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Extremal Bases and Hölder Estimates for ∂̄
on Convex Domains of Finite Type

Torsten Hefer

1. Introduction

Let D ⊂⊂ C
n be a smoothly bounded convex domain of finite type in the sense

of D’Angelo [D’A]. The main object of this paper is to compare two different
pseudo-distances and related geometric constructions describing the complex ge-
ometry of the boundary bD of D. These constructions originated with the work of
McNeal on complex geometry and on the Bergman kernels of convex domains of
finite type [Mc1; Mc2]; today they have taken an important place also in the study
of other function-theoretic questions on convex domains of finite type, especially
for problems in which the geometric shape of the domain is to be precisely mea-
sured and translated into quantitative function-theoretic information. Prominent
examples of such problems are the characterization of the zero sets of functions
in the Nevanlinna class as well as finding optimal estimates for the inhomoge-
neous Cauchy–Riemann equation ∂̄u = f in D, where f is a ∂̄-closed differential
form of bidegree (0, q + 1) belonging to some function space—for example, to
L

p

0,q+1(D), 1≤ p ≤ ∞. Our results should be seen in this context, although some
of them can also be viewed as purely geometric statements about smooth convex
domains of finite type that may be interesting in their own right.

The main application that we will be concerned with in this paper is the problem
of (optimal) Hölder estimates for the ∂̄-equation with essentially bounded right-
hand side. We do not attempt to give complete references for the other problems
already mentioned, instead referring the interested reader to the work of McNeal
[Mc1; Mc2], McNeal and Stein [McS], Bruna, Charpentier, and Dupain [BCDu],
Diederich and Mazzilli [DM], and Cumenge [Cu3]. A different approach to Hölder
estimates for the ∂̄-operator from the one pursued here is described in the work of
Cumenge [Cu1; Cu2].

The starting point to motivate our investigations is the following theorem of
Diederich, Fischer, and Fornæss [DFiFo] and Cumenge [Cu1].

1.1. Theorem. Let D ⊂⊂ C
n be a convex domain with C∞-smooth boundary of

finite type m. Then there exist bounded linear integral operators
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Tq : L∞0,q+1(D)→ �
1/m
0,q(D) for q = 0, . . . , n− 1

such that ∂̄Tqf = f for all f ∈L
p

0,q+1(D) with ∂̄f = 0.

Here, for 0 < α < 1, �α
0,q(D) denotes the space of (0, q)-forms on D having co-

efficients that are Hölder continuous with exponent α. The result in this theorem
is optimal in the sense that, for every even integer m and every q ∈ {0, . . . , n− 2},
there exist a domain D and a ∂̄-closed (0, q)-form f such that no solution v of
the equation ∂̄v = f belongs to a Hölder space �α for α > 1/m. The optimal
gain of Hölder regularity is thus expressed by a geometric invariant—namely,
by the maximal possible order of contact of one-dimensional complex varieties
with bD. This beautiful result generalizes the classical Hölder- 1

2 -estimate for ∂̄ on
strictly pseudoconvex domains by Kerzman [Ke] and Henkin and Romanov [HR].
In a subsequent paper, Fischer [Fi1] proved optimal type-dependent estimates for
∂̄ also in Lp-spaces for p < ∞. Based on these results and using an idea due
to Fleron [F], we then proved optimal Hölder and Lp-estimates for the equation
∂̄u = f that incorporated also the degree (0, q+1) of the form f ∈L

p

0,q+1(D) (see
[He2]). These optimal estimates show a precise connection between the degree
and the multitype of the boundary of the domain. (The multitype is a biholomor-
phic invariant originally defined by Catlin [Ca1], who used it to study regularity of
the ∂̄-Neumann problem on pseudoconvex domains of finite type; we will discuss
it in greater detail below.) The statement is as follows.

1.2. Theorem. Let D ⊂⊂ C
n be a convex domain with C∞-smooth boundary

of finite type mn. Let M(bD) = (m1, . . . ,mn) be the multitype of bD (cf. Defini-
tion 2.1), and let λq := mn−q(n− q)+ 2q + 2. Then there exist bounded linear
integral operators

Ŝq : Lp

0,q+1(D)→ L
s(p,q)

0,q (D) for q = 0, . . . , n− 1

such that ∂̄ Ŝqf = f for all f ∈L
p

0,q+1(D) with ∂̄f = 0; the numbers s(p, q) are
defined by

1

s(p, q)
:= 1

p
− 1

λq

,

and the usual convention s(p, q) = ∞ is applied if the right-hand side of this in-
equality is negative. If the right-hand side is zero, then s(p, q) may be any finite
number ≥ 1. Furthermore, there exist solution operators Sq that satisfy the fol-
lowing Hölder estimates: There are constants Cp > 0 such that, if p > λq , we
have

‖Sqf ‖�α(p,q)
0,q (D)

≤ Cp‖f ‖pL0,q+1(D)

for

α(p, q) := 1

mn−q

(
1− λq

p

)
and for α(∞, q) := 1

mn−q

with q < n − 1. In the special case where p = ∞ and q = n − 1, the value of
α(∞, n−1) can be chosen to be 1− ε (which coincides with = 1/m1− ε) for any
ε ∈ (0,1).
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This result has the following geometric interpretation. McNeal [Mc1] has shown
that, on smooth convex domains of finite type, the line type and the variety type
coincide (a simpler proof of this fact was later given by Boas and Straube [BoSt]);
this was generalized by Yu, who proved in [Yu] that the entry mn−q+1 of the
multitype (m1, . . . ,mn) of bD at a point p equals the maximal order of contact of
q-dimensional complex manifolds through p with bD, which in turn equals the
maximal order of contact with bD of q-dimensional complex hyperplanes through
p. Thus, our theorem states that the maximal order of contact with bD of (q +1)-
dimensional complex manifolds (or hyperplanes) passing through points of bD

determines the optimal Hölder and Lp estimates for solutions of the ∂̄-equation
on (0, q + 1)-forms. The optimality of these estimates was shown, for example,
in [F] and [He1] on certain model domains (essentially, all optimality proofs for
the ∂̄-equation are based on a general idea by Stein, already used in Krantz’s
paper [K1]).

More recently, Fischer [Fi2] has reconsidered the problem of finding Hölder
estimates for the ∂̄-operator on convex domains of finite type, noting that the esti-
mates for the solution operators Tq constructed in [DFiFo] can be better adapted
to the geometric situation if they are expressed in terms of the anisotropic pseudo-
distance on D, which was first defined and studied by McNeal. Geometrically
speaking, Fischer showed that there is a solution u of ∂̄u = f ∈L∞0,q+1∩ker ∂̄ that
has higher Hölder regularity in all directions except the normal direction to bD,
whereas in the normal direction the optimal Hölder exponent is the one from the
isotropic estimate for (0,1)-forms. This result is very much in spirit of the results
of Krantz (see [K1; K2; K3]) on nonisotropic Hölder estimates for ∂̄ in strictly
pseudoconvex domains (the method of proof is, of course, different).

In the strictly pseudoconvex case, however, all directions in the tangent space
at a point are equivalent with respect to the estimates, whereas here the geometric
situation is more complicated, which makes it much more difficult to rigorously
express the fact that solutions to the ∂̄-equation behave differently in different tan-
gential directions. For this, the concept of McNeal’s extremal bases and the related
pseudo-distance (see Definitions 1.3 and 1.5 to follow) are very useful.

The precise formulation of Fischer’s result is given in Theorem 1.6. Before we
can state this theorem, we need to review McNeal’s geometric constructions. The
role they play in the theory of estimates for the ∂̄-equation will become clearer
in the last section; essential is the fact that the holomorphic support function con-
structed by Diederich and Fornæss [DFo], which is a key ingredient in the con-
struction of explicit solution operators for the ∂̄-equation on convex domains of
finite type, can be estimated in terms of the extremal bases and pseudo-distances
defined in what follows.

First, let us recall from [He2] that the defining function r of a smooth convex
domain D may be chosen in such a way that all the level sets

bDζ := {z : r(z) = r(ζ)}
have the same multitype as bD for ζ close to bD (and are, in fact, homothetic to one
another with respect to a chosen inner point of D). This is a simple consequence
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of the implicit function theorem. For simplicity we will always assume that r is
such a function, and when speaking of a sufficiently small compact neighborhood
K of bD we will always assume that all level sets of r that intersect K are homo-
thetic to bD.

1.3. Definition. Let D = {r < 0} ⊂⊂ C
n be a smooth convex domain of fi-

nite type m, and let r be a defining function of the special type just described. For
ζ ∈ K with K a sufficiently small compact neighborhood of bD and for v ∈ C

n

and ε > 0, we define the ε-distance in direction v by

τ(ζ,v, ε) := sup{c : |r(ζ + λv)− r(ζ)| ≤ ε for all λ∈C, |λ| ≤ c}.
If the point ζ and ε > 0 are given, a (not necessarily unique) ε-extremal basis

(or McNeal ε-basis) (w1, . . . ,wn) at ζ is defined as follows: Let w1 be the unit
vector in the direction of the real gradient of the defining function r at ζ ; let p+1
be the point of intersection of the real line

λ �→ ζ + λw1, λ∈R, λ > 0,

with the level set bDζ,ε := {z : r(z) = r(ζ) + ε}. Then choose a point p+2 with
r(p+2 ) = r(ζ) + ε such that the vector w̃2 := p+2 − ζ is a solution of the con-
strained extremal problem

|w̃2| = maximum

subject to the conditions

w̃2 ⊥ 〈w1〉 and r(ζ + eiϑw̃2) ≤ r(ζ)+ ε for all ϑ ∈ [0, 2π],

where 〈w1〉 denotes the complex linear span of w1, and orthogonality is measured
by the standard hermitian inner product of C

n. Then w2 := w̃2/|w̃2| belongs to
the complex tangent space to bDζ at the point ζ, and τ(ζ,w2, ε) = |w̃2| is maxi-
mal among all τ(ζ,w, ε) for |w| = 1, with w in the complex tangent space to bDζ

at ζ. Note that in the point p+2 the normal direction of the surface 〈w1〉⊥ ∩ bDζ,ε

is given by w2, so in this point the gradient of r is a linear combination of w1 and
w2. (Alternatively, we could have defined w̃2 as any vector in the complex tan-
gent space where the continuous function v �→ τ(ζ,v, ε) attains a maximum, then
taking p+2 as any point on the intersection of the circle {ζ + eiϑw̃2 : ϑ ∈ [0, 2π]}
with the level set bDζ,ε.)

Next, choose a point p+3 such that w̃3 = p+3 − ζ solves the extremal problem

|w̃3| = maximum

under the conditions

w̃3 ⊥ 〈w1,w2〉 and r(ζ + eiϑw̃3) ≤ r(ζ)+ ε for all ϑ ∈ [0, 2π].

Then letting w3 := w̃3/|w̃3|, it follows that τ(ζ,w3, ε) = |w̃3| is maximal among
all τ(ζ,w, ε) for |w| = 1, w ⊥ 〈w1,w2〉. We continue this process until we finally
end up with a basis w := (w1, . . . ,wn) and with n “maximal” points p+1 , . . . ,p+n .
The ε-extremal coordinates (or McNeal coordinates) (z1, . . . , zn) of a point z with
respect to ζ are then defined by choosing parameterizations of the complex lines
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through ζ in direction wj such that (a) zj = 0 corresponds to the point ζ and (b) the
point p+j corresponds to the point

(0, . . . , 0, |p+j − ζ|, 0, . . . , 0)

on the positive real axis in the zj -plane.
If (w1,w2, . . . ,wn) is an ε-extremal basis at ζ, then we will call the reordered

tuple (w1,wn,wn−1, . . . ,w2) an ε-maximal basis at ζ. This definition will be use-
ful because certain estimates can be expressed in a more unified manner if this
reordering is used.

Note that in McNeal’s original definition the first ε-extremal direction was cho-
sen differently; here, for technical reasons, we use the slight modification due to
[BCDu]. McNeal’s idea behind this definition was to use the extremal properties
of the points p+j for the construction of bounded plurisubharmonic functions on D

having large Hessians near a given point ζ of D̄ (where the terms large and near
are quantified by the ε-distances τ(ζ,wj , ε)). This was made possible by a care-
ful analysis of derivatives of the defining function r of the domain D at the points
p+j and by an explicit construction involving r and the p+j . The plurisubharmonic
functions thus obtained were then used by McNeal in various applications.

In the proof of Theorem 1.2 it was necessary to use a different kind of “ex-
tremal” basis at a point ζ close to bD, the so-called ε-minimal basis. Essentially,
it is defined by the same construction as in Definition 1.3 but with the word maxi-
mal replaced by minimal. Actually, the construction is even a little simpler in this
case, because the complication of fitting whole circles into sublevel sets of r does
not arise.

1.4. Definition. Let D = {r < 0} ⊂⊂ C
n be a smooth convex domain of finite

type m, let r be as before, and let ζ ∈ D̄ be a point close to bD. If ε > 0 is given
(ε sufficiently small), then an ε-minimal basis (v1, . . . ,vn) at ζ is defined as fol-
lows. Let v1 be the unit vector in the direction of the real gradient of the defining
function r at ζ, and let p−1 be the point of intersection of the real line λ �→ ζ +λv1

(λ ∈ R) with the level set bDζ,ε. Then choose a point p−2 such that |p−2 − ζ| is
minimal under the conditions

r(p−2 ) = r(ζ)+ ε and (p−2 − ζ) ⊥ 〈v1〉.
Let v2 be the unit vector in the direction p−2 − ζ. Then τ(ζ,v2, ε) is minimal among
all τ(ζ,w, ε) for |w| = 1, where w is in the complex tangent space to bD at ζ.
Next, choose a point p−3 such that |p−3 − ζ| is minimal under the conditions

r(p−3 ) = r(ζ)+ ε and (p−3 − ζ) ⊥ 〈v1,v2〉.
Let v3 be the unit vector in the direction p−3 − ζ. We continue this process until
we obtain a basis v := (v1, . . . ,vn) (and n “minimal” points p−1 , . . . ,p−n ). The
ε-minimal coordinates (z1, . . . , zn) of a point z with respect to ζ are then defined
analogously to Definition 1.3.
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Note that if we had used Definition 1.4 with the word minimal replaced by maxi-
mal as a definition for the ε-extremal basis in Definition 1.3, then the ε-extremal
basis (w1, . . . ,wn) and the corresponding extremal points (p+1 , . . . ,p+n ) at ζ would,
in general, not satisfy the estimate

|p+j − ζ| � ε1/m,

where m is the type of the domain, or the estimate

τ(ζ,w2, ε) � τ(ζ,w3, ε) � · · · � τ(ζ,wn, ε);
nor could we assure that any of the τ(ζ,wj , ε) is the maximum of all possible
τ(ζ,w, ε) for w varying in the complex tangent space at ζ. Thus, such a basis
would not properly reflect the complex geometry of bD.

We will now review McNeal’s definitions of polydisks and pseudo-distances
linked to the foregoing geometric constructions. Note that all the constructions
depend strongly on the point ζ, on ε, and on the choice of the defining function r.

1.5. Definition. For ζ close to bD and ε > 0 sufficiently small such that an
ε-maximal basis (v+1 , . . . ,v+n ) and an ε-minimal basis (v−1 , . . . ,v−n ) are defined near
ζ, we denote by z+k,ζ,ε and z−k,ζ,ε the components of a vector z with respect to the
ε-maximal and the ε-minimal coordinates, respectively. Let p±j be the extremal
points as in Definitions 1.3 and 1.4. Then we set

τ±j (ζ, ε) := |p±j − ζ| = τ(ζ,v±j , ε).

Furthermore, for a constant C ∈R
+, we define the polydisks CP ±

ε (ζ) as

CP ±
ε (ζ) := {z∈C

n : |z±k,ζ,ε| < Cτ±k (ζ, ε) for k = 1, . . . , n}.
Finally, we define the pseudo-distances d+ and d− with respect to these poly-
disks as

d±(z, ζ) := inf{ε : z∈P ±
ε (ζ)}.

(Outside of a sufficiently small compact neighborhood of the diagonal of bD×bD,
these pseudo-distances can simply be defined by the usual Euclidean distance and
then patched to the preceding definitions by a smooth nonnegative cutoff function.
Then, the pseudo-distances d± are globally defined in D̄ × D̄. As we are mostly
interested in the case that ζ and z are both close to bD and close to each other, we
will always use the definition given above.)

All these constructions will soon be discussed in more detail. But first, let us give
the statement of Fischer’s theorem.

1.6. Theorem. Let D ⊂⊂ C
n be a smooth convex domain of finite type m, and

let Tq be the solution operator for ∂̄ constructed in [DFiFo]. Let d be any of the
pseudo-distances d+ or d−. Then, for every ε > 0, there is a constant Cε > 0
such that Tqf satisfies the estimate

|Tqf(z1)− Tqf(z0)| ≤ Cε‖f ‖L∞(D) max{d(z0, z1)
1/m, |z0 − z1|1−ε}.
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This estimate is optimal in the sense that, for every even integer m, there are ex-
amples of domains D of type m and forms f for which no better estimate of this
type can be obtained.

In this paper we will begin by clarifying the relation of the two ε-extremal bases
used in the definition just given for the different pseudo-distances, showing some
interesting properties of these bases as ε tends to zero. As a consequence, we will
show that d+ ∼ d−, so the two estimates obtained in Theorem1.6 are in fact equiva-
lent. (The notation A � B is used to state that there is a constant C, independent of
the parameters used in the expressions A and B, such that A ≤ CB. We let A ∼ B

signify A � B and B � A. We will always be precise about the dependence on
parameters of constants appearing in such estimates if there is ambiguity.) This
seems to be an interesting supplement to Fischer’s theorem as well as an interest-
ing result on the geometry of convex domains in its own right. In the course of the
proof, we will also show that the directional pseudo-distances τ(ζ,vj , ε) with re-
spect to both the ε-maximal and the ε-minimal basis can be estimated from above
and below by the same powers of ε involving Catlin’s multitype of the domain D.

(In our earlier article [He2] we were able to show only upper estimates for the
minimal basis and lower estimates for the maximal basis; in fact, this was the rea-
son for introducing the minimal bases, because the upper estimates were needed
in the estimates for the solution operators of the ∂̄-equation.) The proof of these
results seems to be more complicated than one would perhaps expect at first sight;
in particular, it is difficult to show that all constants involved in the estimates can
be chosen to be independent of the point ζ where the constructions are carried out.

A little bit out of the main line of this paper, we will then give an illustrative ex-
ample showing that, in general, neither the ε-minimal nor the ε-maximal basis at a
point ζ ∈ bD can be chosen to depend continuously on ζ. This is certainly known
to most experts in the field, but it may still be interesting to have a very simple
counterexample at hand. However, our counterexample depends on the choice of
defining function, so it does not really settle the question of whether, after a suit-
able change of defining function, the extremal bases can always be chosen to be
continuous with respect to ζ, at least locally.

Finally, we will use methods developed in [He2] to show that Theorem 1.6
(Fischer’s theorem) can also be extended to take into account the degree of the
form f , thus giving very precise anisotropic Hölder estimates depending on the
multitype of the domain D. Again, it is the order of contact of (q+1)-planes with
the boundary that determines the best possible estimates on (0, q +1)-forms. Our
main results are summarized in the following theorem.

1.7. Theorem. Let D ⊂⊂ C
n be a smooth convex domain of finite type mn, and

let (m1,m2 , . . . ,mn) be its multitype.

(1) The pseudo-distances d+ and d− are equivalent.
(2) If K is a sufficiently small compact neighborhood of bD, if ζ ∈ K, and if

(m1(ζ), . . . ,mn(ζ)) is the multitype of bDζ = {z : r(z) = r(ζ)} at the point
ζ, then there are constants c,C > 0 depending only on K (and on the fixed
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defining function of D) such that

cε1/mj (ζ) ≤ τ±j (ζ, ε) ≤ Cε1/mj (ζ) for j = 1, . . . , n

and such that
cP +

ε (ζ) ⊆ P−ε (ζ) ⊆ CP +
ε (ζ).

(3) Let Tq be the solution operator for ∂̄ on bounded (0, q + 1)-forms used in
[DFiFo] and [Fi2], and let d be one of the (equivalent) pseudo-distances d+
or d−. Then, for every ε > 0, there is a constant Cε > 0 such that Tqf satis-
fies the estimate

|Tqf(z1)− Tqf(z0)| ≤ Cε‖f ‖L∞(D) max{d(z0, z1)
1/mn−q, |z0 − z1|1−ε}.

In particular, the estimates for (0, q+2)-forms are better than those for (0, q+1)-
forms if the multitype (m1, . . . ,mn) of bD has the property mn−q−1 < mn−q . It
is also interesting to note that Theorem 1.7 implies (stated slightly imprecisely)
that an almost Lipschitz estimate for Tqf always holds in at least q + 1 complex
tangential directions at each point.

The balance of this paper is organized as follows. In Section 2 we will review
some definitions and well-known facts about the geometry of smooth convex do-
mains of finite type. We will then reconsider the ε-minimal basis and show (a) that
the directional pseudo-distances defined using either this basis or McNeal’s ε-
maximal basis satisfy certain upper and lower estimates related to the multitype of
the domain and (b) that the asymptotic behavior of these bases as ε tends to zero
can be described using concepts described in [Yu] and [He2]. The equivalence of
the two pseudo-distances will emerge as a by-product in showing these proper-
ties of the extremal bases. We will then construct the counterexample mentioned
previously regarding the continuous choice of extremal bases.

In Section 3 we will show how to extend Fischer’s theorem to incorporate the
multitype of D into the estimates. Since this is rather a straightforward application
of ideas already described in [Fi2] and [He2], this last section is very brief.

2. Comparison of Extremal Bases

We start with the definition of the multitype as given by Catlin [Ca1]. Let D ⊂⊂
C

n be a smoothly bounded domain, not necessarily convex, defined by a real-
valued smooth function r , and let p be a point in the boundary of D. Let ,n be the
set of all n-tuples � = (λ1, . . . , λn) of elements of the closed real line such that:

(1) −∞ < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ +∞; and
(2) for each k, either λk is infinite or there exists a set of nonnegative integers

{a1, . . . , ak} (depending on k) with ak > 0 such that

k∑
j=1

aj

λj

= 1.
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The set,n is called the set of weights; it can be ordered lexicographically. A weight
� ∈ ,n is called distinguished if there exist holomorphic coordinates (z1, . . . , zn)

about p such that p is mapped to the origin and such that
n∑

j=1

αj + βj

λj

< 1 �⇒ DαD̄βr(p) = 0,

where Dα and D̄β denote (respectively) the differential operators

∂ |α|

∂z
α1
1 · · · ∂zαn

n

and
∂ |β|

∂z̄
β1
1 · · · ∂z̄βn

n

.

2.1. Definition. The multitype M(bD,p) of bD at the point p is defined to be
the lexicographically smallest weight

M = (m1(p), . . . ,mn(p))∈,n

such that M ≥ � for every distinguished weight �. The multitype M(bD) of bD
is defined as the n-tuple

M(bD) := (supm1(p), . . . , supmn(p)),

where each supremum is taken over all boundary points of D.

Since the first entrym1(p) of the multitype at a point is always equal to1, this is also
true for the first entry of the multitype. The second entry of the multitype is always
an integer. On a bounded domain of finite type, the multitype takes on only a finite
number of (rational) values, and it is a lexicographically upper-semicontinuous
function of the point p.

On smooth convex domains of finite type, there is a direct relation between the
multitype at a point and the q-types at this point as defined in [D’A]. From now
on, we shall always assume that D is smooth and convex.

2.2. Definition. The variety 1-type (or simply the type) /1(bD,p) of bD at p
is defined as

/1(bD,p) := sup
z

ν(z∗r)
ν(z)

,

where the supremum is over all germs of nontrivial one-dimensional complex va-
rieties z : / → C

n from the unit disc / into C
n satisfying z(0) = p; here ν(f )

denotes the order of vanishing of the function f(x) − p in x = 0, and z∗r is the
pullback of the defining function r of D to /.

The variety q-type /q(bD,p) at the point p is defined as

/q(bD,p) := inf
H

/1(bD ∩H,p),

where the infimum is taken with respect to all (n− q + 1)-dimensional complex
hyperplanes H passing through p.

Finally, the q-regular type /r
q(bD,p) at the point p is the maximal order of

contact of q-dimensional complex manifolds M with bD at p; that is,
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/r
q(bD,p) := sup

M

sup

{
a ∈R

+ : lim
z→p, z∈M

dist(z, bD)

|z− p|a exists

}
.

The following theorem states some of the main results (due to [Ca1; Mc1; BoSt;
Yu]) about the relation between the several notions of type on smoothly bounded
convex domains.

2.3. Theorem. Let D be a smoothly bounded convex domain of finite type, and
let M(bD,p) = (k1, . . . , kn) be its multitype at the point p ∈ bD. Then k1 = 1 and
k2 ≤ k3 ≤ · · · ≤ kn are even integers. Moreover, for 1 ≤ q ≤ n we have

kn−q+1 = /q(bD,p) = /r
q(bD,p),

and there exist n−1 complex lines L2, . . . ,Ln orthogonal to each other in the com-
plex tangent space to bD at p such that the order of contact of Lj with bD is equal
to kj for j = 2, . . . , n.

In particular, the type of a boundary point ζ is not only locally bounded, it is also
an upper-semicontinuous function of ζ on convex domains. Recall that we as-
sume the defining function r of D to be of a special type such that these results
are also valid for all level sets of r close to bD.

It will be helpful in the sequel to have at hand some even more precise informa-
tion on the multitype, which is summarized in Proposition 2.5 (due to [Yu]). All
the results depend strongly on the convexity of the domain D.

2.4. Definition. For any m∈N0, let

Sm(p) := {z∈C
n : ν(z∗r) ≥ m+ 1},

where z is identified with the complex line z : C → C
n defined by λ �→ p + λz

and r is the (fixed) smooth defining function of D.

2.5. Proposition.

(1) For all m ≥ 0, Sm(p) is a complex linear subspace of C
n.

(2) S0(p) = C
n, and S1(p) is the complex tangent space T C

p (bD).

(3) Sm′(p) ⊆ Sm(p) if m′ ≥ m.

(4) There exist integers m1, . . . ,mk such that the following statements hold.

(a) 1= m1 < m2 < · · · < mk , and m2 , . . . ,mk are even.
(b) Smk

(p) ⊂ Smk−1(p) ⊂ · · · ⊂ S0(p) (the inclusions are strict).
(c) Sml

= Sml+1 = Sml+2 = · · · = Sml+1−1 for l = 1, . . . , k − 1.
(d) Smk

= Smk+j for all j ≥ 0; if D is of finite type, then Smk
= {0}.

(e) Choose a basis (e1, . . . , en) of C
n such that, for each j, the space Smj

is
spanned over C by (ei, . . . , en) for i = n+ 1− dj , where dj := dim Smj

.

Then the multitype of bD at p is equal to the weight � = (k1, . . . , kn) de-
fined by

kj :=
{

ml if ej ∈ Sml−1 − Sml
for 1 ≤ l ≤ k,

∞ if ej ∈ Smk
.

Thus we have
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M(bD,p) = (1, m2 , . . . ,m2︸ ︷︷ ︸
n−d2−1 times

, m3, . . . ,m3︸ ︷︷ ︸
d2−d3 times

, . . . , mk , . . . ,mk︸ ︷︷ ︸
dk−1 times

)

if D is of finite type.

We suggest the following definition for the special bases that have the property
(4)(e) of Proposition 2.5.

2.6. Definition. Let p ∈ bD be given. Any basis (e1, . . . , en) of C
n that satis-

fies the conditions given in part (4)(e) of Proposition 2.5 relative to the point p is
called a multitype-basis (or Yu-basis) at p.

Note that the first vector e1 of an orthonormal multitype-basis at p can always be
chosen to be the outer unit normal np at p; the existence of orthonormal multi-
type-bases at every point of bD is evident from Proposition 2.5. We have thus
associated to every point p ∈ bD a certain basis that exactly reflects the geometric
meaning of the multitype, in the sense that each entry of the multitype is the order
of contact with bD of a complex line in the direction of one of the vectors in the
basis. If an orthonormal multitype-basis (e1, . . . , en) is given and if the lines de-
fined by the vectors eκ , eκ+1, . . . , eκ+λ all have the same order of contact with bD,
then any (unitary) change of basis affecting only eκ , . . . , eκ+λ will still result in an
(orthonormal) multitype-basis.

We will now recall the most important properties of the ε-minimal and ε-
maximal bases.

2.7. Proposition. For any smoothly bounded convex domainD ⊂⊂ C
n of finite

type m, we have the following statements. (For the whole statement of the propo-
sition let P ±

ε be exactly one of P +
ε or P−ε , as there are no claims involving both

polydisks in the same instance here; the same goes for the pseudo-distances d±.)
(1) For each constant K there exist constants cK and CK depending only on K

such that
P ±
cKε(ζ) ⊆ KP ±

ε (ζ) ⊆ P ±
CKε(ζ)

and
cKP

±
ε (ζ) ⊆ P ±

Kε(ζ) ⊆ CKP
±
ε (ζ)

for ζ near bD and ε small enough.
(2) There are constants C1 > 1, c2 < 1, and c3, independent of ζ and ε, such that:

C1P
±
ε/2(ζ) ⊇ 1

2P
±
ε (ζ) ∀ζ, ε;

C1P
±
t (ζ) ⊆ P ±

ε (ζ) ∀t < c2ε, ζ, ε;
c3P

±
|r(ζ)|(ζ) ⊆ D ∀ζ ∈D.

(3) If v = ∑n
j=1 ajvj , where (v1, . . . ,vn) is an ε-minimal (or, respectively, an ε-

maximal ) basis at ζ, then

1

τ(ζ,v, ε)
∼

n∑
j=1

|aj |
τ±j (ζ, ε)

.
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(4) For every z∈P ±
ε (ζ) we have τ(z,v, ε) ∼ τ(ζ,v, ε).

(5) We have τ1(ζ, ε) ∼ ε and τ(ζ,v, ε) � ε1/m for any unit vector v. If v is a
unit vector in complex tangential direction, then we also have the estimate
ε1/2 � τ(ζ,v, ε).

(6) Let v be a unit vector and let

aij(z,v) := ∂i+j

∂λi∂λ̄j
r(z+ λv)|λ=0.

Then we have ∑
1≤i+j≤m

|aij(z,v)|τ(z,v, ε)i+j ∼ ε

uniformly for all z, v, and ε.

(7) Let w be any orthonormal coordinate system centered at z, and let bj be the
unit vector in the wj -direction. Then we have∣∣∣∣ ∂ |α+β|

∂wα∂w̄β
r(z)

∣∣∣∣ �
ε∏

j τ (z, bj , ε)αj+βj

for all multi-indices α and β with |α + β| ≥ 1.
(8) There is a constant C3 > 0 independent of ζ and z (sufficiently close to the

boundary of D) and independent of ε > 0 such that, if P ±
ε (ζ) ∩ P ±

ε (z) "= ∅,
then

P ±
ε (ζ) ⊆ C3P

±
ε (z) and P ±

ε (z) ⊆ C3P
±
ε (ζ).

The pseudo-distances d+(z, ζ) and d−(z, ζ) satisfy the properties

d±(z, ζ) ∼ d±(ζ, z),

d±(z, ζ) � d±(z,w)+ d±(w, ζ).

(9) If π(z) is the projection of a point z to the boundary bD, then we have the es-
timate d±(z,π(z)) ∼ |r(z)|; z ∈ P ±

ε (ζ) implies d±(z, ζ) ≤ ε. On the other
hand, z /∈ P ±

ε (ζ) implies d±(z, ζ) � ε; d±(z, ζ) ≤ ε implies z ∈ P ±
t (ζ) for

all t � ε, and d±(z, ζ) ≥ ε implies z /∈P ±
t (ε) for all t � ε.

Proof. These results are due to McNeal ([Mc1; Mc2]; cf. [BCDu]). Here we have
transcribed almost literally the summary given in [DFiFo]; for the ε-minimal basis,
see [He2, Prop. 2.2].

As a first comparison result, let us mention the following theorem on estimates for
the directional pseudo-distances relative to the different kinds of extremal bases.

2.8. Theorem. Let ζ be sufficiently close to bD, and let (k1, . . . , kn) be the multi-
type of bDζ at the point ζ. Then, for any sufficiently small value of ε > 0, it follows
that any ε-minimal basis (v1, . . . ,vn) at ζ satisfies the estimates

τ(ζ,vj , ε) � ε1/kj for j = 1, . . . , n,

ε = ε1/k1 ∼ τ(ζ,v1, ε) � τ(ζ,v2, ε) ≤ τ(ζ,v3, ε) ≤ · · · ≤ τ(ζ,vn, ε).
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Any ε-extremal basis (u1, . . . , un) at ζ satisfies the estimates

τ(ζ, u1, ε) ∼ ε = ε1/k1, τ(ζ, uj , ε) � ε1/kn−j+2 for j = 2, . . . , n.

This can also be expressed by saying that any ε-maximal basis (w1,w2, . . . ,wn) at
ζ satisfies

τ(ζ,wj , ε) � ε1/kj for j = 1, . . . , n,

ε ∼ τ(ζ,w1, ε) � τ(ζ,w2, ε) ≤ τ(ζ,w3, ε) ≤ · · · ≤ τ(ζ,wn, ε).

Proof. See Theorem 2.2 and Theorem 2.3 in [He2].

Looking at these estimates, it becomes clear why it is convenient, if we are inter-
ested in comparison of τ±j (ζ, ε) with powers of ε, to use the reordered ε-maximal
bases instead of McNeal’s original ε-extremal bases.

After these preparations, we can proceed to our first new result. Let D ⊂⊂
C

n be as before, let ζ be a point close to bD, and let M(bDζ , ζ) = (k1, . . . , kn)

be the multitype of the level surface bDζ at ζ. Furthermore, let κ2 := 2 and let
κ3, . . . , κl+1 ≤ n and l be integers such that

kκj = kκj+1 = · · · = kκj+1−1 and kκj+1−1 < kκj+1

for j = 2, . . . , l and such that M(bDζ , ζ) is of the form

(k1, k2, . . . , kn) = (1, µ2,µ2, . . . ,µ2︸ ︷︷ ︸
(κ3−κ2 )

, µ3, . . . ,µ3︸ ︷︷ ︸
(κ4−κ3)

, . . . , µl , . . . ,µl︸ ︷︷ ︸
(κl+1−κl )

).

Assume that (y1, y2, . . . , yn) is a multitype-basis at ζ. In particular, if we set

Mj := {κj , κj + 1, . . . , κj+1− 1}
then, for each κ ∈Mj , the complex line defined by yκ has order of contact exactly
equal to µj = kκj with bD. Therefore, every unitary coordinate change inside
one of the spaces generated by {yκ}κ∈Mν

for a fixed ν transforms the basis (yj )

into another multitype-basis. For every ε ∈ (0,1], we assume that we are given
an ε-minimal basis (v1,ε, . . . ,vn,ε). We may also assume that v1,ε = y1 for all
ε. Then, since (vj,ε) and (yj ) are orthonormal bases, there exist unitary matrices
Aε := (ajκ,ε) such that

yκ =
n∑

j=1

ajκ,εvj,ε for κ = 1, . . . , n.

Note also that each Vε := (v1,ε, . . . ,vn,ε) can be interpreted as an element of the
unitary group U(n), and we will do so without further mention.

2.9. Theorem. Let εν → 0 as ν →∞ be any sequence such that Vεν and Aεν

are convergent sequences in U(n). Then the limit A0 := (ajκ,0) := limν→∞Aεν

is a unitary diagonal block matrix of the form
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A0 =




1 0 0 0 0

0 A2 0 · · · 0

0 0 A3 · · · 0
...

...
...

. . .
...

0 0 · · · 0 Al




with Aj ∈U(κj+1 − κj ) for j = 2, . . . , l. So, each diagonal block corresponds to
one of the different entries µj of the multitype at ζ and has the size of the multi-
plicity of that entry. In particular, every convergent sequence of εν-minimal bases
converges to a multitype-basis, and by replacing the chosen multitype-basis by the
basis

y ′j :=
n∑

κ=1

a ′κj,0yκ for j = 1, . . . , n,

where (a ′κj,0) = A−1
0 , we can assume that (yj )j has been chosen such that A0 is

the identity matrix I := (δjκ)j,κ .

Furthermore, τ−j (ζ, εν) satisfies the estimate

τ−j (ζ, εν) � ε
1/kj
ν for j = 1, . . . , n.

The constant appearing in this estimate may depend on the chosen sequence (εν)

(and thus also on the point ζ).

Proof. By Proposition 2.7 and since (yj ) is a multitype-basis, for each κ we have

ε−1/kκ
ν ∼ 1

τ(ζ, yκ , εν)
∼

n∑
j=1

|ajκ,εν|
τj(εν)

,

and all the involved constants can be chosen to be independent of ζ in a compact
neighborhood of bD. If j is an index such that ajκ,0 "= 0, we obtain

ε−1/kκ
ν �

|ajκ,εν|
2τ−j (ζ, εν)

for all sufficiently large ν. Using τ−j (ζ, ε) � ε1/kj, this implies

ε
1/kj
ν � ε1/kκ

ν

as ν → ∞; but this is only possible if kj ≥ kκ . It follows that j ≥ κs , where s

is chosen such that kκ = kκs . Therefore, A0 is a lower triagonal block matrix of
the form

A0 =




1 0 0 0 0

0 A2 0 · · · 0

0 ∗ A3 · · · 0
... ∗ ∗ . . .

...

0 ∗ ∗ ∗ Al


,
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where the sizes of the diagonal blocks A2, . . . ,Al are given as in the statement of
the theorem. Since A0 is also unitary, it is obvious that all the entries marked by
asterisks must be zero, so A0 has the claimed form.

Now we assume that the multitype-basis has been transformed such that A0

equals the identity matrix I (observe that we do not change the minimal bases
(vj,εν ), of course). Then, using the representation

yκ =
n∑

j=1

ajκ,ενvj,εν ,

we can assume that, for all sufficiently large ν, the coefficient aκκ,εν satisfies

|aκκ,εν| >
1

2
,

so we obtain the estimate

ε−1/kκ
ν ∼ 1

τ(ζ, yκ , εν)
�

1

2τ−κ (ζ, εν)

just as before. The constants do not depend (directly) on ζ but possibly on εν0 ,
where ν0 is an index such that for ν ≥ ν0 the estimate |aκκ,εν| > 1

2 is valid. This
will not pose a problem later. Thus, each τ−κ satisfies

τ−κ (ζ, εν) � ε1/kκ
ν ,

and the theorem is proved.

2.10. Corollary. If M(bDζ , ζ) = (k1, . . . , kn), then there is a constant cζ > 0
and a constant c > 0 (independent of ζ) such that, for all ε ∈ (0,1],

cζ ε
1/kj ≤ τ−j (ζ, ε) ≤ cε1/kj for j = 1, . . . , n.

Proof. The upper estimate is known from [He2] (see Theorem 2.8). If the lower
estimate is not satisfied, then there is a sequence εν → 0 such that

τ−j (ζ, εν) <
1

ν
ε

1/kj
ν .

Choose a subsequence such that the corresponding matrices Aεν and Vεν converge
in U(n). By Theorem 2.9 we then get an estimate for τ−j , contradicting our as-
sumption as ν tends to infinity.

We will later show that cζ can, in fact, be chosen independent of ζ. We will also
need the following consequence of Theorem 2.9 in the comparison of the poly-
disks P +

ε (ζ) and P−ε (ζ). If we assume that we have chosen a sequence εν → 0
such that the corresponding sequences of maximal and minimal bases Wεν and Vεν

both converge to multitype-bases W0 and V0 (respectively), then we will need to
have an exact quantitative estimate for the rate of convergence. The case of the
minimal bases is settled in the following corollary.
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2.11. Corollary. Let M(bDζ , ζ) = (k1, . . . , kn), let (εν) be a sequence con-
verging to zero, and let Aεν = (ajκ,εν ) → A0 = I and Vεν → V0 as in Theo-
rem 2.9. Then there is a constant C = Cζ > 0 such that

|ajκ,εν| ≤ Cζε
|1/kκ−1/kj |
ν for all j ∈ {1, . . . , n}.

Proof. Let κ ∈Ms = {κs , κs+1, . . . , κs+1−1}. For j ∈Ms the assertion is obvious,
so we need only consider j ∈ {1, . . . , n} −Ms. First, let j < κs. By Theorem 2.9
and Corollary 2.11, we have

1∼
∑
µ∈Ms

|aµκ,εν| +
∑
µ<κs

|aµκ,εν|ε1/kκ−1/kµ
ν +

∑
µ≥κs+1

|aµκ,εν|ε1/kκ−1/kµ
ν ,

so the sum ∑
µ<κs

|aµκ,εν|ε1/kκ−1/kµ
ν

must be bounded above by a constant as ν →∞. Thus, each term in the sum must
be bounded above. This gives the result for j < κs. For j ≥ κs+1 we proceed as
follows. Since Aεν ∈ U(n), we have a ′jκ,εν

= aκj,εν for A−1
εν
= (a ′jκ,εν

). Now, if
λ∈Mσ for a given σ then, using

vλ,εν =
n∑

µ=1

a ′µλ,εν
yµ,

we see that

1∼ ε
1/kλ
ν

τ−λ (ζ, εν)
∼

∑
µ∈Mσ

|a ′µλ,εν
| +

∑
µ<κσ

|a ′µλ,εν
|ε1/kλ−1/kµ

ν +
∑

µ≥κσ+1

|a ′µλ,εν
|ε1/kλ−1/kµ

ν .

The same argument as before implies that, for µ < κσ,

|a ′µλ,εν
| � ε

1/kµ−1/kλ
ν .

Choosing λ := j and µ := κ ∈Ms with j ≥ κs+1, we obtain

|ajκ,εν| = |a ′µλ,εν
| � ε

1/kµ−1/kλ
ν = ε

|1/kκ−1/kj |
ν ,

which was to be shown.

We will now demonstrate that statements similar to that of Theorem 2.9 and its
corollaries are true for ε-maximal bases at a point ζ. For this we assume that, for
every ε ∈ (0,1], an ε-maximal basis (wj,ε) has been chosen at ζ close to bD; we
also assume that, for a fixed multitype-basis (yj ),

yκ =
n∑

j=1

bjκ,εwj,ε for κ = 1, . . . , n.

We denote Wε := (wj,ε)j ∈ U(n) and Bε := (bjκ,ε)j,κ ∈ U(n). The sets Mj (j =
2, . . . , l ) are defined as before. Note that the proof of the following theorem is not
exactly analogous to the proof of Theorem 2.9.
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2.12. Theorem. Let εν → 0 as ν →∞ be any sequence such that Wεν and Bεν

are convergent sequences in U(n). Then the limit B0 := (bjκ,0) := limν→∞ Bεν is
a unitary diagonal block matrix of the form

B0 =




1 0 0 0 0

0 B2 0 · · · 0

0 0 B3 · · · 0
...

...
...

. . .
...

0 0 · · · 0 Bl




with Bj ∈ U(κj+1 − κj ) for j = 2, . . . , l. Again, by replacing the chosen multi-
type-basis by the basis

y ′j :=
n∑

κ=1

b ′κj,0yκ for j = 1, . . . , n,

where (b ′κj,0) = B−1
0 , we can assume that (yj )j has been chosen such that B0 is

the identity matrix. Moreover, τ+j (ζ, εν) satisfies the estimate

τ+j (ζ, εν) � ε
1/kj
ν for j = 1, . . . , n.

The constant appearing in this estimate may depend on the chosen sequence (εν)

and on the point ζ.

Proof. Again, we use Proposition 2.7 and the fact that (yj ) is a multitype-basis to
derive

ε−1/kκ
ν ∼ 1

τ(ζ, yκ , εν)
∼

n∑
j=1

|bjκ,εν|
τ+j (ζ, εν)

.

For κ = 1, the estimate τ+1 (ζ, ε) ∼ ε (with constants that are independent even
of ζ) is known. Now, for any κ ≥ 2, let jκ ≥ 2 be the minimal index such that
bjκκ,0 "= 0. Then the right-hand side in the previous estimate is bounded above by
a constant times ε−1/kjκ

ν as ν tends to infinity, so

ε−1/kκ
ν � ε

−1/kjκ
ν ,

which implies kκ ≥ kjκ . Starting with κ = 2 and with j2 the minimal index be-
longing to κ = 2, this implies k2 = kj2 , so j2 ∈M2 = {κ2, κ2 + 1, . . . , κ3 − 1}.
Since j2 is minimal, we obtain (for all sufficiently large ν) the estimate

ε−1/k2
ν ∼ 1

τ(ζ, y2, εν)
�

1

τ+j2
(ζ, εν)

because τ+2 (ζ, εν) ≤ τ+3 (ζ, εν) ≤ · · · ≤ τ+n (ζ, εν). Therefore,

τ+j2
(ζ, εν) � ε1/k2

ν = ε
1/kj2
ν .

Now let

ỹ3,εν := y3 − bj23,εν

bj2 2,εν

y2.
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The vectors ỹ3,εν are well-defined by the foregoing choice of j2 if ν is sufficiently
large; and, in the representation of ỹ3,εν by the basis (wj,εν ), the coefficient of
wj2,εν is equal to zero for all sufficiently large ν. Then, each ỹ3,εν lies in the space
〈y2, y3〉 generated over C by y2 and y3 and has a norm uniformly bounded above
and below (away from zero) as ν →∞. Therefore, we obtain the estimate

ε−1/k3
ν �

1

τ(ζ, ỹ3,εν , εν)
∼

n∑
j=2

|γj3,εν|
τ+j (ζ, εν)

,

where

γj3,εν := bj3,εν −
bj23,εν

bj2 2,εν

bj2,εν

(and γj23,εν = 0). By the same reasoning as before, the minimal j3 satisfying
lim γj33,εν "= 0 (observe that this sequence is convergent) must satisfy j3 "= j2 and
j3 ∈Mλ , where λ is such that k3 = kκλ . To see this, distinguish the cases k3 > k2

(implying j3 > j2 = 2 and k3 ≥ kj3) and k3 = k2 (implying j2 "= j3 and j2, j3 ∈
Mλ for the same λ). Then

τ+j3
(ζ, εν) � ε1/k3

ν = ε
1/kj3
ν .

Continuing this procedure for κ = 4, . . . , n, we see that in fact every index j must
appear exactly once as a minimal index and that

τ+j (ζ, εν) � ε
1/kj
ν for j = 1, . . . , n.

Arguing as in the proof of Theorem 2.9, this easily implies that B0 is a unitary
block matrix as claimed. The proof is complete.

2.13. Corollary. If M(bDζ , ζ) = (k1, . . . , kn), then there is a constant Cζ > 0
and a constant C > 0 (independent of ζ) such that

Cε1/kj ≤ τ+j (ζ, ε) ≤ Cζε
1/kj for j = 1, . . . , n.

Proof. The proof is almost identical to the proof of Corollary 2.10. The lower es-
timate is known from [He2]. If the upper estimate is not satisfied, then there is a
sequence εν → 0 such that

τ+j (ζ, εν) > νε
1/kj
ν .

Choose a subsequence such that the corresponding matrices Bεν and Wεν converge
in U(n). By Theorem 2.12, we then get an estimate for τ+j contradicting the as-
sumption as ν tends to infinity.

2.14. Corollary. Let M(bDζ , ζ) = (k1, . . . , kn), let (εν) be a sequence con-
verging to zero, and let Bεν = (bjκ,εν ) → B0 = I and Wεν → W0 as in Theo-
rem 2.12. Then there is a constant Cζ > 0 such that

|bjκ,εν| ≤ Cζε
|1/kκ−1/kj |
ν for all j ∈ {1, . . . , n}.

Proof. The proof is exactly the same as that of Corollary 2.11.
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Next, we come to the problem of comparing the polydisks P ±
ε (ζ) defined with

respect to the different extremal bases at a fixed point ζ.

2.15. Theorem. Let P +
ε := P +

ε (ζ) and P−ε := P−ε (ζ) be the maximal and min-
imal polydisks defined by the bases (wj,ε) and (vj,ε), respectively. Then there is a
constant c = cζ > 0 independent of ε such that, for all ε ∈ (0,1],

cP +
ε ⊆ P−ε and cP−ε ⊆ P +

ε .

Proof. If εν → 0 is a fixed sequence, then we can extract a subsequence (w.l.o.g.
the whole sequence) such that Wεν = (wj,εν ) and Vεν = (vj,εν ) converge to unitary
matrices W0 and V0 having a block structure (as described previously) with respect
to a fixed multitype-basis. Of course, W0 and V0 also describe multitype-bases, so
we can assume without loss of generality that W0 is the identity matrix and that
our fixed basis y1, . . . , yn coincides with the standard basis of C

n. We may also
assume that ζ = 0 is the origin. For any positive K, we then define the polydisks

KPε :=
{
z =

n∑
j=1

zjyj : |zj | < Kε1/kj

}

with fixed axes y1, . . . , yn independent of ε. As before, we have sequences of uni-
tary matrices Aεν and Bεν such that, for κ = 1, . . . , n,

yκ =
n∑

j=1

ajκ,ενvj,εν =
n∑

j=1

bjκ,ενwj,εν ,

vκ,εν =
n∑

j=1

a ′jκ,εν
yj ,

wκ,εν =
n∑

j=1

b ′jκ,εν
yj .

Let z∈ γP−εν for some constant γ. This implies

|〈z,vκ,εν 〉| < γτ−κ (0, εν) ≤ γC1ε
1/kκ
ν

for κ = 1, . . . , n and a constant C1 > 0 independent of γ. Here 〈·, ·〉 denotes the
standard inner product of C

n. Then we obtain from Corollary 2.11 that

|〈z, yκ〉| =
∣∣∣∣
〈
z,

n∑
j=1

ajκ,ενvj,εν

〉∣∣∣∣
≤

n∑
j=1

|ajκ,εν||〈z, vj,εν 〉|

< C2ε
|1/kj−1/kκ |
ν γC1ε

1/kj
ν

≤ C2γC1ε
1/kκ
ν

for a positive constant C2, so z∈ γC1C2Pεν ⊆ Pεν if γ is chosen small enough.
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On the other hand, if z∈ δPεν for some positive δ, then

|〈z,vκ,εν 〉| =
∣∣∣∣
〈
z,

n∑
j=1

a ′jκ,εν
yj

〉∣∣∣∣
≤

n∑
j=1

|a ′jκ,εν
||〈z, yj〉|

< C3ε
|1/kj−1/kκ |
ν δε

1/kj
ν

≤ C3δε
1/kκ
ν

for a sufficiently large constant C3. Hence there are positive constants c4,C4

such that
c4P

−
εν
⊆ Pεν ⊆ C4P

−
εν

for all ν. The same arguments can be applied to P +
εν

, showing that the statement
of the theorem holds at least for all ε in the fixed sequence εν.

Now suppose that the statement of the theorem does not hold for general ε >

0. Then there is a sequence εν → 0 such that, for all ν, we have

1

ν
P +
εν
"⊆ P−εν .

We extract a subsequence such that the foregoing assumptions on (wj,εν ) and (vj,εν )

are satisfied, giving us a constant c > 0 such that

cP +
εν
⊆ P−εν ,

clearly a contradiction to our indirect assumption, because the inclusion

1

ν
P +
εν
⊆ cP +

εν

is valid for all sufficiently large ν. The proof of the inclusion cP−ε ⊆ P +
ε is ex-

actly the same, so we do not elaborate upon it.

Finally, using Theorem 2.15, we can show that all the constants cζ and Cζ appear-
ing in our various theorems and corollaries so far can be chosen to be independent
of ζ for all ζ in a compact neighborhood of bD. This will be a by-product of
our main objective, the comparison of the pseudo-distances d+ and d− defined in
the Introduction. Note that in the proof of the uniformity of the constants for the
ε-maximal basis we actually use results on the ε-minimal basis, and vice versa.

Suppose that K is a compact neighborhood of bD, chosen so small that for ζ ∈
K the level sets bDζ are all homothetic to bD. Suppose further that (z0, ζ0) ∈
K×K−/(K), where /(K) denotes the diagonal in K×K. We consider an open
product neighborhood U × V of (z0, ζ0) with Ū ∩ V̄ = ∅ and such that Ū and V̄

are compact. Since both d+ and d− are pseudo-distances, there are constants 0 <

c < C <∞ (depending on U and V ) satisfying

cd+(z, ζ) ≤ d−(z, ζ) ≤ Cd+(z, ζ) for all (z, ζ)∈ Ū × V̄.
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Now let (ζ0, ζ0)∈/(K) and let U be an open neighborhood of ζ0 with closure
contained in K. For all ζ ∈ Ū, let

γζ := inf{γ > 0 : d+(z, ζ) ≤ γd−(z, ζ) for all z∈ Ū}.
By Theorem 2.15, each γζ < ∞. We want to show that γζ is a locally bounded
function of ζ. We know that, for all z∈U and all δ > 0,

d+(z, ζ) ≤ (γζ + δ)d−(z, ζ).

On the other hand, by Proposition 2.7 there exists a constant c3, independent of
z, ζ, such that

d+(ζ, z) ≤ c3d+(z, ζ) and d−(z, ζ) ≤ c3d−(ζ, z).

Thus, we see that
d+(ζ, z) ≤ c2

3(γζ + δ)d−(ζ, z)

for all (z, ζ)∈ Ū × Ū and all δ > 0. This implies γz ≤ c2
3γζ , so ζ �→ γζ is locally

bounded. Finally, a simple compactness argument shows that there is a constant
C <∞, depending only on K, such that

d+(z, ζ) ≤ Cd−(z, ζ) for all (z, ζ)∈K ×K.

Because the roles of d+ and d− can be reversed in this proof, we have actually
shown the following.

2.16. Theorem. Let D ⊂⊂ C
n and K ⊃ bD be as before. Then there exist con-

stants cK ,CK > 0 depending only on K such that, for all (z, ζ) ∈ K × K, the
estimate

cKd+(z, ζ) ≤ d−(z, ζ) ≤ CKd+(z, ζ)

holds. In particular, Fischer’s estimate in Theorem 1.6 is (up to constants) inde-
pendent of the choice of pseudo-distance d+ or d−.

There are some interesting corollaries to the results obtained so far.

2.17. Corollary. The constant cζ with cζP
∓
ε (ζ) ⊆ P ±

ε (ζ) can be chosen to be
independent of the point ζ in a compact neighborhood of bD.

Proof. In fact, if this were not the case then we could find a sequence ζν in K

converging to some ζ ∈K such that the maximal constants cζν satisfying

cζνP
+
ε (ζν) ⊆ P−ε (ζν) for all ε ∈ (0,1]

tend to zero as ν →∞. We can find εν → 0 such that

2cζνP
+
εν
(ζν) "⊆ P−εν (ζν),

so there is a sequence ξν also converging to ζ with

ξν ∈ 2cζνP
+
εν
(ζν)− P−εν (ζν).

But that is a contradiction, since by Theorem 2.16 there exist constants cK ,CK

such that
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cKd+(ξν , ζν) ≤ d−(ξν , ζν) ≤ CKd+(ξν , ζν),

whereas by our assumption and by Proposition 2.7,

d+(ξν , ζν) ≤ c3cν εν and d−(ξν , ζν) ≥ c3εν

for some constant c3 (independent of ν) and a sequence cν → 0.

2.18. Corollary. The constants cζ andCζ in Corollaries 2.10 and 2.13 (respec-
tively) can be chosen to be independent of the point ζ in a compact neighborhood
K of bD, so we have

τ±j (ζ, ε) ∼ ε1/mj (ζ),

where (m1(ζ), . . . ,mn(ζ)) denotes the multitype of bDζ at the point ζ.

Proof. We will show that cζ can be chosen to be independent of ζ ; the proof for
Cζ is the same. Suppose there is a sequence ζν → ζ in K such that the sequence
of the maximal cζν satisfying

cζν ε
1/mj (ζν ) ≤ τ−j (ζν , ε) for all ε, j

tends to zero. Then we can find one index j and a subsequence εν → 0 such that

τ−j (ζν , εν) < 2cζν ε
1/mj (ζν )
ν . (2.19)

On the other hand, by Corollary 2.18, there is a constant c such that cP +
εν
(ζν) ⊆

P−εν (ζν) for all ν. But this is a contradiction, for by Theorem 2.13 there is a constant
c independent of ζν and εν such that the Euclidean volume of P +

εν
(ζν) satisfies

volP +
εν
(ζν) ≥ cε2(1/m1(ζν )+···+1/mn(ζν ))

ν ,

whereas by (2.19) and Theorem 2.10 there is a constant C independent of ζν and
εν such that

volP−εν (ζν) ≤ |cζν|2Cε2(1/m1(ζν )+···+1/mn(ζν ))
ν .

2.20. Corollary. The constants Cζ appearing in the estimates in Corollaries
2.11 and 2.14 can be chosen to be independent of ζ in a sufficiently small compact
neighborhood of bD.

Proof. The proofs of Corollaries 2.11 and 2.14 show that the constants Cζ are in
fact independent of ζ if this is true for the constants appearing in Corollaries 2.10
and 2.13 (respectively), so the result follows from Corollary 2.18.

2.21. Corollary. IfK is a sufficiently small compact neighborhood of bD, then
there exist constants 0 < c < C < ∞ such that, for all ζ ∈K and all ε ∈ (0,1],
the Euclidean volumes of the polydisks P +

ε (ζ) and P−ε (ζ) can be estimated by

cε2(1/m1(ζ)+···+1/mn(ζ)) ≤ volP ±
ε (ζ) ≤ Cε2(1/m1(ζ)+···+1/mn(ζ)),

where (m1(ζ), . . . ,mn(ζ)) denotes the multitype of bDζ at the point ζ.

The following theorem is a simple but interesting and useful consequence of our
preceding results. It states that the directional pseudo-distances τ(z, γ, ε) can be
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expressed in terms of the coefficients of γ with respect to a multitype-basis at z
close to bD.

2.22. Theorem. Let (k1, . . . , kn) be the multitype at a point z close to bD, let
(yκ) be a multitype-basis at z, and suppose that γ = ∑n

j=1 γjyj with |γ | = 1.
Then

1

τ(z, γ, ε)
∼

n∑
j=1

|γj |ε−1/kj.

Proof. Let (vj,ε) be a set of ε-minimal bases at z for each sufficiently small ε >

0. As before, we write
yj =

∑
κ

aκj,εvκ,ε,

and we know that |aκj,ε| � ε|1/kκ−1/kj |. Therefore, ifγ =∑n
κ=1 γκ,εvκ,ε, we see that

1

τ(z, γ, ε)
∼

∑
κ

|γκ,ε|
τκ(z, ε)

∼
∑
κ

|γκ,ε|ε−1/kκ ≤
∑
κ,j

|aκj,εγj |ε−1/kκ

�
∑
κ,j

|γj |ε|1/kκ−1/kj |−1/kκ �
∑
j

|γj |ε−1/kj.

The proof for the reverse estimate follows along the same lines but using the ma-
trices (aκj,ε)

−1.

Before we proceed to the Hölder estimates announced in Theorem 1.7, we present
an example showing that, in general, it is impossible even locally to choose the
ε-extremal bases at ζ to depend continuously on the base point ζ. So, whereas all
the estimates for the relevant geometric quantities given here behave nicely with
respect to the base point, we cannot (a priori) expect to have continuously vary-
ing families of extremal bases; the problem appears most clearly in the vicinity of
those boundary points where the defining function behaves symmetrically along
different lines in the complex tangent space. This is the basic idea of the following.

Example. Let r(ζ) := |ζ|2−1 be the defining function of the unit ball in C
n for

n > 2, and let ζj = ξj + iηj . Our example domain will be a small perturbation of
the unit ball. For α ∈R

+, let

rα(ζ) := r(ζ)+ αξ 2
n.

For α > 0 chosen sufficiently small, the set

Dα := {z∈C
n : rα(z) < 1} ⊂⊂ C

n

is a strictly convex, smoothly bounded domain. Let

ζ0 := (0, . . . , 0,−i)∈ bDα

and
ζ
(j)

δ := (
0, . . . , 0, δ, 0, . . . , 0, − i

√
1− δ2

)∈ bDα ,

where δ ∈ [0,1] stands in the j th coordinate. Of course, ζ (j)

δ → ζ0 for δ → 0.
The complex tangent space T C

ζ0
(bDα) equals C

n−1× {0}, whereas
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T C

ζ
(j)
δ

(bDα) =
{
t ∈C

n : δtj + i
√

1− δ2tn = 0
}
.

It is then easy to see that, for all t ∈ T C

ζ0
(bDα) with ‖t‖ = 1 and all λ∈C, we have

rα(ζ0 + λt) = |λ|2,
so every orthonormal basis of T C

ζ0
(bDα) forms, together with the normal direction,

an ε-minimal (or ε-maximal) basis at ζ0. Now let γ := γ (δ) := i
√

1− δ2 and

vj :=
ej − δ

γ
en∥∥ej − δ

γ
en

∥∥ ,

where (e1, . . . , en) denotes the standard basis of C
n. Thus, vj is a unit vector in

T C

ζ
(j)
δ

(bDα). At the point ζ (j)

δ (for δ > 0), the complex tangent space splits into an

orthogonal sum
T C

ζ
(j)
δ

(bDα) = T1⊕ T2,

where
T1 = 〈vj〉 and T2 = 〈e1, . . . , ej−1, ej+1, . . . , en−1〉.

If t ∈ T2 is a unit vector, then rα(ζ
(j)

δ +λt) = |λ|2, so all directions in T2 are equiv-
alent with respect to the growth of rα along complex tangent lines. Suppose now
that t ∈ T2 is a unit vector and that a, b ∈R are positive numbers with a2 + b2 =
1. We want to show that, for fixed modulus |λ|2 = c2 for some c > 0 and fixed
δ > 0, that (i) the function

f(λ, a, b) := rα(ζ
(j)

δ + λ(at + bvj ))

always attains its maximum in a point with a = 0 and (ii) this maximum is larger
than |λ|2. A simple calculation (using a2 + b2 = 1 and δ2 + |γ |2 = 1) shows that

f(λ, a, b) = |λ|2 + α(Im(λ))2δ2b2.

If |λ| = c and if δ > 0 is fixed, then the maximal possible value of this expression
is obviously greater than |λ|2 and is attained for b = 1 and λ = ±ic; thus, a = 0.
This shows that vj is the unique ε-minimal direction in the point ζ (j)

δ for any ε >

0. By considering j = 1 and j = 2 (for n ≥ 3) and by letting δ → 0, it is then
obvious that there is no continuous choice of ε-minimal basis near ζ0. The same
type of example also settles the case of the ε-maximal bases.

However, it remains conceivable that, by a small perturbation of the defining
function, the problem could be avoided in this case.

3. Nonisotropic Hölder Estimates

As an application of the geometric constructions carried out so far, we will now
show how to extend the Hölder estimates that were obtained in [Fi2] to get the es-
timates we claimed in Theorem 1.7. In order to do so, we will use the estimates of
the last section in the integral estimates that are given in [Fi2] and then suitably
modify some of Fischer’s ideas. In [Fi2] it was shown that, to obtain nonisotropic
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estimates for the ∂̄-equation, it is enough to prove certain estimates for the follow-
ing four types of integrals:

Ia :=
∫
bD

|(Q ∧ (∂̄ζQ)k ∧ β)T |
|S|k+1|ζ − z|2n−2k−2

dσ2n−1;(1)

Ib :=
∫
bD

|(δγQ ∧ (∂̄ζQ)k ∧ β)T |
|S|k+1|ζ − z|2n−2k−3

dσ2n−1;(2)

Ic :=
∫
bD

|(Q ∧ δγ(∂̄ζQ)(∂̄ζQ)k−1 ∧ β)T |
|S|k+1|ζ − z|2n−2k−3

dσ2n−1;(3)

Id :=
∫
bD

|(Q ∧ (∂̄ζQ)k ∧ β)T ||δγS|
|S|k+2|ζ − z|2n−2k−3

dσ2n−1.(4)

Here ( . . . )T denotes the bD-tangential part of a form, Q =∑n
j=1 Qjdζj is a suit-

able decomposition of the Diederich–Fornæss support function S of the domain D

such that 〈Q(z, ζ), ζ − z〉 = S(z, ζ), and β denotes (bounded) differential forms
that give the expressions in the denominators the bidegree (n, n−1); dσ2n−1 is the
surface element of bD, and δγ denotes the directional derivative in direction γ. If
we are interested in solution operators on (0, q + 1)-forms, the index k runs from
0 to n− q − 2.

In [Fi2] it is shown that the solution operator Tq can be represented as Tq =
Rq +Bq , where Bq is the Bochner–Martinelli operator (satisfying an almost Lip-
schitz estimate, i.e., an isotropic Hölder estimate of order 1− ε for any ε ∈ (0,1))
and where δγRqf(z) can be estimated by the integrals Ia , . . . , Id just listed. (The
solution operators are constructed using the Cauchy–Fantappiè calculus as de-
scribed, e.g., in [Ra].)

3.1. Theorem. Let D = {r < 0} ⊂⊂ C
n be a smooth, convex domain of finite

type with multitype M(bD) = (µ1, . . . ,µn). Let 0 ≤ q < n, µ := µn−q , and D :=
|r(z)| for z ∈D sufficiently close to bD. Suppose that the integrals Ia , . . . , Id de-
fined previously satisfy the following estimates for k = 0, . . . , n − q − 2 and all
z∈D.

(i) For all σ ∈ (0,1], there exist Cσ > 0 such that |Ia| ≤ CσD
σ(1/µ−1).

(ii) |Ib|, |Ic|, |Id |� D1/µ/τ(z, γ, D)+|log D|. If z and γ are such that τ(z, γ, ε)∼ ε

( for constants independent of z, γ, ε), then we suppose there is a constant C0

such that |Ib,c,d | ≤ C0D
1/µ−1.

Then the anisotropic Hölder estimate in Theorem 1.7 holds.

Proof. In [Fi2], Fischer shows that the two estimates in this theorem always hold
for µ = mn (the type of the domain) and k = 0, . . . , n−2, and from this he derives
the nonisotropic estimate stated in Theorem 1.6 (see the proof of [Fi2, Thm. 1.2]).
In fact, Fischer uses estimate (i) to obtain an estimate similar to (ii) for |Ia| (with
µ = µn in both cases). We must proceed differently and consider more cases, but
we will use the notation from [Fi2].
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Let u(z) := Rqf(z) and A := d(z0, z1), where d = d+ or d−. Let γ =
(z1 − z0)/|z1 − z0| and let ν be the inward normal direction at ζ0 = π(z0)

(projection of z0 to bD). Moreover, define z̃j := zj + Aν for j = 0,1. Then, we
obviously have

|u(z0)− u(z1)| ≤ |u(z0)− u(z̃0)| + |u(z̃0)− u(z̃1)| + |u(z̃1)− u(z1)|
≤

∫
[z0,z̃0 ]

|δνu(t)| dt +
∫

[z̃0,z̃1]
|δγu(t)| dt +

∫
[z̃1,z1]

|δνu(t)| dt.

The first and third integral are bounded by a constant times
∫ A

0 s1/µ−1 ds � A1/µ

if the estimates (i) and (ii) hold, because the function s �→ s1/µ−1 is decreasing
on the interval (0,∞) and we always have |Ia,b,c,d | � D1/µ−1 on the lines [z0, z̃0 ]
and [z1, z̃1].

For the second integral, let mκ be the order of contact with bDz̃0 of the line
through z̃0 in direction γ, and suppose that the index κ is chosen to be mini-
mal. Here (m1, . . . ,mn) is the multitype at z̃0. By the results of Section 2, if γ =∑n

k=κ γkyk is the representation of γ by a multitype-basis (yk) then there are
global constants C and c such that, for all sufficiently small α > 0,

c

n∑
k=κ

|γk|α−1/mk ≤ 1

τ(z̃0, γ,α)
≤ C

n∑
k=κ

|γk|α−1/mk. (3.2)

We therefore have α1/µ/τ(z̃0, γ,α) � α1/µ−1/mκ , with constants independent of
z̃0 and the specific choice of γ. If mκ ≤ µ then the function α �→ α1/µ/τ(z̃0, γ,α)
is (pseudo-)decreasing. Thus, by (ii), for the line integrals of |Ib|, |Ic|, and |Id |,
we obtain∫

[z̃0,z̃1]
|Ib,c,d | ds �

∫ τ(z̃0,γ,A)

0

A1/µ

τ (z̃0, γ,A)
ds +

∫ |z̃0−z̃1|

0
|log(A)| ds

� A1/µ + |z̃0 − z̃1||log|z̃0 − z̃1|| ≤ A1/µ + Cε|z0 − z1|1−ε.

If mκ > µ then the estimates for the line integrals of |Ib|, |Ic|, and |Id | become
simpler, since mκ ≥ µ implies α1/µ/τ(z̃0, γ,α) � 1 for all α near 0. In order to
estimate

∫
[z̃0,z̃1]|Ia| ds, assume that ε > 0 is given; then we can choose σ ∈ (0,1]

so small that |z1− z0|εd(z0, z1)
σ(1/µ−1) remains bounded as z1 → z0. On the line

[z̃0, z̃1] we have D � A, so Dσ(1/µ−1) � Aσ(1/µ−1). Therefore, estimate (i) implies∫
[z̃0,z̃1]

|Ia| ds � |z1− z0|εAσ(1/µ−1)|z1− z0|1−ε � |z1− z0|1−ε,

with constants depending only on ε.

Since Tq = Rq + Bq and since the Bochner–Martinelli transformation maps
L∞ continuously into �1−ε for any ε ∈ (0,1), we can conclude that the Hölder es-
timate stated in Theorem 1.7 holds.

Thus, in order to prove Theorem 1.7, we need only show that the estimates (i) and
(ii) in Theorem 3.1 hold. This will again be done by modifying Fischer’s origi-
nal proof and inserting our estimates from the previous section. This modification
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is straightforward, so we will only briefly indicate how it is done. First, we will
quote the necessary estimates for the integrands of the integrals Ia , . . . , Id .

3.3. Lemma. Let ζ, z ∈ D̄, ζ0 := π(z), and ζ ∈ P ±
ε (ζ0) for some ε > 0. Then

the term
|(Q ∧ (∂̄ζQ)k ∧ β)T |

appearing in the integrands of Ia , . . . , Id can be estimated by a sum of terms of the
form

Ek
µν := εk∏k

l=1 τ
±
µl
(ζ0, ε)τ±νl (ζ0, ε)

,

where all the µl , νl exceed unity and each index appears at most once in each of
the sets {µl}, {νl}. If δγ is the derivative with respect to z in direction γ, then the
terms

|(δγQ ∧ (∂̄ζQ)k ∧ β)T | and |(Q ∧ (δγ ∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β)T |
can be estimated by a sum of terms of the form Ek

µν/τ(ζ0, γ, ε).

Proof. This is a special case of [Fi2, Lemma 3.8], which is sufficient for our
purposes.

By the proof of [Fi2, Lemma 2.1], it is easy to see that we need only replace Fis-
cher’s Lemma 3.14 by the following statement (in fact, that lemma states exactly
the estimates of our Lemma 3.4 with mn instead of mk+2). This is because the
procedure of exhausting a neighborhood of a fixed boundary point ζ0 by poly-
annuli—which was used in [Fi2] (and previously in [DFiFo; Fi1]) to incorporate
the powers of the support function |S| appearing in the denominators of the inte-
grands in Ia , . . . , Id into the estimates—always goes through as soon as sufficiently
good estimates for the integrals in the following lemma are known.

The exhaustion procedure alluded to here is based on good estimates for the sup-
port function S and also on the following. Let (yκ) be a multitype-basis at z̃0, let
γ = ∑

γkyk be a unit vector, and set τ(α) := τ(z̃0, γ,α). Now, if i0 ∼ −log2 D,
then Theorem 2.22 implies that

i0∑
j=0

(2−j )1/µ

τ (2−j )
�

n∑
k=1

i0∑
j=0

|γk|(2−j )1/µ−1/mk

�
n∑

k=1

|γk|D1/µ−1/mk + |log D|

�
D1/µ

τ (D)
+ |log D|.

If γ is such that τ(z̃0, γ, ε) ∼ ε, then clearly
i0∑

j=0

(2−j )1/µ

τ (z̃0, γ, 2−j )
�

D1/µ

τ (z̃0, γ, D)
.

All these estimates can also be proved without the use of Theorem 2.22.
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3.4. Lemma. Let ζ0 = π(z) for z ∈ D close to the boundary. Then there are
constants independent of z and ε such that the following estimates hold.∫

bD∩P−ε (ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)T |
|ζ − z|2n−2k−3+1−σ

dσ2n−1 � εσ/mk+2+k+1 for all σ ∈ (0,1].(1)

∫
bD∩P−ε (ζ0 )

|(δγQ ∧ (∂̄ζQ)k ∧ β)T |
|ζ − z|2n−2k−3

dσ2n−1 �
ε1/mk+2+k+1

τ(ζ0, γ, ε)
.(2)

∫
bD∩P−ε (ζ0 )

|(Q ∧ (δγ ∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β)T |
|ζ − z|2n−2k−3

dσ2n−1 �
ε1/mk+2+k+1

τ(ζ0, γ, ε)
.(3)

Proof. Let wj = sj + itj be the ε-minimal coordinates at the point ζ0 ∈ bD, and
let τj(ε) := τ−j (ζ0, ε). By Lemma 3.3, the first integral can then be estimated by

I :=
∫
|t1|<τ1(ε)

∫
|w2|<τ2(ε)

· · ·
∫
|wn|<τn(ε)

εk dt1 dV(w2, . . . ,wn)∏k
l=1 τµl

(ε)τνl(ε)
(∑n

j=1|wj |
)2n−2k−3+1−σ

,

where all the µl , νl exceed unity and each index appears at most once in each of
the sets {µl}, {νl}. Since τ1(ε) � τ2(ε) ≤ · · · ≤ τn(ε), the worst case that can ap-
pear is the integral

J :=
∫
|t1|<τ1(ε)

∫
|w2|<τ2(ε)

· · ·
∫
|wn|<τn(ε)

εk dt1 dV(w2, . . . ,wn)∏k+1
l=2 τ

2
l (ε)

(∑n
j=1|wj |

)2n−2k−3+1−σ
.

Integrating over dt1 dV(w2, . . . ,wk+1) and observing that τ1(ε) ∼ ε and∫
|wj |<τj (ε)

dV(wj )

τ 2
j (ε)

� 1,

we see that J can be estimated above by a constant multiplied by

Jk :=
∫
|wk+2|<τk+2(ε)

· · ·
∫
|wn|<τn(ε)

εk+1 dV(wk+2, . . . ,wn)(∑n
j=k+2|wj |

)2n−2k−3+1−σ
.

For this integral, we use polar coordinates in the variables (wk+3, . . . ,wn), leaving
out only the direction wk+2 corresponding to the minimal entry of the multitype
of which we can still dispose; this enables us to derive the estimate

Jk �
∫
|wk+2|<τk+2(ε)

∫ 1

0

εk+1r 2n−2k−5 dr dV(wk+2)

(|wk+2| + r)2n−2k−3+1−σ

�
∫
|wk+2|<τk+2(ε)

∫ ∞

0

εk+1s2n−2k−5 ds dV(wk+2)

|wk+2|2−σ(1+ s)2n−2k−3+1−σ

�
∫
|wk+2|<τk+2(ε)

εk+1 dV(wk+2)

|wk+2|2−σ
� εk+1τ σ

k+2(ε) � εσ/mk+2+k+1,
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which was to be shown. The remaining estimates follow in exactly the same way
from Lemma 3.3 by setting σ = 1 in the preceding estimates.

We observe that, in the solution operator acting on (0, q + 1)-forms, no terms ap-
pear except those that can be estimated as here for 0 ≤ k ≤ n− q − 2; hence it is
clear that the worst possible estimate in this case is controlled by the entry mn−q

of the multitype of D, not by mn. The rest of Fischer’s original proof can be used
without any change to complete the proof of Theorem 1.7.
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