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Families of Diffeomorphisms
without Periodic Curves

Javier Ribón

1. Introduction

A formal curve is a reduced principal ideal γ̂ = (f̂ ) of C[[x, y]]. We say that γ̂

is invariant by ϕ ∈Diff(C2, 0) if

(f̂ ) = (f̂ ) � ϕ

and that γ̂ is p-periodic if it is invariant by ϕ(p) and not by ϕ(j) for 0 < j < p.

Theorem 1. There exists a germ of a diffeomorphism ϕ ∈ Diff(C2, 0) that has
no convergent periodic germs of curve.

Moreover, we may choose ϕ inside each of the following classes.

• The formally linearizable germs of diffeomorphism.
• The germs of diffeomorphism whose linear part is the identity.

These germs of diffeomorphism have formal invariant curves. Although there are
germs of diffeomorphism without formal invariant curves, we prove the following.

Theorem 2. A formal diffeomorphism ϕ ∈ D̂iff(C2, 0) has at least one irreduc-
ible formal periodic curve.

In [6] Hakim exhibits germs of diffeomorphisms of the type

ρα =
(

x

1+ x
, ye−αx + x 2

)
(α ∈C)

with divergent “strong” invariant curves, showing in this way that the argument
in [2] does not work for germs of diffeomorphism. Nevertheless, the germs ρα

preserve the foliation dx = 0, and this is essential in [6] for the proof of the di-
vergence property. All the ρα have x = 0 as a periodic curve (in fact, a curve of
fixed points). This situation is general, as our next result shows.

Theorem 3. Let ϕ be an element of D̂iff(C2, 0) preserving a formal 1-dimen-
sional foliation F. Then there exists a formal curve γ that is periodic by ϕ and
invariant by F. If F is convergent then γ can be chosen to be convergent.
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The proof of Theorem 3 uses arguments of Camacho–Sad type ([2]; see also
[4]) that are valid in the dicritical case. Theorem 2 is obtained as a consequence
of the Jordan decomposition and construction of the logarithm for germs of dif-
feomorphism.

In order to prove Theorem 1, we consider polynomial families {ϕλ} of elements
of Diff(C2, 0). The formal periodic curves γλ of ϕλ will change in a polynomial
way with respect to λ∈Cm. We choose {ϕλ} such that {γλ} has at least one diverg-
ing element γλ0 . Using potential theory we deduce that, for almost all λ∈Cm,
the diffeomorphism ϕλ has no convergent invariant curves. More precisely, this
property will be true in the complementary of a pluripolar set.

Acknowledgment. I thank the referee for helpful suggestions.

2. Preliminaries

Let us recall here some known results [3; 7] on the “Jordanization” of diffeomor-
phisms (directly issued from the corresponding ones for vector fields) and on the
relationship between unipotent diffeomorphisms and nilpotent vector fields.

Denote by Diff(Cn, 0) the group of germs of convergent diffeomorphisms at 0∈
Cn and by D̂iff(Cn, 0) the group of formal diffeomorphisms. Call m and m̂ the
maximal ideals of the rings C{x1, . . . , xn} and C[[x1, . . . , xn]], respectively. Any
ϕ ∈ D̂iff(Cn, 0) induces a C-linear automorphism

ϕk : m/mk+1 → m/mk+1,

f +mk+1 
→ f � ϕ +mk+1.

We can express ϕk = ϕ s
k � ϕu

k = ϕu
k � ϕ s

k in a unique way as the composition of
two elements ϕ s

k and ϕu
k in GL(m/mk+1) such that:

• ϕ s
k is semisimple;

• ϕu
k is unipotent.

This Jordan multiplicative decomposition is compatible with the filtration in the
space of jets, and we deduce that {ϕ s

k }k≥1 and {ϕu
k }k≥1 induce (respectively) the

C-automorphisms ϕ s and ϕu of m̂.

The set Dk = {ϕk : ϕ ∈ D̂iff(C, 0)} is an algebraic subgroup of GL(m/mk+1)

since it corresponds to the A ∈GL(m/mk+1) such that A(ab) = A(a)A(b) for all
(a, b)∈ (m/mk+1)2. The existence of a Jordan decomposition for algebraic groups
[3] implies that ϕ s

k and ϕu
k are also in Dk. We deduce that ϕ s and ϕu act over m̂

as formal diffeomorphisms. That is, there exist unique ϕs and ϕu in D̂iff(Cn, 0)

such that

ϕ s(f ) = f � ϕs and ϕu(f ) = f � ϕu for all f ∈ m̂.

The equality ϕ = ϕs � ϕu = ϕu � ϕs holds because it holds in each GL(m/mk+1).

Note also that (ϕs)k = ϕ s
k and (ϕu)k = ϕu

k for all k ≥ 1.

A formal diffeomorphism β ∈ D̂iff(Cn, 0) is semisimple (resp. unipotent) if βk

is semisimple (resp. unipotent) for all k ≥ 1. The following proposition follows
from this discussion.
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Proposition 1. Any formal diffeomorphism ϕ ∈ D̂iff(Cn, 0) can be written in a
unique way in the form ϕ = ϕs � ϕu, where ϕs ∈ D̂iff(Cn, 0) is semisimple, ϕu ∈
D̂iff(Cn, 0) is unipotent, and ϕs � ϕu = ϕu � ϕs.

Working jet by jet, we can prove that β is semisimple if and only if it is formally
linearizable and β1 is semisimple. We also have that β is unipotent if and only if
β1 is unipotent. Moreover, the semisimple–unipotent decomposition of the itera-
tion ϕ(p) of ϕ is given by ϕ(p) = ϕ

(p)
s � ϕ

(p)
u .

Unipotent diffeomorphisms are strongly related to nilpotent vector fields, as we

shall see. Denote by D̂iffu(C
n, 0) the set of formal unipotent diffeomorphisms and

by X̂ (Cn, 0) the set of formal vector fields singular at 0. A formal vector field is
a derivation acting on the group of formal power series; we denote by X̂(i)(ĥ) the
power series obtained by applying i times X̂ to the formal power series ĥ. More
precisely, we have X̂(0)(ĥ) = ĥ and X̂(i+1)(ĥ) = X̂(X̂(i)(ĥ)) for all i ∈N. We say
that X̂ ∈ X̂ (Cn, 0) is nilpotent if its linear part is nilpotent. Denote by X̂N (Cn, 0)

the set of formal nilpotent vector fields. For any X̂ ∈ X̂N (Cn, 0), the formal flow

exp(tX̂) =
( ∞∑

i=0

t i X̂(i)(x1)

i!
, . . . ,

∞∑
i=0

t i X̂(i)(xn)

i!

)

is well-defined and the components belong to C[t][[x1, . . . , xn]]. Moreover, the
exponential application

X̂ 
→ exp(1X̂) = exp(X̂)

induces a bijection between X̂N (Cn, 0) and D̂iffu(C
n, 0). The logarithm log ϕ of

an element ϕ ∈ D̂iffu(C
n, 0) is by definition the only element in X̂N (Cn, 0) whose

exponential is ϕ.

3. Diffeomorphisms Preserving a Foliation

In this section we prove Theorem 3 by using a version (valid for the dicritical case)
of the argument in [4]. Let M be a 2-dimensional holomorphic manifold and con-
sider a singular foliation F on M. By definition, F is locally represented at each
point Q ∈ M by a germ of a 1-differential form ωQ whose coefficients do not
have a common factor; the 1-forms ωQ and ωP are collinear in the intersection of
their domains of definition (i.e., ωQ ∧ ωP ≡ 0). The singular locus of F is the
set of points Q∈M such that ω(Q) = 0, where ω defines F locally; it is a set of
isolated points since the coefficients of ω do not have a common factor. Given a
blow-up π : M ′ → M with center at P ∈M, we define the foliation π∗F by divid-
ing locally π∗ω by a suitable power of a local equation of the exceptional divisor
π−1(P ).

We shall consider a normal crossings divisor D ⊂ M such that its irreducible
components are invariant by F. Eventually we will take D = ∅. Moreover, we
need to enlarge the definition of the foliation F to obtain “formal foliations” at a
point P or “transversally formal foliations” along D at a point P ∈D. A formal
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foliation at P ∈M is simply defined by ω̂ = 0, where ω̂ = â(x, y) dx+ b̂(x, y) dy

is a formal differential 1-form at P. A transversally formal foliation along D at
P ∈D is given by ω̂ as before but now such that â and b̂ belong to the formal com-
pletion of the ring of convergent series with respect to the ideal defining D at P.

If π : M ′ → M is the blow-up with center at P ∈M and if F̂ is a formal fo-
liation at P, then π∗F̂ is naturally a transversally formal foliation along π−1(P )

at every Q∈π−1(P ) (under the assumption that π−1(P ) is invariant by π∗F̂ ). In
this paper we first consider convergent foliations; later on we generalize the re-
sults to formal foliations at P, and since our arguments involve blow-ups we arrive
at the transversally formal (also called semiconvergent) setting.

Take M, D, and F as before and consider a point P ∈M. We shall deal with
triples (F, D;P ) that implicitly represent the objects locally at P (e.g., if P /∈D

then our triple is (F,∅;P )). We denote by iP (F, S) the Camacho–Sad index of
F at P along S. By definition (F, D;P ) satisfies the property (*) if one of the
following conditions holds (see [4]):

(*1) D = ∅;
(*2) D = {S} and iP (F, S) /∈Q≥0;
(*3) D = {S+ , S−} and there is a real number a > 0 such that iP (F, S+)∈Q≤−a

and iP (F, S−) /∈Q≥−1/a.

Suppose now that α is a formal diffeomorphism at P. We say that the 4-tuple
(F, α, D;P ) is good if: α∗F = F; α(S) = S for every irreducible component S

of D; and (F, D;P ) satisfies property (*).

Lemma 1. Assume that (F, α, D;P ) is good and that F is either regular or ir-
reducible at P. Then there exists a germ of curve ( �⊂ D at P that is invariant by
F and periodic by α.

Proof. If F is regular at P, then there is only one germ of curve ( invariant by F
and the index iP (F, () is zero. Necessarily (*1) holds and then ( �⊂ D. Moreover
( is invariant by α (by uniqueness) since the set of invariant curves of F is always
invariant by α. If F is irreducible at P then property (*3) doesn’t hold, because
the product of the two indices is either 0 or 1. At an irreducible singularity there
are two formal invariant curves, S1 and S2. At least one of them (suppose it is S1)

is convergent; moreover, if S2 is divergent then iP (F, S1) = 0. These properties
are a consequence of Briot–Bouquet’s theorem. Thus, there exists a convergent
invariant curve ( �⊂ D of F. Since α induces a bijection in the set of formal in-
variant curves, it follows that α(2) fixes (.

Consider a good 4-tuple (F, α, D;P ) and let π be the blow-up of M with center at
P. Then π can be considered as a morphism π : (M ′, π−1(P ))→ (M, P ) of germs
of holomorphic manifolds; furthermore, if we choose a point Q∈π−1(P ) we may
also use π : (M ′, Q) → (M, P ) to denote the corresponding local blow-up. We
shall denote by D ′ ⊂ M ′ the normal crossings divisor obtained as the union of the
irreducible components of π−1(D ∪ {P }) that are invariant by π∗F. Hence D ′ is
the strict transform D̃ of D if π−1(P ) is not invariant, and D ′ = D̃ ∪ π−1(P ) if
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π−1(P ) is invariant. Note also that the formal diffeomorphism α induces a holo-
morphic automorphism in the exceptional divisor π−1(P ). If Q ∈ π−1(P ) is in-
variant by α(q) for some q ∈Z>0, then α(q) localizes to a formal diffeomorphism
at Q.

Lemma 2. Assume that (F, α, D;P ) is good. Then there exist a Q ∈ π−1(P )

and a q > 0 such that α(q)(Q) = Q and (π∗F, α(q), D ′;Q) is good.

Proof. Assume first that π−1(P ) is invariant by π∗F. By the arguments in [4],
there is a point Q ∈ π−1(P ), singular for π∗F, such that (π∗F, D ′;Q) satisfies
either (*2) or (*3). All the (finitely many) points in the orbit of Q by α are also
singular points of π∗F, and α induces a bijection on them. Thus Q is q-periodic
by α for some q ∈N.

Suppose that π−1(P ) is not invariant by π∗F. If D = ∅ then D ′ = ∅ and, since
α defines a holomorphic automorphism on the projective line π−1(P ), there is at
least one fixed point Q ∈ π−1(P ) and we get a good 4-tuple at Q. If D �= ∅ then
we denote by QS ∈ π−1(P ) the point in the strict transform of a component S of
D (note that D has one or two components). The point QS is fixed by α because
both π−1(P ) and S are preserved by α. Let us consider two cases: D = {S} and
D = {S+ , S−}. In the first case we take Q = QS , since D ′ = S̃ is the strict trans-
form of S and iQ(π∗F, S̃ ) = iP (F, S)−1 /∈Q≥0. In the second case we apply the
same argument to QS+ (where S+ , S− are chosen as in property (*3)).

Let us prove Theorem 3 supposing that F is a germ of foliation. We consider the
good 4-tuple (F, ϕ,∅; 0). Lemma 2 allows us to construct a sequence

(F, ϕ,∅; 0)
π←− (F1, ϕ1, D1;P1)

π←− · · · π←− (Fr , ϕr , Dr;Pr)
π←− · · ·

of good 4-tuples. By [11] there exists a j ≥ 0 such that Fj is regular or irreducible
at Pj . By Lemma 1 we have a curve (̃j �⊂ Dj invariant by Fj and periodic by ϕj .

The blow-down (j of (̃j is a curve; it is invariant by F and periodic by ϕ.

Remark 1. So far we have supposed that ϕ is formal but F is convergent. Theo-
rem 3 also holds for F formal. Here we explain briefly why the ingredients in the
proof can be applied to the formal case.

Seidenberg’s desingularization theorem is valid for formal foliations. In fact,
desingularization algorithms do not make a difference between convergent and
divergent forms. Moreover, the desingularization process depends only on a fi-
nite jet and hence any formal 1-form shares the desingularization with a germ of
foliation.

The arguments in [4], excepting Briot–Bouquet’s theorem, are valid if F is di-
vergent. The proof relies in the behavior of the Camacho–Sad index by blow-up.
The three main properties are:

•
∑

P∈D∩Sing π∗F iP (F, D) = −1 for a blow-up π whose divisor D is invariant by
π∗F;

• iP (F, S) = iπ−1(P )(π∗F, π−1(S)) if P is not the center of the blow-up π; and
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• iP ′(π∗F, S̃ ) = iP (F, S) − 1 if P is the center of π. In this case, S̃ is the strict
transform of S and P ′ = S̃ ∩ π−1(P ).

It is easy to verify that all these properties persist in the semiconvergent case. Be-
sides these formulas the other arguments in [4] are combinatorial. Furthermore,
Camacho–Sad’s indexes along components of a divisor associated to a desingu-
larization process depend only on a finite jet of the form defining F.

The last required ingredient is a formal version of Lemma 1. For F regular
this lemma is trivial because (*1) always holds. Otherwise, the singularity is ir-
reducible and condition (*3) does not hold. Since there are two formal invariant
curves through P then at least one of them is not a component of the divisor. That
formal curve is periodic. Therefore, the proof is even simpler than in the conver-
gent case.

4. Formal Periodic Curves

In order to prove Theorem 2, we will use the following results.

Proposition 2. Let ϕ be an element of D̂iff(C2, 0). A formal irreducible curve
γ̂ is invariant by ϕ if and only if γ̂ is invariant by both ϕs and ϕu.

Proof. The necessary condition is trivial.
Since ϕ fixes γ̂, it follows that j1ϕ fixes the tangent cone of γ̂. The tangent cone

is a line with multiplicity; it can not contain two different lines, because otherwise
γ̂ would not be irreducible. We suppose without loss of generality that the support
of the tangent cone of γ̂ is the line y = 0. We deduce that (1, 0) is an eigenvec-
tor of j1ϕ. The formal diffeomorphisms j1ϕs and j1ϕu share also the eigenvector
(1, 0) by Jordan’s theorem.

Let π be the blow-up of the origin. We put

P = π−1(0) ∩ π−1([y= 0] \ {(0, 0)}).
We will consider the expression (x, t)→ (x, xt) of π in the first chart. The diffeo-
morphisms ϕ, ϕs , ϕu can be lifted to D̂iff(C̃2, P ) because (1, 0) is an eigenvector
for the linear parts of all three. If we denote the liftings by a tilde then

ϕ̃ = (̃ϕs) � (̃ϕu) = (̃ϕu) � (̃ϕs).

We will prove next that the blow-up is compatible with the semisimple–unipotent
decomposition, that is,

(ϕ̃)s = (̃ϕs) and (ϕ̃)u = (̃ϕu).

This is equivalent to proving that the lifting of a semisimple map is semisimple
and the lifting of a unipotent map is unipotent.

If σ ∈ D̂iff(C2, 0) is unipotent and if (1, 0) is an eigenvector of j1σ, then j1σ =
(x+λy, y) for some λ∈C. The lifting σ̃ holds j1σ̃ = (x, µx+ t) for some µ∈C.

The linear part j1σ̃ is unipotent and then σ̃ is unipotent too.
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If σ ∈ D̂iff(C2, 0) is semisimple then there exists a formal conjugation η such
that η �σ �η(−1) = (λ1x, λ2y) for some λ1 and λ2 in C∗. The linear space j1η(y =
0) is an eigenspace of (λ1x, λ2y). As a consequence we can precompose η with a
linear transformation η ′ such that η ′ � j1η fixes y = 0 while

(η ′ � η) � σ � (η ′ � η)(−1)

is still in diagonal form. We denote η ′ � η by η1; the formal diffeomorphism η1

can be lifted to D̂iff(C̃2, P ) because j1η1 fixes y = 0. We have

η̃1 � σ̃ � η̃
(−1)
1 = (λ1x, (λ2/λ1)t).

Thus the formal diffeomorphism σ̃ is semisimple.
So far we have shown that the property we want to prove is invariant by blow-up.

Up to a finite number of blow-ups we can suppose that the curve γ̂ is smooth—
that is, for every irreducible equation f̂ of γ̂ we have df̂ (0, 0) �= 0. Up to a formal
change of coordinates we can suppose that γ̂ ≡ [y = 0]. The set Fk of elements
in GL(m/mk+1) holding{

A(ab) = A(a)A(b) for all a and b in m/mk+1,

y|A(y),

coincides with the set of actions induced in m/mk+1 by the elements of D̂iff(C2, 0)

preserving y = 0. That is a group, and so is Fk as the image by a homomorphism
of a group. The condition y|A(y) is equivalent to k algebraic equations corre-
sponding to the vanishing of the coefficients of x, . . . , x k in A(y). Hence the set
Fk is an algebraic subgroup of GL(m/mk+1), and we deduce that

y � ϕs(x, 0)∈ (x k+1) and y � ϕu(x, 0)∈ (x k+1)

for all k ≥ 1. We obtain that y = 0 is invariant by ϕs and ϕu, as we wanted to
prove.

Proposition 3. Given ϕ ∈ D̂iffu(C
2, 0) and γ̂ = (f̂ ) irreducible, we have that

γ̂ is invariant by ϕ if and only if f̂ divides log ϕ(f̂ ).

Proof. Consider the equation

f̂ � exp(t log ϕ) =
∞∑

i=0

t i (log ϕ)(i)(f̂ )

i!
.

If f̂ divides both (log ϕ)(i)(f̂ ) and (log ϕ)(f̂ ) then it also divides (log ϕ)(i+1)(f̂ ).

For t = 1, we can deduce that (f̂ ) = (f̂ � ϕ) = (f̂ ) � ϕ. Conversely, let us
consider a Puiseux parameterization γ̂ (s) = (γ̂1(s), γ̂2(s)) of γ̂. The series
f̂ � exp(t log ϕ) � γ̂ (s) belongs to C[t][[s]]; it is zero for t ∈Z and hence identi-
cally zero. Now the equality

(log ϕ)(f̂ ) = lim
t→0

f̂ � exp(t log ϕ)− f̂

t

implies that [(log ϕ)(f̂ )] � γ̂ (s) ≡ 0 and then f̂ divides (log ϕ)(f̂ ).
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Corollary 1. Let ϕ be an element of D̂iffu(C2, 0). Then any periodic formal
curve γ̂ = (f̂ ) of ϕ is invariant by ϕ.

Proof. Since γ̂ is invariant by ϕ(p) = exp(p log ϕ), it follows that f̂ divides
(p log ϕ)(f̂ ) and hence also divides (log ϕ)(f̂ ).

Corollary 2. Let ϕ be an element of D̂iff(C2, 0). A formal irreducible curve
γ̂ is p-periodic by ϕ if and only if γ̂ is p-periodic by ϕs and invariant by ϕu.

Proof. If γ̂ is p-periodic by ϕ then γ̂ is fixed by ϕ(p). Proposition 2 implies that
γ̂ is periodic by ϕs and ϕu. The formal curve γ̂ is fixed by ϕu; since ϕs and ϕu

commute, the periods of ϕ and ϕs coincide.
If γ̂ is periodic by ϕs and invariant by ϕu, then γ̂ is periodic by ϕ. By the first

part of the proof, the periods for ϕ and ϕs are equal.

Now let us prove Theorem 2. Consider the decomposition of ϕ into semisimple
and unipotent parts:

ϕ = ϕs � exp(log ϕu) = exp(log ϕu) � ϕs.

If ϕ is semisimple, then ϕ is formally conjugated to the first jet j1ϕ that has at least
two invariant lines through the origin. If log ϕu �≡ 0 then the foliation induced by
log ϕu is not trivial and is invariant by ϕs. We finish by using the formal version
of Theorem 3.

Note that the foliation F̂ induced by log ϕu is represented by any 1-form ω̂ such
that ω̂(log ϕu) = 0 and whose coefficients do not share a common factor. The sin-
gular set of log ϕu can be bigger than the singular set of F̂ because the coefficients
of log ϕu are not necessarily free of having a common factor. Anyway, in such a
case our proof can be much simplified; the singular set of log ϕu is a nonempty fi-
nite union of irreducible formal curves. Since it is also invariant by ϕs , Theorem 2
becomes trivial.

Example 1. Not all the diffeomorphisms in Diff(C2, 0) have invariant curves.
Consider α(x, y) = (iy, ix) and β(x, y) = (xexy, ye−xy), where

log β = xy

(
x

∂

∂x
− y

∂

∂y

)
.

Define ϕ = (iye−xy, ixexy) = α � β = β � α. This is the decomposition of ϕ into
semisimple and unipotent parts. The periodic curves of ϕ are invariant by β. The
only fixed curves of log β are x = 0 and y = 0. Since α permutes them, the germ
ϕ has only two periodic irreducible formal curves, both of which are convergent
and 2-periodic.

5. Semisimple Families

In this section we present a family {σ α,β

λ }λ∈C of semisimple diffeomorphisms con-
structed for certain α, β in such a way that σ

α,β

λ does not have any periodic curve
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for λ outside a Borel polar set. Note that any Borel polar set has Lebesgue mea-
sure 0, has Hausdorff dimension 0, and is totally disconnected [10].

We shall fix complex numbers α and β such that:

(i) α �= β and |α| = |β| = 1;
(ii) α �= αkβ l �= β for all (k, l )∈N× N such that k + l ≥ 2;

(iii) αk �= β l if k ≥ 1 and l ≥ 1; and
(iv) the sets {k ∈N : |αk −β| ≤ 1/k!} and {k ∈N : |βk −α| ≤ 1/k!} are infinite.

Such α and β can be obtained by working with continuous fractions.
Consider σ ∈Diff(C2, 0) such that j1σ = (αx, βy). The conditions (i) and (ii)

imply that σ is formally linearizable. By (iii) we know that (αx, βy) has only the
formal periodic curves x = 0 and y = 0. We deduce that σ has two formal periodic
curves that are invariant, smooth, and tangent to x = 0 and y = 0, respectively.

We define σλ = σ
α,β

λ = (
αx + (1− λ)

∑∞
k=2 y k, βy + λ

∑∞
k=2 x k

)
. Let y =

f̂λ(x) and x = ĥλ(y) be the two formal periodic curves of σλ.

The series f̂λ(x) =∑∞
k=2 fk(λ)x k is the only solution of the equation

(y − f̂λ(x)) � σλ � (x, f̂λ(x)) = 0.

This is equivalent to saying that

f̂λ

(
αx + (1− λ)

f̂λ(x)2

1− f̂λ(x)

)
= βf̂λ(x)+ λ

x 2

1− x
.

Proceeding by induction, we obtain that fk(λ) is a polynomial in λ for k ≥ 2.

Remark 2. In the case λ = 1 we have an equation of the type

f̂1 � θ(x) = r(x, f̂1) (θ ∈Diff(C, 0), r ∈C{x, y}),
with θ(x) = αx and r(x, y) = βy + x 2/(1− x). Note that θ does not depend
on f̂1: this is possible because σ1 preserves the foliation dx = 0, as in [6]; the
nature of f̂1 can be obtained through the study of θ(x). In our context, f̂1(x) =∑∞

k=2(αk − β)−1x k is divergent by condition (iv).

Put ηµ = σ1/µ and x = x ′µ, y = y ′µ; we have

ηµ(x ′, y ′) =
(

αx ′ + (µ− 1)
y ′2

1− µy ′
, βy ′ + x ′2

1− µx ′

)
.

Then ηµ(x ′, y ′) has a unique formal invariant curve y ′ =∑∞
k=2 gk(µ)x ′k for every

µ∈C. As before, a process of induction proves that gk(µ) is a polynomial for all
k ≥ 2. Now the equality fk(1/λ)λk−1 = gk(λ) implies that deg fk ≤ k − 1 for all
k ≥ 2. We next use the following proposition.

Proposition 4 [8; 9]. Let ĝ(t) = ∑∞
k=0 gk(x1, . . . , xm)t k be such that gk ∈

C[x1, . . . , xn] and deg gk ≤ Ak + B for some real numbers A and B and all
k ≥ 0. If ĝ(t) does not converge in a neighborhood of t = 0, then it diverges for
(x1, . . . , xm)∈Cm outside a pluripolar Borel set.
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Since f̂1(x) is divergent, the formal invariant curve of σλ tangent to y = 0 is di-
vergent for all λ ∈ C outside a Borel polar set. We proceed in the same way for
the other invariant curve; since the countable union of Borel polar sets is polar, we
deduce our next proposition.

Proposition 5. The germ σλ does not have any convergent periodic curve for
λ∈C outside a Borel polar set.

6. Unipotent Families

In this section we consider the family

βλ = (x + y2, y + x 2 + λ4(x)), λ∈C,

of unipotent diffeomorphisms with the following conditions on 4(x):

(a) 4(x)∈C{x} ∩ (x3) and 4(αx) = α24(x), where α = e(2πi)/3;
(b) f(x + x 2) = (1− 2x)f(x)+4(x) has no solutions in C{x}.
Proposition 6. The formal periodic curves of βλ are all divergent except for λ

in a Borel polar set.

Proof. The logarithm

X̂λ =
(

y2 +
∑

j+k≥3

ajk(λ)xjy k

)
∂

∂x
+

(
x 2 +

∑
j+k≥3

bjk(λ)xjy k

)
∂

∂y

of βλ (where ajk and bjk are entire functions for all j + k ≥ 3) defines a formal
foliation ω̂λ = x 2dx − y2dy + h.o.t. Since j 2ω̂λ = d(x3 − y3)/3, it follows
that π∗ω̂λ has three irreducible singularities in π−1(0) (this property holds for
d(x3 − y3)/3 and is stable for foliations having the same 2-jet). We deduce that
βλ has three formal invariant curves that are smooth and tangent to y = x, y =
αx, and y = α2x (respectively). We will use γλ to denote the invariant curve of
βλ tangent to y = x.

The germ (αx, α2y) commutes with βλ (condition (a)) and therefore induces a
permutation in the set of formal invariant curves of βλ for all λ ∈ C, acting on
tangents as follows:

(y = x)
(αx, α2y)−−−−−→ (y = αx)

(αx, α2y)−−−−−→ (y = α2x)
(αx, α2y)−−−−−→ (y = x).

Thus the orbit of γλ by (αx, α2y) is equal to the total set of invariant curves of βλ.

Moreover, the divergence of γλ (λ∈C) would imply the divergence of all the for-
mal invariant curves of βλ. Hence it is enough to prove that γλ diverges outside a
polar set.

The curve γλ has a unique equation of the form

y − x − f̂ (x, λ) = 0, f̂ (x) =
∞∑

j=2

Pj(λ)xj =
∞∑

k=1

fk(x)λk.
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The functions Pj(λ) are holomorphic for all j ≥ 2. Now we define

ηµ = β1/µ =
(

x + y2, y + x 2 + 4(x)

µ

)
for µ∈C.

Let us make the transformations x = x ′µ and y = y ′µ, which yields a change of
coordinates for all µ �= 0. We obtain

ηµ(x ′, y ′) =
(

x ′ + µy ′2, y ′ + µx ′2 + 4(µx ′)
µ

)
.

We now have that ηµ(x ′, y ′) ∈Diff(C2, 0) for all µ ∈C and η0(x ′, y ′) = (x ′, y ′),
so the logarithm of ηµ(x ′, y ′) is equal to

µ

((
y ′2 +

∑
j+k≥3

Ajk(µ)x ′jy ′k
)

∂

∂x ′
+

(
x ′2 +

∑
j+k≥3

Bjk(µ)x ′jy ′k
)

∂

∂y ′

)
,

where Ajk and Bjk are entire functions for j + k ≥ 3. Analogous to βλ(x, y), the
germ ηµ(x ′, y ′) has a unique formal invariant curve of the form

y ′ = x ′ +
∞∑

k=2

Qk(µ)x ′k,

where Qk(µ) is an entire function for all k ≥ 2. The curves

y = x +
∞∑

j=2

Pj(λ)xj and
y

µ
= x

µ
+
∞∑

k=2

Qk(µ)

µk
x k

are equal if µ = 1/λ. The polynomial

Pk(λ) = Qk(1/λ)λk−1

has degree at most k − 1 for k ≥ 2. By Proposition 4 it is enough to prove that
f̂ (x, λ) is not convergent in a neighborhood of x = 0.

Suppose f̂ (x, λ) converges in a neighborhood of x = 0; then fk(x) converges
for all k ≥ 1. The series f̂ (x, λ) satisfies the equation

(y − x − f̂ (x, λ)) � (x + y2, y + x 2 + λ4(x)) � (x, x + f̂ (x, λ)) = 0,

which is equivalent to

f̂ (x + (x + f̂ (x, λ))2, λ) = f̂ (x, λ)(1− 2x)− f̂ (x, λ)2 + λ4(x). (1)

The series f1(x) is the solution of a linear equation obtained by deriving equation
(1) with respect to λ and evaluating at λ = 0. We obtain

f1(x + x 2) = f1(x)(1− 2x)+4(x).

Condition (b) now implies the divergence of f1(x).

Let us look for functions 4(x) satisfying conditions (a) and (b).

Proposition 7. 4(x) = x 5/(ε3i+ x3) satisfies conditions (a) and (b) for ε > 0
small enough.
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Proof. Condition (a) clearly holds. We will show that

f(x + x 2) = f(x)(1− 2x)+4(x) (2)

does not have solutions in C{x}. The diffeomorphism x 
→ x+ x 2 has a repelling
petal P− centered in the direction R+ and an attracting one P + centered in R−.
If ε > 0 is small enough then εi ∈P + ∩ P−, and the other roots of ε3i + x3 = 0
(αεi and α2εi) do not belong to the orbit of εi by x 
→ x + x 2. Consider such an
ε. Suppose that f belongs to C{x}; then f is defined in a open neighborhood V

of the origin. A good choice of V makes V ∩P− connected. The functional equa-
tion (2) allows us to extend f to V ∪P− as a meromorphic function. The function
4(x) has a pole in εi and no other poles in the orbit of εi. We deduce that f has
a pole of order 1 in a neighborhood of εi + εi2, and then in the neighborhood of
every point in the positive orbit of εi by x+ x 2. Since εi belongs to P + it follows
that f has infinitely many poles in a neighborhood of 0, which is impossible.

Remark 3. If 4(x) ∈ (x3) is a polynomial of odd degree (e.g., 4 = x3), then
equation (2) has no convergent solution. This can be proved by using the study of
the diffeomorphism x 
→ x+x 2 in [1]. The main steps in the proof are as follows.

1. If f̂ ∈C{x} is a solution of (2) then f̂ is an entire function.
2. If f̂ is an entire function then f̂ is a polynomial.
3. No polynomial satisfies equation (2).

In particular, if 4(x) = x 5 then βλ has no convergent periodic curves outside of
a Borel polar set.

Tangent to the identity diffeomorphisms are quite special, and for them pluri-
polarity does not optimally describe the nature of the set of parameters in which
invariant curves converge. Sectors of convergence for the invariant curves and
summability properties are expected. It is natural to think that the sets of conver-
gence are analytic outside the ramification places. Nevertheless, our approach is
very accurate for a wide class of problems, including small divisors (semisimple
case).

In Section 5 we obtained parameters of divergence by using fibration-preserving
examples, in which functional equations are simple. In the last example the func-
tional equations became linear by differentiation, a suppler technique than the
fibration method and one that can be applied in a more general context.

7. Diffeomorphisms without Formal Invariant Curves

The semisimple or unipotent diffeomorphisms always have formal invariant curves.
Here we present an example without formal invariant curves. Consider

ϕλ = (αx + αy2, α2y + α2x 2 + α2λ4(x)).

We have
ϕλ = (αx, α2y) � βλ = βλ � (αx, α2y)
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if 4(αx) = α24(x). Using the results from Section 6, together with Proposition 2
and Corollary 2, we prove our final proposition.

Proposition 8. Suppose that 4(x) satisfies conditions (a) and (b). Then ϕλ has
exactly three formal periodic (in fact, 3-periodic) curves that are divergent for all
λ∈C outside of a Borel polar set.

Consider the set

E = {η ∈Diff(C2, 0) : j 2η = (αx + αy2, α2y + α2x 2)}.
The Jordan decomposition of ξ = (αx + αy2, α2y + α2x 2) is equal to

ξ = (αx, α2y) � (x + y2, y + x 2) = (x + y2, y + x 2) � (αx, α2y).

Because the Jordan decomposition is compatible with the filtration in the space of
jets, we have

j 2ηs = (αx, α2y) and j 2ηu = (x + y2, y + x 2)

for all η ∈ E. The formal diffeomorphism ηu has three formal invariant curves,
whose tangents are the lines y = x, y = αx, and y = α2x. Since ηs commutes
with ηu and j1ηs = (αx, α2y), the germ η has exactly three formal periodic curves,
all of them 3-periodic. The proofs are analogous to those in the previous section.

The space E is an infinite-dimensional affine space, and the vector space asso-
ciated to E is (x, y)3× (x, y)3. We choose η0 ∈E such that all the periodic curves
of η0 are divergent. The space E is then the union of all the lines through η0. We
define the set

LC = {η ∈L : η has at least one convergent periodic curve}
for any line L passing through η0. We can prove (as in the previous sections) that
either L = LC or LC is a Borel polar set. Then LC is polar because η0 /∈ LC.

We conclude that not having convergent periodic curves is a generic property in
E. The same result can be obtained for the set of polynomial elements of E by
choosing η0 polynomial.

References

[1] P. Ahern and J.-P. Rosay, Entire functions in the classification of differentiable germs
tangent to the identity, in one or two variables, Trans. Amer. Math. Soc. 347 (1995),
543–572.

[2] C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic
vector fields, Ann. of Math. (2) 115 (1982), 579–595.

[3] F. Cano and D. Cerveau, Desingularization of nondicritical holomorphic foliations
and existence of separatrices, Acta Math. 169 (1992), 1–103.

[4] J. Cano, Construction of invariant curves for singular holomorphic vector fields, Proc.
Amer. Math. Soc. 125 (1997), 2649–2650.

[5] C. Chevalley, Théorie des groupes de Lie, vol. 2: Groupes algébriques, Hermann,
Paris, 1951.



256 Javier Ribón

[6] M. Hakim, Analytic transformations of (Cp , 0) tangent to the identity, Duke Math. J.
92 (1998), 403–428.

[7] J. Martinet, Normalisation des champs de vecteurs holomorphes (d’après A.-D.
Brjuno), Lecture Notes in Math., 901, Springer-Verlag, New York, 1981.

[8] R. Pérez-Marco, A note on holomorphic extensions, preprint, 2000,
http: //xxx.lanl.gov/abs/math.DS/0009031.

[9] , Total convergence or general divergence in small divisors, Comm. Math.
Phys. 223 (2001), 451–464.

[10] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts,
28, Cambridge Univ. Press, Cambridge, U.K., 1995.

[11] A. Seidenberg, Reduction of singularities of the differential equation A dy = B dx,
Amer. J. Math. 90 (1968), 248–269.

Department of Mathematics
University of California – Los Angeles
Los Angeles, CA 90095

jribon@agt.uva.es


