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Finite-Order Automorphisms of a Certain Torus

Brian Conrad

1. Introduction

A classical result of Higman [H; S, Exer. 6.3] asserts that the roots of unity in the
group ring Z[�] of a finite commutative group � are the elements ±γ for γ ∈ �.
One application of this result is the determination of the group of finite-order auto-
morphisms of a torus T = ResS ′/S(Gm) for a finite étale Galois covering f : S ′ →
S, with S and S ′ connected schemes and the abelian Galois group � = Gal(S ′/S)
(e.g., an unramified extension of local fields). Indeed, the torus T has character
group Z[Gal(S ′/S)] with Gal(S ′/S) acting through left translation, and an auto-
morphism of T is “the same” as an automorphism of its character group X(T ) as
a Galois module. Thus, to give an automorphism of T is to give a generator of
Z[Gal(S ′/S)] as a left module over itself. This in turn is just a unit in the group
ring. Once we have the list of roots of unity, this gives the list of finite-order auto-
morphisms. It follows that the group of finite-order automorphisms of the torus
T is the finite group that is generated (as a direct product) by inversion and the
action of Gal(S ′/S).

Now consider the problem (raised to the author by G. Prasad) of finding all
finite-order automorphisms of the norm-1 subtorus T 1 in T when � is cyclic (e.g.,
the Galois group of an unramified extension of local fields). This subtorus is func-
torially described as the kernel of the determinant map

det : T = f∗Gm/S ′ → Gm/S;
for example, T 1(S) is the group of units u on S ′ such that NS ′/S(u) = 1 on S.
The character group X(T 1) is the quotient of X(T ) by the determinant character.
Thus, if � is cyclic then X(T 1) is the Galois module

Z[�]/
(∑

γ∈� γ
) � Z[x]/(sm),

where � = Gal(S ′/S) has a chosen generator x and

sm := xm−1 + · · · + x + 1,

withm = deg(S ′/S) = |�|. Hence, in order to find all finite-order automorphisms
of the norm-1 torus T 1, we are led to try to find all roots of unity in the order
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Z[x]/(sm) ⊆ ∏
d|m,d>1 Z[ζd ]. Of course, we expect to get the same answer as

in the case of T, namely, the product of the subgroup generated by inversion and
the subgroup given by the action of Gal(S ′/S). Note that for m = 2 the nontriv-
ial element of Gal(S ′/S) acts by inversion, but for m > 2 there are no nontrivial
relations between inversion and the Gal(S ′/S)-action.

Unfortunately, the clever method of Higman for determining the roots of unity
in Z[�] uses trace operators whose definition makes essential use of the group-
ring structure. This technique does not seem to generalize to apply to the ring
Z[x]/(sm), which is not a group ring. Thus, in order to solve our stated problem,
we must find a different method. The geometric method of filtering a norm-1 torus
by norm-1 tori relative to steps of a Galois tower (so as to try to reduce immediately
to the easy prime-degree case, for example) seems to quickly run into difficulties,
especially if we want to keep track of automorphisms of order 2. Thus, we are
forced to adopt an algebraic approach.

In brief, we view rings such as Z[x]/(sm) and Z[x]/(xm − 1) = Z[�] as ob-
tained by gluing certain closed subschemes of the affine line A1

Z along various
artinian overlaps. By means of suitable induction arguments that follow the ge-
ometry of this gluing, we are able to solve the problem by inducting on the prime
factorization of m. Although most of our motivation and reasoning is inspired by
thinking in terms of schemes, the proofs use only the language of ring theory, and in
statements of lemmas and theorems we provide (for the benefit of readers who do
not use the framework of schemes) ring-theoretic translations of scheme-theoretic
statements.

It seems that a new idea is needed to handle the evident analogue of the moti-
vating torus automorphism problem even for the most basic noncyclic case � =
Z/(p)× Z/(p). Here is the main result of this note, answering Prasad’s question
affirmatively in the cyclic case.

Theorem 1.1. Let n,m ≥ 1 be relatively prime positive integers with m > 1. Let
Z′ be the localization of Z at a multiplicative set of nonzero integers whose ele-
ments are relatively prime to m. Let µ tor(R) denote the group of roots of unity in
a commutative ring R. For m > 2, the natural multiplication map

µ tor(Z[ζn])× µm → µ tor(Z′[ζn][x]/(xm−1 + · · · + x + 1)) (1.1)

is an isomorphism, where µm is a cyclic group of order m generated by x. When
m = 2, this map is surjective with order-2 kernel that has (−1, −1) = (−1, x) as
its unique nontrivial element.

The use of the notation Z′ suppresses the dependence on the choice of multiplica-
tive set (which in turn is constrained by the choice of m), but for inductive di-
visibility arguments this ambiguity is not confusing and for expository purposes
this imprecise notation makes things easier to read. The version of Theorem 1.1
using only Z′ = Z (and n = 1) is all that is required for Prasad’s question, and
it can be proved without localizing (although the generality of arbitrary n is still
required). However, by allowing for localization in the inductive hypothesis we
eliminate some tedious considerations that are otherwise needed to pass from the
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case of prime-power m to the general case. This is the main reason for allowing
denominators (avoiding the prime factors of m) in (1.1).

It is obvious that (1.1) is injective when m > 2, and the case m = 2 is trivial
(but is convenient to include in the statement of the theorem for purposes of in-
duction). It is also worth mentioning at the outset that even though n = 1 is the
only relevant case for applications to torus automorphisms, the inductive method
of proof requires us to treat the case of general n ≥ 1.Actually, a preliminary result
that we will need in the proof of Theorem 1.1 is a generalization of Higman’s re-
sult with Z′[ζn]-coefficients: the group of roots of unity in Z′[ζn][x]/(xm −1) for
relatively prime positive integers n and m is the direct product of µ tor(Z′[ζn]) =
µ tor(Z[ζn]) and the order-m group generated by x (see Theorem 3.1).

An extension of our localization arguments reduces the case of general abelian
� to the case of � with prime-power order. Since we cannot prove anything even
when � is a product of two cyclic groups of prime order p and since we do not see
how to reduce the p-primary case to the p-torsion case, we have decided to omit
discussion of the reduction of the general abelian case to the primary case. The in-
terested reader should have no difficulty generalizing our localization arguments
to establish this reduction step.

Notation. For a positive integer n and a commutative ringR, we writeR[ζn] to
denote R⊗Z Z[ζn] = R[X]/(�n), where �n denotes the nth cyclotomic polyno-
mial. Thus, for R = Z[ζn] with n relatively prime tomwe have R[ζm] = Z[ζnm],
but for most R the ring R[ζm] is not a domain.

For any commutative ring R, we write R× to denote the group of units in R and
µ tor(R) to denote the torsion subgroup in R× (i.e., the roots of unity in R).

If g ∈G is an element in a group, we write 〈g〉 to denote the subgroup generated
by g. If S is a finite set, we write #S to denote the size of S.

2. Gluing Subschemes of the Affine Line

The reader who prefers to avoid schemes should observe (2.1) and then skip ahead
to Lemma 2.2.

If we view Spec(Z[x]/(xn − 1)) and Spec Z[ζd ] = Spec(Z[x]/�d) for d|n as
closed subschemes of A1

Z, then Spec(Z[x]/(xn − 1)) is physically the union of
the Spec(Z[ζd ])s. More precisely, the natural map∐

d|n
Spec(Z[ζd ]) → A1

Z

factors through Spec(Z[x]/(xn − 1)), so if Z denotes the scheme-theoretic im-
age of this map then we have a closed immersion i : Z ↪→ Spec(Z[x]/(xn − 1))
between finite flat reduced Z-schemes; i is an isomorphism over Q (or even over
Z[1/n]), so it must be an isomorphism. However, it is important for our purposes
to know the mechanism by which Spec(Z[x]/(xn − 1)) is obtained by gluing the
Spec(Z[ζd ])s along artinian closed overlaps.

Due to lack of an adequate reference, let us recall some standard terminology that
serves primarily as geometric motivation for our method of proof of Theorem 1.1.
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We formulate the following definition in a general setting because the relevant con-
struction is easier to carry out without having to worry at the same time whether
we are remaining within the category of schemes.

Definition 2.1. Let Y and Y ′ be two ringed spaces, and let i : Z ↪→ Y and
i ′ : Z ↪→ Y ′ be two closed immersions. We define a gluing of Y and Y ′ along Z
to be a commutative diagram of ringed spaces

Z
i ��

i′
��

Y

j

��

Y ′
j ′

�� Y
∐

Z Y
′

such that, for any pair of maps f : Y → W and f ′ : Y ′ → W to another ringed
space with f � i = f ′ � i ′, there exists a unique map F : Y

∐
Z Y

′ →W such that
F � j = f and F � j ′ = f ′.

The existence and uniqueness of a gluing is simple: we define Y
∐

Z Y
′ to be the

gluing on underlying topological spaces along i and i ′ (using the quotient topol-
ogy), so topologically j and j ′ are the evident maps. Letting k = j � i = j ′ � i ′
on the level of topological spaces, we define the sheaf of rings

O
Y

∐
Z Y

′ = j∗OY ×k∗OZ
j ′
∗OY ′ ;

here, for a pair of ring mapsα : A → C and β : B → C we define the fiber-product
ring

A×C B
def= {(a, b)∈A× B | α(a) = β(b)} ⊆ A× B. (2.1)

It is easy to check (with the evident maps on sheaves of rings) that this construc-
tion satisfies the universal property to be a gluing, so in particular the maps j and
j ′ in the universal property are closed immersions and have intersection (in the
ringed space sense) equal to Z; moreover, the formation of such gluing is of local
nature on Y and Y ′ (relative to Z). More specifically, if U ⊆ Y and U ′ ⊆ Y ′ are
opens that meet Z in a common open V ⊆ Z, then there is a natural map

U
∐
V

U ′ → Y
∐
Z

Y ′

that is an open immersion.
Because of the local behavior, it is clear from the construction that if the setup

is given in the category of locally ringed spaces then the gluing is a locally ringed
space, and its universal data also makes it universal in the category of locally ringed
spaces. With these observations made, we claim that the category of schemes is
stable under such gluing. By working locally we reduce to the affine case, and the
problem comes down to proving that, for a pair of surjective ring maps α : A →
C and β : B → C, the natural map of locally ringed spaces

Spec(A)
∐

Spec(C)

Spec(B) → Spec(A×C B) (2.2)
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is an isomorphism. Topologically the situation is clear (since α and β are surjec-
tive), and for the sheaf aspect we can therefore work locally. By judicious use of
basic open affines, we thereby reduce to the claim that (2.2) induces an isomor-
phism on global sections, and this is clear from how the structure sheaf on the left
side is defined.

We note in passing that if all of the gluing data is given over a base scheme S,
so that the gluing Y

∐
Z Y

′ is universal in the category of S-schemes, then we can
inquire about the base-change compatibility of this construction. Compatibility
with flat base change is clear, and this is the only aspect we shall need (compati-
bility with respect to base change also holds if Z is S-flat).

The real purpose of going through this formalism is to give geometric mean-
ing to the following easy but crucial algebraic result that mildly generalizes the
Chinese remainder theorem.

Lemma 2.2. Let C be a domain with fraction field K, and let f , g ∈C [x] be two
monic polynomials that are relatively prime in K[x]. The natural C-algebra map

C [x]/(fg) → C [x]/(f )×C [x]/(f,g) C [x]/(g)

is an isomorphism. That is, the closed subscheme Spec(C [x]/(fg)) ↪→ A1
C is the

gluing of
Spec(C [x]/(f )) and Spec(C [x]/(g))

along their overlap Spec(C [x]/(f , g)) inside of A1
C.

Proof. Since the source is finite free as a C-module, for injectivity we may check
after flat extension of scalars to K, where the map is clearly an isomorphism by
the usual Chinese remainder theorem. As for surjectivity, if a ∈ C [x] and b ∈
C [x] represent respective elements ā ∈ C [x]/(f ) and b̄ ∈ C [x]/(g) with the
same image in C [x]/(f , g), then a + fψ = b + gφ for some ψ ,φ ∈C [x]. This
gives an element in C [x]/(f , g) mapping to the chosen element (ā, b̄) in the fiber
product ring.

We wish to give two examples of Lemma 2.2 that will be used later. As a first
example, we fix a prime p and a positive integer e. Also choose a domain C

with characteristic not equal to p. We will be interested in the case C = Z′[ζn]
with n not divisible by p (and Z′ a localization of Z). We want to describe
SpecC [x]/(xp

e − 1) as a gluing of SpecC [x]/(xpe−1 − 1) and SpecC [ζpe ] along
suitable closed subschemes. If we write C̄ to denote C/(p), then there are canoni-
cal surjections

C [x]/(xp
e−1 − 1) � C̄ [ε]/(εp

e−1
) � C [ζpe ]

defined by
x �→ 1 + ε, ζpe �→ 1 + ε.

Lemma 2.3. The scheme-theoretic intersection of Spec(C [x]/(xpe−1 − 1)) and
Spec(C [ζpe ]) inside of A1

C is exactly Spec(C̄ [ε]/(εpe−1
)), and the natural map

Spec(C [x]/(xp
e−1 − 1))

∐
Spec(C̄ [ε]/(εp e−1))

Spec(C [ζpe ]) → Spec(C [x]/(xp
e − 1))

is an equality of closed subschemes of A1
C.



428 Brian Conrad

In other words, the map

C [x]/(xp
e − 1) → C [x]/(xp

e−1 − 1)×C̄ [ε]/(εp e−1) C [ζpe ] (2.3)

defined by x �→ (x, ζpe ) is an isomorphism of C-algebras.

Proof. Since the fraction field K of C has characteristic not equal to p, clearly
xp

e−1 −1 and�pe are relatively prime inK[x]. Thus, the hypotheses in Lemma 2.2
are satisfied, so we just have to check that the common quotient C̄ [ε]/(εpe−1

) of
C [x]/(xpe−1 − 1) andC [ζpe ] is exactlyC [x]/(xpe−1 − 1,�pe). It suffices to check
the case C = Z. We have

Z[x]/(xp
e−1 − 1,�pe) � Z[ζpe ]/(ζp − 1), (2.4)

and ramification theory for cyclotomic fields [W, Chap. 1] identifies this latter ring
with Fp[ε]/(εpe−1

), where ε = 1+ ζpe . This completes the proof, and we also note
that the common quotient (2.4) is the unique length-pe−1 artinian quotient of each
of our rings Z[x]/(xpe−1 − 1) and Z[ζpe ].

The other example of Lemma 2.2 concerns rings of the form

Cpe = C [x]/(spe ),

where sm = xm−1 + · · · + x + 1 and with e ≥ 0 (so s1 = 1 and C1 = 0). We
again take C to be a domain with characteristic not equal to p, and we define C̄ =
C/(p). For e ≥ 1, we have natural surjections

Cpe−1 � C̄ [ε]/(εp
e−1−1) � C [ζpe ]

defined by
x �→ 1 + ε, ζpe �→ 1 + ε.

The first map is well-defined because spe−1 = (x−1)p
e−1−1 in Fp[x]. In the special

caseC = Z , these maps determine the unique length-(pe−1−1) artinian quotients
of the rings Z[x]/(spe−1) and Z[ζpe ].

Lemma 2.4. For e ≥ 1 and C a domain with characteristic not equal to p, the
scheme-theoretic intersection of Spec(C [x]/(spe−1)) and Spec(C [ζpe ]) inside of

A1
C is exactly Spec(C̄ [ε]/(εp

e−1−1)), and the natural map

Spec(C [x]/(spe−1))
∐

Spec(C̄ [ε]/εp e−1−1)

Spec(C [ζpe ]) → Spec(C [x]/(spe ))

is an equality of closed subschemes of A1
C. In other words,

Cpe → Cpe−1 ×C̄ [ε]/(εp e−1−1) C [ζpe ] (2.5)

is an isomorphism of C-algebras.

The proof proceeds exactly like the proof of Lemma 2.3.
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3. Roots of Unity on a Multiplicative Group

As noted in the Introduction, in order to prove Theorem 1.1 we first need to deter-
mine the roots of unity in Z′[ζn][x]/(xm−1) for relatively prime positive integers
n and m (with Z′ denoting a localization of Z with denominators avoiding prime
factors ofm). In fact, the treatment of this problem also serves as an easier context
for carrying out the strategy of proof of Theorem 1.1. The essential simplifying
aspect of this particular example is that inducting on the prime factorization of m
is made feasible by means of the natural isomorphism of C-algebras

C [x]/(xm1m2 − 1) � C [x]/(xm1 − 1)⊗C C [x]/(xm2 − 1), (3.1)

for relatively prime positive integers m1 and m2, that is defined via x �→ x ⊗ x.

Geometrically, this is just the canonical isomorphism of C-group schemes

µm1 × µm2 � µm1m2

defined via multiplication.

Theorem 3.1. For relatively prime positive integers n and m, the natural multi-
plication map of groups

µ tor(Z[ζn])× µm = µ tor(Z′[ζn])× µm → µ tor(Z′[ζn][x]/(xm − 1)) (3.2)

is an isomorphism, where µm := 〈x〉 is cyclic of order m.

Proof. The casem = 1 is clear for all n, and the injectivity of (3.2) is clear in gen-
eral. Thus, it is enough to prove that the right side of (3.2) has size at most that of
the left side. Such counting will allow us to avoid having to make some isomor-
phisms explicit later on.

We will now treat the case when m = pe is a prime power (with e ≥ 1) via
Lemma 2.3 and induction on e. With m = pe, we start the induction at the set-
tled case e = 0. When e ≥ 1 we have p not dividing n, so there exists a natural
isomorphism

Z′[ζn] ⊗Z′ Z′[ζpe ] � Z′[ζnpe ].

By Lemma 2.3 with C = Z′[ζn], we therefore have a Z′[ζn]-algebra isomorphism

Z′[ζn][x]/(xp
e − 1) � Z′[ζn][x]/(xp

e−1 − 1)×Fp[ζn][ε]/(εp e−1) Z′[ζnpe ]

that carries x to (x, ζpe ). The projection-maps to Fp[ζn][ε]/(εpe−1
) in the fiber-

product ring are determined by x �→ 1 + ε and ζpe �→ 1 + ε. Thus, we have a
natural isomorphism

µ tor(Z′[ζn][x]/(xp
e − 1))

� µ tor(Z′[ζn][x]/(xp
e−1 − 1))×(Fp[ζn][ε]/(εp e−1))× µ tor(Z′[ζnpe ]).

From the theory of cyclotomic fields, since e ≥ 1 (so p does not divide n) we
have

µ tor(Z′[ζnpe ]) =
{
µ tor(Z′[ζn])× µpe if p �= 2,

µn × µ tor(Z′[ζpe ]) if p = 2.
(3.3)
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Combining this with the inductive hypothesis yields

µ tor(Z′[ζn][x]/(xp
e − 1))

=
{
(µ tor(Z′[ζn])× µpe−1)×(Fp[ζn][ε]/(εp e−1))× (µ tor(Z′[ζn])× µpe) if p �= 2,

(µ tor(Z′[ζn])× µ2e−1)×(F2[ζn][ε]/(ε2e−1
))× (µn × µ tor(Z′[ζ2e ])) if p = 2,

(3.4)

with the projection
µpe−1 → (Fp[ε]/(εp

e−1
))× (3.5)

sending a generator x modulo (xpe−1 − 1) to the element

1 + ε ∈ (Fp[ε]/(εp
e−1
))×

that has multiplicative order exactly pe−1. Thus, (3.5) is injective. Note also that
in (3.4) we can replace Z′ with Z on the right side without affecting the equali-
ties. Since reduction modp is also faithful on square roots and nth roots of unity
when p �= 2, it follows for odd p that the right side of (3.2) has size at most
pe · #µ tor(Z[ζn]); this is the size of the left side of (3.2). Hence, (3.2) is an iso-
morphism when m = pe and p �= 2, completing the induction on e in case m is
an odd prime power.

When p = 2 (so n is odd), the second case of (3.4) yields

µ tor(Z′[ζn][x]/(x 2e − 1))

= (µn × µ tor(Z′)× µ2e−1)×(F2[ζn][ε]/(ε2e−1
))× (µn × µ tor(Z′[ζ2e ]))

= µn × ((〈−1〉 × µ2e−1)×(F2[ε]/(ε2e−1
))× µ2e ),

with µ2e−1 generated by x modulo x 2e−1 − 1. Since

µ2e−1 → (F2[ε]/(ε2e−1
))×

is defined by sending the generator x to 1 + ε, whereas the projection

〈−1〉 → (F2[ε]/(ε2e−1
))×

is the trivial map, it follows that for m = 2e the right side of (3.2) has size at most

2e · 2n = m · #µ tor(Z[ζn]),

which is the size of the left side of (3.2). Thus, (3.2) is an isomorphism whenever
m is a power of 2. This settles the case for m a prime power.

Now we induct on the number of prime factors ofm. More specifically, we may
assume m = m1m2 with relatively prime positive integers mj > 1 such that (3.2)
is known to be an isomorphism formj and n relatively prime tomj , and we have to
show that (3.2) is an isomorphism for m = m1m2. It suffices to check surjectivity.
By relabeling, we may assume m1 is odd. Choose z ∈µ tor(Z′[ζn][x]/(xm − 1)).
The factor fields of

Q ⊗Z′ (Z′[ζn][x]/(xm − 1))
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have the form Q(ζnd) for d|m since gcd(n,m) = 1, so z2nm = 1 (as this holds for
roots of unity in each factor field). Because m1 is relatively prime to 2nm2, we
can write z = z1z2, where zm1

1 = 1 and z2 has order prime to m1. It therefore suf-
fices to treat separately the cases when z is an (m1)th root of unity and when z has
order prime to m1.

Let us first consider the case when z has order prime to m1. Inverting m2 and
defining Z′′ = Z′[1/m2 ], (3.1) allows us to view z as a root of unity in the ring

Z′′[ζn][x]/(xm1 − 1)⊗Z′′[ζn] Z′′[ζn][x]/(xm2 − 1).

Since xm2 − 1 is a monic polynomial over Z′′ with unit discriminant in Z′′ and
since gcd(m2, n) = 1, we have

Z′′[ζn][x]/(xm2 − 1) �
∏
d|m2

Z′′[ζnd ].

As a result, the natural map

Z′′[ζn][x]/(xm − 1) →
∏
d|m2

Z′′[ζnd ][x]/(xm1 − 1) (3.6)

defined by x �→ (ζd x)d|m2 is an isomorphism. Thus, by the inductive hypothesis
(for m1 and the localization Z′′ away from m1), if we write z = (zd)d|m2 for the
decomposition of z under (3.6), then each root of unity zd ∈ Z′′[ζnd ][x]/(xm1 −1)
lies in the subgroup µ tor(Z[ζnd ])× µm1 and has order prime to m1. Hence, zd ∈
µ tor(Z[ζnd ]) for all d|m2.

For any a ∈ (Z/m)× with a ≡ 1modm2, the automorphism σa : x �→ xa of
Z′[ζn][x]/(xm − 1) goes over (upon inverting m2) to the componentwise auto-
morphism that acts on Z′′[ζnd ][x]/(xm1 − 1) by fixing ζnd and sending x to xa.
These componentwise automorphisms leave zd invariant, so we have σa(z) = z

in Z′′[ζn][x]/(xm − 1) and hence σa(z) = z in Z′[ζn][x]/(xm − 1). The subring
of Z′[ζn][x]/(xm −1) invariant under all such σa is exactly Z′[ζn][y1]/(ym2

1 −1),
where y1 = xm1. Thus, by the inductive hypothesis for m2 and the localization Z′,

z∈µ tor(Z′[ζm][y1]/(ym2
1 − 1)) � µ tor(Z′[ζn])× µm2 ,

where µm2 is generated by y1 = xm1. This settles the surjectivity problem for z of
order prime to m1.

Now we consider the remaining case when zm1 = 1. By oddness of m1, each
component

zd ∈µ tor(Z′′[ζnd ][x]/(xm1 − 1)) � µ tor(Z[ζnd ])× µm1

lies in the subgroup µm1 generated by x. That is, zd = xed for some unique ed ∈
Z/(m1). Under (3.6) we have x �→ (ζd x)d|m2 , so xm2 �→ (xm2)d|m2 . The automor-
phism of Z′[ζn][x]/(xm −1) defined by σa : x �→ xa for a ∈ (Z/(m))× with a ≡
1modm1 induces the componentwise action on each Z′′[ζnd ][x]/(xm1 −1) leaving
x and ζn invariant but sending ζd to ζ ad . The element zd = xed is invariant under
this action, so z ∈ Z′[ζn][x]/(xm − 1) is invariant under all such σa. Thus, z lies
in the subring Z′[ζn][y2 ]/(ym1

2 −1) for y2 = xm2. Since y2 has image (xm2)d|m2 ,
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by considering the unique representative for z by a polynomial in y2 of degree at
most m1 − 1 we see that the components zd = xed ∈ Z′′[ζnd ][x]/(xm1 − 1) must
have ed ∈ Z/(m1) independent of d. If e denotes this common value and m′

2 ∈
(Z/(m1))

× is the multiplicative inverse of m2, then xm2m
′
2e ∈ Z′[ζn][x]/(xm − 1)

has dth component zd for all d, so z = xm2m
′
2e. Thus, z lies in the subgroup gen-

erated by x.

4. Proof of Theorem 1.1

The proof of Theorem1.1will be modeled on that of Theorem 3.1, using Lemma 2.4
to replace the role of Lemma 2.3. Our proof will actually use Theorem 3.1. The
case m = 1 is trivial (for all n), and the behavior for m = 2 is also clear. We wish
to once again first settle the prime-power casem = pe by induction on e over vari-
able n prime to p (requiring special care for p = 2); then we will use localization
to deduce the general case.

We begin by treating the case when m = pe is a prime power with e ≥ 1. The
case m = 2 is trivial, so we may assume m > 2. In particular, (1.1) is injective for
our m, so we can once again use counting arguments. Taking C = Z′[ζn] with n
not divisible by p (and Z′ a localization away from p), Lemma 2.4 yields

µ tor(Z′[ζn][x]/(spe ))

� µ tor(Z′[ζn][x]/(spe−1))×(Fp[ζn][ε]/(εp e−1−1))× µ tor(Z′[ζnpe ]), (4.1)

determined by x �→ (x, ζpe ). We first treat the case p �= 2. When p �= 2, then
induction on e and (3.3) yield

µ tor(Z′[ζn][x]/(spe ))

= (µ tor(Z′[ζn])× µpe−1)×(Fp[ζn][ε]/(εp e−1−1))× (µ tor(Z′[ζn])× µpe)

= µ tor(Z′[ζn])× (µpe−1 ×(Fp[ε]/(εp e−1−1))× µpe),

with the generators x mod spe−1 ofµpe−1 and ζpe ofµpe both mapping to 1+ε under
the fiber-product projections. The map

µpe−1 → (Fp[ε]/(εp
e−1−1))×

determined by x �→ 1 + ε is once again injective. Indeed, the case e = 1 is clear,
and for e ≥ 2 we use that pe−2 < pe−1 −1 for p �= 2 (this is false for p = 2 with
e = 2). Thus, the group

µpe−1 ×(Fp[ε]/(εp e−1−1))× µpe

has size at most pe, so the right side of (1.1) has size at most pe · #µ tor(Z′[ζn]);
this is the size of the left side of (1.1). It follows that (1.1) is an isomorphism for
m = pe with p an odd prime.

For the case p = 2 (so n is odd), we have e ≥ 2 since pe = m > 2. By (4.1),

µ tor(Z′[ζn][x]/(s4)) = µ tor(Z′[ζn])×(F2[ζn])× µ tor(Z′[ζ4n])

= µn × (〈−1〉 × µ4);
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this has size 8n, and 8n is also the size of the left side of (1.1) whenm = 4. Finally,
for p = 2 and e > 2, the natural map

µ2e−1 → (F2[ε]/(ε2e−1−1))×

defined by x �→ 1 + ε is injective since e − 1 ≥ 2, whence we compute that
Z′[ζn][x]/(s2e ) has group of roots of unity equal to

(µ tor(Z′[ζn])× µ2e−1)×(F2[ζn][ε]/(ε2e−1−1))× (µn × µ2e )

= µn × ((〈−1〉 × µ2e−1)×(F2[ε]/(ε2e−1−1))× µ2e ).

Then noting that the first projection in the fiber product has kernel 〈−1〉 of order 2,
we conclude that the group of roots of unity in Z′[ζn][x]/(s2e ) has size at most
n · 2 · 2e. But this is exactly the size of the left side of (1.1), so (1.1) must be an
isomorphism when m = 2e. This settles the case in which m is a prime power.

To handle the case whenm has more than one prime factor, the problem is again
one of surjectivity (as injectivity is clear). We may therefore assume m = m1m2

with relatively prime mj > 1, and the theorem may be assumed to be known for
each mj . We may also assume m1 is odd. As in the proof of Theorem 3.1, it suf-
fices to separately study a root of unity z ∈ Z′[ζn][x]/(sm) with zm1 = 1 and z of
order prime to m1. We again define Z′′ = Z′[1/m2 ]. Our replacement for (3.6) is
the isomorphism

Z′′[ζn][x]/(sm) → Z′′[ζn][x]/(sm1)×
∏

d|m2,d>1

Z′′[ζnd ][x]/(xm1 − 1) (4.2)

defined by x �→ (x, (ζd x)d|m2,d>1). To see that this map is an isomorphism, the
idea is that sm(x) = ((xm1)m2 − 1)/(x − 1) with ym2 − 1 étale over Z′′. More
precisely, we claim that passing to the mod sm quotient on the isomorphism (3.6)
yields (4.2). To see what is happening on the target ring, consider the factoriza-
tion sm(x) = sm1(x) · ∏

ζm2 =1,ζ �=1(x
m1 − ζ) in Z′′[ζm2 ][x]. The factors pairwise

generate 1, since m2 is a unit in Z′′ and xm1 − ζ and xm1 − 1 generate 1 for each
ζ �= 1 (with sm1|(xm1 − 1)). Combining this with the fact that sm(ζd x) is divisi-
ble by xm1 − 1 for d|m2 with d �= 1, we obtain the desired identification of the
right side of (4.2) with a quotient of the right side of (3.6), so (4.2) is indeed an
isomorphism.

To describe z, we consider its components in the factor rings on the right side
of (4.2). We can describe the roots of unity in the first factor ring via induction
for m1, and for the other factors we can use Theorem 3.1. The arguments with
the σa in the proof of Theorem 3.1 exploited the inductive hypothesis for m2.

These arguments carry over essentially unchanged to our present situation, once
we check that the subring in Z′[ζn][x]/(sm) consisting of invariant elements under
all operators x �→ xa (for a ∈ (Z/(m))× with a ≡ 1modm2) is generated over
Z′[ζn] by y = xm1. Since (m2 − 1)m1 < m1m2 − 1 (as m1 > 1), the distinct
powers 1, xm1 , . . . , x(m2−1)m1 of xm1 constitute a Z′[ζn]-module direct summand of
Z′[ζn][x]/(sm); thus, it suffices to show that the subring of invariants after extend-
ing scalars to Q is generated over Q(ζn) by y. The factor rings of Q(ζn)[x]/(sm)
are Q[ζnd ] for d = d1d2|m = m1m2 with d �= 1, and x �→ xa goes over to the
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automorphism fixing (nd2)th roots of unity and raising (d1)th roots of unity to the
ath power. Thus, the invariant subfield in each such factor field is Q[ζnd2 ], with
ζd2 a power of the primitive (d2)th root of unit ζm1

d . This yields the desired subring
of invariants (generated by xm1), completing the proof of Theorem 1.1.
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