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The Equivariant Cohomology Ring
of Regular Varieties

Michel Brion & James B. Carrell

0. Introduction

Let B denote the upper triangular subgroup of SL2(C), T its diagonal torus and
U its unipotent radical. A complex projective variety Y is called regular if it is en-
dowed with an algebraic action of B such that the fixed-point set YU is a single
point. Associated to any regular B-variety Y is a remarkable affine curve ZY with
a T-action, which was studied in [7]. In this note, we show that the coordinate ring
C[ZY ] is isomorphic with the equivariant cohomology ring H ∗

T(Y ) with complex
coefficients when Y is smooth or, more generally, is a B-stable subvariety of a
regular smooth B-variety X such that the restriction map from H ∗(X) to H ∗(Y )
is surjective. This isomorphism is obtained as a refinement of the localization the-
orem in equivariant cohomology; it applies for example to Schubert varieties in
flag varieties and to the Peterson variety studied in [11]. Another application of
our isomorphism is a natural algebraic formula for the equivariant push-forward.

1. Preliminaries

Let B be the group of upper triangular 2 × 2 complex matrices of determinant 1.
Let T (resp. U) be the subgroup of B consisting of diagonal (resp. unipotent) ma-
trices. We have isomorphisms λ : C

∗ → T and ϕ : C → U, where

λ(t) =
(
t 0
0 t−1

)
and ϕ(u) =

(
1 u

0 1

)
,

which together satisfy the relation

λ(t)ϕ(u)λ(t−1) = ϕ(t 2u). (1)
Consider the generators

V = ϕ̇(0) =
(

0 1
0 0

)
and W = λ̇(1) =

(
1 0
0 −1

)

of the Lie algebras Lie(U) and Lie(T), respectively. Then [W,V ] = 2V, and

Ad(ϕ(u))W = W − 2uV (2)
for all u∈ C.
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In this paper, X will denote a smooth complex projective algebraic variety en-
dowed with an algebraic action of B such that the fixed-point scheme XU consists
of one point o. Both the B-variety X and the action will be called regular. Then
o ∈XT, since XU is T-stable. Moreover, XT is finite by Lemma 1 of [7]. Thus
we may write

XT = {ζ1 = o, ζ2, . . . , ζr}. (3)

Clearly r = χ(X), the Euler characteristic of X.

Let H ∗
T(X) denote the T-equivariant cohomology ring of X with complex co-

efficients. To define it, let E be a contractible space with a free action of T and let
XT = (X × E )/T (quotient by the diagonal T-action). Then

H ∗
T(X) = H ∗(XT).

It is well known that the equivariant cohomology ring H ∗
T(pt) of a point is the

polynomial ring C[z], where z denotes the linear form on the Lie algebra of T
such that z(W ) = 1. The degree of z is 2. Thus H ∗

T(X) is a graded algebra over
the polynomial ring C[z] = H ∗

T(pt) (via the constant map X → pt).
In our situation, the restriction map in cohomology

i∗T : H ∗
T(X) → H ∗

T(X
T)

induced by the inclusion i : XT ↪→ X is injective (see [10]). By (3),

H ∗
T(X

T) =
r⊕

j=1

H ∗
T(ζj )

∼=
r⊕

j=1

C[z],

so each α ∈H ∗
T(X) defines an r-tuple of polynomials (αζ1 , . . . , αζr ). That is,

i∗T(α) = (αζ1 , . . . , αζr ). (4)

We will define a refined version of this restriction map in Section 4.

2. The BBB-Stable Curves

Throughout this paper, a curve in X will be a purely one-dimensional closed sub-
set of X; a curve that is stable under a subgroup G of B is called a G-curve.
The B-curves in X play a crucial role, so we next establish a few of their basic
properties.

Proposition 1. If X is a regular B-variety, then every irreducible B-curve C in
X has the form C = B · ζj for some index j ≥ 2. Moreover, every B-curve con-
tains o. In particular, there are only finitely many irreducible B-curves in X, and
they all meet at o.

Proof. It is clear that if j ≥ 2 then C = B · ζj is a B-curve in X containing ζj
that (by the Borel fixed-point theorem) also contains o, since o is the only B-fixed
point. Conversely, every B-curve C in X contains o and at least one other T-fixed
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point. Indeed, since o has an affine open T-stable neighborhood Xo in X, the com-
plement C−Xo is nonempty and T-stable. It follows immediately that C = B · x
for some x ∈XT − o.

Consider the action of B on the projective line P
1 given by(

t u

0 t−1

)
· z = z

t(t + uz)

(the inverse of the standard action). This action has (P1)T = {0,∞} and (P1)U =
{0} and is therefore regular. Note that, if u∈ C

∗, then(
t u

0 t−1

)
· ∞ = 1

tu

and so ϕ(u) · ∞ = u−1.

The diagonal action of B on X × P
1 is also regular. By Proposition 1, the ir-

reducible B-curves in X × P
1 are of the form B · (x,∞) or B · (x, 0), where

x ∈XT. Only the first type will play a role here. Thus, we put Zj = B · (ζj,∞)

and let πj : Zj → P
1 be the second projection. Clearly each πj is bijective, hence

Zj
∼= P

1. In addition,

Zj = {(ϕ(u) · ζj, u−1) | u∈ C
∗} ∪ {(ζj,∞)} ∪ {(o, 0)},

so Zi ∩ Zj = {(o, 0)} as long as i �= j. Moreover, restricting πj gives an isomor-
phism

pj : Zj − (ζj,∞) → A
1.

Finally, we put
Z =

⋃
1≤j≤r

Zj .

Thus, Z is the union of all irreducible B-stable curves in X × P
1 that are mapped

onto P
1 by the second projection π : X × P

1 → P
1.

3. The Fundamental Scheme ZZZ
Let A denote the vector field on X × A

1 defined by

A(x,v) = 2Vx − vWx. (5)

Obviously, A is tangent to the fibres of the projection to A
1. By (2),

(Ad(ϕ(u))W )x = −uA(x,u−1). (6)

The contraction operator i(A) defines a sheaf of ideals i(A)(�1
X×A1) of the struc-

ture sheaf of X × A
1. Let Z denote the associated closed subscheme of X × A

1.

In other words, Z is the zero scheme of A.

Remark 1. The vector field A discussed here is a variant of the vector field stud-
ied in [7]. Both have the same zero scheme.
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The properties of Z figure prominently in this paper. First put

Xo =
{
x ∈X

∣∣ lim
t→∞ λ(t) · x = o

}
. (7)

Clearly, Xo is T-stable, and it follows easily from (1) that Xo is open in X (see [7,
Prop. 1] for details). Hence, by the Bialynicki-Birula decomposition theorem [3],
Xo is T-equivariantly isomorphic to the tangent space ToX, where T acts by its
canonical representation at a fixed point. The weights of the associated action of
λ on ToX are all negative. Thus we may choose coordinates x1, . . . , xn on Xo

∼=
ToX that are eigenvectors of T; the weight ai of xi is a positive integer (it turns
out to be even; see [2]). This identifies the positively graded ring C[Xo] with
C[x1, . . . , xn], where deg xi = ai. Now X × P

1 contains Xo × A
1 as a T-stable

affine open subset with coordinate ring C[x1, . . . , xn,v], where v has degree 2.

Proposition 2. The scheme Z is reduced and is contained in Xo × A
1 as a T-

curve. Its ideal in C[Xo × A
1] = C[x1, . . . , xn,v] is generated by

vW(x1) − 2V(x1), . . . ,vW(xn) − 2V(xn). (8)

These form a homogeneous regular sequence in C[x1, . . . , xn,v], and the degree
of each vW(xi)− 2V(xi) equals ai + 2. The irreducible components of Z are the
Zj (1 ≤ j ≤ r), where

Zj = Zj − {(ζj,∞)}. (9)

Each Zj is mapped isomorphically to A
1 by the second projection p. In particu-

lar, p is finite and flat of degree r, and Z has r irreducible components. Any two
such components meet only at (o, 0).

Proof. This follows from the results in [7, Sec. 3]. We provide direct arguments
for the reader’s convenience.

Since [W,V ] = 2V and W(v) = 2v (on A
1), it follows that A commutes with

the vector field induced by the diagonal T-action on X×A
1. Hence, Z is T-stable.

Next we claim that (9) holds set-theoretically. Let (x,v) ∈ X × A
1 with v �=

0. Then (x,v) ∈ Z if and only if Wx − 2v−1Vx = 0, that is, iff x is a zero of
Ad(ϕ(v−1))W; equivalently, ϕ(−v−1) · x ∈XT. On the other hand, (x, 0) ∈ Z if
and only if Vx = 0, that is, iff x = o. Thus Z = Z ∩ (X × A

1) (as sets). Further,
Z∩ (X×A

1) is an open affine T-stable neighborhood of (o, 0) in Z and therefore
equals Z ∩ (Xo × A

1). This implies our claim.
It follows that Z ⊆ Xo ×A

1 (as schemes), so that the ideal of Z is generated by
vW(x1) − 2V(x1), . . . ,vW(xn) − 2V(xn). These polynomials are homogeneous
of degrees a1 + 2, . . . , an + 2; together with v, they have only the origin as their
common zero (since o is the unique zero of V ). Hence

vW(x1) − 2V(x1), . . . ,vW(xn) − 2V(xn),v
form a regular sequence in C[x1, . . . , xn,v], and v is a nonzero divisor in C[Z ].
As a consequence, the C[v]-module C[Z ] is finitely generated and free. In other
words, p : Z → A

1 is finite and flat.
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Fix v0 �= 0 and consider the scheme-theoretic intersection Z ∩ (X × v0).

This identifies with the zero scheme of 2Vx − v0Wx in X, that is, to the zero
scheme of Ad(ϕ(v−1

0 )W ). The latter consists of r = χ(X) distinct points, so that
Z ∩ (X × v0) is reduced. Since C[Z ] is a free module over C[v], it follows eas-
ily that Z ∩ (v �= 0) is reduced. But the open subset Z ∩ (v �= 0) is dense in Z by
(9), and Z is a complete intersection in A

n+1. Thus, Z is reduced. This completes
the proof.

4. The Refined Restriction

We now define our refined restriction on equivariant cohomology. Let α ∈H ∗
T(X).

Recall from (4) that i∗T(α) = (αζ1 , . . . , αζr ), where each αζj ∈ C[z]. We regard
each αζj as a polynomial function on Zj (isomorphic to A

1 via p) and hence on
Zj − (o, 0). Since Z − (o, 0) is the disjoint union of the Zj − (o, 0), this yields
an algebra homomorphism

ρ : H ∗
T(X) → C[Z − (o, 0)]

such that ρ(α)(x,v) = αζj(v) whenever (x,v) ∈ Zj − (o, 0). In particular,
ρ(z)(x,v) = v, so that ρ(z) = v. And since i∗T preserves the grading, the same
holds for ρ.

Note that the value αζj(0) at the origin is independent of the index j. (For XT =
(X × E )/T is connected since both X and E are, so H 0(XT) is by definition the
set of constant functions on XT; consequently, the component of α in degree 0
gives the same value at each fixed point.) Now let C0[Z ] denote the subalgebra
of C[Z − (0, o)] consisting of all elements that extend continuously to Z in the
classical topology. Then

ρ(H ∗
T(X)) ⊆ C0[Z ].

We will demonstrate that ρ(H ∗
T(X)) is in fact the coordinate ring C[Z ]. Toward

this end, we compute the image under ρ of an equivariant Chern class.

5. Equivariant Chern Theory

Suppose Y is an algebraic variety with an action of an algebraic group G. Then
recall that a vector bundle E on Y is said to be G-linearized if there is an action of
G on E lifting that on Y and such that each g ∈G defines a linear map from Ey to
Eg·y for any y ∈ Y. In particular, if y ∈ YG then we have a representation of G in
Ey, and hence a representation of Lie(G). Thus, each ξ ∈ Lie(G) acts on Ey by
ξy ∈ End(Ey).

Also recall that the kth equivariant Chern class cGk (E) ∈ H 2k
G (Y ) is defined to

be the kth Chern class of the vector bundle

EG = (E × E )/G → XG = (X × E )/G,

where E is a contractible space with a free action of G. For y ∈ YG, the restriction
cGk (E)y lies in H ∗

G(pt). The latter identifies with a subring of the coordinate ring
of Lie(G), and we have
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cGk (E)y(ξ) = Tr∧kEy
(ξy)

for any ξ ∈ Lie(G).

Returning to our previous situation, let E be a B-linearized vector bundle on
X. Then each (x,v)∈ Z is a zero of vW − 2V ∈ Lie(B). This yields an element
(vW − 2V )x ∈ End(Ex).

Lemma 1. Let E be a B-linearized vector bundle on X, and let k be a nonnega-
tive integer. Then, for any (x,v)∈ Z we have

ρ(cTk(E))(x,v) = Tr∧kEx
((vW − 2V )x). (10)

As a consequence, ρ(cTk(E))∈ C[Z ].

Proof. It suffices to check (10) for v �= 0. Let j be the index such that x =
ϕ(v−1) · ζj . Letting Wζj ∈ End(Eζj ) denote the lift of W at ζj, we have

ρ(cTk(E))(x,v) = cTk(E)ζj (v) = vk Tr∧kEζj
(Wζj ). (11)

Since E is B-linearized, this equals

vk Tr∧kEx
((Ad(ϕ(v−1))W )x) = vk Tr∧kEx

((W − 2v−1V )x)

= Tr∧kEx
((vW − 2V )x),

which proves (10).

We now obtain some of the main properties of ρ.

Proposition 3. The image of the morphism ρ : H ∗
T(X) → C[Z − (o, 0)] is con-

tained in C[Z ].

Proof. Since X is smooth and projective, we have an exact sequence

0 → zH ∗
T(X) → H ∗

T(X) → H ∗(X) → 0. (12)

By [7, Prop. 3], the algebra H ∗(X) is generated by Chern classes of B-linearized
vector bundles on X; it then follows by Nakayama’s lemma that H ∗

T(X) is gener-
ated (as an algebra) by their equivariant Chern classes. This together with Lemma1
now implies that ρ(H ∗

T(X)) ⊆ C[Z ].

6. The First Main Result

Theorem 1. For a smooth projective regular variety X, the homomorphism

ρ : H ∗
T(X) → C[Z ]

is an isomorphism of graded algebras.

Proof. To see that ρ is injective, suppose ρ(α) = 0. Then each αζj is 0 and so
i∗T(α) = 0, where i∗T is the restriction (see (4)). But, as noted previously, i∗T is
injective, so α = 0.
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To complete the proof, it suffices to check that the Poincaré series of H ∗
T(X)

and C[Z ] coincide (since both algebras are positively graded, and ρ preserves the
grading). Denote the former by FX(t) and the latter by FZ(t). By (12), we have
an isomorphism

H ∗
T(X)/zH ∗

T(X) ∼= H ∗(X). (13)

Since H ∗
T(X) is a free C[z]-module and z has degree 2, (13) implies

FX(t) = PX(t)

1 − t 2
, (14)

where PX(t) is the Poincaré polynomial of H ∗(X). On the other hand, since
p : Z → A

1 is finite, flat, and T-equivariant (where T acts linearly on A
1 with

weight 2), it follows that

FZ(t) = PZ(t)

1 − t 2
,

where PZ(t) is the Poincaré polynomial of the finite-dimensional graded algebra
C[Z ]/(v). We now use the fact that the cohomology ring of X is isomorphic as a
graded algebra to the coordinate ring of the zero scheme of V with the principal
grading [7]. So

H ∗(X) ∼= C[x1, . . . , xn]/(V(x1), . . . ,V(xn)) ∼= C[Z ]/(v), (15)

where the second isomorphism follows from Proposition 2. Thus, PX(t) = PZ(t),
whence FX(t) = FZ(t).

For a simple example, let X = P
n. Let e : C

n+1 → C
n+1 denote the nilpotent lin-

ear transformation defined by

vn → vn−1 → · · · → v1 → v0 → 0,

where (v0,v1, . . . ,vn) is the standard basis of C
n+1. Also, let h = diag(n, n − 2,

. . . ,−n + 2,−n). Then [h, e] = 2e, so we obtain a B-action on P
n. This action

is regular with unique fixed point [v0 ] = [1, 0, . . . , 0]; its neighborhood Xo is the
standard affine chart centered at [v0 ]. Let (x1, . . . , xn) be the usual affine coor-
dinates at [v0 ]. That is, xj = zj/z0, where [z0, z1, . . . , zn] are the homogeneous
coordinates on P

n. Then each xj is homogeneous of degree 2j and, by Proposi-
tion 2,

e(x1) = x2 − x 2
1, e(x2) = x3 − x1x2, . . . ,

e(xn−1) = xn − x1xn−1, e(xn) = −x1xn.

Thus, the ideal of Z in C[x1, . . . , xn,v] is generated by −x2 + x1(x1 + v),

−x3 + x2(x1 + 2v), . . . , −xn + xn−1(x1 + (n − 1)v), xn(x1 + nv). After we
eliminate x2, x3, . . . , xn−1, Theorem 1 says that

H ∗
T(P

n) ∼= C[x1,v]/
(∏n

m=0(x1 + mv)
)
.

By equivariant Chern theory, x1 = −cT
1 (L), where L is the tautological line bun-

dle on P
n. This presentation of H ∗

T(P
n) can be derived directly and is probably

well known.
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7. The General Case

In this section we will make some comments on regular B-varieties, dropping the
smoothness assumption. Let Y be a complex projective variety endowed with a
B-action such that YU is a unique point o. If Y is singular then it is necessar-
ily singular at o, so the T-stable neighborhood Yo of o defined in (7) is singular.
Hence the results in Section 3 on the structure of Z (relative to Y ) do not necessar-
ily obtain. To be able to conclude something, let us assume that Y is equivariantly
embedded into a smooth projective regular B-variety X. Thus the curve Z (rela-
tive to X) is well-defined and enjoys all the properties derived previously. We can
therefore define

ZY = Z ∩ (Yo × A
1), (16)

taking the intersection to be reduced. In other words, ZY is the union of the com-
ponents of Z lying in Yo × A

1. Now the construction of Section 4 yields a graded
homomorphism

ρY : H ∗
T(Y ) → C0[ZY ].

If we make the additional assumption that H ∗(Y ) is generated by Chern classes
of B-linearized vector bundles, then the odd cohomology of Y is trivial, so that
H ∗

T(Y ) is a free module over C[z], and the restriction i∗T : H ∗
T(Y ) → H ∗

T(Y
T) is in-

jective [10]. Hence, ρY is injective. By exactly the same argument, ρY (H
∗
T(Y )) ⊆

C[ZY ]. The obstruction to ρY being an isomorphism is therefore the equality of
Poincaré series of these graded algebras.

There is a natural situation where this assumption is satisfied, so we can gen-
eralize Theorem 1. Assume that the inclusion j : Y → X induces a surjection
j ∗ : H ∗(X) → H ∗(Y ). ThenH ∗(Y ) is generated by Chern classes of B-linearized
vector bundles, and from the Leray spectral sequence we see that j ∗

T : H ∗
T(X) →

H ∗
T(Y ) is surjective. The surjectivity of j ∗ holds, for example, in the case of Schu-

bert varieties in flag varieties. See also Section 8.
Proceeding as just described, we obtain an extension of Theorem 1.

Theorem 2. Suppose that X is a smooth projective variety with a regular B-
action and that Y is a closed B-stable subvariety for which the restriction map
H ∗(X) → H ∗(Y ) is surjective. Then the map ρY : H ∗

T(Y ) → C0[ZY ] yields a
graded algebra isomorphism

ρY : H ∗
T(Y ) → C[ZY ]

that fits into a commutative diagram

H ∗
T(X)

ρ−−→ C[Z]� �
H ∗

T(Y )
ρY−−→ C[ZY ] ,

(17)

where the vertical maps are the natural restrictions. Both vertical maps are
surjections.
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Proof. By Theorem 1 we know that ρ is an isomorphism, and by our previous re-
marks we know that ρY is injective. Since the restriction map C[Z ] → C[ZY ] is
clearly surjective, it therefore follows that ρY is also.

As a corollary, we obtain one of the main results of [7].

Corollary 1. With the notation and assumptions of Theorem 2, there exists a
commutative diagram

C[Z]/(v)
ψ−−→ H ∗(X)�

�
C[ZY ]/(v)

ψY−−→ H ∗(Y ),

(18)

where ψ and ψY are graded algebra isomorphisms and the vertical maps are the
natural restrictions.

Note that C[ZY ]/(v) is the coordinate ring of the schematic intersection of ZY

and X × 0 in X × A
1.

8. Equivariant Cohomology of the Peterson Variety

Let G be a complex semi-simple linear algebraic group. Fix a pair of opposite
Borel subgroups B and B− and let T = B ∩ B−, a maximal torus of G. Denote
the corresponding Lie algebras by g, b, b−, and t, and let 0+ and 0− be the roots
of the pair (G, T ) that arise from b and b−, respectively.

Let M be a B-submodule of g containing b. Then

M = b ⊕
⊕

α∈�(M)

gα, where �(M) = {α ∈0− | gα ⊂ M}.

Hence �(M) is the set of weights of the quotient M/b. The B-module M ⊆ g
yields a homogeneous vector bundle G×BM over G/B together with a morphism
G ×B M → g induced by (g,m) �→ gm. The fiber of this morphism at an arbi-
trary x ∈ g identifies with

YM(x) = {gB ∈G/B | g−1x ∈M}.
This is a closed subvariety of G/B that is stable under the action of GCx (the
isotropy group of the line Cx).

If x is regular and semi-simple, then YM(x) is a nonsingular variety known as a
Hessenberg variety. The Poincaré polynomial of YM(x) was determined in [8].

On the other hand, if x is nilpotent then the YM(x) give a broad class of projec-
tive varieties containing, for example, the variety Bx ⊂ G/B of Borel subgroups
of G whose Lie algebra contains x. If x is also regular then it defines a canonical
B-action on G/B stablizing YM(x). The cohomology ring of YM(x) has been ob-
tained by Dale Peterson (unpublished). In fact, according to Peterson’s result, the
YM(x) satisfy the hypotheses of Theorem 2.
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To describe this cohomology ring, we first make a convenient choice for x. Let
α1, . . . , αl ∈ 0+ denote the simple roots, and fix a nonzero eαj in each T -weight
space gαj ⊂ b. Then for x choose the principal nilpotent e = ∑ l

j=1 eαj . Let h∈ t

be the unique element for which αj(h) = 2 for each index j. Then the pair (e, h)∈
b× t determines a regular B-action on G/B with unique B-fixed point o = B that
stabilizes YM(e) for any M. Note that the semi-simple element h is also regular.

Let T ⊂ B denote the maximal torus in B with Lie algebra Ch. Since h is
regular, YM(e)T = (G/B)T ∩ YM(e). It is well known that (G/B)T = {nwB |
w ∈ W }, where W = NG(T )/T is the Weyl group of (G, T ) and nw is a repre-
sentative of w. But nwB ∈ YM(e)T if and only if n−1

w e ∈ M; that is, w−1(αj ) ∈
�(M) ∪ 0+ for each j.

Formulated in these terms, Peterson’s result can be stated as follows.

Theorem 3. For any B-submodule M of g containing b, the restriction map

H ∗(G/B) → H ∗(YM(e))

is surjective. Hence, by Theorem 2,

H ∗
T(YM(e)) ∼= C[ZYM(e)].

Moreover, ZYM(e) is a complete intersection. Thus, the cohomology ringH ∗(YM(e))

satisfies Poincaré duality. Its Poincaré polynomial is given by the product formula

P(YM(e), t) =
∏

−α∈�(M)

1 − t ht(α)+1

1 − t ht(α)
, (19)

where ht(α) denotes the sum of the coefficients of α ∈0+ over the simple roots.

If M = g then (19) is, of course, a well-known product formula for the Poincaré
polynomial of the flag variety.

The ideals I(ZYM(e)) admit explicit expressions related to the geometry of the
nilpotent variety of g. Let U− ⊂ G denote the unipotent radical of B−. Since the
natural map µ : U− → G/B, µ(u) = uB, is T -equivariant with respect to the con-
jugation action of T on U−, we may equivariantly identify U− and the open cell
(G/B)o. Let u− denote the Lie algebra ofU−, and let9∗ : g → u− denote the pro-
jection. To get this explicit picture, we first note that Lu−1∗Vu = 9∗(u−1e), where
Lu denotes left translation by u∈U− and Lu∗ is its differential (cf. [6, Sec. 2.1]).
Consequently,

Lu−1∗A(u,v) = 29∗(u−1e) − vLu−1∗Wu. (20)

Defining Fα(u) as the component of Lu−1∗A(u,v) in gα, it follows that

I(Z ) = (Fα | α ∈0−).

More precisely, we can write

u−1e = e + k(u) +
∑
α∈0−

vα(u)eα,
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where k ∈ t⊗C[U− ] and all vα ∈ C[U− ]. Then Fα = 2vα −vwα, where we have
put wα(u) = (Lu−1∗Wu)α. Hence,

H ∗
T(G/B,C) ∼= C[U− × A

1]/(2vα − vwα | α ∈0−).

Since the functions vβ (β ∈0− − �(M)) cut out YM(e)o × A
1, it follows that

I(ZYM(e)) is the ideal of the variety cut out by the 2vα − vwα (where α ∈0−) and
the vβ (where β ∈0− − �(M)).

The case where
M = b ⊕

⊕
α∈0+
α(h)>2

g−α (21)

is of particular interest. Then, as shown by Kostant (see [11, (9)]), the Giventhal–
Kim and Peterson formulas for the flag variety quantum cohomology [9; 12] may
be interpreted as asserting an isomorphism of graded rings

C[YM(e)o] ∼= QH ∗(G∨/B∨),

where G∨ and B∨ denote the Langlands duals of G and B (respectively) and
QH ∗(G∨/B∨) is the complex quantum cohomology ring of G∨/B∨. This led Kos-
tant to call YM(e) the Peterson variety. Notice that, by Theorem 3, P(YM(e), t) =
(1 + t)n−1.

More recently, Tymoczko [13] has shown that the varieties YM(e) admit affine
cell decompositions when G is of classical type.

9. An Alternative Proof of Theorem 1

We now give another proof of Theorem1that is independent of (15). Hence we will
also obtain another proof of (15). Denote by [XT]T ∈H ∗

T(X) the equivariant coho-
mology class of the T–fixed-point set. We compute its image under ρ : H ∗

T(X) →
C[Z ].

Lemma 2. ρ([XT]T) is the restriction to Z of the Jacobian determinant of the
polynomial functions vW(x1) − 2V(x1), . . . ,vW(xn) − 2V(xn) in the variables
x1, . . . , xn.

Proof. Let TX be the tangent bundle to X. Then W yields a T-invariant global sec-
tion of TX with zero scheme XT. Thus, we have cT

n (TX) = [XT]T in H ∗
T(X). On

the other hand, TX carries a B-linearization and so, by Lemma 1, we have

ρ(cT
n (TX))(x,v) = Tr∧nTxX(vWx − 2Vx).

This is the Jacobian determinant of vW(x1) − 2V(x1), . . . ,vW(xn) − 2V(xn).

We will also need the following easy result of commutative algebra; we will pro-
vide a proof, for lack of a reference.

Lemma 3. Let P1, . . . , Pn be polynomial functions in x1, . . . , xn that are weighted
homogeneous for a positive grading defined by deg xj = aj . If the origin is the
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unique common zero to P1, . . . , Pn, then the Jacobian determinant J(P1, . . . , Pn)

is not in the ideal (P1, . . . , Pn).

Proof. We begin with the special case where P1, . . . , Pn are homogeneous. We
argue by induction on n, the result being evident for n = 1. Let d1, . . . , dn be the
degrees of P1, . . . , Pn. We have the Euler identities

x1
∂P1

∂x1
+ · · · + xn

∂P1

∂xn
= d1P1,

...

x1
∂Pn

∂x1
+ · · · + xn

∂Pn

∂xn
= dnPn,

which we view as a system of linear equalities in x1, . . . , xn. The determinant of
this system is the Jacobian J(P1, . . . , Pn) = J. For 1 ≤ i, j ≤ n, let Ji,j be its
maximal minor associated with the ith line and the j th column. Then we have

xiJ =
n∑

j=1

(−1)j−1djPjJij . (22)

Assume that J ∈ (P1, . . . , Pn) and write

J = f1P1 + · · · + fnPn, with f1, . . . , fn ∈ C[x1, . . . , xn].

Using (22) for i = 1, it follows that (x1f1 − d1J11)P1 is in the ideal (P2, . . . , Pn).

But P1, . . . , Pn form a regular sequence in C[x1, . . . , xn], since they are homo-
geneous and the origin is their unique common zero. Therefore, x1f1 − d1J11 ∈
(P2, . . . , Pn). In other words, J11∈ (x1, P2, . . . , Pn).

After a linear change of coordinates, we can assume that (x1, P2, . . . , Pn) is a
regular sequence. For 2 ≤ i ≤ n, let

Qi(x2, . . . , xn) = Pi(0, x2, . . . , xn).

Then, in C[x2, . . . , xn] we have

J11(0, x2, . . . , xn)∈ (Q2, . . . ,Qn).

Now J11(0, x2, . . . , xn) = J(Q2, . . . ,Qn), andQ2, . . . ,Qn are homogeneous poly-
nomial functions of x2, . . . , xn having the origin as their unique common zero. But
this contradicts the inductive assumption, which completes the proof in the homo-
geneous case.

Consider now the case whereP1, . . . , Pn are quasi-homogeneous for the weights
a1, . . . , an. Let y1, . . . , yn be indeterminates; then the functions

(y1, . . . , yn) �→ Pi(y
a1
1 , . . . , y an

n )

(1 ≤ i ≤ n) are homogeneous polynomials with the origin as their unique com-
mon zero. Their Jacobian determinant is( n∏

i=1

aiy
ai−1

)
J(P1, . . . , Pn)(y

a1
1 , . . . , y an

n ).



The Equivariant Cohomology Ring of Regular Varieties 201

By the first step of the proof, this function of (y1, . . . , yn) is not in the ideal
generated by the Pi(y

a1
1 , . . . , y an

n ). Thus, J(P1, . . . , Pn)(x1, . . . , xn) cannot be in
(P1, . . . , Pn).

Proof of Theorem 1. The functions V(x1), . . . ,V(xn) satisfy the assumption of
Lemma 3 because (a) they are quasi-homogeneous for the grading defined by the
action of T and (b) o is the unique zero of V. Thus, the Jacobian determinant
of these functions is not in the ideal that they generate. By Lemma 2, it fol-
lows that ρ([XT]T) is not divisible by v in C[Z ] for C[Z ]/(v) = C[x1, . . . , xn]/
(V(x1), . . . ,V(xn)).

The C[z]-linear map ρ : H ∗
T(X) → C[Z ] defines a map

ρ̄ : H ∗(X) ∼= H ∗
T(X)/(z) → C[Z ]/(v),

a graded ring homomorphism. It suffices to prove that ρ̄ is an isomorphism. Note
that the spaces H ∗(X) and C[Z ]/(v) have dimension r, so it suffices to check the
injectivity of ρ̄.

The image in H ∗(X) of [XT]T is r[pt], where [pt] denotes the cohomology
class of a point. Thus, ρ̄([pt]) �= 0. Let (α1, . . . , αr) be a basis of H ∗(X) con-
sisting of homogeneous elements, and let (β1, . . . , βr) be the dual basis for the
intersection pairing (α, β) �→ ∫

X
(α ∪ β) ∩ [X]. Then the homogeneous com-

ponent of degree 2n in each product αi ∪ βj equals [pt] if i = j and is zero
otherwise. Assume that ρ̄(t1α1 + · · · + tr αr) = 0 for some complex numbers
t1, . . . , tr . Multiplying by ρ̄(βj ) and taking the homogeneous component of de-
gree 2n, we obtain tj ρ̄([pt]) = 0, whence tj = 0. Thus ρ̄ is injective, and the
proof is complete.

10. The Equivariant Push-Forward

Next we describe the equivariant push-forward map∫
X

: H ∗
T(X) → H ∗

T(pt) = C[z]

associated to the map X → pt. Note that
∫
X

is C[z]-linear and homogeneous of
degree −2n. Denote by J the restriction to Z of the Jacobian determinant of the
polynomial functions

vW(x1) − 2V(x1), . . . ,vW(xn) − 2V(xn)
in the variables x1, . . . , xn. Then J is homogeneous of degree 2n, as follows from
Lemma 2.

Theorem 4. For any f ∈ C[Z ], the function

v �→
∑

(x,v)∈Z

f(x,v)

J(x,v)

is polynomial. Furthermore, for any α ∈H ∗
T(X),(∫

X

α

)
(v) =

∑
(x,v)∈Z

ρ(α)(x,v)

J(x,v)
. (23)
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Proof. Since C[Z ] is a graded free C[v]-module of rank r, we may choose a ho-
mogeneous basis f1, . . . , fr with f1 = 1. As J /∈ (v), we may also assume fr =
J. If f ∈ C[Z ], let ϕ(f ) be the rth coordinate of f in this basis. Then the map

C[Z ] × C[Z ] → C[v], (f, g) �→ ϕ(fg)

is a nondegenerate bilinear form, since it reduces modulo (v) to the duality pair-
ing on C[Z ]/(v) = C[x1, . . . , xn]/(V(x1), . . . ,V(xn)). If (g1, . . . , gr) is the dual
basis with respect to (f1, . . . , fr) for this bilinear form, then g1, . . . , gr are ho-
mogeneous and satisfy deg(fi) + deg(gi) = 2n for all i. As a consequence, the
kernel of ϕ is generated by f1, . . . , fr−1 and also by g2, . . . , gr as a C[z]-module.
Since J = fr, we have ϕ(Jg1) = · · · = ϕ(Jgr−1) = 0, so that ϕ(Jf2) = · · · =
ϕ(Jfr) = 0 whereas ϕ(Jf1) = ϕ(J ) = 1.

Let
Tr : C[Z ] → C[v]

be the trace map for the (finite, flat) morphism p : Z → A
1. Then

Tr(f )(v) =
∑

(x,v)∈Z
f(x,v)

for all v ∈ A
1; in particular, Tr(1) = r. Since Tr is homogeneous of degree 0 and

C[z]-linear, its kernel is a graded complement of the C[v]-module C[v] = C[v]f1

in C[Z ]. It follows that this kernel is generated by f2, . . . , fr . Thus, we have

Tr(g) = rϕ(Jg)

for all g ∈ C[Z ]. This equality holds then for all g ∈ C[Z ][v−1] and hence for all
rational functions on Z. Note that J restricts to a nonzero function on any com-
ponent of Z, so 1/J is a rational function on Z. We thus have

Tr(f/J ) = rϕ(f )

for any f ∈ C[Z ]; this implies the first assertion. The second assertion follows
from the localization theorem in equivariant cohomology.

11. Some Concluding Remarks

If α ∈H ∗
T(X) is a product of equivariant Chern classes, then (23) is the equivari-

ant Bott residue formula for regular B-varieties (cf. [4]).
Using similar methods, one can also extend (23) to obtain a formula for the

equivariant Gysin homomorphism associated to an equivariant morphism of reg-
ular smooth projective B-varieties (cf. [1] for the case of flag varieties).

More generally, consider a smooth projective variety X with an action of an
arbitrary torus T such that XT is finite. Then the precise version of the localiza-
tion theorem given in [10] yields a reduced affine scheme whose coordinate ring is
the equivariant cohomology ring of X (see [5] for details and applications). The
scheme Z in this paper gives a more explicit picture, but the requirement of a reg-
ular B-action is harder to satisfy. It would be nice to be able to relax the regularity
assumption and so allow XU to have positive dimension.
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