defined by the intersection number deg(S ) =
deg(c1(S )) = c1(S ).H t−1; see [17, Preliminaries] for background on this notion.
The degree is additive on short exact sequences [17, Lemma 1.5(2)].

The slope of S (with respect to H ), written µ(S ), is defined by dividing the
degree through the rank. The slope fulfills the property that µ(S1 ⊗ S2) =
µ(S1)+µ(S2) [17, Lemma 1.5(4)]. The minimal slope of S, µmin(S ), is given by
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µmin(S ) = inf{µ(Q) : S → Q → 0 is a torsion-free quotient sheaf }.
If S1 ⊂ · · · ⊂ Sk = S is the Harder–Narasimhan filtration of S [17, Prop. 1.13],
then µmin(S ) = µ(S/Sk−1). If L is an invertible sheaf and µmin(S ) > deg(L),
then there does not exist any nontrivial sheaf homomorphism S −→ L. The sheaf
S is called semistable if µ(S ) = µmin(S ).

Suppose now that the characteristic of K is positive and let F e : Y → Y de-
note the eth absolute Frobenius morphism. We denote the pull-back of S under
this morphism by S q = F e∗(S ), q = pe. The slope behaves like µ(S q) = qµ(S )

(this follows from [17, Lemma 1.6], for which it is enough to assume that the fi-
nite mapping is flat in codimension 1; note that we compute the slope always with
respect to OY (1), not with respect to F ∗e(OY (1)) = OY (q)). However, it may
happen that µmin(S q) < qµmin(S ). It is therefore useful to consider the number

µ̄min(S ) = lim inf
q=pe

µmin(S q)/q

(cf. [16]). This limit exists, since for some number k there exists a surjection⊕
j O(βj ) −→ S(k) such that all βj are positive. Then S(k) is a quotient of an

ample bundle and so all its quotients have positive degree. This holds also for
all its Frobenius pull-backs, so µmin((S(k))q) ≥ 0 and the limit is ≥ 0. Thus
µmin(S q) ≥ −qk deg(OY (1)) for all q. Moreover, a theorem of Langer [16] im-
plies that this limit is even a rational number. The sheaf S is called strongly
semistable if µ(S ) = µ̄min(S ) or (equivalently) if all Frobenius pull-backs S q are
semistable.

The degree of the variety Y (with respect to H ) is by definition the top self-
intersection number deg(Y ) = deg(OY (1)) = H t. In the following we will impose
on a polarized variety (Y, OY (1))of dimension t the condition thatH i(Y, OY (m)) =
0 for i = 1, . . . , t − 1 and all m. If Y = ProjR, where R is a standard-graded
Cohen–Macaulay ring, then this property holds as a result of [5,Thm. 3.5.7].

Proposition 1.1. Let Y denote a normal projective variety of dimension t ≥ 1
over an algebraically closed field K of positive characteristic p. Let OY (1) denote
a very ample invertible sheaf on Y such that H i(Y, O(m)) = 0 for i = 1, . . . , t −1.
Suppose that the dualizing sheaf ωY on Y is invertible. Let S denote a torsion-free
coherent sheaf on Y, and suppose that the stalk Sy is free for every singular point
y ∈ Y. Let

· · · −−→ G3 −−→ G2 −−→ S −−→ 0

denote an exact complex of sheaves, where Gj has type Gj = ⊕
(k,j) OY (−αk,j ).

Set S1 = S and set Sj = im(Gj+1 −→ Gj ) = kern(Gj −→ Gj−1) for j ≥ 2. Fix i =
1, . . . , t. Then, for

m > −q
µ̄min(St−i+1)

deg(Y )
+ deg(ωY )

deg(Y )
,

we have H i(Y, S q(m)) = 0.

Proof. Note first that the Frobenius acts flat on the exact complex and on the cor-
responding short exact sequences 0 −→ Sj+1 −→ Gj+1 −→ Sj −→ 0. This can be
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checked locally and is true for the smooth points of Y. Over a singular point y ∈ Y

the sheaf S is free, so these short exact sequences split locally in a neighborhood
of such a point and hence all the Sj are also free in y. Hence in these points also
the Frobenius preserves the exactness of the complex.

By our assumption on OY (1) we have H i(Y, Gj(m)) = 0 for i = 1, . . . , t −1, all
m, and all j ≥ 2. As a result, from the short exact sequences 0 −→ Sj+1(m) −→
Gj+1(m) −→ Sj(m) −→ 0 we can infer that

H i(Y, Sj(m)) ∼= H i+1(Y, Sj+1(m)) (isomorphisms for i = 1, . . . , t − 2),

H t−1(Y, Sj(m)) ⊆ H t(Y, Sj+1(m)) (injection for t ≥ 2),

H t(Y, Gj+1(m)) →H t(Y, Sj(m)) (surjection).

The same is true if we replace Sj and Gj by their respective Frobenius pull-backs
S

q

j and G
q

j . For i = 1, . . . , t, we find that

H i(Y, S q

1 (m)) ∼= H i+1(Y, S q

2(m)) ∼= · · ·
∼= H t−1(Y, S q

t−i(m)) ⊆ H t(Y, S q

t−i+1(m)).

Hence we need only look at H t(Y, S q

t−i+1(m)), which by Serre duality is dual
to Hom(S q

t−i+1(m),ωY ); see [10, Thm. III.7.6]. Suppose now that m fulfills the
numerical condition. Then

µmin(S q

t−i+1(m)) = µmin(S q

t−i+1) + m deg(Y )

≥ qµ̄min(St−i+1) + m deg(Y )

> qµ̄min(St−i+1) +
(

−q
µ̄min(St−i+1)

deg(Y )
+ deg(ωY )

deg(Y )

)
deg(Y )

= deg(ωY ).

So for these m there are no nontrivial mappings from S q

t−i+1(m) to ωY , and there-
fore H t(Y, S q

t−i+1(m)) = 0.

Remark 1.2. The dualizing sheaf ωY on the projective variety Y ⊆ PN is in-
vertible under the condition that Y is locally a complete intersection in PN and, in
particular, if Y is smooth (see [10, Thm. III.7.11 & Cor. III.7.12]). If ωY is not in-
vertible but is torsion free, then we may replace deg(ωY ) by µmax(ωY ) to obtain
the same statement as in Proposition 1.1.

2. An Inclusion Bound for Tight Closure

We first fix the following situation, with which we shall deal in this section.

Situation 2.1. Let K denote an algebraically closed field of characteristic p >

0. Let R denote a standard-graded normal Cohen–Macaulay domain of dimen-
sion t + 1 ≥ 2 over K with corresponding projective normal variety Y = ProjR.

Suppose that the dualizing sheaf ωY of Y is invertible. Let I ⊆ R denote a homo-
geneous R+-primary ideal, and let
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· · · −−→ F2 =
⊕
(k,2)

R(−αk,2) −−→ F1 =
⊕
(k,1)

R(−αk,1) −−→ I −−→ 0

denote a homogeneous complex of graded R-modules that is exact on D(R+). Let

· · · −−→ G2 =
⊕
(k,2)

O(−α(k,2)) −−→ G1 =
⊕
(k,1)

O(−αk,1) −−→ OY −−→ 0

denote the corresponding exact complex of sheaves on Y. Denote by Syzj =
kern(Gj −→ Gj−1) the locally free kernel sheaves on Y, and set Syzj(m) =
Syzj ⊗ OY (m). Let ν = −µ̄min(Syz t )/deg(Y ), where t is the dimension of Y.

Theorem 2.2. Suppose Situation 2.1. Then, for all prime powers q = pe, we
have the inclusion R>qν+deg(ωY )/deg(Y ) ⊆ I [q].

Proof. Because I is primary, all the syzygy sheaves occurring in the resolution onY
are locally free and hence we may apply Proposition1.1. Fix a prime power q = pe.

Let h∈R denote a homogeneous element of degree m > qν + deg(ωY )/deg(Y ).

This gives rise, via the short exact sequence

0 −−→ Syz(f q

1 , . . . , f q
n )(m) −−→

n⊕
i=1

OY (m − qdi)
f

q

1 ,...,f
q
n−−−−−→ OY (m) −−→ 0

on Y, to a cohomology class δ(h)∈H1(Y, Syz(f q

1 , . . . , f q
n )(m)), where

Syz(f q

1 , . . . , f q
n )(m) = (F e∗(Syz(f1, . . . , fn)))(m) = S q(m)

and S = S1 = Syz(f1, . . . , fn). It is enough to show that δ(h) = 0, for then h ∈
I [q])(D(R+), O) = I [q] since R is normal. But this follows from Proposition 1.1
applied to S = Syz(f1, . . . , fn) and i = 1.

Remark 2.3. We do not insist that the “resolution” of the ideal be exact on the
whole SpecR nor that it be minimal, but it is likely that a minimal resolution will
give us in general a better bound ν. For example, we can always use the Koszul
complex given by ideal generators of the R+-primary ideal I.

The next theorem gives an inclusion bound for tight closure. Recall that the tight
closure of an ideal I ⊆ R in a Noetherian domain containing a field of positive
characteristic p is by definition the ideal

I ∗ = {f ∈R : ∃0 	= c ∈R such that cf q ∈ I [q] for all q = pe}.
See [11] for basic properties of this closure operation.

Theorem 2.4. Suppose Situation 2.1. Then we have the inclusion R≥ν ⊆ I ∗.

Proof. Let f ∈ R be a homogeneous element of degree deg(f ) = m ≥ ν =
−µ̄min(Syz t )/deg(Y ). By the definition of tight closure we must show that cf q ∈
I [q] holds for some c 	= 0 and all prime powers q. Let c 	= 0 be any homoge-
neous element of degree > deg(ωY )/deg(Y ). Then deg(cf q) = qm + deg(c) >
qν + deg(ωY )/deg(Y ) and therefore cf q ∈ I [q] by Theorem 2.2.
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Remark 2.5. Suppose R fulfills the conditions of Situation 2.1, and let I =
(f1, . . . , fn) denote an ideal generated by a full regular system of homogeneous
parameters of degree deg(fi) = di (so n = t + 1). Then the Koszul resolution
of these elements gives a resolution on Y = ProjR such that the top-dimensional
syzygy bundle is invertible; namely,

Syz t(m) = Gt+1(m) = OY (m − d1 − · · · − dt+1).

Then Theorem 2.4 gives the known (even without the Cohen–Macaulay condition)
inclusion bound R≥d1+···+dn ⊆ (f1, . . . , fn)

∗ (see [12, Thm. 2.9]).
The next easiest case is when the R+-primary homogeneous ideal I has finite

projective dimension (it is again enough to impose the exactness only on D(R+)).
In this case the resolution on Y looks like

0 −−→ Gt+1 −−→ Gt −−→ · · · −−→ G1 −−→ OY −−→ 0

and the top-dimensional syzygy bundle is Syz t = Gt+1 = ⊕
k OY (−αk,t+1), so

µmin(Syz t ) = deg(Y )min
k

{−αk,t+1} = −deg(Y )max
k

{αk,t+1}.
The corresponding inclusion bound was proved in [13, Thm. 5.11]. Such a situ-
ation arises, for example, if I is generated by a set of monomials in a system of
homogeneous parameters.

The following easy corollary unifies two known inclusion bounds for tight closure
given by Smith (see [19, Props. 3.1 & 3.3])—namely, that R≥∑n

i=1 deg(fi ) ⊆ I ∗ and
that R≥dim(R)maxi{deg(fi )} ⊆ I ∗.

Corollary 2.6. Suppose Situation 2.1 and suppose that the homogeneous R+-
primary ideal I = (f1, . . . , fn) is generated by homogeneous elements of degree
di = deg(fi). Set d = max1≤i1<···<idim(R)≤n(di1 + · · · + didim(R)

). Then R≥d ⊆ I ∗.

Proof. We consider the Koszul resolution of I = (f1, . . . , fn), which is exact out-
side the origin. This gives the surjection⊕

1≤i1<···<idim(R)≤n

O(−di1 − · · · − didim(R)
) −−→ Syzdim(R)−1 −−→ 0,

which shows that

µ̄min(Syzdim(R)−1) ≥ µ̄min

( ⊕
1≤i1<···<idim(R)≤n

O(−di1 − · · · − didim(R)
)

)

= − max
1≤i1<···<idim(R)≤n

{di1 + · · · + didim(R)
} deg(Y ).

Hence ν = −µ̄min(Syzdim(R)−1)/deg(Y ) ≤ max{di1 + · · · + didim(R)
} and Theo-

rem 2.4 applies.

Remark 2.7. Theorem 2.4 was proved for dim(R) = 2 in [2, Thm. 6.4] using
somewhat more geometric methods. In this case Y = ProjR is a smooth projec-
tive curve and the top syzygy bundle is just the first syzygy bundle, and the result
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also holds in characteristic 0 for solid closure; see [2] and [3] for concrete compu-
tations of the number ν in this case. In general it is difficult to compute the number
ν of the theorem, just as it is difficult to compute the minimal slope of a locally
free sheaf.

The following corollary gives an inclusion bound for tight closure under the con-
dition that the top-dimensional syzygy bundle is strongly semistable. In the 2-
dimensional situation this bound is exact in the sense that, below this bound, an
element belongs to the tight closure only if it belongs to the ideal itself; see [2,
Thm. 8.4].

Corollary 2.8. Suppose Situation 2.1 and let I = (f1, . . . , fn) be generated by
homogeneous elements of degree di = deg(fi). Let F• −→ I denote the Koszul
complex and suppose that the top-dimensional syzygy bundle Syz t is strongly
semistable. Set d = (dim(R) − 1)(d1 + · · · + dn)/(n − 1). Then R≥d ⊆ I ∗.

Proof. The condition “strongly semistable” means that µ(Syz t ) = µ̄min(Syz t ), so
we only have to compute the degree and the rank of Syz t . It is easy to compute
that det(Syz t ) = OY

((
n−2
t−1

)(−∑n
i=1 di

)); hence

deg(Syz t ) =
(
n − 2
t − 1

)(
−

n∑
i=1

di

)
deg(Y )

and rk(Syz t ) = (
n−1
t

)
. Therefore,

µ(Syz t ) =
(
n − 2
t − 1

)(
−

n∑
i=1

di

)
deg(Y )

/(
n − 1
t

)
= t

n − 1

(
−

n∑
i=1

di

)
deg(Y )

and ν = t
n−1

(∑n
i=1 di

)
.

Remark 2.9. As the proofs of Theorem 2.4 and Proposition 1.1 show, Corollary
2.8 is also true under the weaker condition that there does not exist any nontrivial
mapping Syzq

t −→ L to any invertible sheaf L that contradicts the semistability of
Syzq

t for all q = pe.

Example 2.10. Theorem 2.4 applies in particular when R is a normal complete
intersection domain. Let R = K[X1, . . . ,XN ]/(H1, . . . ,Hr), where the Hj are ho-
mogeneous forms of degree δj . ThenωY = O(∑

j δj −N
)
. Therefore, the number

deg(ωY )/deg(Y ) = ∑
j δj − N is just the a-invariant of R.

Example 2.11. We want to apply Corollary 2.8 to the computation of the tight
closure (xa, ya, za,wa)∗ in R = K[x, y, z,w]/(H ), where H is supposed to be a
polynomial of degree 4 defining a smooth projective (hyper-)surface

Y = V+(H ) = ProjR ⊂ P3 = ProjK[x, y, z,w]

of degree 4; hence Y is a K3 surface. Our result will hold true only for generic
choice of H. We look at the Koszul complex on P3 defined by xa, ya, za,wa and
break it up to get
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0 −−→ Syz2
∼=

2∧
Syz −−→

⊕
6

OP3(−2a)

−−→
⊕

4

OP3(−a) −−→ OP3 −−→ 0.

Suppose first that K is an algebraically closed field of characteristic 0. It is easy
to see that the syzygy bundle Syz = Syz(xa, ya, za,wa) is semistable on P3 [1,
Cor. 3.6 or Cor. 6.4]. Hence also the exterior power Syz2

∼= ∧2 Syz is semistable
on P3. By the restriction theorem of Flenner [7, Thm. 1.2] it follows that the re-
striction Syz2|Y is also semistable on the generic hypersurface Y = V+(H ).

On the other hand, by Noether’s theorem (see [9, Sec. IV.4]), every curve
on the generic surface of degree 4 in P3 is a complete intersection and R =
K[x, y, z,w]/(H ) is a factorial domain for generic H of degree 4. It follows that
the cotangent bundle 1Y on Y = V+(H ) is semistable. For the semistability of a
rank-2 bundle we need only look at mappings L −→ 1Y , where L is invertible. But
since L = OY (k), the semistability follows because Y is a K3 surface and so 1Y

has degree 0 but does not have any global nontrivial section (see [8, Sec. IV.5]).
So for H generic the relevant second syzygy bundle Syz2|Y and the cotangent

bundle 1Y are both semistable in characteristic 0. Since the Q-rational points are
dense in AN

K , there exist also such polynomials H with rational coefficients and
then also with integer coefficients. We consider such a polynomial H with integer
coefficients as defining a family of quartics over Spec Z. Since semistability is an
open property, we infer that the second syzygy bundle and the cotangent bundle
are also semistable on Yp = V+(Hp) for p � 0.

By the semistability of 1Yp (p � 0), the maximal slope of 1Yp is ≤ 0. A theo-
rem of Langer [16, Cors. 2.4 & 6.3] shows then that every semistable bundle on Yp
is already strongly semistable. Hence the second syzygy bundle is also strongly
semistable. We are thus in the situation of Corollary 2.8 and so may compute d =
8a/3. Therefore,

R8a/3 ⊆ (xa, ya, za,wa)∗

holds in R = K[x, y, z,w]/(H ) for H generic of degree 4 and for p � 0. The
first nontrivial instance is for a = 3. In fact, for the (nongeneric) Fermat quar-
tic x4 + y 4 + z4 + w4 = 0 it was proved directly by Singh [18, Thm. 4.1] that
x 2y2z2w2 ∈ (x3, y3, z3,w3)∗.

For the next corollary we recall the definition of the Frobenius closure. Suppose
that R is a Noetherian ring containing a field of positive characteristic p > 0, and
let I denote an ideal. Then the Frobenius closure of I is defined by

IF = {f ∈R : ∃q = pe such that f q ∈ I [q]}.
It is easy to see that the Frobenius closure of an ideal is contained in its tight
closure.

Corollary 2.12. Suppose Situation 2.1. Then R>ν ⊆ IF, the Frobenius closure
of I.
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Proof. Let f denote a homogeneous element of degree m = deg(f ) > ν =
−µ̄min(Syz t )/deg(Y ). Then we need only take a prime power q = pe such that
deg(f q) = qm > qν + deg(ωY )/deg(Y ) holds. Now f q ∈ I [q] holds on account
of Theorem 2.2.

Example 2.13. Corollary 2.12 is not true for R≥ν instead of R>ν. This is already
clear for parameter ideals in dimension 2—say, for (x, y) in R = K[x, y, z]/(H ),
where H defines a smooth projective curve Y = ProjR = V+(H ) ⊂ P2. Here we
have the resolution

0 −−→ OY (−2) ∼= Syz(x, y)(0) −−→ OY (−1) ⊕ OY (−1)
x,y−−→ OY −−→ 0.

Hence we get ν = 2, but an element of degree 2 (say, z2) does not in general be-
long to the Frobenius closure of (x, y).

Remark 2.14. A problem of Katzman and Sharp [15] asks, in its strongest form:
Does there exist a number b such that, if f ∈ IF holds, then already fpb ∈ I [pb]

holds? A positive answer (together with knowledge of a bound for the number b)
to this question would give a finite test for checking whether or not a given ele-
ment f belongs to the Frobenius closure IF . For those elements that belong to IF

by virtue of Corollary 2.12 (owing to, say, degree reasons) the answer is Yes—at
least in the sense that for f fulfilling deg(f ) ≥ ν + ε (ε > 0) we have deg(f q) =
q deg(f ) ≥ qν + qε, so the condition qε > deg(ωY )/deg(Y ) is sufficient to en-
sure that f q ∈ I [q]. It is possible, however, that elements of degree deg(f ) ≤ ν

belong to the Frobenius closure.

3. The Castelnuovo–Mumford Regularity
of Frobenius Powers

We recall briefly the notion of Castelnuovo–Mumford regularity, following [4,
Def. 15.2.9]. Let R denote a standard-graded ring and let M denote a finitely gen-
erated graded R-module. Then the Castelnuovo–Mumford regularity of M (or
regularity of M, for short) is

reg(M) = sup{end(H i
R+(M)) + i : 0 ≤ i ≤ dimM},

where end(N ) of a graded R-module N denotes the maximal degree e such that
Ne 	= 0. For a number l we define the regularity reg l(M) at and above level l by

reg l(M) = sup{end(H i
R+(M)) + i : l ≤ i ≤ dimM}.

A question raised by Katzman in the Introduction of [14] asks how the regu-
larity of the Frobenius powers I [q] behaves, in particular whether there exists a
linear bound reg(I [q]) ≤ C1q + C0. Such a linear bound for the regularity of the
Frobenius powers of an ideal was given by Chardin in [6, Thm. 2.3]. The follow-
ing theorem gives a better linear bound for the regularity of Frobenius powers of
I in terms of the slope of the syzygy bundles.
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Theorem 3.1. Let K denote an algebraically closed field of positive character-
istic p. Let R denote a standard-graded normal Cohen–Macaulay K-domain of
dimension t + 1 ≥ 2. Let I = (f1, . . . , fn) ⊆ R denote a homogeneous ideal
generated by homogeneous elements of degree di = deg(fi). Suppose that the du-
alizing sheaf ωY on Y = ProjR is invertible, and suppose that the points y ∈
sup(OY /I ) are smooth points of Y. Let F• −→ I denote a graded free resolution
with corresponding exact complex of sheaves on Y, G• −→ I ⊆ OY . Set Syzj =
kern(Gj −→ Gj−1). Then for the Castelnuovo–Mumford regularity of the Frobenius
powers I [q] we have the linear bound reg(I [q]) ≤ C1q + C0, where

C1 = max

{
di (i = 1, . . . , n), − µ̄min(Syzj )

deg(Y )
(j = 1, . . . , t = dim(Y ))

}
,

C0 = max

{
reg(R),

deg(ωY )

deg(Y )

}
.

Proof. For q = pe, the ideal generators define the homogeneous short exact
sequences

0 −−→ Syz(f q

1 , . . . , f q
n ) −−→

n⊕
i=1

R(−qdi)
f

q

1 ,...,f
q
n−−−−−→ I [q] −−→ 0

of graded R-modules. It is an easy exercise [4, Ex. 15.2.15] to show that reg(N ) ≤
max{reg1(L) − 1, reg(M)} for a short exact sequence 0 −→ L −→ M −→ N −→ 0.
We have reg(R(−qd)) = reg(R) + qd and

reg

( n⊕
i=1

R(−qdi)

)
= max

i
{reg(R(−qdi))} = reg(R) + q max

i
{di},

which gives the first terms in the definition of C1 and C0, respectively. Hence it is
enough to give a linear bound for reg1(Syz(f q

1 , . . . , f q
n )). Moreover, the long ex-

act local cohomology sequence associated to the preceding short exact sequence
gives

· · · −−→ H 0
R+(I

[q]) −−→ H1
R+(Syz(f q

1 , . . . , f q
n ))

−−→
n⊕

i=1

H1
R+(R(−qdi)) −−→ · · · .

The term on the right is 0 because R is Cohen–Macaulay, and the term on the
left is 0 because R is a domain. Hence H1

R+(Syz(f q

1 , . . . , f q
n )) = 0 and we must

find a linear bound for reg2(Syz(f q

1 , . . . , f q
n )) = reg1(Syz(f q

1 , . . . , f q
n )). We have

H i
R+(Syz(f q

1 , . . . , f q
n )) = H i−1(D(R+), Syz(f q

1 , . . . , f q
n )˜ ) for i ≥ 2 owing to the

long exact sequence relating local cohomology with sheaf cohomology. Denote
now by Syz(f q

1 , . . . , f q
n ) the corresponding torsion-free sheaf on Y = ProjR. On

Y we have the short exact sequences of sheaves

0 −−→ Syz(f q

1 , . . . , f q
n ) −−→

n⊕
i=1

OY (−qdi) −−→ I [q] −−→ 0.
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We may compute the cohomology as

H i(D+(R), Syz(f q

1 , . . . , f q
n )˜ )m = H i(Y, Syz(f q

1 , . . . , f q
n )(m)).

Note that, by assumption, the syzygy bundle Syz(f1, . . . , fn) is free in the sin-
gular points of Y. Hence we are in the situation of Proposition 1.1 with S =
Syz(f1, . . . , fn); therefore, H i(Y, Syz(f q

1 , . . . , f q
n )(m)) = 0 (i = 1, . . . , t) holds

for m > maxj=1,...,t {−q(µ̄min(Syzj )/deg(Y ))} + deg(ωY )/deg(Y ), which proves
the theorem.

Remark 3.2. The Castelnuovo–Mumford regularity of a standard-graded Cohen–
Macaulay domain R is just reg(R) = end(H dim(R)

R+ (R))+ dim(R). The end of the
top-dimensional local cohomology module of a graded ring is also called its a-
invariant (see [4, 13.4.7]), hence reg(R) = a + dim(R). If R is Gorenstein, then
R(a) is the canonical module of R and ωY = OY (a) is the dualizing sheaf on
Y = ProjR. So in this case the quotient deg(ωY )/deg(Y ) = a deg(Y )/deg(Y ) =
a equals also the a-invariant.

Remark 3.3. The surjection
⊕

(k,j+1) OY (−αk,j+1) −→ Syzj −→ 0 gives at once
the bound µ̄min(Syzj ) ≥ µ̄min

(⊕
(k,j+1) OY (−αk,j+1)

) = −max{αk,j+1} deg(Y ).

Hence for the constantC1 from Theorem 3.1we obtain the estimateC1 ≤ max{αk,j :
j = 1, . . . , t + 1 = dim(R)} = C ′

1. This number C ′
1 is the coefficient for the lin-

ear bound that Chardin obtained in [6, Thm. 2.3]. This bound corresponds to the
inclusion bounds for tight closure of K. Smith that we obtained in Corollary 2.6.
The following standard example of tight closure theory shows already the differ-
ence between the Chardin–Smith bound and the slope bound.

Example 3.4. Consider the ideal I = (x 2, y2, z2) in

R = K[z, y, z]

x3 + y3 + z3
, char(K) 	= 3.

We compute the bound from Theorem 3.1 for the regularity of the Frobenius pow-
ers I [q] = (x 2q, y2q, z2q). First observe that we may consider the curve equation
0 = x3 + y3 + z3 = xx 2 + yy2 + zz2 as a global section of the syzygy bundle
of degree 3. Since this section has no zero on Y = ProjR, we get the short exact
sequence

0 −−→ OY −−→ Syz(x 2, y2, z2)(3) −−→ OY −−→ 0.

This shows that the syzygy bundle is strongly semistable, and therefore

µ̄min(Syz(x 2, y2, z2)(0)) = −6 deg(Y )/2 = −9.

So C1 = 3 and we thus obtain the bound reg(I [q]) ≤ 3q + 2.
Note that Syz(x 2, y2, z2)(3) is not generated by its global sections, because

the section just mentioned is the only section. Consequently, a surjection⊕
k O(−αk) −→ Syz(x 2, y2, z2)(0) is possible only for maxk{αk} ≥ 4. Hence

the slope bound for regularity is better than the linear bound obtained by consid-
ering only the degrees in a resolution.
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