Horocyclically Convex Univalent Functions

D. Mejía & Ch. Pommerenke

1. Introduction: Convexity and Curvature

A domain *G* in \mathbb{C} is convex if and only if, for every $\omega \in \partial G$, there exists a halfplane *H* such that $\omega \in \partial H$ and $G \cap H = \emptyset$. The fact that $C = \partial H$ is a line can be expressed in two equivalent ways:

- (i) *C* is a maximal curve of zero curvature;
- (ii) C is a noncompact maximal curve of constant curvature.

Now we turn to the hyperbolic metric $ds = (1 - |z|^2)^{-1}|dz|$ in the unit disk \mathbb{D} . Let $C : w(s), s \in I$, be a curve of class C^2 in \mathbb{D} that is parameterized by the hyperbolic arc-length s; that is,

$$|w'| = 1 - |w|^2$$
, w'' is continuous in *I*. (1.1)

Then the hyperbolic (= geodesic) curvature κ satisfies the differential equation

$$\frac{w''}{w'} + \frac{2\bar{w}w'}{1-|w|^2} = i\kappa.$$
(1.2)

Let $\mathbb{T} = \partial \mathbb{D}$. If $C \subset \mathbb{D}$ is a maximal (= cannot be extended to a larger curve in \mathbb{D}) curve of constant hyperbolic curvature κ , then we have three cases as follows.

 $|\kappa| \leq 2$: *C* is a circular arc from \mathbb{T} to \mathbb{T} ;

 $|\kappa| = 2$: *C* is a circle in \mathbb{D} that touches \mathbb{T} ;

 $|\kappa| > 2$: *C* is a full circle in \mathbb{D} .

Thus the noncompact maximal curves of constant curvature are those with $|\kappa| \le 2$, and we see that conditions (i) and (ii) are different in the hyperbolic case.

Ma and Minda [MaM1] considered condition (i). A domain $G \subset \mathbb{D}$ is hyperbolically convex (h-convex) if, for every $\omega \in \mathbb{D} \cap \partial G$, there is a hyperbolic halfplane H with $\omega \in \partial H$ and $G \cap H = \emptyset$. See, for example, [MaM2; MeP1; MeP2; MeP3; MePV] for results on the conformal maps of \mathbb{D} onto h-convex domains.

In this paper we shall consider condition (ii), namely, the extremal case $|\kappa| = 2$. A *horocycle* is, by definition, the inner domain of a circle in \mathbb{D} that touches \mathbb{T} . A domain $G \subset \mathbb{D}$ will be called *horocyclically convex* (horo-convex) if, for every $\omega \in \mathbb{D} \cap \partial G$, there exists a horocycle *H* such that

$$\omega \in \partial H$$
 and $G \cap H = \emptyset$. (1.3)

Received May 6, 2004. Revision received March 22, 2005.

This research was supported in part by the DFG (Deutsche Forschungsgemeinschaft).

A horocyclically convex function f is a conformal map of \mathbb{D} onto a horo-convex domain $G \subset \mathbb{D}$. It turns out that these functions are more difficult to study than the h-convex functions.

In Section 2 we show that every horo-convex function f is continuous in $\overline{\mathbb{D}}$, and in Section 5 we establish some sharp estimates for $f(\zeta)$ and $f'(\zeta)$ for $\zeta \in \mathbb{T} = \partial \mathbb{D}$. In Section 6 we study the coefficient growth.

We have not yet been able to obtain any distortion theorems—that is, estimates for f(z) and f'(z) for given $z \in \mathbb{D}$ under the normalization f(0) = 0 and $f'(0) = \alpha$. In the final section we list some open problems.

2. Some General Properties

It is clear that horo-convexity is Möbius-invariant: If $M\ddot{o}b(\mathbb{D})$ is the group of all Möbius transformations of \mathbb{D} onto \mathbb{D} , then

 $f \text{ horo-convex } \& \sigma, \tau \in \text{M\"ob}(\mathbb{D}) \implies \sigma \circ f \circ \tau \text{ horo-convex.}$ (2.1)

As a consequence we can achieve the normalization f(0) = 0 and f'(0) > 0.

THEOREM 1. Every horocyclically convex function has a continuous extension to $\overline{\mathbb{D}}$.

Proof. Let *f* be horo-convex with f(0) = 0 and let $G = f(\mathbb{D})$. Let (C_n) be a null-chain of *G* (see e.g. [P2, p. 29]). Let $w_n^{\pm} \in \partial G$ be the two endpoints of the crosscut C_n of *G*. We have to show that the component V_n of $G \setminus C_n$ with $0 \notin V_n$ satisfies diam $V_n \to 0$ as $n \to \infty$. Since *G* is horo-convex there exist horocycles $H_n \subset \mathbb{D} \setminus G$ with $w_n^{\pm} \in \partial H_n^{\pm}$ if $w_n^{\pm} \in \mathbb{D}$. We may assume that $w_n^{\pm} \to w_0 \in \partial G$.

First suppose $w_0 \in \mathbb{D}$, in which case we may assume that the H_n^{\pm} converge to horocycles H^{\pm} as $n \to \infty$. Then $w_0 \in \partial H^{\pm} \subset \mathbb{D} \setminus G$. We construct an arc $A_n \subset \mathbb{D} \setminus G$ from w_n^- to w_n^+ as follows: We take arcs along the inner normal to ∂H_n^{\pm} at w_n^{\pm} until we meet ∂H^{\pm} ; then we go along ∂H^{\pm} until we meet ∂H^{\mp} . It follows from Janiszewski's theorem (as in [P2, p. 2]) that V_n lies in the domain U_n bounded by A_n and C_n . Hence

diam $V_n \leq \text{diam } U_n \leq \text{diam } A_n + \text{diam } C_n \rightarrow 0$ as $n \rightarrow \infty$.

Next we consider the case $w_0 \in \mathbb{T}$. We begin by assuming that w_n^+ and w_n^- are in \mathbb{D} . It is easy to see that $H_n^+ \cap H_n^- = \emptyset$ in this case. Let ρ_n^{\pm} denote the Euclidean radius of H_n^{\pm} and let ω_n^{\pm} denote the point where ∂H_n^{\pm} touches \mathbb{T} . Since $|w_n^{\pm} - \omega_n^{\pm}(1 - \rho_n^{\pm})| = \rho_n^{\pm}$, we have

$$1 \ge \cos(\arg w_n^{\pm} - \arg \omega_n^{\pm}) = \frac{1 + |w_n^{\pm}| - 2\rho_n^{\pm}}{2|w_n^{\pm}|(1 - \rho_n^{\pm})} \to 1$$
(2.2)

as $n \to \infty$, because $|w_n^{\pm}| \to |w_0| = 1$ and $\rho_n < \frac{1}{2}$. It follows that $\omega_n^{\pm} \to w_0$. Since $H_n^{\pm} \subset \mathbb{D} \setminus G$ and $w_n^{\pm} \in \partial H_n^{\pm}$, we see that V_n lies in the component U_n of $\mathbb{D} \setminus (\bar{H}_n^+ \cup \bar{H}_n^- \cup C_n)$ with $0 \notin U_n$, and we conclude that

diam
$$V_n \le \operatorname{diam} U_n \le |\omega_n^+ - \omega_n^-| + \operatorname{diam} C_n \to 0 \text{ as } n \to \infty.$$
 (2.3)

Now we assume that $w_n^+ \in \mathbb{D}$ and $w_n^- \in \mathbb{T}$. Then (2.2) holds for w_n^+ and V_n lies in the component U_n of $\mathbb{D} \setminus (\bar{H}_n^+ \cup C_n)$ with $0 \notin U_n$. We conclude that (2.3) holds. Finally, if $w_n^+ \in \mathbb{T}$ and $w_n^- \in \mathbb{T}$ then diam $V_n \leq \text{diam } C_n \to 0$.

Next we show by an example that, in spite of Theorem 1, the family of all horoconvex functions normalized by f(0) = 0 is not equicontinuous.

Let $\vartheta_n = \frac{\pi}{6} + \frac{1}{n}, n \in \mathbb{N}$. The two horocycles

$$H_n^{\pm} = \left\{ w : |w - \frac{2}{3}e^{\pm i\vartheta_n}| < \frac{1}{3} \right\}$$

are disjoint and do not meet \mathbb{R} . Let f_n map \mathbb{D} onto $G_n = \mathbb{D} \setminus (\bar{H}_n^+ \cup \bar{H}_n^-)$ such that $f_n(0) = 0$ and $f_n(1) = 1$, and determine z_n^{\pm} such that

$$f_n(z_n^{\pm}) = w_n^{\pm} = e^{\pm i/n} / \sqrt{3} \in \partial H_n^{\pm}.$$

Since G_n contains the disk $\{|w| < \frac{1}{3}\}$ and since $f_n(0) = 0$, we see as in [P1, Cor. 11.5] that

$$|z_n^+ - z_n^-| \le c |w_n^+ - w_n^-|^{1/2} \to 0 \quad (n \to \infty)$$

for some constant c. We conclude that $z_n^+ \to 1$ whereas $|f_n(z_n^+) - f_n(1)| \ge 1 - 1/\sqrt{3}$.

3. The Canonical Example

The following function plays an important role in the theory of horo-convex functions. Let $0 < \lambda < 1$. We define

$$h_{\lambda}(z) = \left(\log \frac{1 + e^{i\pi\lambda}z}{1 + e^{-i\pi\lambda}z}\right) / \left(2\pi\lambda - \log \frac{1 + e^{i\pi\lambda}z}{1 + e^{-i\pi\lambda}z}\right).$$
(3.1)

This function h_{λ} is analytic in \mathbb{D} and has a continuous extension to $\overline{\mathbb{D}}$. It is easy to verify that

$$h_{\lambda} \colon \{e^{it} : |t| < \pi(1-\lambda)\} \to \mathbb{T} \setminus \{-1\} \text{ and} h_{\lambda} \colon \{e^{it} : \pi(1-\lambda) < t < \pi(1+\lambda)\} \to \partial H_{\lambda} \setminus \{-1\}$$

$$(3.2)$$

are bijective maps, where H_{λ} is the horocycle

$$H_{\lambda} = \left\{ w : \left| w + \frac{1}{1+\lambda} \right| < \frac{\lambda}{1+\lambda} \right\}$$
(3.3)

and we have

$$h_{\lambda}(1) = 1, \quad h_{\lambda}(e^{\pm i\pi(1-\lambda)}) = -1, \quad h_{\lambda}(-1) = -\frac{1-\lambda}{1+\lambda}.$$
 (3.4)

By the boundary principle [P2, p. 16] it follows from (3.2) and (3.3) that h_{λ} maps \mathbb{D} conformally onto $\mathbb{D} \setminus \overline{H}_{\lambda}$. Hence h_{λ} is horo-convex.

It follows from (3.1) that

$$h_{\lambda}(z) = \frac{\sin \pi \lambda}{\pi \lambda} z + \left(\left(\frac{\sin \pi \lambda}{\pi \lambda} \right)^2 - \frac{\sin 2\pi \lambda}{2\pi \lambda} \right) z^2 + \cdots .$$
(3.5)

The inverse function is

$$h_{\lambda}^{-1}(w) = \frac{p(w) - 1}{e^{i\pi\lambda} - e^{-\pi i\lambda}p(w)}$$
 with $p(w) = \exp\frac{2\pi i\lambda w}{1 + w}$. (3.6)

Now we shall prove that

$$\min_{t} |h'_{\lambda}(e^{it})| = \frac{2\lambda}{\pi (1+\lambda)^2} \cot \frac{\pi \lambda}{2}$$
(3.7)

with equality for $t = \pi$.

If $|t| \le \pi (1-\lambda)$ then $h_{\lambda}(e^{it}) \in \mathbb{T}$, and since $h_{\lambda}(0) = 0$ it follows from the Julia–Wolff lemma [P2, p. 82] that $|h'_{\lambda}(e^{it})| \ge 1$, which is greater than the right-hand side of (3.7).

Now let $\pi(1-\lambda) < t < \pi(1+\lambda)$ and write $w = h_{\lambda}(e^{it})$. It follows from (3.6) that

$$\frac{d}{dw}h_{\lambda}^{-1}(w) = \frac{2\sin\pi\lambda}{(e^{i\pi\lambda} - e^{-i\pi\lambda}p(w))^2} \frac{2\pi\lambda p(w)}{(1+w)^2}.$$
(3.8)

By (3.2) we can write $w = -(1 + \lambda e^{2i\vartheta})/(1 + \lambda)$, so that

$$1 + w = -\frac{2i\lambda e^{i\vartheta}\sin\vartheta}{i+\lambda}, \qquad p(w) = -e^{i\pi\lambda}\exp[\pi(1+\lambda)\cot\vartheta].$$

Writing $c = \pi (1 + \lambda)^2 \sin(\pi \lambda) / (2\lambda)$, we obtain from (3.8) that

$$c|h'_{\lambda}(e^{it})| = \left[\cosh\left(\pi(1+\lambda)\cot\vartheta\right) + \cos(\pi\lambda)\right]\sin^{2}\vartheta$$
$$\geq \left(1 + \frac{\pi^{2}}{2}(1+\lambda)^{2}\right)\cos^{2}\vartheta + \cos(\pi\lambda)\sin^{2}\vartheta$$
$$\geq 1 + \cos(\pi\lambda) = 2\cos^{2}\left(\frac{\pi\lambda}{2}\right),$$

with equality for $\vartheta = \frac{\pi}{2}$, and thus $t = \pi$. This implies (3.7).

4. The Argument of the Derivative

Let Γ be a Jordan arc or a Jordan curve of the form $\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_n$, where the Γ_{ν} ($\nu = 1, ..., n$) are smooth arcs from $p_{\nu-1}$ to p_{ν} that are otherwise disjoint. Let $\Delta(\Gamma_{\nu})$ denote the change of the tangent angle along the arc Γ_{ν} and let $\Delta(p_{\nu})$ ($\nu = 1, ..., n-1$) denote the change of the tangent angle at the corner p_{ν} . Then

$$\Delta(\Gamma) = \sum_{\nu=1}^{n} \Delta(\Gamma_{\nu}) + \sum_{\nu=1}^{n-1} \Delta(p_{\nu})$$
(4.1)

is, by definition, the change of the tangent angle along Γ .

If Γ is a positively oriented Jordan curve, then

$$\Delta(\Gamma) = 2\pi; \tag{4.2}$$

see [H]. We also need the following result [J; K]; see [P2, Prop. 4.22].

PROPOSITION 1. Let f map \mathbb{D} conformally onto $G \subset \mathbb{C}$ and let S be a hyperbolic segment in \mathbb{D} . If D is a disk in G such that ∂D is tangent to f(S), then $D \cap f(S) = \emptyset$.

First we prove a theorem about general conformal maps.

THEOREM 2. Let f map \mathbb{D} conformally onto $G \subset \mathbb{C}$ and suppose that, for any pair of points $\omega_1, \omega_2 \in \partial G$, there is a piecewise smooth Jordan arc A from ω_1 to ω_2 such that

$$A \subset \mathbb{C} \setminus G \quad \text{and} \quad |\Delta(A)| \le a, \tag{4.3}$$

where *a* is a constant. If $z \in \mathbb{D}$ then

$$|\arg f'(z) - \arg f'(0)| \le a + 10\pi,$$
 (4.4)

and log f' belongs to the Hardy spaces H^p (0).

Proof. Let $z_1 = 0$, $z_2 = z$, and S = [0, z]. Furthermore, let D_j (j = 1, 2) be the largest disk in *G* such that ∂D_j touches f(S) at $f(z_j)$ from the left. Hence there exists a $\omega_j \in \partial D_j \cap \partial G$. Let C_j be the positively oriented arc of ∂D_j between $f(z_j)$ and ω_j . By assumption, there is a piecewise smooth Jordan arc *A* satisfying (4.3). Then

$$\Gamma = f(S) \cup C_1 \cup A \cup C_2$$

is a positively oriented Jordan curve by Proposition 1 and (4.3).

Since $C_1 \cup f(S) \cup C_2$ is smooth, it follows from (4.1) and (4.2) that

 $2\pi = \triangle(f(S)) + \triangle(C_1) + \triangle(A) + \triangle(C_2) + \triangle(\omega_1) + \triangle(\omega_2)$

and thus, by (4.3),

$$|\Delta(f(S))| \le |\Delta(A)| + 10\pi \le a + 10\pi.$$

This implies (4.4) because arg $f'(z) - \arg f'(0) = \Delta(f(S))$.

It then follows from (4.4) that $\log f'(z) - \log f'(0)$ is subordinate to the strip mapping

$$g(z) = \frac{b}{2} \log \frac{1+z}{1-z}$$
 ($z \in \mathbb{D}$), where $b = \frac{4a}{\pi} + 40$.

Since $g \in H^p$, we have $\log f' \in H^p$.

5. Some Sharp Estimates

THEOREM 3. Let f be horocyclically convex and let f(0) = 0. Then

$$\arg f'(z) - \arg f'(0)| < 2\pi \quad \text{for } z \in \mathbb{D},$$
(5.1)

and 2π cannot be replaced by a smaller constant. Furthermore,

$$f' \in H^p \quad for \ 0 (5.2)$$

 \square

Proof. Let $G = f(\mathbb{D})$ and let $\zeta \in \mathbb{T}$ be such that the angular derivative $f'(\zeta) \neq 0, \infty$ exists. We assume that $\omega = f(\zeta) \in \mathbb{D}$. Because *G* is horo-convex, there is a horocycle $H \subset \mathbb{D} \setminus G$ with $\omega \in \partial H$. Since *f* is isogonal [P2, p. 80] at ζ , the curve $C = \{f(r\zeta) : 0 \leq r \leq 1\}$ is normal to ∂H at ω . Let e^{it} be the point where ∂H touches \mathbb{T} .

Let D_0 be the largest disk in *G* that touches *C* at 0 = f(0) from the right. We assume that $\overline{D}_0 \subset \mathbb{D}$. Then there is a horocycle H_0 that touches D_0 at some point $\omega_0 \in \partial H_0 \cap \partial D_0$. Let e^{it_0} be the point where ∂H_0 touches \mathbb{T} . Let Γ_0 be the positively oriented arc of ∂H_0 from e^{it_0} to ω_0 and let Γ_1 be the negatively oriented arc of ∂D_0 from ω_0 to 0; we use *T* to denote the positively oriented arc of \mathbb{T} from e^{it} to e^{it_0} .

We now assume that $H_0 \neq H$. Let Γ^{\pm} be the positively/negatively oriented arcs of ∂H from ω to e^{it} . Then

$$J^{\pm} = C \cup \Gamma^{\pm} \cup T \cup \Gamma_0 \cup \Gamma_1 \tag{5.3}$$

are closed piecewise smooth curves. It follows from Proposition 1 that *C* is disjoint from the rest of J^{\pm} . Hence the only possible multiple points of J^{\pm} lie on $\Gamma^{\pm} \cap \Gamma_0 \subset \partial H \cap \partial H_0$, and it is not difficult to show that either J^+ or J^- is a Jordan curve.

Let $\vartheta_0, \vartheta \in [0, 2\pi)$, denote the geometric tangent angle of *C* at 0 and ω . Then

$$\triangle(\Gamma_0 \cup \Gamma_1) = \vartheta_0 - t_0 + \frac{3\pi}{2}$$
 and $\triangle(T) = t_0 - t$.

For J^+ we have

$$\triangle(\Gamma^+) = t - \vartheta + \pi, \quad \triangle(\omega) = -\frac{\pi}{2}, \quad \triangle(e^{it}) = 0,$$

whereas for J^- we have

$$\triangle(\Gamma^{-}) = t - \vartheta - \pi, \quad \triangle(\omega) = \frac{\pi}{2}, \quad \triangle(e^{it}) = \pi.$$

Hence it follows from (5.3) that, in both cases,

$$\Delta(J^{\pm}) = \vartheta_0 - \vartheta + 2\pi + \Delta(C).$$
(5.4)

Now J^{\pm} is a positively oriented Jordan curve for a suitable choice of the sign, and thus $\Delta(J^{\pm}) = 2\pi$ by (4.2). Hence we obtain from (5.4) that

$$|\arg f'(\zeta) - \arg f'(0)| = |\triangle(C)| = |\vartheta - \vartheta_0| \le 2\pi \quad \text{if } f'(\zeta) \ne 0, \infty \text{ exists.}$$
(5.5)

We have made the three assumptions that $\omega \in \mathbb{D}$, $\overline{D}_0 \subset \mathbb{D}$, and $H_0 \neq H$. The proof of (5.5) is similar if any one of these assumptions does not hold.

It follows from Theorem 2 that $\log f' \in H^1$. Therefore we have the Poisson integral representation

$$\arg f'(z) = \operatorname{Im}[\log f'(z)] = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 - |z|^2}{|\zeta - z|^2} \arg f'(\zeta) |d\zeta|.$$

Hence (5.1) follows from (5.5). We conclude from (5.1) that f' is subordinate to the function

$$g(z) = f'(0) \exp\left[4\log\frac{1+z}{1-z}\right] = f'(0)\left(\frac{1+z}{1-z}\right)^4,$$

and since $g \in H^p$ for $p < \frac{1}{4}$ we see that (5.2) holds.

Finally, we show that (5.1) is best possible. Let f be the function h_{λ} defined in (3.1), and choose $\zeta_{\lambda} \in \mathbb{T}$ such that

$$\pi(1-\lambda) < \arg \zeta_{\lambda} < 4(1-\lambda) \text{ and } |h_{\lambda}(\zeta_{\lambda})+1| < 1-\lambda;$$

see (3.2). Then

$$\arg \zeta_{\lambda} \to 0$$
 and $\arg[\zeta_{\lambda} h'_{\lambda}(\zeta_{\lambda})] \to 2\pi$ as $\lambda \to 1$

and thus $\arg h'_{\lambda}(\zeta_{\lambda}) \to 2\pi$.

THEOREM 4. Let f be horocyclically convex, and let

$$f(0) = 0 \quad and \quad |f'(0)| = \frac{\sin \pi \lambda}{\pi \lambda} \ (0 < \lambda < 1).$$
 (5.6)

Then

$$\frac{1-\lambda}{1+\lambda} \le |f(z)| \le 1 \quad \text{for } z \in \mathbb{T}.$$
(5.7)

The angular derivative exists and satisfies

$$\frac{2\lambda}{\pi(1+\lambda)^2}\cot\frac{\pi\lambda}{2} \le |f'(z)| \le +\infty \quad \text{for } z \in \mathbb{T}.$$
(5.8)

If $f = h_{\lambda}$, then equality holds in all inequalities (5.7) and (5.8) for suitable $z \in \mathbb{T}$.

Because $f(\mathbb{D}) \subset \mathbb{D}$ we have $0 < |f'(0)| \le 1$, so we can choose λ such that (5.6) holds except in the trivial case $f(z) \equiv e^{i\vartheta}z$. We have $\log f' \in H^1$ by Theorem 3. Hence it follows from (5.8) that

$$|f'(z)| > \frac{2\lambda}{\pi(1+\lambda)^2} \cot \frac{\pi\lambda}{2} \quad \text{for } z \in \mathbb{D}.$$

Proof of Theorem 4. Let $z \in \mathbb{T}$. First we assume that $f(z) \in \mathbb{D}$. Then there exists a horocycle H_{μ} (see (4.3)) such that

$$e^{-i\partial}f(z) \in \partial H_{\mu}$$
 and $(e^{i\partial}H_{\mu}) \cap f(\mathbb{D}) = \emptyset.$ (5.9)

Hence we can write (see (3.5))

$$f = e^{-i\vartheta}h_{\mu} \circ g \quad \text{with } g(\mathbb{D}) \subset \mathbb{D}, \ g(0) = 0.$$
(5.10)

It follows from Schwarz's lemma and (5.6) that

$$\frac{\sin \pi \lambda}{\pi \lambda} = |f'(0)| \le |h'_{\mu}(0)| = \frac{\sin \pi \mu}{\pi \mu}$$

Hence $\lambda \ge \mu$ and it follows from (5.9) that $|f(z)| \ge (1 - \mu)/(1 + \mu) \ge (1 - \lambda)/(1 + \lambda)$. The upper estimate (5.7) is trivial.

We see from (5.9) that the angular derivative exists and satisfies $0 < |f'(z)| \le +\infty$ (see e.g. [P2, p. 83]). Differentiating (5.10) then yields

$$|f'(z)| = |h'_{\mu}(g(z))||g'(z)|.$$

Since $g(z) \in \mathbb{T}$ by (5.9) and (5.10), it follows from (5.10) and the Julia–Wolff lemma [P2, p. 82] that $|g'(z)| \ge 1$. Hence

$$|f'(z)| \ge |h'_{\mu}(g(z))| \ge \frac{2\mu\cot(\pi\mu/2)}{\pi(1+\mu)^2} \ge \frac{2\lambda\cot(\pi\lambda/2)}{\pi(1+\lambda)^2}$$
(5.11)

by (3.7) and because $\lambda \ge \mu$.

Next we assume that $f(z) \in \mathbb{T}$. Since f(0) = 0 it follows from the Julia–Wolff lemma that the angular derivative exists and satisfies

$$+\infty \ge |f'(z)| \ge 1 > \frac{2\lambda \cot(\pi\lambda/2)}{\pi(1+\lambda)^2}$$

Finally, let $f = h_{\lambda}$. By (3.2), equality holds in (5.7) for both z = -1 and z = 1, and by (3.7) and (3.8), respectively, equality holds in (5.8) for both z = -1 and $z = -e^{i\pi\lambda}$.

If f is a conformal map of \mathbb{D} onto any bounded domain G, then by the Koebe "one quarter" theorem we have

$$|f'(z)| \le \frac{4}{1-|z|^2} \operatorname{dist}(f(z), \partial G) = o\left(\frac{1}{1-|z|}\right) \text{ as } |z| \to 1.$$

Now we show that this trivial estimate is best possible even for the class of horoconvex functions.

THEOREM 5. For any positive function $\eta(x)$ $(0 \le x < 1)$ with $\eta(x) \to 0$ $(x \to 1)$, there exists a horocyclically convex function f and a sequence (x_k) with $x_k \to 1$ $(k \to \infty)$ such that

$$|f'(x_k)| \ge \frac{\eta(x_k)}{1 - x_k} \quad \text{for all } k.$$
(5.12)

Proof. We shall recursively construct horo-convex functions f_n (n = 1, 2, ...) such that

 $f_n(\mathbb{D} \cap \mathbb{R}) = \mathbb{D} \cap \mathbb{R}$ and $\{z \in \mathbb{D} : |z - 1| < \rho_n\} \subset f_n(\mathbb{D})$ (5.13)

for some $\rho_n > 0$; we shall also construct numbers $x_n \in (1 - \frac{1}{n}, 1)$ such that

$$(1 - x_k) f'_n(x_k) > (1 + \frac{1}{n})\eta(x_k)$$
 for $k = 1, ..., n.$ (5.14)

We start with $f_1(z) \equiv z$ and x_1 sufficiently close to 1. Suppose that f_k and x_k have already been constructed for $k \leq n$ and consider the horocycles

$$H_n^{\pm} = H_n^{\pm}(\varepsilon, \delta) = \{ |z - (1 - \delta)e^{\pm i\varepsilon \pm i\pi\delta/2}| < \delta \},\$$

where $0 < \varepsilon < \delta < \rho_n/5$. Then $\mathbb{D} \cap \bar{H}_n^{\pm} \subset f_n(\mathbb{D})$ by (5.13). Let $\varphi_n(z) = \varphi_n(z,\varepsilon,\delta)$ map \mathbb{D} conformally onto $f_n(\mathbb{D}) \setminus (\bar{H}_n^+ \cup \bar{H}_n^-)$ such that $\varphi_n(0) = 0$ and $\varphi_n(1) = 1$. Then φ_n is horo-convex. If $0 < \varepsilon < \delta \rightarrow 0$, then $\varphi_n(z,\delta,\varepsilon) \rightarrow f_n(z)$ locally uniformly by the Carathéodory kernel theorem [P2, p. 14]. Hence we can choose δ_n sufficiently small that

$$(1-x_k)\varphi'_n(x_k,\varepsilon,\delta_n) > \left(1+\frac{1}{n+1}\right)\eta(x_k) \quad (k=1,\ldots,n)$$
(5.15)

for $0 < \varepsilon < \delta_n$; see (5.14).

We can find $u_n \in (0, 1)$ and $v_n > 0$ independent of ε such that

$$\operatorname{dist}(H_n^{\pm}(\varepsilon,\delta_n),u_n) > v_n \quad \text{and} \quad \operatorname{dist}(\mathbb{T},u_n) > v_n. \tag{5.16}$$

Let $\xi_n(\varepsilon)$ be determined by $\varphi_n(\xi_n(\varepsilon), \varepsilon, \delta_n) = u_n$. Then $\xi_n(\varepsilon) \to 1$ as $\varepsilon \to 0$ by the Carathéodory kernel theorem. Hence there exist $\varepsilon_n \in (0, \delta_n)$ such that

$$\eta(x_{n+1}) < \frac{v_n}{4}$$
, where $x_{n+1} = \xi_n(\varepsilon_n) > 1 - \frac{1}{n+1}$

We define $f_{n+1}(z) = \varphi_n(z, \varepsilon_n, \delta_n)$ for $z \in \mathbb{D}$. Then

$$(1 - x_{n+1})f'_n(x_{n+1}) > \frac{1}{2}\operatorname{dist}(f_n(x_{n+1}), \partial f_{n+1}(\mathbb{D}))$$

> $\frac{1}{2}v_n > 2\eta(x_{n+1}) > \left(1 + \frac{1}{n+1}\right)\eta(x_{n+1})$

by (5.15). Together with (5.16) this shows that (5.14) is true for n + 1 instead of n, and (5.13) for n + 1 holds by our construction.

This completes our construction. Now we let $n \to \infty$. Then $f = \lim_{n \to \infty} f_n$ exists locally uniformly in \mathbb{D} , and f is again horo-convex. It follows from (5.14) that (5.12) is satisfied.

6. Coefficient Estimates

Now we consider the Taylor expansion of the conformal map

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

of \mathbb{D} onto *G*. Let Λ denote the Euclidean length. If $\Lambda(\partial G) < \infty$ then $f' \in H^1$ by the Riesz–Privalov theorem [P2, p. 134] and thus $a_n = o(1/n)$.

It is not difficult to construct a horo-convex domain G of the form

$$G = \mathbb{D} \setminus \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{k_n} \bar{H}_{nk}, \quad \text{diam } H_{nk} = \frac{1}{k_n} \quad (k = 1, \dots, k_n), \tag{6.1}$$

where all the horocycles H_{nk} $(k = 1, ..., k_n; n = 1, 2, ...)$ have disjoint closures. Then $\Lambda(\partial G) = \infty$ and thus $f' \notin H^1$. But we do not yet have an example of a horo-convex function with $a_n \neq o(1/n)$.

THEOREM 6. If f is horocyclically convex then

$$|a_n| < \frac{c \log n}{n}$$
 for $n = 2, 3, ...,$ (6.2)

where the constant c depends only on a_0 .

491

The proof is based on the following purely geometrical result, which may well be known. Note that inequality (6.4) is linear whereas the isoperimetric inequality is quadratic.

PROPOSITION 2. Let H be a bounded open set in \mathbb{C} of the form

$$H = \bigcup_{n=1}^{m} D_n, \tag{6.3}$$

where the D_n are disks of radius $\geq r > 0$. Then

area
$$H \ge \frac{r}{2}\Lambda(\partial H).$$
 (6.4)

Proof. Let

$$H_n = \bigcup_{\nu=1}^n D_{\nu} \quad (n = 0, \dots, m)$$
 (6.5)

and

$$b_n = \pi^{-1} \operatorname{area} H_n, \qquad \ell_n = (2\pi)^{-1} \Lambda(\partial H_n), \tag{6.6}$$

and let r_n be the radius of D_n . Now $H_{n-1} \cap \partial D_n$ consists of finitely many arcs A_{nk} on ∂D_n (possibly none). Let U_{nk} be the component of $D_n \cap H_{n-1}$ with $A_{nk} \subset \partial U_{nk}$, and define λ_{nk} by

$$2\pi\lambda_{nk} = \Lambda(\partial U_{nk}) = \Lambda(A_{nk}) + \Lambda(D_n \cap \partial U_{nk}).$$
(6.7)

By (6.5) we have

area
$$H_n$$
 = area H_{n-1} + area D_n - area $(D_n \cap H_{n-1})$

and

$$\Lambda(\partial H_n) = \Lambda(\partial H_{n-1}) - \sum_k \Lambda(D_n \cap \partial U_{nk}) + \Lambda(\partial D_n) - \sum_k \Lambda(A_{nk}),$$

and thus by (6.6) and (6.7) we have

$$b_n = b_{n-1} + r_n^2 - \frac{1}{\pi} \sum_k \operatorname{area} U_{nk},$$
 (6.8)

$$\ell_n = \ell_{n-1} + r_n - \sum_k \lambda_{nk}.$$
(6.9)

Now 4π area $U_{nk} \leq \Lambda (\partial U_{nk})^2$ by the isoperimetric inequality [BuZ, p. 69] and therefore, by (6.7) and (6.8),

$$b_n \ge b_{n-1} + r_n^2 - \sum_k \lambda_{n_k}^2.$$
 (6.10)

With $x_n = \ell_n - \ell_{n-1} \in \mathbb{R}$, we obtain from (6.9) that

$$\sum_{k} \lambda_{nk} = r_n - x_n \quad \text{and} \quad \max_{k} \lambda_{nk} \le r_n - x_n; \tag{6.11}$$

hence, by (6.10),

$$b_n - b_{n-1} \ge r_n^2 - (r_n - x_n)^2 = (2r_n - x_n)x_n.$$

We always have $b_n - b_{n-1} \ge 0$ by (6.5) and (6.6). Since $b_0 = 0$, it follows that

$$b_m \ge \sum_{n=1}^{m'} (2r_n - x_n) x_n \ge \sum_{n=1}^{m'} r_n x_n,$$

where we sum only over the indices *n* with $x_n > 0$; note that $x_n \le r_n$ by (6.11). By assumption we have $r_n \ge r$ and so

$$b_m \ge r \sum_{n=1}^{m'} x_n \ge r \sum_{n=1}^{m} x_n = r\ell_m,$$

which by (6.6) yields our assertion.

Proof of Theorem 6. Let $a = |a_0|$ and $m = [\log(1-a)^{-1}] + 1$. Let the sequence (w_v) be dense in ∂G . Since G is horo-convex, there is a horocycle $H_v \subset \mathbb{D} \setminus G$ with $w_v \in \partial H_v$. For N = 1, 2, ... let

$$f_N(z) = \sum_{n=0}^{\infty} a_{N,n} z^n$$

be the conformal map of \mathbb{D} onto

$$\mathbb{D} \setminus \bigcup_{\nu=1}^{N} H_{\nu} \tag{6.12}$$

with $f_N(0) = f(0) = a_0$ and $\arg f'_N(0) = \arg f'(0)$. By the Carathéodory kernel theorem, the functions f_N converge to f locally uniformly in \mathbb{D} as $N \to \infty$. It follows that $a_{N,n} \to a_n$ for fixed n. Hence we may assume that G has the form (6.12).

For $k \ge m$, let G_k be the component of $G \cap \{|w| < 1 - e^{-k}\}$ with $a_0 = f(0) \in G$. We define U_j as the union of all the horocycles $H \subset \mathbb{D} \setminus G$ that touch ∂G and satisfy $e^{-j} < \operatorname{diam} H \le e^{-j+1}$, where $j = 0, 1, \dots, k$. Then

area
$$U_j \le \operatorname{area}\{1 - e^{-j+1} < |w| < 1\} \le 2\pi e^{-j+1}$$

and therefore, by Proposition 2,

$$\Lambda(\partial U_j) \le \frac{4(\operatorname{area} U_j)}{\inf(\operatorname{diam} H)} \le 8\pi e \tag{6.13}$$

because diam $H > e^{-j}$. Furthermore,

$$\partial G_k \subset \{|w| = 1 - e^{-k}\} \cup \bigcup_{j=1}^k \partial U_j.$$

Hence we conclude from (6.13) that

$$\Lambda(\partial G_k) \le 2\pi + 8\pi ek < 80k \quad \text{for } k \ge m.$$
(6.14)

Now let $n > e^m$. We determine k > m such that $e^{k-1} \le n < e^k$. Then $C_k = f^{-1}(\partial G_k)$ is a Jordan curve in $\overline{\mathbb{D}}$ around 0 and therefore

$$na_n = \frac{1}{2\pi i} \int_{C_k} \frac{f'(z)}{z^n} dz.$$
 (6.15)

If $z \in \mathbb{D} \cap C_k$, then

$$f(z) \in \partial G_k \subset \{|w| = 1 - e^{-k}\}$$

and thus, with a = |f(0)|,

$$1 - e^{-k} \le |f(z)| \le \frac{a + |z|}{1 + a|z|}$$

because $f(\mathbb{D}) \subset \mathbb{D}$. Since $1 - a \ge e^{-m}$, it follows that

$$|z| \geq \frac{1 - e^{-k} - a}{1 - a(1 - e^{-k})} \geq \frac{e^{-m} - e^{-k}}{e^{-m} + e^{-k}} \geq 1 - 2e^{m-k},$$

and this holds trivially if $z \in \mathbb{T}$. Hence we conclude from (6.15) that

$$2\pi n |a_n| \le (1 - 2e^{m-k})^{-n} \int_{C_k} |f'(z)| |dz|$$

$$\le (1 - 2e^{m-k})^{-e^k} \Lambda(\partial G_k).$$

With constants c_1, c_2, c_3 depending only on *m* and thus on a_0 , it follows from (6.13) that

 $n|a_n| \le c_1 \Lambda(\partial G_k) \le c_2 k \le c_3 \log n.$

7. Some Open Problems

1. Internal characterization. Our definition of horo-convexity is in terms of supporting horocycles. It is reasonable to conjecture that a domain $G \subset \mathbb{C}$ is horocyclically convex if and only if every pair of points can be connected by a curve $C \subset G$ of class C^2 with hyperbolic curvature $|\kappa| < 2$. We want to thank Dirk Ferus and Ekkehard Tjaden for our discussions about this problem.

2. Analytic characterization. Now suppose that ∂G is a Jordan curve of class C^3 in \mathbb{D} . If f maps \mathbb{D} conformally onto G, then f'' is continuous in $\overline{\mathbb{D}}$ and $f'(z) \neq 0$ for $z \in \overline{\mathbb{D}}$. The hyperbolic curvature of ∂G is given by

$$\kappa(z) = \frac{1 - |f(z)|^2}{|z f'(z)|} \operatorname{Re}\left(1 + z \frac{f''(z)}{f'(z)} + \frac{2zf'(z)\overline{f(z)}}{1 - |f(z)|^2}\right) \quad (z \in \mathbb{T}).$$
(7.1)

The horocycle $H \subset \mathbb{D} \setminus G$ that touches ∂G at f(z) has h-curvature -2, and it follows that $\kappa(z) \ge -2$ for $z \in \mathbb{T}$.

Now let G be any domain in \mathbb{D} . We ask if the following statement is true: G is horo-convex if and only if

$$\operatorname{Re}\left(1 + z\frac{f''(z)}{f(z)} + \frac{2zf'(z)\overline{f(z)} + 2|zf'(z)|}{1 - |f(z)|^2}\right) > 0 \quad \text{for } z \in \mathbb{D}.$$
 (7.2)

A closely related question is whether $\{f(rz) : |z| < 1\}$ is also horo-convex for 0 < r < 1.

3. Interior estimates. In Theorems 3 and 4, we have several sharp bounds for $z \in \mathbb{T}$ but none for $z \in \mathbb{D}$. We can always achieve the normalization

$$f(z) = \alpha z + a_2 z^2 + a_3 z^3 + \dots, \quad 0 < \alpha \le 1.$$
 (7.3)

What are the sharp bounds for |f(z)| and |f'(z)| for $z \in \mathbb{D}$? These are known for hyperbolically convex functions [MaM1] and related quantities [MeP2]. Another quantity of interest, because of its invariance properties, is the Schwarzian derivative. Barnard and colleagues [BCPW] have recently proved the conjecture of [MeP2] that

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |S_f(z)| = 2.38 \dots$$

is the sharp bound for the class of h-convex functions.

4. Coefficient estimates. Let f be horo-convex and normalized as in (7.3). In view of the invariance property (2.1), estimates of a_2 and a_3 in terms of α lead, for instance, to estimates of $S_f(z)$ for $z \in \mathbb{D}$. It would be interesting to determine the growth of

$$\max\{|a_n|: f(z) = \alpha z + \cdots \text{ horo-convex}\}$$

as $n \to \infty$, and of related quantities. In particular, is (6.2) a good estimate?

If $f(\mathbb{D})$ is given by (6.1) then $f' \notin H^1$. Is it true that $f' \in H^p$ for all p < 1? Compare Theorem 3. The proof of Theorem 6 suggests that

$$\int_0^{2\pi} |f'(re^{it})| dt = O\left(\log\frac{1}{1-r}\right) \text{ as } r \to 1$$

might perhaps be true.

References

- [BCPW] R. W. Barnard, L. Cole, K. Pearce, and G. B. Williams, A sharp bound on the Schwarzian derivatives of hyperbolically convex functions, Complex Variables Theory Appl. (to appear).
 - [BuZ] Yu. D. Burago and V. A. Zalgaller, *Geometric inequalities*, Springer-Verlag, Berlin, 1988.
 - [H] H. Hopf, *Uber die Drehung der Tangenten und Sehnen ebener Kurven*, Compositio Math. 2 (1935), 50–62.
 - [J] V. Jørgensen, On an inequality for the hyperbolic measure and its applications in the theory of functions, Math. Scand. 4 (1956), 113–124.
 - [K] R. Kühnau, Herleitung einiger Verzerrungseigenschaften konformer und allgemeinerer Abbildungen mit Hilfe des Argumentprinzips, Math. Nachr. 39 (1969), 240–275.
- [MaM1] W. Ma and D. Minda, Hyperbolically convex functions, Ann. Polon. Math. 60 (1994), 81–100.
- [MaM2] ——, Hyperbolically convex functions II, Ann. Polon. Math. 71 (1999), 273–285.

- [MeP1] D. Mejía and Ch. Pommerenke, *Sobre aplicaciones conformes hiperbólicamente convexas*, Rev. Colombiana Mat. 32 (1998), 29–43.
- [MeP2] —, On hyperbolically convex functions, J. Geom. Anal. 10 (2000), 365–378.
- [MeP3] —, On the derivative of hyperbolically convex functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), 47–56.
- [MePV] D. Mejía, Ch. Pommerenke, and A. Vasilev, *Distortion theorems for* hyperbolically convex functions, Complex Variables Theory Appl. 44 (2001), 117–130.
 - [P1] Ch. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
 - [P2] ——, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.

D. Mejía	Ch. Pommerenke
Universidad Nacional	Technische Universität
Departamento de Matemáticas	Institut für Mathematik, MA 8-2
A.A. 3840 Medellín	D-10623 Berlin
Colombia	Germany
dmejia@unalmed.edu.co	pommeren@math.tu-berlin.de