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Solving the Schröder Equation at the
Boundary in Several Variables

Fil ippo Bracci & Graziano Gentil i

0. Prologue

Let D be a domain of C containing the origin 0 and let f ∈ Hol(D, C) be a given
holomorphic function defined on D with f(0) = 0 and f ′(0) �= 0. The classical
Schröder equation [22] is the functional equation

σ � f = λσ, (0.1)

where σ is an unknown function, called a Schröder map for f , and λ is an un-
known complex number.

This equation has a solution if, for instance, |f ′(0)| < 1 (see Königs [16]). In
particular, if f ∈ Hol(	,	) is a self-map (not an automorphism) of the unit disc
	 ⊂ C, then there exists a solution σ of (0.1) that is defined and holomorphic on
	, and this solution is unique if the value of σ ′(0) is chosen. This last fact can be
stated as the possibility of “representing” the given f ∈ Hol(	,	) by means of
the linear part of its expansion at the fixed point 0.

If f ∈ Hol(	,	) has no fixed points in 	, then the situation becomes more
complicated and the existence of a solution σ of (0.1) depends on the “dynamics”
of f. It is well known (see e.g. [1]) that, if f ∈ Hol(	,	) has no fixed points in
	, then there exists a unique point τ ∈ ∂	 such that f has nontangential limit τ
at τ—that is, τ is a boundary fixed point for f—and f ′ has nontangential limit
f ′(τ ) = ατ ∈ (0,1] at τ. The real number ατ is called the boundary dilatation co-
efficient of f at τ. If ατ < 1 then the function f is called hyperbolic, otherwise it
is called parabolic. If f is hyperbolic then (0.1) has a solution. The proof of this
fact dates back to the times of Valiron [23]. If f is parabolic then there are no in-
jective solutions of (0.1), and one is led to solve the so-called Abel’s equation [3;
11; 19].

The Schröder (and Abel) equation can be written in a more general framework
as follows. Let f ∈ Hol(	,	) and consider the equation

σ � f = 
f � σ, (0.2)

where � is a complex manifold, σ : 	 → � is an unknown holomorphic func-
tion (called an intertwining map), and 
f is a biholomorphism of �. A solution
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of (0.2) gives rise to a “representation model” for f , described by the following
commuting diagram:

	
f−−−−→ 	

σ

�
�σ

�

f−−−−→ �.

.

The more information one has on the σ,�,
f appearing in this diagram, the more
useful the model turns out to be. Among many interesting papers that have ap-
peared on the subject we recall here Pommerenke [19], Baker and Pommerenke
[3], Cowen [11], Bourdon and Shapiro [6], and Poggi Corradini [18]. In this last
paper a “reversed” Schröder equation is solved.

The motivations—aside from the natural beauty contained in the problem itself—
for all such efforts to solve the Schröder (and Abel) equation in its form (0.1), or
in a more general setting as in (0.2), have to be found in the number of ques-
tions that can be affirmatively solved by means of a solution of (0.1) (and (0.2)).
By means of a Schröder map, for instance, one can study the dynamics of holo-
morphic self-maps of 	 (see e.g. [1]) or questions concerning the composition
operators associated to a given map [6; 13]. Other interesting problems that can be
attacked by means of “representation models” of type (0.2) concern the study of
families of commuting mappings [1; 9; 12; 20] and their boundary properties [4;
10]. These last results state that, roughly speaking, one can characterize the fami-
lies of holomorphic maps of	 that commute under composition as those families
of mappings that “share” a common Schröder map.

In the case of several complex variables, one can in principle follow the one-
dimensional approach of Cowen [11] in order to discover an “abstract” represen-
tation model. Namely, arguing as in [11] (with some additional hypotheses), one
can effectively solve (0.2) for a given holomorphic self-map f of the open unit
(n+ 1)-ball. In this approach the domain � turns out to be an abstract, noncom-
pact, simply connected complex manifold, so the lack of a uniformization theorem
in several complex variables makes such a model not particularly interesting.

Recently there have been several attempts to construct useful representation
models in the unit ball of C

n+1. Until now, only the cases of linear fractional map-
pings and of an “isolated inner fixed point” have been solved. In fact, in [15]
Khatskevich, Reich, and Shoikhet deal with functional equations for linear frac-
tional maps in (even infinite-dimensional) Banach spaces, while a paper by Cowen
and MacCluer [14] solves the Schröder equation for holomorphic self-maps of the
open unit (n + 1)-ball having an isolated inner fixed point (see also [5], where a
different approach to this problem is presented). Cowen and McCluer study the
equation

σ � F = Mσ, (0.3)

where F is a holomorphic self-map of the open unit ball in C
n+1 fixingO,M is an

(n+1)× (n+1)matrix, and the unknown σ is a (vector) map from the ball to C
n.
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Under the condition that dFO is semisimple, invertible, and has no eigenvalues of
modulus 1, Cowen and MacCluer characterize the existence of a Schröder map
σ, holomorphic in the ball, by means of the semisimplicity of the matrix associ-
ated to the composition operator induced by F. In [14] (and [5]) the problem of
uniqueness for the Schröder map is investigated. It is shown how (contrary to the
one-dimensional case) the Schröder map is no longer unique in general—even
when dσO is given—but rather depends on the presence of resonances among the
eigenvalues of dFO. Later, MacCluer [17] used the aforementioned results to char-
acterize families of commuting holomorphic self-mappings of the open unit ball
fixing an isolated point.

In this paper we solve the Schröder equation in several variables for holomor-
phic mappings with “no inner fixed points”.

We actually deal with (0.3) for a given holomorphic self-map F of H :=
{(z,w)∈ C

n × C : Imw > ‖z‖2} (the unbounded Siegel realization of the Eu-
clidean unit ball of C

n+1) with no fixed points in H. As in the one-dimensional
case, if F ∈ Hol(H, H) has no inner fixed points then there exists a unique point
P ∈ ∂H ∪ {∞}—which we may assume to belong to ∂H, the Wolff point of F,
such that F has nontangential limit P at P and the normal (with respect to ∂H at
P) component of dF has nontangential limit αP ∈ (0,1] at P (see e.g. [1; 21]). If
αP < 1 then we call F a hyperbolic map; otherwise F is called parabolic.

For a hyperbolic map having a “good” expansion at its Wolff point, we prove
that the Schröder map exists and is unique in an appropriate class of maps.

In order to give a better explanation of our hypotheses on the “good” expansibil-
ity of the map, we need a few definitions. For ε > 0, we say thatH is expandable
of order 1+ ε at P ∈ ∂H—and we writeH ∈ E1+ε(P )—providedH, holomorphic
on H with values in C

n+1, has a first-order expansion at P whose remainder sat-
isfies certain “directional bounds” with respect to the normal direction to ∂H at
P. Roughly speaking, a map H belongs to E1+ε(P ) if it “follows up to the order
1 + ε” the behavior “prescribed” by the Julia–Wolff–Carathéodory theorem for
a holomorphic self-map of H at its Wolff point (see Section 1 for precise defini-
tions and comments). We also define the linear part AP of H ∈ E1+ε(P ) as the
(n+1)× (n+1)matrix given by the linear part of the expansion of H at P. This
linear partAP can be thought of as the differential ofH at P, and indeed this is ex-
actly what it is in most cases. However we warn the reader that, for a map, being
expandable of order 1 + ε does not imply being differentiable, and neither would
the converse statement hold. The reason for considering the class of expandable
maps instead of the class of differentiable maps becomes clear when one tries to
follow the approach of Valiron or Bourdon–Shapiro to define the Schröder map in
the one-dimensional case (see Section 1).

If ϕ ∈ E1+ε(P ) ∩ Hol(H, H) then its linear part AP defines a natural action,
which we indicate by τϕ , on the complex tangent space to ∂H at P. For instance,
if ϕ is differentiable at P then one can think of τϕ as the action of dϕP on T C

P ∂H.

We say that the action τϕ is normal provided it is so with respect to the hermitian
structure of T C

P ∂H induced by that of C
n+1.
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With this notation, our main result is as follows.

Theorem 0.1. For some P ∈ ∂H, let ϕ ∈ E1+ε(P ) ∩ Hol(H, H). Let αP > 0 be
the boundary dilatation coefficient of ϕ at P and let AP be the linear part of ϕ
at P. Suppose that αP < 1, the action τϕ : T C

P ∂H → T C

P ∂H is normal, and its

eigenvalues are all of modulus strictly greater than α(1+ε)/2
P . Then there exists a

σ ∈ E1+ε(P ) with invertible linear part at P such that

σ � ϕ = AP σ. (0.4)

Moreover, σ̃ ∈ E1+ε(P ) with invertible linear part is another solution of (3.1) if
and only if there exists an (n+1)×(n+1) invertible matrixE such that [AP ,E ] =
0 and σ̃ = Eσ.

Thus—unlike in the case of inner fixed points—for expandable hyperbolic maps
having a boundary fixed point one can select a “special”, essentially unique, solu-
tion of the Schröder equation.

At this point we apply our construction to the study of commuting holomorphic
maps with no fixed points in H. We prove that, even in the case of a boundary fixed
point, families of maps that commute under composition can be characterized as
those families of maps that “share” a common Schröder map (see Theorems 5.1
and 5.2).

The plan of the paper is as follows. In the first section we discuss differentiable
versus expandable maps and set up the basic environment to prove our results.
Section 2 is devoted to our proof of the main theorem for hyperbolic maps with
Wolff point at infinity. In Section 3 the proof is extended to the case of any other
fixed point of ∂H. Section 4 deals with resonances and explains the reason for the
uniqueness of the Schröder map. Finally, in Section 5 we study and characterize
families of commuting holomorphic maps.

In a forthcoming paper we shall discuss Abel’s equation in several complex
variables.

The authors thank the referee for many useful comments.

1. The Class of Differentiable Maps and
the Class of Expandable Maps

In this section we define the classes of maps we are working with and study their
properties of regularity.

From now on we tacitly assume that all vectors introduced are column vec-
tors. However, to simplify notation we forgo the symbol of transposition when-
ever we need to write a column vector as a row vector in the text. Also, if v =
(v1, . . . , vn, vn+1) ∈ C

n+1 then we use the symbol v ′ to denote the first n compo-
nents of v, namely v ′ = (v1, . . . , vn)∈ C

n. Sometimes we decompose C
n+1 �Z =

(z,w) = (z1, . . . , zn,w) ∈ C
n × C; that is, z = Z ′. Moreover, we denote by 〈·, ·〉

the canonical hermitian product in C
n+1. If P ∈ ∂H then we denote by T C

P ∂H the
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complex tangent space to ∂H at P. When we refer to metric properties we will al-
ways tacitly assume T C

P ∂H to be endowed with the standard hermitian structure
induced by C

n+1.

Definition 1.1. Let P ∈ ∂H, and let ϕ : H → C
n+1 be holomorphic. We say

that ϕ belongs to the class D1(P ) if

ϕ(Z)− P = AP (Z − P)+ γ (Z), (1.1)

where AP is an (n+ 1)× (n+ 1) matrix and ‖γ (Z)‖ = ‖(γ ′(Z), γn+1(Z))‖) =
o(‖Z − P ‖) for Z near P.

We let D1
H
(P ) = D1(P ) ∩ Hol(H, H).

Therefore ϕ ∈ D1(P ) if and only if ϕ is differentiable at P and ϕ(P ) = P, and if
ϕ is given by (1.1) then AP is its differential at P. In particular, if ϕ extends C1 to
H ∪ {P } and ϕ(P ) = P then ϕ ∈ D1(P ).

By conjugating ϕ ∈ D1
H
(P ) with suitable automorphisms of H of the form

(z,w) �→ (z+ a ′,w+ an+1 + 2i〈z, a ′ 〉) with (a ′, an+1)∈ ∂H, one can always sup-
pose without loss of generality that P = O.

We begin with the following simple result.

Lemma 1.2. Let ϕ ∈ D1(O) be given by (1.1). Then ϕ is continuous on H ∪ {O},
ϕ(O) = O, and dϕZ → AO for Z → O nontangentially. In particular, if AO is
invertible, then for any nontangential region V with vertex O there exists a T =
T(V ) > 0 such that ϕ is injective on V ∩ {Z ∈ H : ‖Z‖ < T }.

Moreover, if ϕ ∈ D1
H
(O) (i.e., ϕ(H) ⊆ H) then

AO =
(
A′
O BO

O αO

)
(1.2)

for some n×nmatrixA′
O , B ∈ C

n, and αO ∈ (0,1]. In particular,AO is invertible
if and only if A′

O is.

Proof. The first assertion is obvious. Let {Zm} ⊂ H be a sequence converging to
O nontangentially. One may use the Cauchy representation formula to show that,
if δm > 0 is such that the ball of radius δm and center Zm is contained in H, then

‖dϕZm − AO‖ ≤ 1

2π
max‖X−Zm‖=δm

‖γ (Zm)‖
δm

.

Since Zm → O nontangentially, one can choose δm = O(|wm|) (where wm is the
(n+ 1)th component of Zm) and then dϕZm → AO as desired.

If AO is invertible then—because ϕ is C1 on the closure of every nontangential
region of vertex O—AO is injective on V for ‖Z‖ small enough.

The form (1.2) in case ϕ(H) ⊆ H follows directly from Rudin’s version of the
Julia–Wolff–Carathéodory theorem for the unit ball (see [1, Thm. 2.2.29] or [21,
Thm. 8.5.6]).

Remark 1.3. As the referee pointed out, it would be interesting to see whether
one can add some tangential directions to the nontangential region V for which
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the conclusions of Lemma 1.2 hold. For our purposes, however, the nontangential
approach is enough.

It is often useful to move the base point O to infinity. Toward this end one can
exploit the following transformation:

G(z,w) =
(
z

w
, − 1

w

)
. (1.3)

It follows easily that G is an automorphism of H with inverse G−1(z,w) =
(−z/w, −1/w). Furthermore, G “maps” O to ∞; that is,

lim
H�(z,w)→O

‖G(z,w)‖ = ∞.

If ϕ ∈ D1
H
(O), let F = G � ϕ �G−1. A straightforward calculation shows that

F(z,w)

=
(
A′
Oz+ B − wγ ′(−z/w, −1/w)

αO − wγn+1(−z/w, −1/w)
,

w

αO − wγn+1(−z/w, −1/w)

)
. (1.4)

We know that |γn+1| = o(‖(z/w,1/w)‖) but, in several variables, this does not
mean in general that |wγn+1| < 1. Suppose now that limw→∞|wγn+1| = 0—that
is, |γn+1(v

′, vn+1)| = o(|vn+1|) as v → 0. Then one can expand the denominator
of (1.4) as

1

αO − wγn+1
= 1

αO

[
1 + wγn+1

αO
(1 + S(z,w))

]
,

where S(z,w) → 0 for w → ∞. The first n components of F then become

F ′(z,w) = 1

αO
A′
Oz+ . ′(z,w),

where ‖. ′(z,w)‖ = o(‖z‖) = o(|w|1/2) for ‖z‖2 < Imw < |w| in H and
‖(z,w)‖ → ∞. Note that this allows the “linear part” A′∞ = A′

O/αO to be well-
defined. For the (n+ 1)th component of F we have

Fn+1(z,w) = 1

αO
w + .n+1(z,w),

where this time |.n+1(z,w)| = o(|w|) for |w| → ∞. Note that, since ‖z‖ =
o(|w|) for ‖(z,w)‖ → ∞, it follows that .n+1(z,w) also contains any term in z.
In other words, the “linear part” in z does not appear in the last component. Sum-
ming up, we have

F(z,w) = (A′
∞z+ . ′(z,w),α∞w + .n+1(z,w)), (1.5)

where α∞ = 1/αO , A∞ = A′
O/αO , ‖. ′‖ = o(|w|1/2), and |.n+1| = o(|w|) for

|w| → ∞.

On the other hand, starting from a map F of the form (1.5), a calculation analo-
gous to the previous one shows that ϕ = G−1 �F �G, forG as in (1.3), is given by

ϕ(z,w) = (A′
Oz+ γ ′(z,w),αOw + γn+1(z,w)), (1.6)
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where αO = 1/α∞, A′
O = A′∞/α∞, ‖γ ′‖ = o(|w|1/2), and |γn+1| = o(|w|) for

|w| → 0. Notice that |w| = o(|w|1/2) for (z,w) → 0 and thus “linear terms in
w”, if well-defined, are contained entirely in γ ′.

Therefore, we are led to define a new class E1 as follows.

Definition 1.4. Let F : H → C
n+1 be holomorphic. We write F ∈ E1(∞)

(resp. F ∈ E1(O)) if F has an expansion as in (1.5) (resp. as in (1.6)), where
‖. ′(z,w)‖ = o(|w|1/2) and |.n+1(z,w)| = o(|w|) for ‖(z,w)‖ → ∞ (resp.,
‖γ ′(z,w)‖ = o(|w|1/2) and |γn+1(z,w)| = o(|w|) for (z,w) → O). We let
E1

H
(∞) = E1(∞) ∩ Hol(H, H) and E1

H
(O) = E1(O) ∩ Hol(H, H).

The foregoing considerations lead to our next result.

Proposition 1.5. There exists a one-to-one correspondence between E1
H
(O) and

E1
H
(∞). The correspondence is obtained by conjugation using the automorphism

G of H given by (1.3). Moreover, if a map F ∈ E1
H
(∞) given by (1.5) corresponds

to ϕ ∈ E1
H
(O) given by (1.6), then α∞ = 1/αO and A′∞ = A′

O/α∞.

Remarks1.6. (1) In the one-dimensional case (i.e., forn = 0)D1
H
(O) = E1

H
(O),

whereas this is not the case in several variables. For instance, the map C
2 �

(z,w) �→ (0,w+ z2)∈ C
2 is in D1

H
(O) but not in E1

H
(O). Actually, if ϕ ∈ D1

H
(O)

has an expansion at O up to the second order, then ϕ ∈ E1
H
(O) if and only if

γn+1(z,w) = Kzw + bw2 + o(‖(z,w)‖2) for some n × n matrix K and b ∈ C.

Namely, γn+1 does not contain pure terms in zj zk.
(2) In [6, p. 50] the class D1

H
(∞) = E1

H
(∞) for n = 0 is denoted by C1(∞).

In fact, in that paper it is claimed that ϕ ∈ C1(∞) if and only if ϕ ′ extends con-
tinuously to H ∪ {∞}. This assertion is unfortunately not true. Indeed, ϕ(w) =
aw + i + eiw (a ≥ 0) belongs to E1

H
(∞), but the limit of ϕ ′(w) does not exist if

w → ∞ tangentially.
(3) The class E1

H
(O) (resp. E1

H
(∞)) is closed under conjugation with automor-

phisms of H fixing O (resp. ∞). This fact follows easily from the explicit form
of such automorphisms (see e.g. [1, Chap. 2.2.1] or [21, Chap. 2]).

(4) If ϕ ∈ D1
H
(O) (resp. ϕ ∈ E1

H
(O)) then the number αO appearing in (1.2)

(resp. (1.6)) is such that αO > 0, and it coincides with the boundary dilatation co-
efficient of ϕ at O. See [8] for results on this matter.

(5) By the Julia–Wolff–Carathéodory theorem for the ball (see [1, Thm. 2.2.29]
or [21, Thm. 8.5.6]) it follows that—if ϕ ∈ Hol(H, H), ϕ extendsC1 on the bound-
ary, andO is a fixed point for ϕ—then ϕ has an expression as in (1.6) with ‖γ ′‖ =
o(|w|1/2) and |γn+1| = o(|w|). Thus, in a sense, the class E1(O) contains maps
that well approximate the boundary behavior of self-maps of H near boundary
fixed points.

More generally, we give the following definition.

Definition 1.7. We say that ϕ ∈ E1(P ) for P ∈ ∂H if there exists an automor-
phism η of H mapping O to P and fixing ∞ such that η−1 � ϕ � η ∈ E1(O). As
usual, we let E1

H
(P ) = E1(P ) ∩ Hol(H, H).
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Recall that if η is an automorphism of H fixing ∞ then it has one of the following
forms:

C
n × C � (z,w) �→ (Uz+ c ′,w + cn+1 + 2i〈Uz, c ′ 〉) (1.7)

for U ∈ U(n) and c = (c ′, cn+1)∈ ∂H; or

C
n × C � (z,w) �→ (kUz, k2w) (1.8)

for U ∈ U(n) and k > 0.
From (1.7) and (1.8) one sees that, given any P ∈ ∂H, there always exists an

automorphism η of H that fixes ∞ and maps O to P. Moreover, even if ϕ : H →
C
n+1 is such that ϕ(H) �⊆ H, the composition η−1 � ϕ � η appearing in Defini-

tion 1.7 is well-formed. Finally, Remark 1.6(3) assures that Definition 1.7 is well
posed—that is, ϕ ∈ E1(P ) if and only if η−1 � ϕ � η ∈ E1(O) for every automor-
phism η of H fixing ∞.

Remark 1.8. It is a direct but tedious calculation to see that ϕ ∈ E1(P ) if and only
if ϕ has an expression as in (1.1) with |〈γ, νP 〉| = o(|〈Z−P, νP 〉|), where νP is the
complex normal to T C

P ∂H and |〈γ, τ 〉| = o(|〈Z − P, νP 〉|1/2) for any τ ∈ T C

P ∂H.

Let ϕ ∈ E1
H
(O) and define an action τϕ of ϕ on T C

O ∂H by

τϕ : T C

O ∂H � (v ′, 0) �→ (A′
Ov

′, 0)∈ T C

O ∂H.

If η is an automorphism of H and η(O) = P, then the action τϕ̃ of ϕ̃ = η�ϕ �η−1∈
E1

H
(P ) on T C

P ∂H can be defined by τϕ̃ = dηO � τϕ � dη−1
P , since (as is well known)

dηO and dη−1
P are isometries of the complex tangent spaces to ∂H.

Definition 1.9. Let ϕ ∈ E1
H
(P ). We call the induced action τϕ of ϕ on T C

P ∂H a
normal action if τϕ commutes with the adjoint action τ ∗

ϕ .

Note that the normality of a map’s action depends only on the map’s class of con-
jugacy. For a map ϕ ∈ E1

H
(O) of the form (1.6), it follows that τϕ is normal if and

only if A′
O(A

′
O)

∗ = (A′
O)

∗A′
O.

Let us define the boundary complex tangent space T C∞∂H of ∂H at ∞ by

T C

∞∂H := {v ∈ C
n+1 : vn+1 = 0},

and let us give it a hermitian structure by restricting to T C∞∂H the classical hermit-
ian structure of C

n+1.

If F ∈ E1
H
(∞) then the action τF of F on T C∞∂H := {v ∈ C

n+1 : vn+1 = 0}
given by

τF : T C

∞∂H � (v ′, 0) �→ (v ′A′
∞, 0)

is well-defined, and τF is conjugated by an isometry of T C∞∂H to τF̃ if F̃ is con-
jugated to F by means of an automorphism fixing ∞. By Proposition 1.5, if F is
conjugated to ϕ ∈ E1

H
(O), then τF is normal if and only if τϕ is normal.

When the action is normal, one can “diagonalize” F at the first order as follows.

Lemma 1.10. Let F ∈ E1
H
(∞). If τF is normal then, up to conjugations with

automorphisms of H fixing ∞, we can write
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F(z1, . . . , zn,w)

= (µ∞
1 z1 + .1(z,w), . . . ,µ

∞
n zn + .n(z,w),α∞w + .n+1(z,w)), (1.9)

where µ∞
j ∈ C are the eigenvalues of A′∞ and |µ∞

j | ≤ √
α∞ for j = 1, . . . , n.

Proof. SinceA′∞ commutes with (A′∞)∗, up to conjugation with an automorphism
of type (z,w) �→ (Uz,w) for some U ∈ U(n) we may assume that F is given by
(1.5) with A′∞ a diagonal matrix with entries µ∞

1 , . . . ,µ∞
n ∈ C. Since F(H) ⊆ H,

for any (z,w) = (z1, . . . , zn,w)∈ H with ‖z‖ sufficiently large we have

α∞ Imw + |.n+1| ≥ α∞ Imw + Im.n+1 > ‖A′
∞z+ . ′‖2 ≥ (‖A′

∞z‖ − ‖. ′‖)2;
that is,

α∞ Imw + |.n+1| > (‖A′
∞z‖ − ‖. ′‖)2. (1.10)

Let δ > 0. Setting (z,w) = (z, ‖z‖2 + i(1+ δ)‖z‖2)∈ H, dividing (1.10) by ‖z‖2,
letting z2 = · · · = zn = 0, and taking the limit for |z1| → ∞ (taking into account
that ‖. ′‖ = o(|w|1/2)), we obtain α∞(1 + δ) ≥ |µ∞

1 |2. Since this holds for any
δ > 0 we have α∞ ≥ |µ∞

1 |2, and similarly for µ∞
2 , . . . ,µ∞

n .

Lemma 1.10 and Proposition 1.5 imply the following.

Corollary 1.11. Let ϕ ∈ E1
H
(O) be given by (1.6) and assume that τϕ is nor-

mal. Moreover, assume that ϕ corresponds by conjugation to F ∈ E1
H
(∞) given

by (1.5). Let µOj be the eigenvalues of A′
O and µ∞

j the eigenvalues of A′∞ for j =
1, . . . , n. Then, up to a reordering, we have µOj = µ∞

j /α∞ for j = 1, . . . , n. In
particular, |µOj | ≤ √

αO.

In our construction we need some more regularity on the remainder of the expan-
sion of F ∈ E1(∞).

Definition 1.12. Let F ∈ E1(∞) be given by

F(z,w) = (A′
∞z+ . ′(z,w), 〈z,B∞〉 + α∞w + .n+1(z,w)), (1.11)

withB∞ ∈ C
n. We say that F ∈ E1+ε(∞) if |.n+1(Z)| ≤ M|w|1−ε and ‖. ′(Z)‖ ≤

M|w|(1−ε)/2 for some M > 0, ε > 0, and ‖Z‖ → ∞. We also set E1+ε
H
(∞) =

E1+ε(∞) ∩ Hol(H, H).

Remark 1.13. Since |〈z,B∞〉| ≤ ‖B∞‖‖z‖ ≤ ‖B∞‖|w|1/2, the term 〈z,B∞〉 in
(1.11) is actually contained in .n+1 if ε ≤ 1/2, whereas it is well-defined for ε >
1/2. Therefore, from now on we tacitly set B∞ = 0 whenever ε ≤ 1/2.

Using (1.7) and (1.8), one can check that E1+ε
H
(∞) is closed under conjugation with

automorphisms of H fixing ∞.

Definition 1.14. Let F ∈ E1+ε(∞) be given by (1.11). We call the matrix

A∞ =
(
A′∞ O

B∞ α∞

)
(1.12)

the linear part of F at ∞. We say that the linear part is invertible provided
α∞ det(A′∞) �= 0.
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We could define the class E1+ε
H
(O) by conjugating E1+ε

H
(∞) using the automor-

phism G given by (1.3). A straightforward computation then shows that ϕ ∈
E1+ε

H
(O) if and only if

ϕ(z,w) = (A′
Oz+ Cw + γ ′(z,w),αOw + γn+1(z,w)), (1.13)

where C ∈ C
n (we set C = 0 if ε ≤ 1/2) and where ‖γ ′‖ ≤ M ′|w|(1+ε)/2 and

|γn+1| ≤ M ′|w|1+ε for some M ′ > 0. Using this last fact, we define the class
E1+ε(O). Again, for ϕ ∈ E1+ε(O) given by (1.13), we call the matrix

AO =
(
A′
O C

O αO

)
(1.14)

the linear part of ϕ at O. The linear part is invertible provided αO det(A′
O) �= 0.

One can similarly define the classes E1+ε(P ) and E1+ε
H
(P ). One can also define

the linear part AP at P ∈ ∂H for a map ϕ ∈ E1+ε(P ). We leave the details to the
reader.

In the hyperbolic case (i.e., α∞ > 1) one can always dispose of the term B∞ in
(1.11), as our next result shows.

Proposition 1.15. Let F ∈ E1+ε
H
(∞) be given by (1.11). Assume α∞ > 1 and τF

normal. Then, up to conjugation with automorphisms of H, we can write

F(z1, . . . , zn,w)

= (µ∞
1 z1 + .1(z,w), . . . ,µ

∞
n zn + .n(z,w),α∞w + .n+1(z,w)), (1.15)

where µ∞
j ∈ C are the eigenvalues of A′∞, |µ∞

j | ≤ √
α∞ for j = 1, . . . , n, and

‖. ′‖ ≤ M1/2|w|(1−ε)/2 and |.n+1| ≤ M|w|1−ε for some M > 0.

Proof. If ε ≤ 1/2 then the result is contained in Lemma 1.10 (and there is no need
of the condition on α∞).

Suppose ε > 1/2. By Lemma 1.10 we can assume A′∞ to be diagonal with en-
triesµ∞

j (j = 1, . . . , n) satisfying the appropriate bounds. In particular, if α∞ > 1
then µ∞

j �= α∞ for all j. Suppose now that B∞ �= 0 and let η be an automorphism
of type (1.7) (with U = id since A′∞ is already diagonal). A direct calculation
shows that

η−1 � F � η(z,w)
= (A′

∞z+ . ′,α∞w + 〈z,B∞〉 + 2i〈(A′
∞ − α∞ id)z, c ′ 〉 + .n+1),

where (with some abuse of notation) we have also denoted by . the remainder of
η � F � η−1. Now consider the following equation in the unknown c ′:

〈z,B∞〉 + 2i〈(A′
∞ − α∞ id)z, c ′ 〉 ≡ 0 ∀z∈ C

n. (1.16)

Since det(A′∞ − α∞ id) �= 0, it follows that (1.16) has a solution c ′
o ∈ C

n. Let
con+1 ∈ C be such that (c ′

o, c
o
n+1) ∈ ∂H. If we set c ′ = c ′

o and cn+1 = con+1 in (1.7),
then by (1.16) we see that η � F � η−1 has the desired form (1.15).
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2. The Schröder Equation at Infinity

In this section we solve the Schröder equation for hyperbolic elements of the class
E1+ε

H
(∞) whose eigenvalues satisfy some relations. To simplify the notation, in

this section we may omit the “∞” subscripts and superscripts; that is, we set α =
α∞ and µj = µ∞

j .

Recall that a horosphere of center ∞ and radius R > 0 in H is given by

HR := {(z,w)∈ C
n × C : Imw > ‖z‖2 + R}.

By the well-known Wolff lemma (see e.g. [1]), for any F ∈ E1
H
(∞) given by (1.5)

and R > 0 we have
F(HR) ⊆ HαR. (2.1)

By (2.1), it follows that if F is hyperbolic (i.e., α > 1) then F has no fixed
points in H and ∞ is its Wolff point—in particular, F k(Z) → ∞ as k → ∞ for
any Z ∈ H.

Proposition 2.1. LetF ∈ E1+ε
H
(∞) be given by (1.15). Assume α > 1 and |µj | >

α(1−ε)/2 for j = 1, . . . , n. Then there exists a (nonconstant) holomorphic map σ =
(σ 1, . . . , σ n, σ n+1)∈ E1+ε(∞) such that, for any (z,w)∈ H,

σ(F(z,w)) = (µ1σ
1(z,w), . . . ,µnσ

n(z,w),ασ n+1(z,w)) (2.2)
and

σ(z,w) = (z+:′(z,w),w +:n+1(z,w)). (2.3)

Moreover, σ is the unique solution of (2.2) in the class E1+ε(∞) with the asymp-
totic expansion (2.3).

Remark 2.2. For n = 0 (i.e., F a holomorphic self-map of the unit disc of C)we
recover Bourdon–Shapiro’s theorem [6, Thm. 4.9, p. 58] under weaker hypotheses.
In fact, in Proposition 2.2—and contrary to what happens in Bourdon–Shapiro’s
theorem—we do not require that the boundary ∂H be mapped to H by F nor that
F be continuous on ∂H and univalent in H.

For the rest of this section we assume F as in the hypotheses of Proposition 2.1.
Moreover, we write the kth iterate of F as

F k(z,w) = (f 1
k (z,w), . . . , f

n
k (z,w), gk(z,w))

and set fk = (f 1
k , . . . , f

n
k ).

We begin with the following lemma.

Lemma 2.3. For the k th iterate of F, we have

f hk (z,w) = µkhz+
k−1∑
j=0

µ
k−1−j
h .h(F

j ) for h = 1, . . . , n and

gk(z,w) = αkw +
k−1∑
j=0

αk−1−j.n+1(F
j ).

(2.4)
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Furthermore,

|gk(z,w)| ≤ |w|
k−1∏
j=0

(
α + M

|gj(z,w)|ε
)
. (2.5)

Proof. Equation (2.4) follows from (1.15) by a simple induction. We point out that

|g(z,w)| ≤ |w|(α +M|w|−ε)
and then, noting that gk = gk−1 � F, (2.5) follows by induction.

Now we need the following estimates on the images of compact subsets of H under
iterates of F.

Lemma 2.4. Let t ∈ R be such that 1 < t < α. Then there exists δ = δ(t) > 0
such that

|gk(z,w)| ≥ δt k (2.6)

for any k ∈ N and (z,w) ∈ Eδ , where Eδ := {(z,w) ∈ H : |w| > δ}. Moreover,
F(Eδ) ⊂ Eδ.

Proof. By the triangle inequality we have

|g(z,w)| ≥ |w|(α −M|w|−ε).
In particular, for α > t > 1 there exists a δ > 0 such that, for any |w| > δ,

|g(z,w)| > t |w| > tδ > δ. (2.7)

Thus F(Eδ) ⊂ Eδ and, by iterating such inequality, we obtain

|gk(z,w)| > t k|w| > t kδ (2.8)

for any k ∈ N and (z,w)∈Eδ.
Lemma 2.5. Let K ⊂⊂ H be a compact set. Let α > t > 1 and δ > 0 as in
Lemma 2.4. Then there exists a k0 = k0(K) ∈ N such that, for any (z,w) ∈ K
and k ≥ k0,

|gk(z,w)| ≥ δt k−k0. (2.9)

Proof. If K ⊂ Eδ then the statement is proved by setting k0 = 0 and invoking
Lemma 2.4. So, assume K �⊂ Eδ. We claim there exists a k0 ∈ N such that

Fj(z,w)∈Eδ ∀(z,w)∈K, j ≥ k0. (2.10)

Given (2.10), it follows by (2.8) that for any k ∈ N we have

|gk+k0(z,w)| = |gk(F k0(z,w))| > t kδ.

Hence we are left to prove (2.10). SinceK is compact, there exists an R > 0 such
that K ⊂ HR. By (2.1), F(HR) ⊆ HαR and Fj(HR) ⊆ HαjR. Then, taking k0 ∈
N such that αk0R ≥ δ we have, for any (z,w)∈K,

|gk0(z,w)| ≥ Im gk0(z,w) > ‖fk0(z,w)‖2 + δ ≥ δ

and thus (2.10) follows.
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Now we are in a position to prove the existence of σ.

Proof of Proposition 2.1 (existence). For k ∈ N, let σk(z,w) = (σ 1
k (z,w), . . . ,

σ n+1
k (z,w))∈ C

n+1 be defined as

σ hk (z,w) = f hk (z,w)

µkh
for h = 1, . . . , n and

σ n+1
k (z,w) = gk(z,w)

αk
.

A direct computation shows that

σk−1 � F = (µ1σ
1
k , . . . ,µnσ

n
k ,ασ n+1

k )

and thus, if {σk} converges to a nonconstant holomorphic map σ, then σ verifies
the functional equation (2.2). We prove that {σk} converges uniformly on com-
pacta. Fix K a compact subset of H and let (z,w) ∈ K. We start looking at σ hk ,
h = 1, . . . , n. By (2.4),

σ hk (z,w) = f hk

µkh
= z+

k∑
j=1

µ
−j
h .h(F

j−1(z,w)).

We want to estimate the series on the right-hand side. By (2.5) we have

k∑
j=1

|µh|−j|.h(Fj−1(z,w))|

≤
k∑
j=1

|µh|−j‖. ′(Fj−1(z,w))‖ ≤
k∑
j=1

|µh|−jM1/2|gj−1(z,w)|(1−ε)/2

≤ M1/2|w|(1−ε)/2
k∑
j=1

|µh|−j
j−1∏
l=0

(
α + M

|gl(z,w)|ε
)(1−ε)/2

= M1/2|w|(1−ε)/2
k∑
j=1

(
α(1−ε)/2

|µh|
)j j−1∏

l=0

(
1 + M

α|gl(z,w)|ε
)(1−ε)/2

.

Now observe that the product
∏j−1

l=0(1+M/α|gl(z,w)|ε) converges for j → ∞ if∑∞
l=0 1/|gl(z,w)|ε < ∞. Let k0, t, and δ be as in Lemma 2.5; then

∞∑
l=k0

1

|gl(z,w)|ε ≤ 1

δ

∞∑
l=k0

t−(l−k0 )ε < ∞, (2.11)

and the product is actually converging uniformly onK. Since α(1−ε)/2 < |µh| (by
hypothesis), the previous argument implies that there exists a constant Ch > 0,
depending on K, such that

∞∑
j=1

|µh|−j|.h(Fj−1(z,w))| ≤ Ch|w|(1−ε)/2, (2.12)
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yielding that σ hk converges uniformly on compacta for k → ∞, h = 1, . . . , n. By
Lemma 2.4, the previous argument works for any (z,w)∈Eδ and thus there exists
aCh > 0 such that (2.12) is valid onEδ. In particular this shows that σ h = z+:h,
with the remainder:h = o(|w|1/2) for any ε > 0. Since z = O(|w|1/2), it follows
that σ h is not constant and has the claimed asymptotic expansion for any ε > 0.

Arguing similarly, we can show that for

σ n+1
k (z,w) = gk

αk
= w +

k∑
j=1

α−j.n+1(F
j−1(z,w))

we have

k∑
j=1

α−j|.n+1(F
j−1(z,w))| ≤ M|w|1−ε

k∑
j=1

α−εj
j−1∏
l=0

(
1 + M

α|gl(z,w)|ε
)1−ε

,

and hence there exists a C > 0 such that
∞∑
j=1

α−j|.n+1(F
j−1(z,w))| ≤ C|w|1−ε. (2.13)

In particular, σ n+1 is nonconstant and has the required expansion.

Our next aim is to show the uniqueness of the solution of equation (2.2). Since
the solutions of (2.2) form a C-vector space, the uniqueness claimed in Proposi-
tion 2.1 will follow at once from the following lemma.

Lemma 2.6. Let R ≥ 0, and let h = (h1, . . . ,hn+1) : HR → C
n+1 be a holomor-

phic solution of (2.2).

(1) If |hn+1(z,w)| = o(|w|) for (z,w) → ∞, then hn+1 ≡ 0.
(2) If there exists an M > 0 such that |hj(z,w)| ≤ M|w|(1−ε)/2 for (z,w) → ∞

and for some j = 1, . . . , n, then hj ≡ 0.

Proof. Assume |hn+1(z,w)| = o(|w|). We want to show that hn+1 ≡ 0. If not,
then by (2.2) and (2.1) we have that, for any (z,w)∈ HR ,

hn+1(F
m(z,w)) = αmhn+1(z,w) (2.14)

for all m ∈ N. Dividing both sides of (2.14) by gm(z,w) and taking the limit as
m → ∞, we have

lim
m→∞

|hn+1(F
m(z,w))|

|gm(z,w)| = lim
m→∞

αm|hn+1(z,w)|
|gm(z,w)| . (2.15)

Since |gm(z,w)| → ∞ by (2.1), the left-hand side of (2.15) is such that

lim
m→∞

|hn+1(F
m(z,w))|

|gm(z,w)| = lim
m→∞

o(|gm(z,w)|)
|gm(z,w)| = 0.

As for the right-hand side of (2.15), by (2.4) we have
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lim
m→∞

αm|hn+1(z,w)|
|gm(z,w)| = |hn+1(z,w)| lim

m→∞
1∣∣w + ∑m−1

j=0 α
−(1+j).n+1(Fj(z,w))

∣∣
≥ |hn+1(z,w)|

|w| + ∑∞
j=0 α

−(1+j)|.n+1(Fj(z,w))|

≥ |hn+1(z,w)|
|w| + C|w|1−ε > 0,

where in the last line we used (2.13). Thus hn+1 ≡ 0.
Now assume |hj(z,w)| ≤ M|w|(1−ε)/2 for some j = 1, . . . , n. Let β > (1−ε)/2

be such that |µj | > αβ , and let (z,w)∈ HR. From (2.2) we have

lim
m→∞

|hj(F m(z,w))|
|gm(z,w)|β = lim

m→∞
|µj |m|hj(z,w)|

|gm(z,w)|β . (2.16)

The left-hand side of (2.16) is zero for |hj(F m(z,w))| = o(|gm(z,w)|β). As for
the right-hand side, if hj �≡ 0 then by (2.5) we have

lim
m→∞

|µj |m|hj(z,w)|
|gm(z,w)|β ≥ lim

m→∞
|hj(z,w)|

|w|β |µj |−m
m−1∏
h=0

(
α + M

|gh(z,w)|ε
)β

= lim
m→∞

|hj(z,w)|

|w|β
(
αβ

|µj |
)m m−1∏

h=0

(
1 + M

α|gh(z,w)|ε
)β = +∞

because the infinite product is converging, as follows from (2.11). Therefore hj ≡
0, and this completes the proof.

Now we collect some properties of the solution of (2.2) given by Proposition 2.1.

Proposition 2.7. Let σ be the solution of (2.2) given by Proposition 2.1. Then
the following statements hold.

(1) Im σ n+1(z,w) > 0 for any (z,w)∈ H.

(2) If |µj | = √
α for j = 1, . . . , n, then σ(H) ⊆ H. In particular, in this case

σ ∈ E1+ε
H
(∞).

(3) If µj = µk then σj = σ k � Uj,k , where Uj,k is a unitary matrix that swaps zj
for zk and keeps fixed the other variables.

Proof. For any k ∈ N,

Im σ n+1
k = Im gk(z,w)

αk
>

‖fk(z,w)‖2

√
α2k

> 0

and thus Im σ n+1 > 0. Moreover, if |µ1| = · · · = |µn| = √
α then we have

‖fk(z,w)‖2/
√
α2k = ‖(σ 1

k , . . . , σ nk )‖2 and σk(H) ⊆ H, from which part (2) fol-
lows. Part (3) follows easily from the uniqueness of σ.
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Looking at the proof of Proposition 2.1, without any assumption on theµj one can
build a one-dimensional model along the normal direction. Note that, in the proof
of Lemma 2.6, the uniqueness along the normal direction is obtained in a slightly
larger class. Thus we have our next result.

Proposition 2.8. Let F ∈ E1+ε
H
(∞) be given by (1.15) and assume that α > 1.

Then there exists a θ : H → {ζ ∈ C : Im ζ > 0} holomorphic such that

θ(F(z,w)) = αθ(z,w) (2.17)

and θ(z,w) = w + :(z,w) with |:(z,w)| ≤ M|w|1−ε for some M > 0. More-
over, the map θ is the unique solution of (2.17) such that θ(z,w)− w = o(|w|).
We end this section by finding all the (regular) solutions to the Schröder equation
at ∞.

Proposition 2.9. LetF ∈ E1+ε
H
(∞) be given by (1.11). Suppose τF is normal and

α∞ > 1. Let µ∞
1 , . . . ,µ∞

n denote the eigenvalues of A′∞ and suppose that |µ∞
j | >

α
(1−ε)/2
∞ for every j. Then there exists a σ0 ∈ E1+ε(∞) with invertible linear part

at ∞ that solves the Schröder equation

σ � F = A∞σ.

If σ̃ ∈ E1+ε(∞) with invertible linear part at ∞ is a solution of the same Schröder
equation, then there exists an (n + 1) × (n + 1) invertible matrix E such that
[A∞,E ] = 0 and σ̃ = Eσ0.

Proof. By Proposition 1.15, there exists an automorphism η of H fixing ∞ such
that F̃ = η �F �η−1 is given by (1.15). Then Proposition 2.1 gives a solution σD of
the diagonal Schröder equation σD � F̃ = DσD , whereD is a diagonal matrix with
entries µ1, . . . ,µn,α∞. Note that, even if (in general) σD(H) �⊂ H, the map σ0 =
η−1 � σD � η is well-defined (recall the possible forms (1.7) and (1.8) for η). Since
η−1Dη = A∞, it is easy to see that σ0 ∈ E1+ε(∞) is one solution of the Schröder
equation. Using the conjugation with η, we see that any solution of the Schröder
equation corresponds to a solution of (2.2). From this and Lemma 2.6, the asser-
tion follows.

3. The Schröder Equation at a Finite Boundary Point

Theorem 3.1. Let ϕ ∈ E1+ε
H
(P ) for some P ∈ ∂H. Let αP > 0 be the boundary

dilatation coefficient of ϕ at P and let AP be the linear part of ϕ at P. Suppose
that αP < 1, the action τϕ : T C

P ∂H → T C

P ∂H is normal, and its eigenvalues are

all of modulus strictly greater than α(1+ε)/2
P . Then there exists a σ ∈ E1+ε(P ) with

invertible linear part at P such that

σ � ϕ = AP σ. (3.1)
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Moreover, σ̃ ∈ E1+ε(P ) with invertible linear part is another solution of (3.1) if
and only if there exists an (n+1)×(n+1) invertible matrixE such that [AP ,E ] =
0 and σ̃ = Eσ.

Proof. LetG be an automorphism of H that mapsP to ∞ and letF = G�ϕ �G−1.

Then F ∈ E1+ε
H
(∞) and one can easily check that it satisfies all the hypotheses of

Proposition 2.9; thus we have a solution σ0 of the Schröder equation for F at ∞.

Since σ = G−1�σ0 �G is well-defined by Proposition 2.7(1), it turns out that σ has
all the required properties. It is obvious that if [E,AP ] = 0 then Eσ ∈ E1+ε(P )
is still a solution of (3.1). However, one cannot use directly Proposition 2.9 for
concluding that all the (regular) solutions of (3.1) are of that form Eσ. The point
is that if σ̃ ∈ E1+ε(P ) is a solution of (3.1) then it is possible that σ̃(H) contains
the indeterminacy locus of any automorphism of H that maps P to ∞. However,
using linear automorphisms as in (1.7) and (1.8), one can assume P = O. Write
σ̃n+1(z,w) = tw + κn+1 with t ∈ C and |κn+1| = o(|w|) for (z,w) → O. Note
that σ̃ has invertible linear part atO and so t �= 0; also, by the triangle inequality,
there exists a δ > 0 such that for |w| < δ we have

|σ̃n+1(z,w)| > r|w|
for some r > 0. Thus, for (z,w) ∈ H with |w| < δ, it follows that σ̃n+1 �= 0.
Hence there exists anR > 0 such thatG� σ̃ �G−1 is a well-defined solution of the
Schröder equation for F at ∞ on HR with the appropriate bound on the remainder.
Then an application of Lemma 2.6 shows that σ̃ = Eσ for some E commuting
with AO , as desired.

Remark 3.2. There exists a σ ∈ E1+ε(P ), unique in the class E1+ε(P ), that is a
solution of (3.1) with linear part at P equal to the identity. Indeed, if σ0 ∈ E1+ε(P )
is any solution of (3.1) with invertible linear part E then clearly [E,Ap] = 0, and
thus σ = E−1σ0 is the Schröder map we seek.

4. Resonances

Let ϕ ∈ E1+ε
H
(O) be given by (1.13) and assume that ϕ satisfies the hypotheses of

Theorem 3.1. Let µ1, . . . ,µn be the eigenvalues of A′
O (we omit the superscript

O). Recall that, according to Poincaré–Dulac (see e.g. [2]), the eigenvalue µj for
j = 1, . . . , n is resonant if there exist k1, . . . , kn, s ∈ N with k1 + · · · + kn + s ≥ 2
such that

µj = µ
k1
1 · · ·µknn α sO. (4.1)

However, since α(1+ε)/2
O < |µj | ≤ α

1/2
O and αO < 1 by hypothesis, it follows that

µj cannot be resonant for j = 1, . . . , n. Indeed, if (4.1) were true then we would
have

|µj | = |µ1|k1 · · · |µn|knα sO ≤ α
(k1+···+kn)/2+s
O ≤ α

(1+ε)/2
O .

Therefore, under our hypothesis on the µj , the eigenvalues µj are not resonant.
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Now we examine the eigenvalue αO. Writing the resonant condition αO =
µ
k1
1 · · ·µknn α sO for k1 +· · ·+kn+ s ≥ 2 and arguing as before, it follows that αO is

resonant if and only if s = 0 and there exist j1, j2 ∈ {1, . . . , n} (possibly j1 = j2)

such that |µj1µj2 | = αO. Hence the resonances of αO are all of degree 2. Let σ
be one of the solutions of (3.1) given by Theorem 3.1. For cjk ∈ C, let us consider
a map of the form

g(z,w) =
(
z,w +

n∑
j,k=1

cjk zj zk

)
,

where cj,k = 0 if |µjµk| < αO. Clearly, g �σ is still a solution of (3.1); but g �σ /∈
E1(O). This means that, contrary to what happens to the case of an inner fixed
point (see [14]), there exists (up to multiplication with matrices) a unique special
solution of the Schröder equation.

5. Applications to Commuting Mappings

In this section we apply the theory developed so far to the study of commuting
holomorphic mappings without fixed points in the ball. We will find results anal-
ogous to those stated in [17] for the case of maps with inner fixed points.

By [7], two commuting holomorphic maps of the ball have generically the same
Wolff point. That is to say, two commuting holomorphic self-maps of the ball have
the same Wolff point unless they fix (as a set) the complex slice joining the two
different Wolff points and are hyperbolic automorphisms of such a slice.

Theorem 5.1. Let f , g ∈ E1+ε
H
(P ) for some P ∈ ∂H. Assume that f � g =

g � f and that P is the Wolff point of both f and g. Moreover, suppose that
the boundary coefficient αP (f ) of f at P is strictly smaller than 1, the action
τf : T C

P ∂H → T C

P ∂H is normal, and its eigenvalues are all of modulus strictly
greater than αP (f )(1+ε)/2. If g has invertible linear part at P, then f , g share a
common Schröder map with invertible linear part at P.

Proof. Let Af and Ag denote (respectively) the linear part of f and g at P. Let
σ ∈ E1+ε(P ) be the solution of the Schröder equation σ � f = Af σ given by Re-
mark 3.2. Then

(σ � g) � f = σ � f � g = Af (σ � g).
Hence σ �g ∈ E1+ε(P ) is another solution of the Schröder equation of f. Moreover,
the linear part of σ � g at P is Ag , which is invertible. Thus, by the uniqueness
statement of Theorem 3.1, it follows that σ � g = Agσ as desired.

The converse of Theorem 5.1 holds in the following form.

Theorem 5.2. Let f , g ∈ E1
H
(P ), and let Af and Ag be the linear part of f and

g, respectively. Assume that [Af ,Ag] = 0. If there exists a σ ∈ D1(P ) with in-
vertible linear part at P such that both σ � f = Af σ and σ � g = Agσ hold, then
f � g = g � f.
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Proof. Since

σ � (f � g) = Af (σ � g) = AfAgσ = AgAf σ = Ag(σ � f ) = σ � (g � f ),
we have σ � (f � g)(Z) = σ � (g � f )(Z) for any Z ∈ H. By Lemma 1.2, the map
σ is eventually injective in any nontangential region at P. Since f , g ∈ E1

H
(P ), it

follows that f � g has finite boundary dilatation coefficient at P and (nontangen-
tially) fixes P (see [1; 8]). Therefore, by the Julia-type lemma for the ball (see [1;
21]) we can take an open set W ⊂ H such that (f � g)(W ) is contained in one re-
gion of injectivity of σ, and thus f � g = g � f.
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