Horocyclically Convex Univalent Functions

D. Mejía \& Ch. Pommerenke

1. Introduction: Convexity and Curvature

A domain G in \mathbb{C} is convex if and only if, for every $\omega \in \partial G$, there exists a halfplane H such that $\omega \in \partial H$ and $G \cap H=\emptyset$. The fact that $C=\partial H$ is a line can be expressed in two equivalent ways:
(i) C is a maximal curve of zero curvature;
(ii) C is a noncompact maximal curve of constant curvature.

Now we turn to the hyperbolic metric $d s=\left(1-|z|^{2}\right)^{-1}|d z|$ in the unit disk \mathbb{D}. Let $C: w(s), s \in I$, be a curve of class \mathcal{C}^{2} in \mathbb{D} that is parameterized by the hyperbolic arc-length s; that is,

$$
\begin{equation*}
\left|w^{\prime}\right|=1-|w|^{2}, \quad w^{\prime \prime} \text { is continuous in } I . \tag{1.1}
\end{equation*}
$$

Then the hyperbolic (= geodesic) curvature κ satisfies the differential equation

$$
\begin{equation*}
\frac{w^{\prime \prime}}{w^{\prime}}+\frac{2 \bar{w} w^{\prime}}{1-|w|^{2}}=i \kappa \tag{1.2}
\end{equation*}
$$

Let $\mathbb{T}=\partial \mathbb{D}$. If $C \subset \mathbb{D}$ is a maximal (= cannot be extended to a larger curve in \mathbb{D}) curve of constant hyperbolic curvature κ, then we have three cases as follows.
$|\kappa| \leq 2: C$ is a circular arc from \mathbb{T} to \mathbb{T};
$|\kappa|=2: C$ is a circle in \mathbb{D} that touches \mathbb{T};
$|\kappa|>2: C$ is a full circle in \mathbb{D}.
Thus the noncompact maximal curves of constant curvature are those with $|\kappa| \leq$ 2, and we see that conditions (i) and (ii) are different in the hyperbolic case.

Ma and Minda [MaM1] considered condition (i). A domain $G \subset \mathbb{D}$ is hyperbolically convex (h-convex) if, for every $\omega \in \mathbb{D} \cap \partial G$, there is a hyperbolic halfplane H with $\omega \in \partial H$ and $G \cap H=\emptyset$. See, for example, [MaM2; MeP1; MeP2; MeP3; MePV] for results on the conformal maps of \mathbb{D} onto h-convex domains.

In this paper we shall consider condition (ii), namely, the extremal case $|\kappa|=$ 2. A horocycle is, by definition, the inner domain of a circle in \mathbb{D} that touches \mathbb{T}. A domain $G \subset \mathbb{D}$ will be called horocyclically convex (horo-convex) if, for every $\omega \in \mathbb{D} \cap \partial G$, there exists a horocycle H such that

$$
\begin{equation*}
\omega \in \partial H \quad \text { and } \quad G \cap H=\emptyset . \tag{1.3}
\end{equation*}
$$

[^0]A horocyclically convex function f is a conformal map of \mathbb{D} onto a horo-convex domain $G \subset \mathbb{D}$. It turns out that these functions are more difficult to study than the h-convex functions.

In Section 2 we show that every horo-convex function f is continuous in $\overline{\mathbb{D}}$, and in Section 5 we establish some sharp estimates for $f(\zeta)$ and $f^{\prime}(\zeta)$ for $\zeta \in \mathbb{T}=$ $\partial \mathbb{D}$. In Section 6 we study the coefficient growth.

We have not yet been able to obtain any distortion theorems-that is, estimates for $f(z)$ and $f^{\prime}(z)$ for given $z \in \mathbb{D}$ under the normalization $f(0)=0$ and $f^{\prime}(0)=$ α. In the final section we list some open problems.

2. Some General Properties

It is clear that horo-convexity is Möbius-invariant: If $\operatorname{Möb}(\mathbb{D})$ is the group of all Möbius transformations of \mathbb{D} onto \mathbb{D}, then

$$
\begin{equation*}
f \text { horo-convex \& } \sigma, \tau \in \operatorname{Möb}(\mathbb{D}) \Longrightarrow \sigma \circ f \circ \tau \text { horo-convex. } \tag{2.1}
\end{equation*}
$$

As a consequence we can achieve the normalization $f(0)=0$ and $f^{\prime}(0)>0$.
Theorem 1. Every horocyclically convex function has a continuous extension to $\overline{\mathbb{D}}$.

Proof. Let f be horo-convex with $f(0)=0$ and let $G=f(\mathbb{D})$. Let $\left(C_{n}\right)$ be a null-chain of G (see e.g. [P2, p. 29]). Let $w_{n}^{ \pm} \in \partial G$ be the two endpoints of the crosscut C_{n} of G. We have to show that the component V_{n} of $G \backslash C_{n}$ with $0 \notin V_{n}$ satisfies diam $V_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since G is horo-convex there exist horocycles $H_{n} \subset \mathbb{D} \backslash G$ with $w_{n}^{ \pm} \in \partial H_{n}^{ \pm}$if $w_{n}^{ \pm} \in \mathbb{D}$. We may assume that $w_{n}^{ \pm} \rightarrow w_{0} \in \partial G$.

First suppose $w_{0} \in \mathbb{D}$, in which case we may assume that the $H_{n}^{ \pm}$converge to horocycles $H^{ \pm}$as $n \rightarrow \infty$. Then $w_{0} \in \partial H^{ \pm} \subset \mathbb{D} \backslash G$. We construct an arc $A_{n} \subset$ $\mathbb{D} \backslash G$ from w_{n}^{-}to w_{n}^{+}as follows: We take arcs along the inner normal to $\partial H_{n}^{ \pm}$at $w_{n}^{ \pm}$until we meet $\partial H^{ \pm}$; then we go along $\partial H^{ \pm}$until we meet ∂H^{\mp}. It follows from Janiszewski's theorem (as in [P2, p. 2]) that V_{n} lies in the domain U_{n} bounded by A_{n} and C_{n}. Hence

$$
\operatorname{diam} V_{n} \leq \operatorname{diam} U_{n} \leq \operatorname{diam} A_{n}+\operatorname{diam} C_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Next we consider the case $w_{0} \in \mathbb{T}$. We begin by assuming that w_{n}^{+}and w_{n}^{-}are in \mathbb{D}. It is easy to see that $H_{n}^{+} \cap H_{n}^{-}=\emptyset$ in this case. Let $\rho_{n}^{ \pm}$denote the Euclidean radius of $H_{n}^{ \pm}$and let $\omega_{n}^{ \pm}$denote the point where $\partial H_{n}^{ \pm}$touches \mathbb{T}. Since $\left|w_{n}^{ \pm}-\omega_{n}^{ \pm}\left(1-\rho_{n}^{ \pm}\right)\right|=\rho_{n}^{ \pm}$, we have

$$
\begin{equation*}
1 \geq \cos \left(\arg w_{n}^{ \pm}-\arg \omega_{n}^{ \pm}\right)=\frac{1+\left|w_{n}^{ \pm}\right|-2 \rho_{n}^{ \pm}}{2\left|w_{n}^{ \pm}\right|\left(1-\rho_{n}^{ \pm}\right)} \rightarrow 1 \tag{2.2}
\end{equation*}
$$

as $n \rightarrow \infty$, because $\left|w_{n}^{ \pm}\right| \rightarrow\left|w_{0}\right|=1$ and $\rho_{n}<\frac{1}{2}$. It follows that $\omega_{n}^{ \pm} \rightarrow w_{0}$. Since $H_{n}^{ \pm} \subset \mathbb{D} \backslash G$ and $w_{n}^{ \pm} \in \partial H_{n}^{ \pm}$, we see that V_{n} lies in the component U_{n} of $\mathbb{D} \backslash\left(\bar{H}_{n}^{+} \cup \bar{H}_{n}^{-} \cup C_{n}\right)$ with $0 \notin U_{n}$, and we conclude that

$$
\begin{equation*}
\operatorname{diam} V_{n} \leq \operatorname{diam} U_{n} \leq\left|\omega_{n}^{+}-\omega_{n}^{-}\right|+\operatorname{diam} C_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

Now we assume that $w_{n}^{+} \in \mathbb{D}$ and $w_{n}^{-} \in \mathbb{T}$. Then (2.2) holds for w_{n}^{+}and V_{n} lies in the component U_{n} of $\mathbb{D} \backslash\left(\bar{H}_{n}^{+} \cup C_{n}\right)$ with $0 \notin U_{n}$. We conclude that (2.3) holds. Finally, if $w_{n}^{+} \in \mathbb{T}$ and $w_{n}^{-} \in \mathbb{T}$ then $\operatorname{diam} V_{n} \leq \operatorname{diam} C_{n} \rightarrow 0$.

Next we show by an example that, in spite of Theorem 1, the family of all horoconvex functions normalized by $f(0)=0$ is not equicontinuous.

Let $\vartheta_{n}=\frac{\pi}{6}+\frac{1}{n}, n \in \mathbb{N}$. The two horocycles

$$
H_{n}^{ \pm}=\left\{w:\left|w-\frac{2}{3} e^{ \pm i \vartheta_{n}}\right|<\frac{1}{3}\right\}
$$

are disjoint and do not meet \mathbb{R}. Let f_{n} map \mathbb{D} onto $G_{n}=\mathbb{D} \backslash\left(\bar{H}_{n}^{+} \cup \bar{H}_{n}^{-}\right)$such that $f_{n}(0)=0$ and $f_{n}(1)=1$, and determine $z_{n}^{ \pm}$such that

$$
f_{n}\left(z_{n}^{ \pm}\right)=w_{n}^{ \pm}=e^{ \pm i / n} / \sqrt{3} \in \partial H_{n}^{ \pm}
$$

Since G_{n} contains the disk $\left\{|w|<\frac{1}{3}\right\}$ and since $f_{n}(0)=0$, we see as in [P1, Cor. 11.5] that

$$
\left|z_{n}^{+}-z_{n}^{-}\right| \leq c\left|w_{n}^{+}-w_{n}^{-}\right|^{1 / 2} \rightarrow 0 \quad(n \rightarrow \infty)
$$

for some constant c. We conclude that $z_{n}^{+} \rightarrow 1$ whereas $\left|f_{n}\left(z_{n}^{+}\right)-f_{n}(1)\right| \geq$ $1-1 / \sqrt{3}$.

3. The Canonical Example

The following function plays an important role in the theory of horo-convex functions. Let $0<\lambda<1$. We define

$$
\begin{equation*}
h_{\lambda}(z)=\left(\log \frac{1+e^{i \pi \lambda} z}{1+e^{-i \pi \lambda} z}\right) /\left(2 \pi \lambda-\log \frac{1+e^{i \pi \lambda} z}{1+e^{-i \pi \lambda} z}\right) . \tag{3.1}
\end{equation*}
$$

This function h_{λ} is analytic in \mathbb{D} and has a continuous extension to $\overline{\mathbb{D}}$. It is easy to verify that

$$
\begin{align*}
& h_{\lambda}:\left\{e^{i t}:|t|<\pi(1-\lambda)\right\} \rightarrow \mathbb{T} \backslash\{-1\} \quad \text { and } \\
& h_{\lambda}:\left\{e^{i t}: \pi(1-\lambda)<t<\pi(1+\lambda)\right\} \rightarrow \partial H_{\lambda} \backslash\{-1\} \tag{3.2}
\end{align*}
$$

are bijective maps, where H_{λ} is the horocycle

$$
\begin{equation*}
H_{\lambda}=\left\{w:\left|w+\frac{1}{1+\lambda}\right|<\frac{\lambda}{1+\lambda}\right\} \tag{3.3}
\end{equation*}
$$

and we have

$$
\begin{equation*}
h_{\lambda}(1)=1, \quad h_{\lambda}\left(e^{ \pm i \pi(1-\lambda)}\right)=-1, \quad h_{\lambda}(-1)=-\frac{1-\lambda}{1+\lambda} . \tag{3.4}
\end{equation*}
$$

By the boundary principle [P2, p. 16] it follows from (3.2) and (3.3) that h_{λ} maps \mathbb{D} conformally onto $\mathbb{D} \backslash \bar{H}_{\lambda}$. Hence h_{λ} is horo-convex.

It follows from (3.1) that

$$
\begin{equation*}
h_{\lambda}(z)=\frac{\sin \pi \lambda}{\pi \lambda} z+\left(\left(\frac{\sin \pi \lambda}{\pi \lambda}\right)^{2}-\frac{\sin 2 \pi \lambda}{2 \pi \lambda}\right) z^{2}+\cdots . \tag{3.5}
\end{equation*}
$$

The inverse function is

$$
\begin{equation*}
h_{\lambda}^{-1}(w)=\frac{p(w)-1}{e^{i \pi \lambda}-e^{-\pi i \lambda} p(w)} \quad \text { with } p(w)=\exp \frac{2 \pi i \lambda w}{1+w} \tag{3.6}
\end{equation*}
$$

Now we shall prove that

$$
\begin{equation*}
\min _{t}\left|h_{\lambda}^{\prime}\left(e^{i t}\right)\right|=\frac{2 \lambda}{\pi(1+\lambda)^{2}} \cot \frac{\pi \lambda}{2} \tag{3.7}
\end{equation*}
$$

with equality for $t=\pi$.
If $|t| \leq \pi(1-\lambda)$ then $h_{\lambda}\left(e^{i t}\right) \in \mathbb{T}$, and since $h_{\lambda}(0)=0$ it follows from the JuliaWolff lemma [P2, p. 82] that $\left|h_{\lambda}^{\prime}\left(e^{i t}\right)\right| \geq 1$, which is greater than the right-hand side of (3.7).

Now let $\pi(1-\lambda)<t<\pi(1+\lambda)$ and write $w=h_{\lambda}\left(e^{i t}\right)$. It follows from (3.6) that

$$
\begin{equation*}
\frac{d}{d w} h_{\lambda}^{-1}(w)=\frac{2 \sin \pi \lambda}{\left(e^{i \pi \lambda}-e^{-i \pi \lambda} p(w)\right)^{2}} \frac{2 \pi \lambda p(w)}{(1+w)^{2}} \tag{3.8}
\end{equation*}
$$

By (3.2) we can write $w=-\left(1+\lambda e^{2 i \vartheta}\right) /(1+\lambda)$, so that

$$
1+w=-\frac{2 i \lambda e^{i \vartheta} \sin \vartheta}{i+\lambda}, \quad p(w)=-e^{i \pi \lambda} \exp [\pi(1+\lambda) \cot \vartheta]
$$

Writing $c=\pi(1+\lambda)^{2} \sin (\pi \lambda) /(2 \lambda)$, we obtain from (3.8) that

$$
\begin{aligned}
c\left|h_{\lambda}^{\prime}\left(e^{i t}\right)\right| & =[\cosh (\pi(1+\lambda) \cot \vartheta)+\cos (\pi \lambda)] \sin ^{2} \vartheta \\
& \geq\left(1+\frac{\pi^{2}}{2}(1+\lambda)^{2}\right) \cos ^{2} \vartheta+\cos (\pi \lambda) \sin ^{2} \vartheta \\
& \geq 1+\cos (\pi \lambda)=2 \cos ^{2}\left(\frac{\pi \lambda}{2}\right),
\end{aligned}
$$

with equality for $\vartheta=\frac{\pi}{2}$, and thus $t=\pi$. This implies (3.7).

4. The Argument of the Derivative

Let Γ be a Jordan arc or a Jordan curve of the form $\Gamma=\Gamma_{1} \cup \cdots \cup \Gamma_{n}$, where the $\Gamma_{\nu}(v=1, \ldots, n)$ are smooth arcs from p_{v-1} to p_{v} that are otherwise disjoint. Let $\Delta\left(\Gamma_{\nu}\right)$ denote the change of the tangent angle along the arc Γ_{ν} and let $\Delta\left(p_{\nu}\right)(\nu=$ $1, \ldots, n-1)$ denote the change of the tangent angle at the corner p_{v}. Then

$$
\begin{equation*}
\Delta(\Gamma)=\sum_{\nu=1}^{n} \Delta\left(\Gamma_{v}\right)+\sum_{v=1}^{n-1} \Delta\left(p_{v}\right) \tag{4.1}
\end{equation*}
$$

is, by definition, the change of the tangent angle along Γ.
If Γ is a positively oriented Jordan curve, then

$$
\begin{equation*}
\Delta(\Gamma)=2 \pi ; \tag{4.2}
\end{equation*}
$$

see [H]. We also need the following result [J; K]; see [P2, Prop. 4.22].

Proposition 1. Let f map \mathbb{D} conformally onto $G \subset \mathbb{C}$ and let S be a hyperbolic segment in \mathbb{D}. If D is a disk in G such that ∂D is tangent to $f(S)$, then $D \cap f(S)=\emptyset$.

First we prove a theorem about general conformal maps.
Theorem 2. Let f map \mathbb{D} conformally onto $G \subset \mathbb{C}$ and suppose that, for any pair of points $\omega_{1}, \omega_{2} \in \partial G$, there is a piecewise smooth Jordan arc A from ω_{1} to ω_{2} such that

$$
\begin{equation*}
A \subset \mathbb{C} \backslash G \quad \text { and } \quad|\triangle(A)| \leq a \tag{4.3}
\end{equation*}
$$

where a is a constant. If $z \in \mathbb{D}$ then

$$
\begin{equation*}
\left|\arg f^{\prime}(z)-\arg f^{\prime}(0)\right| \leq a+10 \pi \tag{4.4}
\end{equation*}
$$

and $\log f^{\prime}$ belongs to the Hardy spaces $H^{p}(0<p<\infty)$.
Proof. Let $z_{1}=0, z_{2}=z$, and $S=[0, z]$. Furthermore, let $D_{j}(j=1,2)$ be the largest disk in G such that ∂D_{j} touches $f(S)$ at $f\left(z_{j}\right)$ from the left. Hence there exists a $\omega_{j} \in \partial D_{j} \cap \partial G$. Let C_{j} be the positively oriented arc of ∂D_{j} between $f\left(z_{j}\right)$ and ω_{j}. By assumption, there is a piecewise smooth Jordan arc A satisfying (4.3). Then

$$
\Gamma=f(S) \cup C_{1} \cup A \cup C_{2}
$$

is a positively oriented Jordan curve by Proposition 1 and (4.3).
Since $C_{1} \cup f(S) \cup C_{2}$ is smooth, it follows from (4.1) and (4.2) that

$$
2 \pi=\Delta(f(S))+\Delta\left(C_{1}\right)+\Delta(A)+\Delta\left(C_{2}\right)+\Delta\left(\omega_{1}\right)+\Delta\left(\omega_{2}\right)
$$

and thus, by (4.3),

$$
|\Delta(f(S))| \leq|\Delta(A)|+10 \pi \leq a+10 \pi
$$

This implies (4.4) because $\arg f^{\prime}(z)-\arg f^{\prime}(0)=\Delta(f(S))$.
It then follows from (4.4) that $\log f^{\prime}(z)-\log f^{\prime}(0)$ is subordinate to the strip mapping

$$
g(z)=\frac{b}{2} \log \frac{1+z}{1-z} \quad(z \in \mathbb{D}), \quad \text { where } b=\frac{4 a}{\pi}+40
$$

Since $g \in H^{p}$, we have $\log f^{\prime} \in H^{p}$.

5. Some Sharp Estimates

Theorem 3. Let f be horocyclically convex and let $f(0)=0$. Then

$$
\begin{equation*}
\left|\arg f^{\prime}(z)-\arg f^{\prime}(0)\right|<2 \pi \quad \text { for } z \in \mathbb{D} \tag{5.1}
\end{equation*}
$$

and 2π cannot be replaced by a smaller constant. Furthermore,

$$
\begin{equation*}
f^{\prime} \in H^{p} \quad \text { for } 0<p<\frac{1}{4} \tag{5.2}
\end{equation*}
$$

Proof. Let $G=f(\mathbb{D})$ and let $\zeta \in \mathbb{T}$ be such that the angular derivative $f^{\prime}(\zeta) \neq$ $0, \infty$ exists. We assume that $\omega=f(\zeta) \in \mathbb{D}$. Because G is horo-convex, there is a horocycle $H \subset \mathbb{D} \backslash G$ with $\omega \in \partial H$. Since f is isogonal [P2, p. 80] at ζ, the curve $C=\{f(r \zeta): 0 \leq r \leq 1\}$ is normal to ∂H at ω. Let $e^{i t}$ be the point where ∂H touches \mathbb{T}.

Let D_{0} be the largest disk in G that touches C at $0=f(0)$ from the right. We assume that $\bar{D}_{0} \subset \mathbb{D}$. Then there is a horocycle H_{0} that touches D_{0} at some point $\omega_{0} \in \partial H_{0} \cap \partial D_{0}$. Let $e^{i t_{0}}$ be the point where ∂H_{0} touches \mathbb{T}. Let Γ_{0} be the positively oriented arc of ∂H_{0} from $e^{i t_{0}}$ to ω_{0} and let Γ_{1} be the negatively oriented arc of ∂D_{0} from ω_{0} to 0 ; we use T to denote the positively oriented arc of \mathbb{T} from $e^{i t}$ to $e^{i t_{0}}$.

We now assume that $H_{0} \neq H$. Let $\Gamma^{ \pm}$be the positively/negatively oriented arcs of ∂H from ω to $e^{i t}$. Then

$$
\begin{equation*}
J^{ \pm}=C \cup \Gamma^{ \pm} \cup T \cup \Gamma_{0} \cup \Gamma_{1} \tag{5.3}
\end{equation*}
$$

are closed piecewise smooth curves. It follows from Proposition 1 that C is disjoint from the rest of $J^{ \pm}$. Hence the only possible multiple points of $J^{ \pm}$lie on $\Gamma^{ \pm} \cap \Gamma_{0} \subset \partial H \cap \partial H_{0}$, and it is not difficult to show that either J^{+}or J^{-}is a Jordan curve.

Let $\vartheta_{0}, \vartheta \in[0,2 \pi)$, denote the geometric tangent angle of C at 0 and ω. Then

$$
\Delta\left(\Gamma_{0} \cup \Gamma_{1}\right)=\vartheta_{0}-t_{0}+\frac{3 \pi}{2} \quad \text { and } \quad \Delta(T)=t_{0}-t
$$

For J^{+}we have

$$
\Delta\left(\Gamma^{+}\right)=t-\vartheta+\pi, \quad \Delta(\omega)=-\frac{\pi}{2}, \quad \Delta\left(e^{i t}\right)=0
$$

whereas for J^{-}we have

$$
\Delta\left(\Gamma^{-}\right)=t-\vartheta-\pi, \quad \Delta(\omega)=\frac{\pi}{2}, \quad \Delta\left(e^{i t}\right)=\pi
$$

Hence it follows from (5.3) that, in both cases,

$$
\begin{equation*}
\Delta\left(J^{ \pm}\right)=\vartheta_{0}-\vartheta+2 \pi+\Delta(C) \tag{5.4}
\end{equation*}
$$

Now $J^{ \pm}$is a positively oriented Jordan curve for a suitable choice of the sign, and thus $\Delta\left(J^{ \pm}\right)=2 \pi$ by (4.2). Hence we obtain from (5.4) that
$\left|\arg f^{\prime}(\zeta)-\arg f^{\prime}(0)\right|=|\triangle(C)|=\left|\vartheta-\vartheta_{0}\right| \leq 2 \pi \quad$ if $f^{\prime}(\zeta) \neq 0, \infty$ exists.

We have made the three assumptions that $\omega \in \mathbb{D}, \bar{D}_{0} \subset \mathbb{D}$, and $H_{0} \neq H$. The proof of (5.5) is similar if any one of these assumptions does not hold.

It follows from Theorem 2 that $\log f^{\prime} \in H^{1}$. Therefore we have the Poisson integral representation

$$
\arg f^{\prime}(z)=\operatorname{Im}\left[\log f^{\prime}(z)\right]=\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} \arg f^{\prime}(\zeta)|d \zeta|
$$

Hence (5.1) follows from (5.5). We conclude from (5.1) that f^{\prime} is subordinate to the function

$$
g(z)=f^{\prime}(0) \exp \left[4 \log \frac{1+z}{1-z}\right]=f^{\prime}(0)\left(\frac{1+z}{1-z}\right)^{4}
$$

and since $g \in H^{p}$ for $p<\frac{1}{4}$ we see that (5.2) holds.
Finally, we show that (5.1) is best possible. Let f be the function h_{λ} defined in (3.1), and choose $\zeta_{\lambda} \in \mathbb{T}$ such that

$$
\pi(1-\lambda)<\arg \zeta_{\lambda}<4(1-\lambda) \quad \text { and } \quad\left|h_{\lambda}\left(\zeta_{\lambda}\right)+1\right|<1-\lambda ;
$$

see (3.2). Then

$$
\arg \zeta_{\lambda} \rightarrow 0 \quad \text { and } \quad \arg \left[\zeta_{\lambda} h_{\lambda}^{\prime}\left(\zeta_{\lambda}\right)\right] \rightarrow 2 \pi \quad \text { as } \lambda \rightarrow 1
$$

and thus $\arg h_{\lambda}^{\prime}\left(\zeta_{\lambda}\right) \rightarrow 2 \pi$.
Theorem 4. Let f be horocyclically convex, and let

$$
\begin{equation*}
f(0)=0 \quad \text { and } \quad\left|f^{\prime}(0)\right|=\frac{\sin \pi \lambda}{\pi \lambda}(0<\lambda<1) \tag{5.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1-\lambda}{1+\lambda} \leq|f(z)| \leq 1 \quad \text { for } z \in \mathbb{T} \tag{5.7}
\end{equation*}
$$

The angular derivative exists and satisfies

$$
\begin{equation*}
\frac{2 \lambda}{\pi(1+\lambda)^{2}} \cot \frac{\pi \lambda}{2} \leq\left|f^{\prime}(z)\right| \leq+\infty \quad \text { for } z \in \mathbb{T} \tag{5.8}
\end{equation*}
$$

If $f=h_{\lambda}$, then equality holds in all inequalities (5.7) and (5.8) for suitable $z \in \mathbb{T}$.
Because $f(\mathbb{D}) \subset \mathbb{D}$ we have $0<\left|f^{\prime}(0)\right| \leq 1$, so we can choose λ such that (5.6) holds except in the trivial case $f(z) \equiv e^{i \vartheta} z$. We have $\log f^{\prime} \in H^{1}$ by Theorem 3 . Hence it follows from (5.8) that

$$
\left|f^{\prime}(z)\right|>\frac{2 \lambda}{\pi(1+\lambda)^{2}} \cot \frac{\pi \lambda}{2} \quad \text { for } z \in \mathbb{D} .
$$

Proof of Theorem 4. Let $z \in \mathbb{T}$. First we assume that $f(z) \in \mathbb{D}$. Then there exists a horocycle H_{μ} (see (4.3)) such that

$$
\begin{equation*}
e^{-i \vartheta} f(z) \in \partial H_{\mu} \quad \text { and } \quad\left(e^{i \vartheta} H_{\mu}\right) \cap f(\mathbb{D})=\emptyset \tag{5.9}
\end{equation*}
$$

Hence we can write (see (3.5))

$$
\begin{equation*}
f=e^{-i \vartheta} h_{\mu} \circ g \quad \text { with } g(\mathbb{D}) \subset \mathbb{D}, g(0)=0 . \tag{5.10}
\end{equation*}
$$

It follows from Schwarz's lemma and (5.6) that

$$
\frac{\sin \pi \lambda}{\pi \lambda}=\left|f^{\prime}(0)\right| \leq\left|h_{\mu}^{\prime}(0)\right|=\frac{\sin \pi \mu}{\pi \mu} .
$$

Hence $\lambda \geq \mu$ and it follows from (5.9) that $|f(z)| \geq(1-\mu) /(1+\mu) \geq$ $(1-\lambda) /(1+\lambda)$. The upper estimate (5.7) is trivial.

We see from (5.9) that the angular derivative exists and satisfies $0<\left|f^{\prime}(z)\right| \leq$ $+\infty$ (see e.g. [P2, p. 83]). Differentiating (5.10) then yields

$$
\left|f^{\prime}(z)\right|=\left|h_{\mu}^{\prime}(g(z))\right|\left|g^{\prime}(z)\right|
$$

Since $g(z) \in \mathbb{T}$ by (5.9) and (5.10), it follows from (5.10) and the Julia-Wolff lemma [P2, p. 82] that $\left|g^{\prime}(z)\right| \geq 1$. Hence

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq\left|h_{\mu}^{\prime}(g(z))\right| \geq \frac{2 \mu \cot (\pi \mu / 2)}{\pi(1+\mu)^{2}} \geq \frac{2 \lambda \cot (\pi \lambda / 2)}{\pi(1+\lambda)^{2}} \tag{5.11}
\end{equation*}
$$

by (3.7) and because $\lambda \geq \mu$.
Next we assume that $f(z) \in \mathbb{T}$. Since $f(0)=0$ it follows from the Julia-Wolff lemma that the angular derivative exists and satisfies

$$
+\infty \geq\left|f^{\prime}(z)\right| \geq 1>\frac{2 \lambda \cot (\pi \lambda / 2)}{\pi(1+\lambda)^{2}}
$$

Finally, let $f=h_{\lambda}$. By (3.2), equality holds in (5.7) for both $z=-1$ and $z=$ 1 , and by (3.7) and (3.8), respectively, equality holds in (5.8) for both $z=-1$ and $z=-e^{i \pi \lambda}$.

If f is a conformal map of \mathbb{D} onto any bounded domain G, then by the Koebe "one quarter" theorem we have

$$
\left|f^{\prime}(z)\right| \leq \frac{4}{1-|z|^{2}} \operatorname{dist}(f(z), \partial G)=o\left(\frac{1}{1-|z|}\right) \text { as }|z| \rightarrow 1
$$

Now we show that this trivial estimate is best possible even for the class of horoconvex functions.

Theorem 5. For any positive function $\eta(x)(0 \leq x<1)$ with $\eta(x) \rightarrow 0$ $(x \rightarrow 1)$, there exists a horocyclically convex function f and a sequence $\left(x_{k}\right)$ with $x_{k} \rightarrow 1(k \rightarrow \infty)$ such that

$$
\begin{equation*}
\left|f^{\prime}\left(x_{k}\right)\right| \geq \frac{\eta\left(x_{k}\right)}{1-x_{k}} \quad \text { for all } k \tag{5.12}
\end{equation*}
$$

Proof. We shall recursively construct horo-convex functions $f_{n}(n=1,2, \ldots)$ such that

$$
\begin{equation*}
f_{n}(\mathbb{D} \cap \mathbb{R})=\mathbb{D} \cap \mathbb{R} \quad \text { and } \quad\left\{z \in \mathbb{D}:|z-1|<\rho_{n}\right\} \subset f_{n}(\mathbb{D}) \tag{5.13}
\end{equation*}
$$

for some $\rho_{n}>0$; we shall also construct numbers $x_{n} \in\left(1-\frac{1}{n}, 1\right)$ such that

$$
\begin{equation*}
\left(1-x_{k}\right) f_{n}^{\prime}\left(x_{k}\right)>\left(1+\frac{1}{n}\right) \eta\left(x_{k}\right) \text { for } k=1, \ldots, n \tag{5.14}
\end{equation*}
$$

We start with $f_{1}(z) \equiv z$ and x_{1} sufficiently close to 1 . Suppose that f_{k} and x_{k} have already been constructed for $k \leq n$ and consider the horocycles

$$
H_{n}^{ \pm}=H_{n}^{ \pm}(\varepsilon, \delta)=\left\{\left|z-(1-\delta) e^{ \pm i \varepsilon \pm i \pi \delta / 2}\right|<\delta\right\}
$$

where $0<\varepsilon<\delta<\rho_{n} / 5$. Then $\mathbb{D} \cap \bar{H}_{n}^{ \pm} \subset f_{n}(\mathbb{D})$ by (5.13). Let $\varphi_{n}(z)=$ $\varphi_{n}(z, \varepsilon, \delta)$ map \mathbb{D} conformally onto $f_{n}(\mathbb{D}) \backslash\left(\bar{H}_{n}^{+} \cup \bar{H}_{n}^{-}\right)$such that $\varphi_{n}(0)=0$ and $\varphi_{n}(1)=1$. Then φ_{n} is horo-convex. If $0<\varepsilon<\delta \rightarrow 0$, then $\varphi_{n}(z, \delta, \varepsilon) \rightarrow f_{n}(z)$ locally uniformly by the Carathéodory kernel theorem [P2, p. 14]. Hence we can choose δ_{n} sufficiently small that

$$
\begin{equation*}
\left(1-x_{k}\right) \varphi_{n}^{\prime}\left(x_{k}, \varepsilon, \delta_{n}\right)>\left(1+\frac{1}{n+1}\right) \eta\left(x_{k}\right) \quad(k=1, \ldots, n) \tag{5.15}
\end{equation*}
$$

for $0<\varepsilon<\delta_{n}$; see (5.14).
We can find $u_{n} \in(0,1)$ and $v_{n}>0$ independent of ε such that

$$
\begin{equation*}
\operatorname{dist}\left(H_{n}^{ \pm}\left(\varepsilon, \delta_{n}\right), u_{n}\right)>v_{n} \quad \text { and } \quad \operatorname{dist}\left(\mathbb{T}, u_{n}\right)>v_{n} \tag{5.16}
\end{equation*}
$$

Let $\xi_{n}(\varepsilon)$ be determined by $\varphi_{n}\left(\xi_{n}(\varepsilon), \varepsilon, \delta_{n}\right)=u_{n}$. Then $\xi_{n}(\varepsilon) \rightarrow 1$ as $\varepsilon \rightarrow 0$ by the Carathéodory kernel theorem. Hence there exist $\varepsilon_{n} \in\left(0, \delta_{n}\right)$ such that

$$
\eta\left(x_{n+1}\right)<\frac{v_{n}}{4}, \quad \text { where } \quad x_{n+1}=\xi_{n}\left(\varepsilon_{n}\right)>1-\frac{1}{n+1} .
$$

We define $f_{n+1}(z)=\varphi_{n}\left(z, \varepsilon_{n}, \delta_{n}\right)$ for $z \in \mathbb{D}$. Then

$$
\begin{aligned}
\left(1-x_{n+1}\right) f_{n}^{\prime}\left(x_{n+1}\right) & >\frac{1}{2} \operatorname{dist}\left(f_{n}\left(x_{n+1}\right), \partial f_{n+1}(\mathbb{D})\right) \\
& >\frac{1}{2} v_{n}>2 \eta\left(x_{n+1}\right)>\left(1+\frac{1}{n+1}\right) \eta\left(x_{n+1}\right)
\end{aligned}
$$

by (5.15). Together with (5.16) this shows that (5.14) is true for $n+1$ instead of n, and (5.13) for $n+1$ holds by our construction.

This completes our construction. Now we let $n \rightarrow \infty$. Then $f=\lim _{n \rightarrow \infty} f_{n}$ exists locally uniformly in \mathbb{D}, and f is again horo-convex. It follows from (5.14) that (5.12) is satisfied.

6. Coefficient Estimates

Now we consider the Taylor expansion of the conformal map

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

of \mathbb{D} onto G. Let Λ denote the Euclidean length. If $\Lambda(\partial G)<\infty$ then $f^{\prime} \in H^{1}$ by the Riesz-Privalov theorem [P2, p. 134] and thus $a_{n}=o(1 / n)$.

It is not difficult to construct a horo-convex domain G of the form

$$
\begin{equation*}
G=\mathbb{D} \backslash \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{k_{n}} \bar{H}_{n k}, \quad \operatorname{diam} H_{n k}=\frac{1}{k_{n}}\left(k=1, \ldots, k_{n}\right), \tag{6.1}
\end{equation*}
$$

where all the horocycles $H_{n k}\left(k=1, \ldots, k_{n} ; n=1,2, \ldots\right)$ have disjoint closures. Then $\Lambda(\partial G)=\infty$ and thus $f^{\prime} \notin H^{1}$. But we do not yet have an example of a horo-convex function with $a_{n} \neq o(1 / n)$.

Theorem 6. If f is horocyclically convex then

$$
\begin{equation*}
\left|a_{n}\right|<\frac{c \log n}{n} \text { for } n=2,3, \ldots \tag{6.2}
\end{equation*}
$$

where the constant c depends only on a_{0}.

The proof is based on the following purely geometrical result, which may well be known. Note that inequality (6.4) is linear whereas the isoperimetric inequality is quadratic.

Proposition 2. Let H be a bounded open set in \mathbb{C} of the form

$$
\begin{equation*}
H=\bigcup_{n=1}^{m} D_{n} \tag{6.3}
\end{equation*}
$$

where the D_{n} are disks of radius $\geq r>0$. Then

$$
\begin{equation*}
\text { area } H \geq \frac{r}{2} \Lambda(\partial H) \tag{6.4}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
H_{n}=\bigcup_{v=1}^{n} D_{v} \quad(n=0, \ldots, m) \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}=\pi^{-1} \text { area } H_{n}, \quad \ell_{n}=(2 \pi)^{-1} \Lambda\left(\partial H_{n}\right) \tag{6.6}
\end{equation*}
$$

and let r_{n} be the radius of D_{n}. Now $H_{n-1} \cap \partial D_{n}$ consists of finitely many arcs $A_{n k}$ on ∂D_{n} (possibly none). Let $U_{n k}$ be the component of $D_{n} \cap H_{n-1}$ with $A_{n k} \subset$ $\partial U_{n k}$, and define $\lambda_{n k}$ by

$$
\begin{equation*}
2 \pi \lambda_{n k}=\Lambda\left(\partial U_{n k}\right)=\Lambda\left(A_{n k}\right)+\Lambda\left(D_{n} \cap \partial U_{n k}\right) \tag{6.7}
\end{equation*}
$$

By (6.5) we have

$$
\text { area } H_{n}=\text { area } H_{n-1}+\operatorname{area} D_{n}-\operatorname{area}\left(D_{n} \cap H_{n-1}\right)
$$

and

$$
\Lambda\left(\partial H_{n}\right)=\Lambda\left(\partial H_{n-1}\right)-\sum_{k} \Lambda\left(D_{n} \cap \partial U_{n k}\right)+\Lambda\left(\partial D_{n}\right)-\sum_{k} \Lambda\left(A_{n k}\right),
$$

and thus by (6.6) and (6.7) we have

$$
\begin{align*}
& b_{n}=b_{n-1}+r_{n}^{2}-\frac{1}{\pi} \sum_{k} \operatorname{area} U_{n k} \tag{6.8}\\
& \ell_{n}=\ell_{n-1}+r_{n}-\sum_{k} \lambda_{n k} \tag{6.9}
\end{align*}
$$

Now 4π area $U_{n k} \leq \Lambda\left(\partial U_{n k}\right)^{2}$ by the isoperimetric inequality [BuZ, p. 69] and therefore, by (6.7) and (6.8),

$$
\begin{equation*}
b_{n} \geq b_{n-1}+r_{n}^{2}-\sum_{k} \lambda_{n_{k}}^{2} \tag{6.10}
\end{equation*}
$$

With $x_{n}=\ell_{n}-\ell_{n-1} \in \mathbb{R}$, we obtain from (6.9) that

$$
\begin{equation*}
\sum_{k} \lambda_{n k}=r_{n}-x_{n} \quad \text { and } \quad \max _{k} \lambda_{n k} \leq r_{n}-x_{n} \tag{6.11}
\end{equation*}
$$

hence, by (6.10),

$$
b_{n}-b_{n-1} \geq r_{n}^{2}-\left(r_{n}-x_{n}\right)^{2}=\left(2 r_{n}-x_{n}\right) x_{n}
$$

We always have $b_{n}-b_{n-1} \geq 0$ by (6.5) and (6.6). Since $b_{0}=0$, it follows that

$$
b_{m} \geq \sum_{n=1}^{m}\left(2 r_{n}-x_{n}\right) x_{n} \geq \sum_{n=1}^{m} r_{n} x_{n}
$$

where we sum only over the indices n with $x_{n}>0$; note that $x_{n} \leq r_{n}$ by (6.11). By assumption we have $r_{n} \geq r$ and so

$$
b_{m} \geq r \sum_{n=1}^{m} x_{n} \geq r \sum_{n=1}^{m} x_{n}=r \ell_{m}
$$

which by (6.6) yields our assertion.
Proof of Theorem 6. Let $a=\left|a_{0}\right|$ and $m=\left[\log (1-a)^{-1}\right]+1$. Let the sequence $\left(w_{\nu}\right)$ be dense in ∂G. Since G is horo-convex, there is a horocycle $H_{\nu} \subset \mathbb{D} \backslash G$ with $w_{\nu} \in \partial H_{\nu}$. For $N=1,2, \ldots$ let

$$
f_{N}(z)=\sum_{n=0}^{\infty} a_{N, n} z^{n}
$$

be the conformal map of \mathbb{D} onto

$$
\begin{equation*}
\mathbb{D} \backslash \bigcup_{\nu=1}^{N} H_{\nu} \tag{6.12}
\end{equation*}
$$

with $f_{N}(0)=f(0)=a_{0}$ and $\arg f_{N}^{\prime}(0)=\arg f^{\prime}(0)$. By the Carathéodory kernel theorem, the functions f_{N} converge to f locally uniformly in \mathbb{D} as $N \rightarrow \infty$. It follows that $a_{N, n} \rightarrow a_{n}$ for fixed n. Hence we may assume that G has the form (6.12).

For $k \geq m$, let G_{k} be the component of $G \cap\left\{|w|<1-e^{-k}\right\}$ with $a_{0}=f(0) \in$ G. We define U_{j} as the union of all the horocycles $H \subset \mathbb{D} \backslash G$ that touch ∂G and satisfy $e^{-j}<\operatorname{diam} H \leq e^{-j+1}$, where $j=0,1, \ldots, k$. Then

$$
\operatorname{area} U_{j} \leq \operatorname{area}\left\{1-e^{-j+1}<|w|<1\right\} \leq 2 \pi e^{-j+1}
$$

and therefore, by Proposition 2,

$$
\begin{equation*}
\Lambda\left(\partial U_{j}\right) \leq \frac{4\left(\operatorname{area} U_{j}\right)}{\inf (\operatorname{diam} H)} \leq 8 \pi e \tag{6.13}
\end{equation*}
$$

because diam $H>e^{-j}$. Furthermore,

$$
\partial G_{k} \subset\left\{|w|=1-e^{-k}\right\} \cup \bigcup_{j=1}^{k} \partial U_{j}
$$

Hence we conclude from (6.13) that

$$
\begin{equation*}
\Lambda\left(\partial G_{k}\right) \leq 2 \pi+8 \pi e k<80 k \quad \text { for } k \geq m \tag{6.14}
\end{equation*}
$$

Now let $n>e^{m}$. We determine $k>m$ such that $e^{k-1} \leq n<e^{k}$. Then $C_{k}=$ $f^{-1}\left(\partial G_{k}\right)$ is a Jordan curve in $\overline{\mathbb{D}}$ around 0 and therefore

$$
\begin{equation*}
n a_{n}=\frac{1}{2 \pi i} \int_{C_{k}} \frac{f^{\prime}(z)}{z^{n}} d z \tag{6.15}
\end{equation*}
$$

If $z \in \mathbb{D} \cap C_{k}$, then

$$
f(z) \in \partial G_{k} \subset\left\{|w|=1-e^{-k}\right\}
$$

and thus, with $a=|f(0)|$,

$$
1-e^{-k} \leq|f(z)| \leq \frac{a+|z|}{1+a|z|}
$$

because $f(\mathbb{D}) \subset \mathbb{D}$. Since $1-a \geq e^{-m}$, it follows that

$$
|z| \geq \frac{1-e^{-k}-a}{1-a\left(1-e^{-k}\right)} \geq \frac{e^{-m}-e^{-k}}{e^{-m}+e^{-k}} \geq 1-2 e^{m-k}
$$

and this holds trivially if $z \in \mathbb{T}$. Hence we conclude from (6.15) that

$$
\begin{aligned}
2 \pi n\left|a_{n}\right| & \leq\left(1-2 e^{m-k}\right)^{-n} \int_{C_{k}}\left|f^{\prime}(z)\right||d z| \\
& \leq\left(1-2 e^{m-k}\right)^{-e^{k}} \Lambda\left(\partial G_{k}\right) .
\end{aligned}
$$

With constants c_{1}, c_{2}, c_{3} depending only on m and thus on a_{0}, it follows from (6.13) that

$$
n\left|a_{n}\right| \leq c_{1} \Lambda\left(\partial G_{k}\right) \leq c_{2} k \leq c_{3} \log n
$$

7. Some Open Problems

1. Internal characterization. Our definition of horo-convexity is in terms of supporting horocycles. It is reasonable to conjecture that a domain $G \subset \mathbb{C}$ is horocyclically convex if and only if every pair of points can be connected by a curve $C \subset G$ of class \mathcal{C}^{2} with hyperbolic curvature $|\kappa|<2$. We want to thank Dirk Ferus and Ekkehard Tjaden for our discussions about this problem.
2. Analytic characterization. Now suppose that ∂G is a Jordan curve of class \mathcal{C}^{3} in \mathbb{D}. If f maps \mathbb{D} conformally onto G, then $f^{\prime \prime}$ is continuous in $\overline{\mathbb{D}}$ and $f^{\prime}(z) \neq$ 0 for $z \in \overline{\mathbb{D}}$. The hyperbolic curvature of ∂G is given by

$$
\begin{equation*}
\kappa(z)=\frac{1-|f(z)|^{2}}{\left|z f^{\prime}(z)\right|} \operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{2 z f^{\prime}(z) \overline{f(z)}}{1-|f(z)|^{2}}\right) \quad(z \in \mathbb{T}) \tag{7.1}
\end{equation*}
$$

The horocycle $H \subset \mathbb{D} \backslash G$ that touches ∂G at $f(z)$ has h-curvature -2, and it follows that $\kappa(z) \geq-2$ for $z \in \mathbb{T}$.

Now let G be any domain in \mathbb{D}. We ask if the following statement is true: G is horo-convex if and only if

$$
\begin{equation*}
\operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f(z)}+\frac{2 z f^{\prime}(z) \overline{f(z)}+2\left|z f^{\prime}(z)\right|}{1-|f(z)|^{2}}\right)>0 \quad \text { for } z \in \mathbb{D} \tag{7.2}
\end{equation*}
$$

A closely related question is whether $\{f(r z):|z|<1\}$ is also horo-convex for $0<r<1$.
3. Interior estimates. In Theorems 3 and 4, we have several sharp bounds for $z \in \mathbb{T}$ but none for $z \in \mathbb{D}$. We can always achieve the normalization

$$
\begin{equation*}
f(z)=\alpha z+a_{2} z^{2}+a_{3} z^{3}+\cdots, \quad 0<\alpha \leq 1 \tag{7.3}
\end{equation*}
$$

What are the sharp bounds for $|f(z)|$ and $\left|f^{\prime}(z)\right|$ for $z \in \mathbb{D}$? These are known for hyperbolically convex functions [MaM1] and related quantities [MeP2]. Another quantity of interest, because of its invariance properties, is the Schwarzian derivative. Barnard and colleagues [BCPW] have recently proved the conjecture of [MeP2] that

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|=2.38 \ldots
$$

is the sharp bound for the class of h-convex functions.
4. Coefficient estimates. Let f be horo-convex and normalized as in (7.3). In view of the invariance property (2.1), estimates of a_{2} and a_{3} in terms of α lead, for instance, to estimates of $S_{f}(z)$ for $z \in \mathbb{D}$. It would be interesting to determine the growth of

$$
\max \left\{\left|a_{n}\right|: f(z)=\alpha z+\cdots \text { horo-convex }\right\}
$$

as $n \rightarrow \infty$, and of related quantities. In particular, is (6.2) a good estimate?
If $f(\mathbb{D})$ is given by (6.1) then $f^{\prime} \notin H^{1}$. Is it true that $f^{\prime} \in H^{p}$ for all $p<1$? Compare Theorem 3. The proof of Theorem 6 suggests that

$$
\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i t}\right)\right| d t=O\left(\log \frac{1}{1-r}\right) \text { as } r \rightarrow 1
$$

might perhaps be true.

References

[BCPW] R. W. Barnard, L. Cole, K. Pearce, and G. B. Williams, A sharp bound on the Schwarzian derivatives of hyperbolically convex functions, Complex Variables Theory Appl. (to appear).
[BuZ] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Berlin, 1988.
[H] H. Hopf, Uber die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Math. 2 (1935), 50-62.
[J] V. Jørgensen, On an inequality for the hyperbolic measure and its applications in the theory of functions, Math. Scand. 4 (1956), 113-124.
[K] R. Kühnau, Herleitung einiger Verzerrungseigenschaften konformer und allgemeinerer Abbildungen mit Hilfe des Argumentprinzips, Math. Nachr. 39 (1969), 240-275.
[MaM1] W. Ma and D. Minda, Hyperbolically convex functions, Ann. Polon. Math. 60 (1994), 81-100.
[MaM2] , Hyperbolically convex functions II, Ann. Polon. Math. 71 (1999), 273-285.
[MeP1] D. Mejía and Ch. Pommerenke, Sobre aplicaciones conformes hiperbólicamente convexas, Rev. Colombiana Mat. 32 (1998), 29-43.
[MeP2] -, On hyperbolically convex functions, J. Geom. Anal. 10 (2000), 365-378.
[MeP3] -, On the derivative of hyperbolically convex functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), 47-56.
[MePV] D. Mejía, Ch. Pommerenke, and A. Vasilev, Distortion theorems for hyperbolically convex functions, Complex Variables Theory Appl. 44 (2001), 117-130.
[P1] Ch. Pommerenke, Univalent functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[P2] , Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
D. Mejía

Universidad Nacional
Departamento de Matemáticas
A.A. 3840 Medellín

Colombia
dmejia@unalmed.edu.co

Ch. Pommerenke
Technische Universität
Institut für Mathematik, MA 8-2
D-10623 Berlin
Germany
pommeren@math.tu-berlin.de

[^0]: Received May 6, 2004. Revision received March 22, 2005.
 This research was supported in part by the DFG (Deutsche Forschungsgemeinschaft).

