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A Note on Mappings of Finite Distortion:
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1. Introduction

We consider Sobolev mappings f ∈ W 1,1
loc (�, Rn), where � is a connected, open

subset of R
n and n ≥ 2. Thus, for almost every x ∈ �, we can speak of the lin-

ear transform Df(x) : R
n → R

n, called the differential of f at the point x. The
Jacobian determinant J(x, f ) is the determinant of the matrix Df(x): J(x, f ) =
detDf(x). We say that a mapping f : � → R

n has finite distortion if the follow-
ing three conditions are satisfied:

(i) f ∈W 1,1
loc (�, Rn);

(ii) the Jacobian determinant J(x, f ) of f is locally integrable; and
(iii) there is a measurable function KO = KO(x) ≥ 1, finite almost everywhere,

such that f satisfies the distortion inequality

|Df(x)|n ≤ KO(x)J(x, f ) a.e. x ∈�. (1)

Here we have used the operator norm of the differential matrix, defined by

|Df(x)| = sup{|Df(x)h| : |h| = 1}.
We arrive at the usual definition of a mapping of bounded distortion, also called
a quasiregular mapping, when we additionally require that KO ∈ L∞(�). This
class of mappings can be traced back to the work of Reshetnyak [12]. Mappings
of bounded distortion are a natural generalization of analytic functions to higher
dimensions. Undoubtedly, the theory of conformal mappings, or more generally
of analytic functions, has also expanded in many other different directions.

In [12] Reshetnyak studied the continuity of mappings of bounded distortion.
He proved that they are locally Hölder continuous with the exponent 1/K, where
K is the L∞-norm of KO. Here and in what follows, continuity for a Sobolev
function f means that f can be modified in a set of Lebesgue measure zero to be
continuous. For each constant K ≥ 1, the radial stretching mapping

f(x) = x|x|1/K−1
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shows the sharpness of the result, in the sense that the Hölder exponent 1/K can-
not be improved. The theory of mappings of bounded distortion is by now well
understood; see the monographs by Reshetnyak [13], Rickman [14], and Iwaniec
and Martin [4].

Recently, mappings of finite distortion with exponentially integrable distortion
KO , that is,

exp{λKO} ∈L1
loc(�) for some λ > 0, (2)

have been shown to share many nice properties of mappings of bounded distor-
tion (see e.g. [2; 3; 6; 7]). In particular, Iwaniec, Koskela and Onninen proved in
[3] that, under this integrability assumption on the distortion function, a mapping
of finite distortion is continuous. It has a modulus of continuity of the type

|f(x)− f(y)| ≤ C

log log1/n(ee + 1/|x − y|) . (3)

It may be observed that the modulus of continuity does not depend on the con-
stant λ. In fact, the modulus of continuity should get better when λ increases. In
[9], Koskela and Onninen showed that the inequality (3) is far from optimal and
also established the following essentially sharp modulus of continuity for such
mappings:

|f(x)− f(y)| ≤ C

logλ/n−ε(1/|x − y|) (4)

for every small ε > 0. Here the constant C depends also on ε. A logarithmic
modulus of continuity in the plane case was obtained earlier by David in [1] and
by Iwaniec and Martin in [5], but with a worse exponent. For λ > 0, the radial
stretching mapping

f(x) = x

|x|
(

log
1

|x| log log
1

|x|
)−λ/n

,

defined on the ball B(0, e−e), shows that the modulus of continuity estimate (4) is
essentially sharp. Namely, we can not replace the exponent λ/n − ε by λ/n + ε.

All of this raises the following question: Is the modulus of continuity estimate (4)
true with the exponent λ/n? The purpose of this note is to give an affirmative an-
swer to this question.

Theorem 1. Let f : � → R
n be a mapping of finite distortion whose distortion

function KO satisfies, for some λ > 0,

K :=
∫
B

exp{λKO(x)} dx < ∞, (5)

where B = B(x0,R) ⊂⊂ �. Then, for every x, y ∈B
(
x0,

(
R

240

)e[ n
ωn−1

K
](1−e)/n)

,
we have the estimate
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|f(x)− f(y)| ≤ CK,R,n,λ

logλ/n
(

nK
ωn−1|x−y|n

)
(∫

B

J(z, f ) dz

)1/n

, (6)

where ωn−1 is the surface measure of the unit sphere ∂B(0,1).

2. A More General Theorem

Theorem 1 will be obtained as a corollary to a more general result. Let us replace
the assumption exp{λKO} ∈ L1

loc(�) with exp{A(KO)} ∈ L1
loc(�), where A is an

Orlicz function. We call an infinitely differentiable and strictly increasing function
A : [0, ∞) → [0, ∞) with A(0) = 0 and lim t→∞ A(t) = ∞ an Orlicz function.
We will assume for all �′ ⊂⊂ � that∫

�′
exp{A(KO(x))} dx < ∞, (7)

where A satisfies∫ ∞

1

A′(s)
s

ds = 1

β

∫ [C/exp{A(1)}]1/β

0

1

tA−1(logC/t β)
dt = ∞ (8)

for all C,β > 0. We wish to warn the reader that conditions (7) and (8) do not
require KO to be even locally integrable and thus an additional technical assump-
tion on A must be posed. To fill up this gap, we assume that A satisfies also the
following condition:

∃t0 ∈ (0, ∞) : A′(t)t → ∞ ∀t ≥ t0. (9)

It was proven in [8] that, under these assumptions on the distortion function, a
mapping f of finite distortion is continuous. It was also shown in [8] that the as-
sumption (8) is sharp.

Let A be an Orlicz function satisfying the integrability condition (8), n ∈
{2, 3, 4, . . . }, K > 0, and β > 0. We introduce the strictly increasing function
α(r) = αA,K,n,β(r) defined for 0 < rn < nK/ωn−1 by the formula

αA,K,n,β(r) = sup

{
t ∈

(
0,
r

2

)
:
∫ r/2

t

1

sA−1(log nK/ωn−1sn)
ds ≥ β

}
. (10)

Now we can formulate our main theorem. The argument in [9, p. 1911] shows that
this technical version easily yields Theorem 1; for a slightly simpler version see
[9, Rem. 4.4].

Theorem 2. Assume that an Orlicz function A satisfies both (8) and (9). Let
f : � → R

n be a mapping of finite distortion whose distortion function satisfies

K =
∫
B

exp{A(KO(x))} dx < ∞, (11)

where B = B(x0,R) ⊂⊂ �. Then
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|f(x)− f(y)| ≤ CA,K(n,β)

(∫
B

J(z, f ) dz

)1/n

× exp

{
−

∫ R/80

α−1(|x−y|)
dt

tA−1(logCA,n(nK/ωn−1t n))

}
(12)

whenever x, y ∈B(x0,α(R/80)).

It was shown in [9, Ex. 5.1] that the modulus of continuity in Theorem 2 cannot be
improved on. Notice that the role of α−1 is not significant when |x − y| is small
(see [9, Rem. 4.4]).

As in [9], for the analogue of Theorem 2 we will split the proof of Theorem 2
into two parts, Lemma 1 and Lemma 2. Lemma 1 is proved in [9, Lemma 4.2], so
here we need only verify Lemma 2.

Lemma 1. Under the hypotheses of Theorem 2, we have

|f(x)− f(y)|n
∫ R/2

r

dt

tA−1(log nK/ωn−1t n)

≤ CA,K(n)

∫
B(x0,R)

J(z, f ) dz (13)

whenever x, y ∈B(x0, r) ⊂ B(x0,R/2).

Lemma 2. Under the hypotheses of Theorem 2, we have
∫
B(x0,r)

J(x, f ) dx ≤ exp

{
−n

∫ R/e3

r

dt

tA−1(logCA,n(ε)(nK/ωn−1t n))

}

×
∫
B(x0,R)

J(x, f ) dx (14)

whenever r ∈ (0,R/e3).

3. Proof of Lemma 2

A crucial tool in establishing the sharp modulus of continuity in our case is the
following integral-type isoperimetric inequality:

∫
B(x0,s)

J(x, f ) dx ≤
(∫

∂B(x0,s)

|Df |n−1 dσ

)n/(n−1)

(15)

for almost every 0 < s < dist(x0, ∂�), where dσ is the area element of the sphere
∂B(x0, s) and ∫

E

g dµ = 1

µ(E)

∫
E

g dµ

denotes the average integral. We refer to [11, Thm. 1.1] for the proof of inequal-
ity (15). Under the assumptions of Theorem 2, the assumptions of [11, Thm. 1.1]
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are fulfilled and hence (15) holds; see [8] and also [10]. The interested reader may
find more details in [9, Sec. 3].

Write Bs = B(x0, s). The distortion inequality (1) together with Hölder’s in-
equality applied to the right-hand side of (15) yields

∫
Bs

J(x, f ) dx ≤
(∫

∂Bs

Kn−1
O dσ

)1/(n−1) ∫
∂Bs

J(x, f ) dσ. (16)

Hence, the following elementary differential equation is satisfied:

d

ds

(
log

(∫
Bs

J(x, f ) dx

))
≥ n

s
( ∫

∂Bs
Kn−1
O dσ

)1/(n−1)
. (17)

By the assumption (9), it is easy to prove that there exists a τ0 = τ0(n, A) > 0
such that the functions τ → exp{A(τ )} and τ → exp{A(τ 1/(n−1))} are convex on
(τ0, ∞); see [9, Lemma 2.4]. We set an auxiliary distortion function

K̃O(x) =
{
KO(x) if KO(x) > τ0,

τ0 if KO(x) ≤ τ0.
(18)

The preceding differential equation gets the slightly weaker form

d

ds

(
log

(∫
Bs

J(x, f ) dx

))
≥ n

s
( ∫

∂Bs
K̃ n−1
O dσ

)1/(n−1)
. (19)

The desired decay estimate (14) on the integrals of Jacobians of f over balls then
follows if we can show that∫ R

r

ds

s
( ∫

∂Bs
K̃ n−1
O dσ

)1/(n−1)
≥

∫ R/e3

r

dt

A−1(log(nCA,K/ωn−1t n))
. (20)

Toward this end, let iR and ir be integers such that logR − 1 < iR ≤ logR and
log r ≤ ir < log r + 1. We have

∫ R

r

ds

s
( ∫

∂Bs
K̃ n−1
O dσ

)1/(n−1)
≥

iR−1∑
i=ir

∫ e i+1

e i

ds

s
( ∫

∂Bs
K̃ n−1
O dσ

)1/(n−1)
. (21)

We estimate each integral in the right-hand side of (21) in the following way. Fix
i ∈ {ir , ir + 1, . . . , iR − 1}. Changing the variable by setting s = e t, we have

∫ e i+1

e i

ds

s
( ∫

∂Bs
K̃ n−1
O dσ

)1/(n−1)
=

∫ i+1

i

dt( ∫
∂Be t

K̃ n−1
O dσ

)1/(n−1)
. (22)

Since the function τ → 1/τ defined on (0, ∞) is convex, the Jensen inequal-
ity yields

∫ i+1

i

dt( ∫
∂Be t

K̃ n−1
O dσ

)1/(n−1)
≥

[ ∫ i+1

i

(∫
∂Be t

K̃ n−1
O dσ

)1/(n−1)

dt

]−1

. (23)
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Recall that the functions τ → exp{A(τ 1/(n−1))} and τ → exp{A(τ )} are convex
on (τ0, ∞). We apply the Jensen inequality twice to obtain that

∫ i+1

i

(∫
∂Be t

K̃ n−1
O dσ

)1/(n−1)

dt

≤
∫ i+1

i

A−1

(
log

∫
∂Be t

exp{A(K̃O)} dσ
)
dt

≤ A−1

(
log

∫ i+1

i

∫
∂Be t

exp{A(K̃O)} dσ dt
)

= A−1

(
log

∫ e i+1

e i

1

s

∫
∂Bs

exp{A(K̃O)} dσ ds
)
. (24)

We made a change of variable in the last step. Now an easy computation gives
∫ e i+1

e i

1

s

∫
∂Bs

exp{A(K̃O)} ds ≤ eτ0K

ωn−1eni
. (25)

Combining inequalities (21), (22), (23), (24), and (25), we conclude that

∫ R

r

ds

s
( ∫

∂Bs
[K̃O(x) dx]n−1

)1/(n−1)
≥

iR−1∑
i=ir

[
A−1

(
log

(
eτ0K

ωn−1eni

))]−1

≥
∫ iR−2

ir−1

[
A−1

(
log

(
eτ0K

ωn−1ens

))]−1

ds

≥
∫ R/e3

r

[
tA−1

(
log

(
eτ0K

ωn−1t n

))]−1

dt,

which proves (20).
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