A Note on Mappings of Finite Distortion: The Sharp Modulus of Continuity

JANI ONNINEN & XIAO ZHONG

1. Introduction

We consider Sobolev mappings $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^n)$, where Ω is a connected, open subset of \mathbb{R}^n and $n \ge 2$. Thus, for almost every $x \in \Omega$, we can speak of the linear transform $Df(x) \colon \mathbb{R}^n \to \mathbb{R}^n$, called the differential of f at the point x. The Jacobian determinant J(x, f) is the determinant of the matrix $Df(x) \colon J(x, f) =$ det Df(x). We say that a mapping $f \colon \Omega \to \mathbb{R}^n$ has finite distortion if the following three conditions are satisfied:

(i)
$$f \in W^{1,1}_{\text{loc}}(\Omega, \mathbb{R}^n);$$

- (ii) the Jacobian determinant J(x, f) of f is locally integrable; and
- (iii) there is a measurable function $K_0 = K_0(x) \ge 1$, finite almost everywhere, such that *f* satisfies the distortion inequality

$$|Df(x)|^n \le K_O(x)J(x,f) \quad \text{a.e. } x \in \Omega.$$
(1)

Here we have used the operator norm of the differential matrix, defined by

$$|Df(x)| = \sup\{|Df(x)h| : |h| = 1\}.$$

We arrive at the usual definition of a mapping of bounded distortion, also called a quasiregular mapping, when we additionally require that $K_0 \in L^{\infty}(\Omega)$. This class of mappings can be traced back to the work of Reshetnyak [12]. Mappings of bounded distortion are a natural generalization of analytic functions to higher dimensions. Undoubtedly, the theory of conformal mappings, or more generally of analytic functions, has also expanded in many other different directions.

In [12] Reshetnyak studied the continuity of mappings of bounded distortion. He proved that they are locally Hölder continuous with the exponent 1/K, where K is the L^{∞} -norm of K_O . Here and in what follows, continuity for a Sobolev function f means that f can be modified in a set of Lebesgue measure zero to be continuous. For each constant $K \ge 1$, the radial stretching mapping

$$f(x) = x|x|^{1/K-1}$$

Received March 23, 2004. Revision received February 23, 2005.

Xiao Zhong was partially supported by the Academy of Finland, project 207288, and Onninen by the National Science Foundation grant DMS-0400611. Both authors thank the 989th AMS meeting in Boulder, Colorado (2003) for bringing us together and for giving a nice environment to write this note.

shows the sharpness of the result, in the sense that the Hölder exponent 1/K cannot be improved. The theory of mappings of bounded distortion is by now well understood; see the monographs by Reshetnyak [13], Rickman [14], and Iwaniec and Martin [4].

Recently, mappings of finite distortion with exponentially integrable distortion K_0 , that is,

$$\exp\{\lambda K_O\} \in L^1_{\text{loc}}(\Omega) \quad \text{for some } \lambda > 0, \tag{2}$$

have been shown to share many nice properties of mappings of bounded distortion (see e.g. [2; 3; 6; 7]). In particular, Iwaniec, Koskela and Onninen proved in [3] that, under this integrability assumption on the distortion function, a mapping of finite distortion is continuous. It has a modulus of continuity of the type

$$|f(x) - f(y)| \le \frac{C}{\log \log^{1/n} (e^e + 1/|x - y|)}.$$
(3)

It may be observed that the modulus of continuity does not depend on the constant λ . In fact, the modulus of continuity should get better when λ increases. In [9], Koskela and Onninen showed that the inequality (3) is far from optimal and also established the following essentially sharp modulus of continuity for such mappings:

$$|f(x) - f(y)| \le \frac{C}{\log^{\lambda/n - \varepsilon} (1/|x - y|)} \tag{4}$$

for every small $\varepsilon > 0$. Here the constant *C* depends also on ε . A logarithmic modulus of continuity in the plane case was obtained earlier by David in [1] and by Iwaniec and Martin in [5], but with a worse exponent. For $\lambda > 0$, the radial stretching mapping

$$f(x) = \frac{x}{|x|} \left(\log \frac{1}{|x|} \log \log \frac{1}{|x|} \right)^{-\lambda/n},$$

defined on the ball $B(0, e^{-e})$, shows that the modulus of continuity estimate (4) is essentially sharp. Namely, we can not replace the exponent $\lambda/n - \varepsilon$ by $\lambda/n + \varepsilon$. All of this raises the following question: Is the modulus of continuity estimate (4) true with the exponent λ/n ? The purpose of this note is to give an affirmative answer to this question.

THEOREM 1. Let $f: \Omega \to \mathbb{R}^n$ be a mapping of finite distortion whose distortion function K_0 satisfies, for some $\lambda > 0$,

$$K := \int_{B} \exp\{\lambda K_{O}(x)\} dx < \infty,$$
(5)

where $B = B(x_0, R) \subset \Omega$. Then, for every $x, y \in B(x_0, \left(\frac{R}{240}\right)^e \left[\frac{n}{\omega_{n-1}}K\right]^{(1-e)/n})$, we have the estimate

$$|f(x) - f(y)| \le \frac{C_{K,R,n,\lambda}}{\log^{\lambda/n} \left(\frac{nK}{\omega_{n-1}|x-y|^n}\right)} \left(\int_B J(z,f) \, dz\right)^{1/n},\tag{6}$$

where ω_{n-1} is the surface measure of the unit sphere $\partial B(0,1)$.

2. A More General Theorem

Theorem 1 will be obtained as a corollary to a more general result. Let us replace the assumption $\exp\{\lambda K_O\} \in L^1_{loc}(\Omega)$ with $\exp\{\mathcal{A}(K_O)\} \in L^1_{loc}(\Omega)$, where \mathcal{A} is an Orlicz function. We call an infinitely differentiable and strictly increasing function $\mathcal{A}: [0, \infty) \to [0, \infty)$ with $\mathcal{A}(0) = 0$ and $\lim_{t\to\infty} \mathcal{A}(t) = \infty$ an Orlicz function. We will assume for all $\Omega' \subset \subset \Omega$ that

$$\int_{\Omega'} \exp\{\mathcal{A}(K_O(x))\}\,dx < \infty,\tag{7}$$

where \mathcal{A} satisfies

$$\int_{1}^{\infty} \frac{\mathcal{A}'(s)}{s} \, ds = \frac{1}{\beta} \int_{0}^{\left[C/\exp\{\mathcal{A}(1)\}\right]^{1/\beta}} \frac{1}{t\mathcal{A}^{-1}(\log C/t^{\beta})} \, dt = \infty \tag{8}$$

for all $C, \beta > 0$. We wish to warn the reader that conditions (7) and (8) do not require K_0 to be even locally integrable and thus an additional technical assumption on A must be posed. To fill up this gap, we assume that A satisfies also the following condition:

$$\exists t_0 \in (0,\infty) : \mathcal{A}'(t)t \to \infty \ \forall t \ge t_0.$$
(9)

It was proven in [8] that, under these assumptions on the distortion function, a mapping f of finite distortion is continuous. It was also shown in [8] that the assumption (8) is sharp.

Let \mathcal{A} be an Orlicz function satisfying the integrability condition (8), $n \in \{2, 3, 4, ...\}, K > 0$, and $\beta > 0$. We introduce the strictly increasing function $\alpha(r) = \alpha_{\mathcal{A},K,n,\beta}(r)$ defined for $0 < r^n < nK/\omega_{n-1}$ by the formula

$$\alpha_{\mathcal{A},K,n,\beta}(r) = \sup\left\{t \in \left(0,\frac{r}{2}\right) : \int_{t}^{r/2} \frac{1}{s\mathcal{A}^{-1}(\log nK/\omega_{n-1}s^{n})} \, ds \ge \beta\right\}.$$
(10)

Now we can formulate our main theorem. The argument in [9, p. 1911] shows that this technical version easily yields Theorem 1; for a slightly simpler version see [9, Rem. 4.4].

THEOREM 2. Assume that an Orlicz function \mathcal{A} satisfies both (8) and (9). Let $f: \Omega \to \mathbb{R}^n$ be a mapping of finite distortion whose distortion function satisfies

$$K = \int_{B} \exp\{\mathcal{A}(K_{O}(x))\} dx < \infty,$$
(11)

where $B = B(x_0, R) \subset \subset \Omega$. Then

$$|f(x) - f(y)| \le C_{\mathcal{A},K}(n,\beta) \left(\int_{B} J(z,f) \, dz \right)^{1/n} \\ \times \exp\left\{ -\int_{\alpha^{-1}(|x-y|)}^{R/80} \frac{dt}{t\mathcal{A}^{-1}(\log C_{\mathcal{A},n}(nK/\omega_{n-1}t^{n}))} \right\}$$
(12)

whenever $x, y \in B(x_0, \alpha(R/80))$.

It was shown in [9, Ex. 5.1] that the modulus of continuity in Theorem 2 cannot be improved on. Notice that the role of α^{-1} is not significant when |x - y| is small (see [9, Rem. 4.4]).

As in [9], for the analogue of Theorem 2 we will split the proof of Theorem 2 into two parts, Lemma 1 and Lemma 2. Lemma 1 is proved in [9, Lemma 4.2], so here we need only verify Lemma 2.

LEMMA 1. Under the hypotheses of Theorem 2, we have

$$|f(x) - f(y)|^n \int_r^{R/2} \frac{dt}{t\mathcal{A}^{-1}(\log nK/\omega_{n-1}t^n)} \le C_{\mathcal{A},K}(n) \int_{B(x_0,R)} J(z,f) \, dz \quad (13)$$

whenever $x, y \in B(x_0, r) \subset B(x_0, R/2)$.

LEMMA 2. Under the hypotheses of Theorem 2, we have

$$\int_{B(x_0,r)} J(x,f) dx \le \exp\left\{-n \int_r^{R/e^3} \frac{dt}{t \mathcal{A}^{-1}(\log C_{\mathcal{A},n}(\varepsilon)(nK/\omega_{n-1}t^n))}\right\} \times \int_{B(x_0,R)} J(x,f) dx$$
(14)

whenever $r \in (0, R/e^3)$.

3. Proof of Lemma 2

A crucial tool in establishing the sharp modulus of continuity in our case is the following integral-type isoperimetric inequality:

$$\int_{B(x_0,s)} J(x,f) \, dx \le \left(\int_{\partial B(x_0,s)} |Df|^{n-1} \, d\sigma \right)^{n/(n-1)} \tag{15}$$

for almost every $0 < s < \text{dist}(x_0, \partial \Omega)$, where $d\sigma$ is the area element of the sphere $\partial B(x_0, s)$ and

$$\int_E g \, d\mu = \frac{1}{\mu(E)} \int_E g \, d\mu$$

denotes the average integral. We refer to [11, Thm. 1.1] for the proof of inequality (15). Under the assumptions of Theorem 2, the assumptions of [11, Thm. 1.1] are fulfilled and hence (15) holds; see [8] and also [10]. The interested reader may find more details in [9, Sec. 3].

Write $B_s = B(x_0, s)$. The distortion inequality (1) together with Hölder's inequality applied to the right-hand side of (15) yields

$$\oint_{B_s} J(x,f) \, dx \le \left(\oint_{\partial B_s} K_O^{n-1} \, d\sigma \right)^{1/(n-1)} \oint_{\partial B_s} J(x,f) \, d\sigma. \tag{16}$$

Hence, the following elementary differential equation is satisfied:

$$\frac{d}{ds}\left(\log\left(\int_{B_s} J(x,f)\,dx\right)\right) \ge \frac{n}{s\left(f_{\partial B_s}\,K_O^{n-1}\,d\sigma\right)^{1/(n-1)}}.$$
(17)

By the assumption (9), it is easy to prove that there exists a $\tau_0 = \tau_0(n, A) > 0$ such that the functions $\tau \to \exp\{A(\tau)\}$ and $\tau \to \exp\{A(\tau^{1/(n-1)})\}$ are convex on (τ_0, ∞) ; see [9, Lemma 2.4]. We set an auxiliary distortion function

$$\tilde{K}_{O}(x) = \begin{cases} K_{O}(x) & \text{if } K_{O}(x) > \tau_{0}, \\ \tau_{0} & \text{if } K_{O}(x) \le \tau_{0}. \end{cases}$$
(18)

The preceding differential equation gets the slightly weaker form

$$\frac{d}{ds}\left(\log\left(\int_{B_s} J(x,f)\,dx\right)\right) \ge \frac{n}{s\left(f_{\partial B_s}\,\tilde{K}_O^{n-1}\,d\sigma\right)^{1/(n-1)}}.$$
(19)

The desired decay estimate (14) on the integrals of Jacobians of f over balls then follows if we can show that

$$\int_{r}^{R} \frac{ds}{s \left(f_{\partial B_{s}} \tilde{K}_{O}^{n-1} d\sigma \right)^{1/(n-1)}} \geq \int_{r}^{R/e^{3}} \frac{dt}{\mathcal{A}^{-1}(\log(nC_{\mathcal{A},K}/\omega_{n-1}t^{n}))}.$$
 (20)

Toward this end, let i_R and i_r be integers such that $\log R - 1 < i_R \le \log R$ and $\log r \le i_r < \log r + 1$. We have

$$\int_{r}^{R} \frac{ds}{s \left(f_{\partial B_{s}} \tilde{K}_{O}^{n-1} d\sigma\right)^{1/(n-1)}} \geq \sum_{i=i_{r}}^{i_{R}-1} \int_{e^{i}}^{e^{i+1}} \frac{ds}{s \left(f_{\partial B_{s}} \tilde{K}_{O}^{n-1} d\sigma\right)^{1/(n-1)}}.$$
 (21)

We estimate each integral in the right-hand side of (21) in the following way. Fix $i \in \{i_r, i_r + 1, ..., i_R - 1\}$. Changing the variable by setting $s = e^t$, we have

$$\int_{e^{i}}^{e^{i+1}} \frac{ds}{s \left(f_{\partial B_{s}} \,\tilde{K}_{O}^{n-1} \, d\sigma\right)^{1/(n-1)}} = \int_{i}^{i+1} \frac{dt}{\left(f_{\partial B_{e^{i}}} \,\tilde{K}_{O}^{n-1} \, d\sigma\right)^{1/(n-1)}}.$$
 (22)

Since the function $\tau \to 1/\tau$ defined on $(0,\infty)$ is convex, the Jensen inequality yields

$$\int_{i}^{i+1} \frac{dt}{\left(\int_{\partial B_{e^{i}}} \tilde{K}_{O}^{n-1} d\sigma\right)^{1/(n-1)}} \ge \left[\int_{i}^{i+1} \left(\int_{\partial B_{e^{i}}} \tilde{K}_{O}^{n-1} d\sigma\right)^{1/(n-1)} dt\right]^{-1}.$$
 (23)

Recall that the functions $\tau \to \exp\{\mathcal{A}(\tau^{1/(n-1)})\}\)$ and $\tau \to \exp\{\mathcal{A}(\tau)\}\)$ are convex on (τ_0, ∞) . We apply the Jensen inequality twice to obtain that

$$\int_{i}^{i+1} \left(\int_{\partial B_{e^{i}}} \tilde{K}_{O}^{n-1} d\sigma \right)^{1/(n-1)} dt$$

$$\leq \int_{i}^{i+1} \mathcal{A}^{-1} \left(\log \int_{\partial B_{e^{i}}} \exp\{\mathcal{A}(\tilde{K}_{O})\} d\sigma \right) dt$$

$$\leq \mathcal{A}^{-1} \left(\log \int_{i}^{i+1} \int_{\partial B_{e^{i}}} \exp\{\mathcal{A}(\tilde{K}_{O})\} d\sigma dt \right)$$

$$= \mathcal{A}^{-1} \left(\log \int_{e^{i}}^{e^{i+1}} \frac{1}{s} \int_{\partial B_{s}} \exp\{\mathcal{A}(\tilde{K}_{O})\} d\sigma ds \right).$$
(24)

We made a change of variable in the last step. Now an easy computation gives

$$\int_{e^i}^{e^{i+1}} \frac{1}{s} \oint_{\partial B_s} \exp\{\mathcal{A}(\tilde{K}_O)\} \, ds \le \frac{e^{\tau_0} K}{\omega_{n-1} e^{ni}}.$$
(25)

Combining inequalities (21), (22), (23), (24), and (25), we conclude that

$$\begin{split} \int_{r}^{R} \frac{ds}{s \left(f_{\partial B_{s}} [\tilde{K}_{O}(x) \, dx]^{n-1} \right)^{1/(n-1)}} &\geq \sum_{i=i_{r}}^{i_{R}-1} \left[\mathcal{A}^{-1} \left(\log \left(\frac{e^{\tau_{0}} K}{\omega_{n-1} e^{ni}} \right) \right) \right]^{-1} \\ &\geq \int_{i_{r}-1}^{i_{R}-2} \left[\mathcal{A}^{-1} \left(\log \left(\frac{e^{\tau_{0}} K}{\omega_{n-1} e^{ns}} \right) \right) \right]^{-1} ds \\ &\geq \int_{r}^{R/e^{3}} \left[t \mathcal{A}^{-1} \left(\log \left(\frac{e^{\tau_{0}} K}{\omega_{n-1} t^{n}} \right) \right) \right]^{-1} dt, \end{split}$$

which proves (20).

References

- [1] G. David, Solutions de l'equation de Beltrami avec ||μ||_∞ = 1, Ann Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25–70.
- [2] D. Faraco, P. Koskela, and X. Zhong, *Mappings of finite distortion: The degree of regularity*, Adv. Math. 190 (2005), 300–318.
- [3] T. Iwaniec, P. Koskela, and J. Onninen, *Mappings of finite distortion: Monotonicity and continuity*, Invent. Math. 144 (2001), 507–531.
- [4] T. Iwaniec and G. J. Martin, *Geometric function theory and non-linear analysis*, Oxford Math. Monogr., Oxford University Press, 2001.
- [5] —, The Beltrami equation, Mem. Amer. Math. Soc. (to appear).
- [6] J. Kauhanen, P. Koskela, and J. Malý, *Mappings of finite distortion: Condition N*, Michigan Math. J. 49 (2001), 169–181.
- [7] ——, *Mappings of finite distortion: Discreteness and openness*, Arch. Rational Mech. Anal. 160 (2001), 135–151.
- [8] J. Kauhanen, P. Koskela, J. Malý, J. Onninen, and X. Zhong, *Mappings of finite distortion: Sharp Orlicz-conditions*, Rev. Mat. Iberoamericana 19 (2003), 857–872.

- [9] P. Koskela and J. Onninen, *Mappings of finite distortion: The sharp modulus of continuity*, Trans. Amer. Math. Soc. 355 (2003), 1905–1920.
- [10] P. Koskela and X. Zhong, *Minimal assumptions for the integrability of the Jacobian*, Ricerche Mat. 51 (2002), 297–311.
- [11] J. Onninen, A note on the isoperimetric inequality, Proc. Amer. Math. Soc. 131 (2003), 3821–3825.
- [12] Yu. G. Reshetnyak, Bounds on moduli of continuity for certain mappings, Sibirsk. Mat. Zh. 7 (1966), 1106–1114.
- [13] —, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989.
- [14] S. Rickman, *Quasiregular mappings*, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993.

J. Onninen Department of Mathematics University of Michigan Ann Arbor, MI 48109 X. ZhongDepartment of Mathematics and StatisticsUniversity of JyväskyläP.O. Box 35, FIN-40014Finland

jonninen@umich.edu

zhong@maths.jyu.fi