The Equivariant Cohomology Ring of Regular Varieties

Michel Brion \& James B. Carrell

0. Introduction

Let \mathfrak{B} denote the upper triangular subgroup of $\mathrm{SL}_{2}(\mathbb{C}), \mathfrak{T}$ its diagonal torus and \mathfrak{U} its unipotent radical. A complex projective variety Y is called regular if it is endowed with an algebraic action of \mathfrak{B} such that the fixed-point set $Y^{\mathfrak{U}}$ is a single point. Associated to any regular \mathfrak{B}-variety Y is a remarkable affine curve \mathcal{Z}_{Y} with a \mathfrak{T}-action, which was studied in [7]. In this note, we show that the coordinate ring $\mathbb{C}\left[\mathcal{Z}_{Y}\right]$ is isomorphic with the equivariant cohomology ring $H_{\mathfrak{T}}^{*}(Y)$ with complex coefficients when Y is smooth or, more generally, is a \mathfrak{B}-stable subvariety of a regular smooth \mathfrak{B}-variety X such that the restriction map from $H^{*}(X)$ to $H^{*}(Y)$ is surjective. This isomorphism is obtained as a refinement of the localization theorem in equivariant cohomology; it applies for example to Schubert varieties in flag varieties and to the Peterson variety studied in [11]. Another application of our isomorphism is a natural algebraic formula for the equivariant push-forward.

1. Preliminaries

Let \mathfrak{B} be the group of upper triangular 2×2 complex matrices of determinant 1 . Let \mathfrak{T} (resp. \mathfrak{U}) be the subgroup of \mathfrak{B} consisting of diagonal (resp. unipotent) matrices. We have isomorphisms $\lambda: \mathbb{C}^{*} \rightarrow \mathfrak{T}$ and $\varphi: \mathbb{C} \rightarrow \mathfrak{U}$, where

$$
\lambda(t)=\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \quad \text { and } \quad \varphi(u)=\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right)
$$

which together satisfy the relation

$$
\begin{equation*}
\lambda(t) \varphi(u) \lambda\left(t^{-1}\right)=\varphi\left(t^{2} u\right) \tag{1}
\end{equation*}
$$

Consider the generators

$$
\mathcal{V}=\dot{\varphi}(0)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \mathcal{W}=\dot{\lambda}(1)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

of the Lie algebras $\operatorname{Lie}(\mathfrak{U})$ and $\operatorname{Lie}(\mathfrak{T})$, respectively. Then $[\mathcal{W}, \mathcal{V}]=2 \mathcal{V}$, and

$$
\begin{equation*}
\operatorname{Ad}(\varphi(u)) \mathcal{W}=\mathcal{W}-2 u \mathcal{V} \tag{2}
\end{equation*}
$$

for all $u \in \mathbb{C}$.

[^0]In this paper, X will denote a smooth complex projective algebraic variety endowed with an algebraic action of \mathfrak{B} such that the fixed-point scheme $X^{\mathfrak{U}}$ consists of one point o. Both the \mathfrak{B}-variety X and the action will be called regular. Then $o \in X^{\mathfrak{T}}$, since $X^{\mathfrak{U}}$ is \mathfrak{T}-stable. Moreover, $X^{\mathfrak{T}}$ is finite by Lemma 1 of [7]. Thus we may write

$$
\begin{equation*}
X^{\mathfrak{T}}=\left\{\zeta_{1}=o, \zeta_{2}, \ldots, \zeta_{r}\right\} \tag{3}
\end{equation*}
$$

Clearly $r=\chi(X)$, the Euler characteristic of X.
Let $H_{\mathfrak{T}}^{*}(X)$ denote the \mathfrak{T}-equivariant cohomology ring of X with complex coefficients. To define it, let \mathcal{E} be a contractible space with a free action of \mathfrak{T} and let $X_{\mathfrak{T}}=(X \times \mathcal{E}) / \mathfrak{T}$ (quotient by the diagonal \mathfrak{T}-action). Then

$$
H_{\mathfrak{T}}^{*}(X)=H^{*}\left(X_{\mathfrak{T}}\right)
$$

It is well known that the equivariant cohomology ring $H_{\mathfrak{T}}^{*}(\mathrm{pt})$ of a point is the polynomial ring $\mathbb{C}[z]$, where z denotes the linear form on the Lie algebra of \mathfrak{T} such that $z(\mathcal{W})=1$. The degree of z is 2 . Thus $H_{\mathfrak{T}}^{*}(X)$ is a graded algebra over the polynomial ring $\mathbb{C}[z]=H_{\mathfrak{T}}^{*}(\mathrm{pt})$ (via the constant map $X \rightarrow \mathrm{pt}$).

In our situation, the restriction map in cohomology

$$
i_{\mathfrak{T}}^{*}: H_{\mathfrak{T}}^{*}(X) \rightarrow H_{\mathfrak{T}}^{*}\left(X^{\mathfrak{T}}\right)
$$

induced by the inclusion $i: X^{\mathfrak{T}} \hookrightarrow X$ is injective (see [10]). By (3),

$$
H_{\mathfrak{T}}^{*}\left(X^{\mathfrak{T}}\right)=\bigoplus_{j=1}^{r} H_{\mathfrak{T}}^{*}\left(\zeta_{j}\right) \cong \bigoplus_{j=1}^{r} \mathbb{C}[z],
$$

so each $\alpha \in H_{\mathfrak{T}}^{*}(X)$ defines an r-tuple of polynomials $\left(\alpha_{\zeta_{1}}, \ldots, \alpha_{\zeta_{r}}\right)$. That is,

$$
\begin{equation*}
i_{\mathfrak{T}}^{*}(\alpha)=\left(\alpha_{\zeta_{1}}, \ldots, \alpha_{\zeta_{r}}\right) \tag{4}
\end{equation*}
$$

We will define a refined version of this restriction map in Section 4.

2. The \mathfrak{B}-Stable Curves

Throughout this paper, a curve in X will be a purely one-dimensional closed subset of X; a curve that is stable under a subgroup G of \mathfrak{B} is called a G-curve. The \mathfrak{B}-curves in X play a crucial role, so we next establish a few of their basic properties.

Proposition 1. If X is a regular \mathfrak{B}-variety, then every irreducible \mathfrak{B}-curve C in X has the form $C=\overline{\mathfrak{B} \cdot \zeta_{j}}$ for some index $j \geq 2$. Moreover, every \mathfrak{B}-curve contains o. In particular, there are only finitely many irreducible \mathfrak{B}-curves in X, and they all meet at o.

Proof. It is clear that if $j \geq 2$ then $C=\overline{\mathfrak{B} \cdot \zeta_{j}}$ is a \mathfrak{B}-curve in X containing ζ_{j} that (by the Borel fixed-point theorem) also contains o, since o is the only \mathfrak{B}-fixed point. Conversely, every \mathfrak{B}-curve C in X contains o and at least one other \mathfrak{T}-fixed
point. Indeed, since o has an affine open \mathfrak{T}-stable neighborhood X_{o} in X, the complement $C-X_{o}$ is nonempty and \mathfrak{T}-stable. It follows immediately that $C=\overline{\mathfrak{B} \cdot x}$ for some $x \in X^{\mathfrak{T}}-o$.

Consider the action of \mathfrak{B} on the projective line \mathbb{P}^{1} given by

$$
\left(\begin{array}{cc}
t & u \\
0 & t^{-1}
\end{array}\right) \cdot z=\frac{z}{t(t+u z)}
$$

(the inverse of the standard action). This action has $\left(\mathbb{P}^{1}\right)^{\mathfrak{T}}=\{0, \infty\}$ and $\left(\mathbb{P}^{1}\right)^{\mathfrak{U}}=$ $\{0\}$ and is therefore regular. Note that, if $u \in \mathbb{C}^{*}$, then

$$
\left(\begin{array}{cc}
t & u \\
0 & t^{-1}
\end{array}\right) \cdot \infty=\frac{1}{t u}
$$

and so $\varphi(u) \cdot \infty=u^{-1}$.
The diagonal action of \mathfrak{B} on $X \times \mathbb{P}^{1}$ is also regular. By Proposition 1, the irreducible \mathfrak{B}-curves in $X \times \mathbb{P}^{1}$ are of the form $\overline{\mathfrak{B} \cdot(x, \infty)}$ or $\overline{\mathfrak{B} \cdot(x, 0)}$, where $x \in X^{\mathfrak{T}}$. Only the first type will play a role here. Thus, we put $Z_{j}=\overline{\mathfrak{B} \cdot\left(\zeta_{j}, \infty\right)}$ and let $\pi_{j}: Z_{j} \rightarrow \mathbb{P}^{1}$ be the second projection. Clearly each π_{j} is bijective, hence $Z_{j} \cong \mathbb{P}^{1}$. In addition,

$$
Z_{j}=\left\{\left(\varphi(u) \cdot \zeta_{j}, u^{-1}\right) \mid u \in \mathbb{C}^{*}\right\} \cup\left\{\left(\zeta_{j}, \infty\right)\right\} \cup\{(o, 0)\}
$$

so $Z_{i} \cap Z_{j}=\{(o, 0)\}$ as long as $i \neq j$. Moreover, restricting π_{j} gives an isomorphism

$$
p_{j}: Z_{j}-\left(\zeta_{j}, \infty\right) \rightarrow \mathbb{A}^{1}
$$

Finally, we put

$$
Z=\bigcup_{1 \leq j \leq r} Z_{j}
$$

Thus, Z is the union of all irreducible \mathfrak{B}-stable curves in $X \times \mathbb{P}^{1}$ that are mapped onto \mathbb{P}^{1} by the second projection $\pi: X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.

3. The Fundamental Scheme \mathcal{Z}

Let \mathcal{A} denote the vector field on $X \times \mathbb{A}^{1}$ defined by

$$
\begin{equation*}
\mathcal{A}_{(x, v)}=2 \mathcal{V}_{x}-v \mathcal{W}_{x} . \tag{5}
\end{equation*}
$$

Obviously, \mathcal{A} is tangent to the fibres of the projection to \mathbb{A}^{1}. By (2),

$$
\begin{equation*}
(\operatorname{Ad}(\varphi(u)) \mathcal{W})_{x}=-u \mathcal{A}_{\left(x, u^{-1}\right)} \tag{6}
\end{equation*}
$$

The contraction operator $i(\mathcal{A})$ defines a sheaf of ideals $i(\mathcal{A})\left(\Omega_{X \times \mathbb{A}^{1}}^{1}\right)$ of the structure sheaf of $X \times \mathbb{A}^{1}$. Let \mathcal{Z} denote the associated closed subscheme of $X \times \mathbb{A}^{1}$. In other words, \mathcal{Z} is the zero scheme of \mathcal{A}.

Remark 1. The vector field \mathcal{A} discussed here is a variant of the vector field studied in [7]. Both have the same zero scheme.

The properties of \mathcal{Z} figure prominently in this paper. First put

$$
\begin{equation*}
X_{o}=\left\{x \in X \mid \lim _{t \rightarrow \infty} \lambda(t) \cdot x=o\right\} . \tag{7}
\end{equation*}
$$

Clearly, X_{o} is \mathfrak{T}-stable, and it follows easily from (1) that X_{o} is open in X (see [7, Prop. 1] for details). Hence, by the Bialynicki-Birula decomposition theorem [3], X_{o} is \mathfrak{T}-equivariantly isomorphic to the tangent space $T_{o} X$, where \mathfrak{T} acts by its canonical representation at a fixed point. The weights of the associated action of λ on $T_{o} X$ are all negative. Thus we may choose coordinates x_{1}, \ldots, x_{n} on $X_{o} \cong$ $T_{o} X$ that are eigenvectors of \mathfrak{T}; the weight a_{i} of x_{i} is a positive integer (it turns out to be even; see [2]). This identifies the positively graded ring $\mathbb{C}\left[X_{o}\right]$ with $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, where $\operatorname{deg} x_{i}=a_{i}$. Now $X \times \mathbb{P}^{1}$ contains $X_{o} \times \mathbb{A}^{1}$ as a \mathfrak{T}-stable affine open subset with coordinate ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}, v\right]$, where v has degree 2 .

Proposition 2. The scheme \mathcal{Z} is reduced and is contained in $X_{o} \times \mathbb{A}^{1}$ as a \mathfrak{T} curve. Its ideal in $\mathbb{C}\left[X_{o} \times \mathbb{A}^{1}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n}, v\right]$ is generated by

$$
\begin{equation*}
v \mathcal{W}\left(x_{1}\right)-2 \mathcal{V}\left(x_{1}\right), \ldots, v \mathcal{W}\left(x_{n}\right)-2 \mathcal{V}\left(x_{n}\right) \tag{8}
\end{equation*}
$$

These form a homogeneous regular sequence in $\mathbb{C}\left[x_{1}, \ldots, x_{n}, v\right]$, and the degree of each $v \mathcal{W}\left(x_{i}\right)-2 \mathcal{V}\left(x_{i}\right)$ equals $a_{i}+2$. The irreducible components of \mathcal{Z} are the $\mathcal{Z}_{j}(1 \leq j \leq r)$, where

$$
\begin{equation*}
\mathcal{Z}_{j}=Z_{j}-\left\{\left(\zeta_{j}, \infty\right)\right\} \tag{9}
\end{equation*}
$$

Each \mathcal{Z}_{j} is mapped isomorphically to \mathbb{A}^{1} by the second projection p. In particular, p is finite and flat of degree r, and \mathcal{Z} has r irreducible components. Any two such components meet only at $(o, 0)$.

Proof. This follows from the results in [7, Sec. 3]. We provide direct arguments for the reader's convenience.

Since $[\mathcal{W}, \mathcal{V}]=2 \mathcal{V}$ and $\mathcal{W}(v)=2 v$ (on \mathbb{A}^{1}), it follows that \mathcal{A} commutes with the vector field induced by the diagonal \mathfrak{T}-action on $X \times \mathbb{A}^{1}$. Hence, \mathcal{Z} is \mathfrak{T}-stable.

Next we claim that (9) holds set-theoretically. Let $(x, v) \in X \times \mathbb{A}^{1}$ with $v \neq$ 0 . Then $(x, v) \in \mathcal{Z}$ if and only if $\mathcal{W}_{x}-2 v^{-1} \mathcal{V}_{x}=0$, that is, iff x is a zero of $\operatorname{Ad}\left(\varphi\left(v^{-1}\right)\right) \mathcal{W}$; equivalently, $\varphi\left(-v^{-1}\right) \cdot x \in X^{\mathfrak{T}}$. On the other hand, $(x, 0) \in \mathcal{Z}$ if and only if $\mathcal{V}_{x}=0$, that is, iff $x=o$. Thus $\mathcal{Z}=Z \cap\left(X \times \mathbb{A}^{1}\right)$ (as sets). Further, $Z \cap\left(X \times \mathbb{A}^{1}\right)$ is an open affine \mathfrak{T}-stable neighborhood of $(o, 0)$ in Z and therefore equals $Z \cap\left(X_{o} \times \mathbb{A}^{1}\right)$. This implies our claim.

It follows that $\mathcal{Z} \subseteq X_{o} \times \mathbb{A}^{1}$ (as schemes), so that the ideal of \mathcal{Z} is generated by $v \mathcal{W}\left(x_{1}\right)-2 \mathcal{V}\left(x_{1}\right), \ldots, v \mathcal{W}\left(x_{n}\right)-2 \mathcal{V}\left(x_{n}\right)$. These polynomials are homogeneous of degrees $a_{1}+2, \ldots, a_{n}+2$; together with v, they have only the origin as their common zero (since o is the unique zero of \mathcal{V}). Hence

$$
v \mathcal{W}\left(x_{1}\right)-2 \mathcal{V}\left(x_{1}\right), \ldots, v \mathcal{W}\left(x_{n}\right)-2 \mathcal{V}\left(x_{n}\right), v
$$

form a regular sequence in $\mathbb{C}\left[x_{1}, \ldots, x_{n}, v\right]$, and v is a nonzero divisor in $\mathbb{C}[\mathcal{Z}]$. As a consequence, the $\mathbb{C}[v]$-module $\mathbb{C}[\mathcal{Z}]$ is finitely generated and free. In other words, $p: \mathcal{Z} \rightarrow \mathbb{A}^{1}$ is finite and flat.

Fix $v_{0} \neq 0$ and consider the scheme-theoretic intersection $\mathcal{Z} \cap\left(X \times v_{0}\right)$. This identifies with the zero scheme of $2 \mathcal{V}_{x}-v_{0} \mathcal{W}_{x}$ in X, that is, to the zero scheme of $\operatorname{Ad}\left(\varphi\left(v_{0}^{-1}\right) \mathcal{W}\right)$. The latter consists of $r=\chi(X)$ distinct points, so that $\mathcal{Z} \cap\left(X \times v_{0}\right)$ is reduced. Since $\mathbb{C}[\mathcal{Z}]$ is a free module over $\mathbb{C}[v]$, it follows easily that $\mathcal{Z} \cap(v \neq 0)$ is reduced. But the open subset $\mathcal{Z} \cap(v \neq 0)$ is dense in \mathcal{Z} by (9), and \mathcal{Z} is a complete intersection in \mathbb{A}^{n+1}. Thus, \mathcal{Z} is reduced. This completes the proof.

4. The Refined Restriction

We now define our refined restriction on equivariant cohomology. Let $\alpha \in H_{\mathfrak{T}}^{*}(X)$. Recall from (4) that $i_{\mathfrak{T}}^{*}(\alpha)=\left(\alpha_{\zeta_{1}}, \ldots, \alpha_{\zeta_{r}}\right)$, where each $\alpha_{\zeta_{j}} \in \mathbb{C}[z]$. We regard each $\alpha_{\zeta_{j}}$ as a polynomial function on \mathcal{Z}_{j} (isomorphic to \mathbb{A}^{1} via p) and hence on $\mathcal{Z}_{j}-(o, 0)$. Since $\mathcal{Z}-(o, 0)$ is the disjoint union of the $\mathcal{Z}_{j}-(o, 0)$, this yields an algebra homomorphism

$$
\rho: H_{\mathfrak{T}}^{*}(X) \rightarrow \mathbb{C}[\mathcal{Z}-(o, 0)]
$$

such that $\rho(\alpha)(x, v)=\alpha_{\zeta_{j}}(v)$ whenever $(x, v) \in \mathcal{Z}_{j}-(o, 0)$. In particular, $\rho(z)(x, v)=v$, so that $\rho(z)=v$. And since $i_{\mathfrak{T}}^{*}$ preserves the grading, the same holds for ρ.

Note that the value $\alpha_{\zeta_{j}}(0)$ at the origin is independent of the index j. (For $X_{\mathfrak{T}}=$ $(X \times \mathcal{E}) / \mathfrak{T}$ is connected since both X and \mathcal{E} are, so $H^{0}\left(X_{\mathfrak{T}}\right)$ is by definition the set of constant functions on $X_{\mathfrak{T}}$; consequently, the component of α in degree 0 gives the same value at each fixed point.) Now let $\mathbb{C}_{0}[\mathcal{Z}]$ denote the subalgebra of $\mathbb{C}[\mathcal{Z}-(0, o)]$ consisting of all elements that extend continuously to \mathcal{Z} in the classical topology. Then

$$
\rho\left(H_{\mathfrak{T}}^{*}(X)\right) \subseteq \mathbb{C}_{0}[\mathcal{Z}]
$$

We will demonstrate that $\rho\left(H_{\mathfrak{T}}^{*}(X)\right)$ is in fact the coordinate ring $\mathbb{C}[\mathcal{Z}]$. Toward this end, we compute the image under ρ of an equivariant Chern class.

5. Equivariant Chern Theory

Suppose Y is an algebraic variety with an action of an algebraic group G. Then recall that a vector bundle E on Y is said to be G-linearized if there is an action of G on E lifting that on Y and such that each $g \in G$ defines a linear map from E_{y} to $E_{g \cdot y}$ for any $y \in Y$. In particular, if $y \in Y^{G}$ then we have a representation of G in E_{y}, and hence a representation of $\operatorname{Lie}(G)$. Thus, each $\xi \in \operatorname{Lie}(G)$ acts on E_{y} by $\xi_{y} \in \operatorname{End}\left(E_{y}\right)$.

Also recall that the k th equivariant Chern class $c_{k}^{G}(E) \in H_{G}^{2 k}(Y)$ is defined to be the k th Chern class of the vector bundle

$$
E_{G}=(E \times \mathcal{E}) / G \rightarrow X_{G}=(X \times \mathcal{E}) / G
$$

where \mathcal{E} is a contractible space with a free action of G. For $y \in Y^{G}$, the restriction $c_{k}^{G}(E)_{y}$ lies in $H_{G}^{*}(\mathrm{pt})$. The latter identifies with a subring of the coordinate ring of $\operatorname{Lie}(G)$, and we have

$$
c_{k}^{G}(E)_{y}(\xi)=\operatorname{Tr}_{\wedge^{k} E_{y}}\left(\xi_{y}\right)
$$

for any $\xi \in \operatorname{Lie}(G)$.
Returning to our previous situation, let E be a \mathfrak{B}-linearized vector bundle on X. Then each $(x, v) \in \mathcal{Z}$ is a zero of $v \mathcal{W}-2 \mathcal{V} \in \operatorname{Lie}(\mathfrak{B})$. This yields an element $(v \mathcal{W}-2 \mathcal{V})_{x} \in \operatorname{End}\left(E_{x}\right)$.

Lemma 1. Let E be a \mathfrak{B}-linearized vector bundle on X, and let k be a nonnegative integer. Then, for any $(x, v) \in \mathcal{Z}$ we have

$$
\begin{equation*}
\rho\left(c_{k}^{T}(E)\right)(x, v)=\operatorname{Tr}_{\wedge^{k} E_{x}}\left((v \mathcal{W}-2 \mathcal{V})_{x}\right) . \tag{10}
\end{equation*}
$$

As a consequence, $\rho\left(c_{k}^{T}(E)\right) \in \mathbb{C}[\mathcal{Z}]$.
Proof. It suffices to check (10) for $v \neq 0$. Let j be the index such that $x=$ $\varphi\left(v^{-1}\right) \cdot \zeta_{j}$. Letting $\mathcal{W}_{\zeta_{j}} \in \operatorname{End}\left(E_{\zeta_{j}}\right)$ denote the lift of \mathcal{W} at ζ_{j}, we have

$$
\begin{equation*}
\rho\left(c_{k}^{T}(E)\right)(x, v)=c_{k}^{T}(E)_{\zeta_{j}}(v)=v^{k} \operatorname{Tr}_{\wedge^{k} E_{\zeta_{j}}}\left(\mathcal{W}_{\zeta_{j}}\right) \tag{11}
\end{equation*}
$$

Since E is \mathfrak{B}-linearized, this equals

$$
\begin{aligned}
v^{k} \operatorname{Tr}_{\wedge^{k} E_{x}}\left(\left(\operatorname{Ad}\left(\varphi\left(v^{-1}\right)\right) \mathcal{W}\right)_{x}\right) & =v^{k} \operatorname{Tr}_{\wedge^{k} E_{x}}\left(\left(\mathcal{W}-2 v^{-1} \mathcal{V}\right)_{x}\right) \\
& =\operatorname{Tr}_{\wedge^{k} E_{x}}\left((v \mathcal{W}-2 \mathcal{V})_{x}\right),
\end{aligned}
$$

which proves (10).
We now obtain some of the main properties of ρ.
Proposition 3. The image of the morphism $\rho: H_{\mathfrak{T}}^{*}(X) \rightarrow \mathbb{C}[\mathcal{Z}-(o, 0)]$ is contained in $\mathbb{C}[\mathcal{Z}]$.

Proof. Since X is smooth and projective, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow z H_{\mathfrak{T}}^{*}(X) \rightarrow H_{\mathfrak{T}}^{*}(X) \rightarrow H^{*}(X) \rightarrow 0 \tag{12}
\end{equation*}
$$

By [7, Prop. 3], the algebra $H^{*}(X)$ is generated by Chern classes of \mathfrak{B}-linearized vector bundles on X; it then follows by Nakayama's lemma that $H_{\mathfrak{T}}^{*}(X)$ is generated (as an algebra) by their equivariant Chern classes. This together with Lemma 1 now implies that $\rho\left(H_{\mathfrak{T}}^{*}(X)\right) \subseteq \mathbb{C}[\mathcal{Z}]$.

6. The First Main Result

Theorem 1. For a smooth projective regular variety X, the homomorphism

$$
\rho: H_{\mathfrak{T}}^{*}(X) \rightarrow \mathbb{C}[\mathcal{Z}]
$$

is an isomorphism of graded algebras.
Proof. To see that ρ is injective, suppose $\rho(\alpha)=0$. Then each $\alpha_{\zeta_{j}}$ is 0 and so $i_{\mathfrak{T}}^{*}(\alpha)=0$, where $i_{\mathfrak{T}}^{*}$ is the restriction (see (4)). But, as noted previously, $i_{\mathfrak{T}}^{*}$ is injective, so $\alpha=0$.

To complete the proof, it suffices to check that the Poincaré series of $H_{\mathfrak{T}}^{*}(X)$ and $\mathbb{C}[\mathcal{Z}]$ coincide (since both algebras are positively graded, and ρ preserves the grading). Denote the former by $F_{X}(t)$ and the latter by $F_{\mathcal{Z}}(t)$. By (12), we have an isomorphism

$$
\begin{equation*}
H_{\mathfrak{T}}^{*}(X) / z H_{\mathfrak{T}}^{*}(X) \cong H^{*}(X) \tag{13}
\end{equation*}
$$

Since $H_{\mathfrak{T}}^{*}(X)$ is a free $\mathbb{C}[z]$-module and z has degree 2, (13) implies

$$
\begin{equation*}
F_{X}(t)=\frac{P_{X}(t)}{1-t^{2}}, \tag{14}
\end{equation*}
$$

where $P_{X}(t)$ is the Poincaré polynomial of $H^{*}(X)$. On the other hand, since $p: \mathcal{Z} \rightarrow \mathbb{A}^{1}$ is finite, flat, and \mathfrak{T}-equivariant (where \mathfrak{T} acts linearly on \mathbb{A}^{1} with weight 2), it follows that

$$
F_{\mathcal{Z}}(t)=\frac{P_{\mathcal{Z}}(t)}{1-t^{2}}
$$

where $P_{\mathcal{Z}}(t)$ is the Poincaré polynomial of the finite-dimensional graded algebra $\mathbb{C}[\mathcal{Z}] /(v)$. We now use the fact that the cohomology ring of X is isomorphic as a graded algebra to the coordinate ring of the zero scheme of \mathcal{V} with the principal grading [7]. So

$$
\begin{equation*}
H^{*}(X) \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\mathcal{V}\left(x_{1}\right), \ldots, \mathcal{V}\left(x_{n}\right)\right) \cong \mathbb{C}[\mathcal{Z}] /(v) \tag{15}
\end{equation*}
$$

where the second isomorphism follows from Proposition 2. Thus, $P_{X}(t)=P_{\mathcal{Z}}(t)$, whence $F_{X}(t)=F_{\mathcal{Z}}(t)$.

For a simple example, let $X=\mathbb{P}^{n}$. Let $e: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$ denote the nilpotent linear transformation defined by

$$
v_{n} \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_{1} \rightarrow v_{0} \rightarrow 0
$$

where $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ is the standard basis of \mathbb{C}^{n+1}. Also, let $h=\operatorname{diag}(n, n-2$, $\ldots,-n+2,-n)$. Then $[h, e]=2 e$, so we obtain a \mathfrak{B}-action on \mathbb{P}^{n}. This action is regular with unique fixed point $\left[v_{0}\right]=[1,0, \ldots, 0]$; its neighborhood X_{o} is the standard affine chart centered at $\left[v_{0}\right]$. Let $\left(x_{1}, \ldots, x_{n}\right)$ be the usual affine coordinates at $\left[v_{0}\right]$. That is, $x_{j}=z_{j} / z_{0}$, where $\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ are the homogeneous coordinates on \mathbb{P}^{n}. Then each x_{j} is homogeneous of degree $2 j$ and, by Proposition 2,

$$
\begin{aligned}
& e\left(x_{1}\right)=x_{2}-x_{1}^{2}, e\left(x_{2}\right)=x_{3}-x_{1} x_{2}, \ldots, \\
& e\left(x_{n-1}\right)=x_{n}-x_{1} x_{n-1}, e\left(x_{n}\right)=-x_{1} x_{n}
\end{aligned}
$$

Thus, the ideal of \mathcal{Z} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}, v\right]$ is generated by $-x_{2}+x_{1}\left(x_{1}+v\right)$, $-x_{3}+x_{2}\left(x_{1}+2 v\right), \ldots,-x_{n}+x_{n-1}\left(x_{1}+(n-1) v\right), x_{n}\left(x_{1}+n v\right)$. After we eliminate $x_{2}, x_{3}, \ldots, x_{n-1}$, Theorem 1 says that

$$
H_{\mathfrak{T}}^{*}\left(\mathbb{P}^{n}\right) \cong \mathbb{C}\left[x_{1}, v\right] /\left(\prod_{m=0}^{n}\left(x_{1}+m v\right)\right) .
$$

By equivariant Chern theory, $x_{1}=-c_{1}^{\mathfrak{T}}(L)$, where L is the tautological line bundle on \mathbb{P}^{n}. This presentation of $H_{\mathfrak{T}}^{*}\left(\mathbb{P}^{n}\right)$ can be derived directly and is probably well known.

7. The General Case

In this section we will make some comments on regular \mathfrak{B}-varieties, dropping the smoothness assumption. Let Y be a complex projective variety endowed with a \mathfrak{B}-action such that $Y^{\mathfrak{U}}$ is a unique point o. If Y is singular then it is necessarily singular at o, so the \mathfrak{T}-stable neighborhood Y_{o} of o defined in (7) is singular. Hence the results in Section 3 on the structure of \mathcal{Z} (relative to Y) do not necessarily obtain. To be able to conclude something, let us assume that Y is equivariantly embedded into a smooth projective regular \mathfrak{B}-variety X. Thus the curve \mathcal{Z} (relative to X) is well-defined and enjoys all the properties derived previously. We can therefore define

$$
\begin{equation*}
\mathcal{Z}_{Y}=\mathcal{Z} \cap\left(Y_{o} \times \mathbb{A}^{1}\right) \tag{16}
\end{equation*}
$$

taking the intersection to be reduced. In other words, \mathcal{Z}_{Y} is the union of the components of \mathcal{Z} lying in $Y_{o} \times \mathbb{A}^{1}$. Now the construction of Section 4 yields a graded homomorphism

$$
\rho_{Y}: H_{\mathfrak{T}}^{*}(Y) \rightarrow \mathbb{C}_{0}\left[\mathcal{Z}_{Y}\right]
$$

If we make the additional assumption that $H^{*}(Y)$ is generated by Chern classes of \mathfrak{B}-linearized vector bundles, then the odd cohomology of Y is trivial, so that $H_{\mathfrak{T}}^{*}(Y)$ is a free module over $\mathbb{C}[z]$, and the restriction $i_{\mathfrak{T}}^{*}: H_{\mathfrak{T}}^{*}(Y) \rightarrow H_{\mathfrak{T}}^{*}\left(Y^{\mathfrak{T}}\right)$ is injective [10]. Hence, ρ_{Y} is injective. By exactly the same argument, $\rho_{Y}\left(H_{\mathfrak{T}}^{*}(Y)\right) \subseteq$ $\mathbb{C}\left[\mathcal{Z}_{Y}\right]$. The obstruction to ρ_{Y} being an isomorphism is therefore the equality of Poincaré series of these graded algebras.

There is a natural situation where this assumption is satisfied, so we can generalize Theorem 1. Assume that the inclusion $j: Y \rightarrow X$ induces a surjection $j^{*}: H^{*}(X) \rightarrow H^{*}(Y)$. Then $H^{*}(Y)$ is generated by Chern classes of \mathfrak{B}-linearized vector bundles, and from the Leray spectral sequence we see that $j_{\mathfrak{T}}^{*}: H_{\mathfrak{T}}^{*}(X) \rightarrow$ $H_{\mathfrak{T}}^{*}(Y)$ is surjective. The surjectivity of j^{*} holds, for example, in the case of Schubert varieties in flag varieties. See also Section 8.

Proceeding as just described, we obtain an extension of Theorem 1.
Theorem 2. Suppose that X is a smooth projective variety with a regular \mathfrak{B} action and that Y is a closed \mathfrak{B}-stable subvariety for which the restriction map $H^{*}(X) \rightarrow H^{*}(Y)$ is surjective. Then the map $\rho_{Y}: H_{\mathfrak{T}}^{*}(Y) \rightarrow \mathbb{C}_{0}\left[\mathcal{Z}_{Y}\right]$ yields a graded algebra isomorphism

$$
\rho_{Y}: H_{\mathfrak{T}}^{*}(Y) \rightarrow \mathbb{C}\left[\mathcal{Z}_{Y}\right]
$$

that fits into a commutative diagram

where the vertical maps are the natural restrictions. Both vertical maps are surjections.

Proof. By Theorem 1 we know that ρ is an isomorphism, and by our previous remarks we know that ρ_{Y} is injective. Since the restriction map $\mathbb{C}[\mathcal{Z}] \rightarrow \mathbb{C}\left[\mathcal{Z}_{Y}\right]$ is clearly surjective, it therefore follows that ρ_{Y} is also.

As a corollary, we obtain one of the main results of [7].
Corollary 1. With the notation and assumptions of Theorem 2, there exists a commutative diagram

where ψ and ψ_{Y} are graded algebra isomorphisms and the vertical maps are the natural restrictions.

Note that $\mathbb{C}\left[\mathcal{Z}_{Y}\right] /(v)$ is the coordinate ring of the schematic intersection of \mathcal{Z}_{Y} and $X \times 0$ in $X \times \mathbb{A}^{1}$.

8. Equivariant Cohomology of the Peterson Variety

Let G be a complex semi-simple linear algebraic group. Fix a pair of opposite Borel subgroups B and B^{-}and let $T=B \cap B^{-}$, a maximal torus of G. Denote the corresponding Lie algebras by $\mathfrak{g}, \mathfrak{b}, \mathfrak{b}^{-}$, and \mathfrak{t}, and let Φ^{+}and Φ^{-}be the roots of the pair (G, T) that arise from \mathfrak{b} and \mathfrak{b}^{-}, respectively.

Let M be a B-submodule of \mathfrak{g} containing \mathfrak{b}. Then

$$
M=\mathfrak{b} \oplus \bigoplus_{\alpha \in \Omega(M)} \mathfrak{g}_{\alpha}, \quad \text { where } \Omega(M)=\left\{\alpha \in \Phi^{-} \mid \mathfrak{g}_{\alpha} \subset M\right\}
$$

Hence $\Omega(M)$ is the set of weights of the quotient M / \mathfrak{b}. The B-module $M \subseteq \mathfrak{g}$ yields a homogeneous vector bundle $G \times{ }^{B} M$ over G / B together with a morphism $G \times{ }^{B} M \rightarrow \mathfrak{g}$ induced by $(g, m) \mapsto g m$. The fiber of this morphism at an arbitrary $x \in \mathfrak{g}$ identifies with

$$
Y_{M}(x)=\left\{g B \in G / B \mid g^{-1} x \in M\right\} .
$$

This is a closed subvariety of G / B that is stable under the action of $G_{\mathbb{C} x}$ (the isotropy group of the line $\mathbb{C} x$).

If x is regular and semi-simple, then $Y_{M}(x)$ is a nonsingular variety known as a Hessenberg variety. The Poincaré polynomial of $Y_{M}(x)$ was determined in [8].

On the other hand, if x is nilpotent then the $Y_{M}(x)$ give a broad class of projective varieties containing, for example, the variety $\mathcal{B}_{x} \subset G / B$ of Borel subgroups of G whose Lie algebra contains x. If x is also regular then it defines a canonical \mathfrak{B}-action on G / B stablizing $Y_{M}(x)$. The cohomology ring of $Y_{M}(x)$ has been obtained by Dale Peterson (unpublished). In fact, according to Peterson's result, the $Y_{M}(x)$ satisfy the hypotheses of Theorem 2.

To describe this cohomology ring, we first make a convenient choice for x. Let $\alpha_{1}, \ldots, \alpha_{l} \in \Phi^{+}$denote the simple roots, and fix a nonzero $e_{\alpha_{j}}$ in each T-weight space $\mathfrak{g}_{\alpha_{j}} \subset \mathfrak{b}$. Then for x choose the principal nilpotent $e=\sum_{j=1}^{l} e_{\alpha_{j}}$. Let $h \in \mathfrak{t}$ be the unique element for which $\alpha_{j}(h)=2$ for each index j. Then the pair $(e, h) \in$ $\mathfrak{b} \times \mathfrak{t}$ determines a regular \mathfrak{B}-action on G / B with unique \mathfrak{B}-fixed point $o=B$ that stabilizes $Y_{M}(e)$ for any M. Note that the semi-simple element h is also regular.

Let $\mathfrak{T} \subset \mathfrak{B}$ denote the maximal torus in \mathfrak{B} with Lie algebra $\mathbb{C} h$. Since h is regular, $Y_{M}(e)^{\mathfrak{T}}=(G / B)^{T} \cap Y_{M}(e)$. It is well known that $(G / B)^{T}=\left\{n_{w} B \mid\right.$ $w \in W\}$, where $W=N_{G}(T) / T$ is the Weyl group of (G, T) and n_{w} is a representative of w. But $n_{w} B \in Y_{M}(e)^{\mathfrak{T}}$ if and only if $n_{w}^{-1} e \in M$; that is, $w^{-1}\left(\alpha_{j}\right) \in$ $\Omega(M) \cup \Phi^{+}$for each j.

Formulated in these terms, Peterson's result can be stated as follows.
Theorem 3. For any B-submodule M of \mathfrak{g} containing \mathfrak{b}, the restriction map

$$
H^{*}(G / B) \rightarrow H^{*}\left(Y_{M}(e)\right)
$$

is surjective. Hence, by Theorem 2,

$$
H_{\mathfrak{T}}^{*}\left(Y_{M}(e)\right) \cong \mathbb{C}\left[\mathcal{Z}_{Y_{M}(e)}\right]
$$

Moreover, $\mathcal{Z}_{Y_{M}(e)}$ is a complete intersection. Thus, the cohomology ring $H^{*}\left(Y_{M}(e)\right)$ satisfies Poincaré duality. Its Poincaré polynomial is given by the product formula

$$
\begin{equation*}
P\left(Y_{M}(e), t\right)=\prod_{-\alpha \in \Omega(M)} \frac{1-t^{h t(\alpha)+1}}{1-t^{h t(\alpha)}} \tag{19}
\end{equation*}
$$

where $h t(\alpha)$ denotes the sum of the coefficients of $\alpha \in \Phi^{+}$over the simple roots.
If $M=\mathfrak{g}$ then (19) is, of course, a well-known product formula for the Poincaré polynomial of the flag variety.

The ideals $I\left(\mathcal{Z}_{Y_{M}(e)}\right)$ admit explicit expressions related to the geometry of the nilpotent variety of \mathfrak{g}. Let $U^{-} \subset G$ denote the unipotent radical of B^{-}. Since the natural map $\mu: U^{-} \rightarrow G / B, \mu(u)=u B$, is T-equivariant with respect to the conjugation action of T on U^{-}, we may equivariantly identify U^{-}and the open cell $(G / B)_{o}$. Let \mathfrak{u}^{-}denote the Lie algebra of U^{-}, and let $\Pi_{*}: \mathfrak{g} \rightarrow \mathfrak{u}^{-}$denote the projection. To get this explicit picture, we first note that $L_{u^{-1} *} \mathcal{V}_{u}=\Pi_{*}\left(u^{-1} e\right)$, where L_{u} denotes left translation by $u \in U^{-}$and $L_{u *}$ is its differential (cf. [6, Sec. 2.1]). Consequently,

$$
\begin{equation*}
L_{u^{-1} *} \mathcal{A}_{(u, v)}=2 \Pi_{*}\left(u^{-1} e\right)-v L_{u^{-1} *} \mathcal{W}_{u} \tag{20}
\end{equation*}
$$

Defining $F_{\alpha}(u)$ as the component of $L_{u^{-1} *} \mathcal{A}_{(u, v)}$ in \mathfrak{g}_{α}, it follows that

$$
I(\mathcal{Z})=\left(F_{\alpha} \mid \alpha \in \Phi^{-}\right)
$$

More precisely, we can write

$$
u^{-1} e=e+k(u)+\sum_{\alpha \in \Phi^{-}} v_{\alpha}(u) e_{\alpha}
$$

where $k \in \mathfrak{t} \otimes \mathbb{C}\left[U^{-}\right]$and all $v_{\alpha} \in \mathbb{C}\left[U^{-}\right]$. Then $F_{\alpha}=2 v_{\alpha}-v w_{\alpha}$, where we have put $w_{\alpha}(u)=\left(L_{u^{-1} *} \mathcal{W}_{u}\right)_{\alpha}$. Hence,

$$
H_{\mathfrak{T}}^{*}(G / B, \mathbb{C}) \cong \mathbb{C}\left[U^{-} \times \mathbb{A}^{1}\right] /\left(2 v_{\alpha}-v w_{\alpha} \mid \alpha \in \Phi^{-}\right)
$$

Since the functions $v_{\beta}\left(\beta \in \Phi^{-}-\Omega(M)\right)$ cut out $Y_{M}(e)_{o} \times \mathbb{A}^{1}$, it follows that $I\left(\mathcal{Z}_{Y_{M}(e)}\right)$ is the ideal of the variety cut out by the $2 v_{\alpha}-v w_{\alpha}$ (where $\alpha \in \Phi^{-}$) and the v_{β} (where $\beta \in \Phi^{-}-\Omega(M)$).

The case where

$$
\begin{equation*}
M=\mathfrak{b} \oplus \bigoplus_{\substack{\alpha \in \Phi^{+} \\ \alpha(h)>2}} \mathfrak{g}_{-\alpha} \tag{21}
\end{equation*}
$$

is of particular interest. Then, as shown by Kostant (see [11, (9)]), the GiventhalKim and Peterson formulas for the flag variety quantum cohomology [9;12] may be interpreted as asserting an isomorphism of graded rings

$$
\mathbb{C}\left[Y_{M}(e)_{o}\right] \cong Q H^{*}\left(G^{\vee} / B^{\vee}\right)
$$

where G^{\vee} and B^{\vee} denote the Langlands duals of G and B (respectively) and $Q H^{*}\left(G^{\vee} / B^{\vee}\right)$ is the complex quantum cohomology ring of G^{\vee} / B^{\vee}. This led Kostant to call $Y_{M}(e)$ the Peterson variety. Notice that, by Theorem 3, $P\left(Y_{M}(e), t\right)=$ $(1+t)^{n-1}$.

More recently, Tymoczko [13] has shown that the varieties $Y_{M}(e)$ admit affine cell decompositions when G is of classical type.

9. An Alternative Proof of Theorem 1

We now give another proof of Theorem 1 that is independent of (15). Hence we will also obtain another proof of (15). Denote by $\left[X^{\mathfrak{T}}\right]_{\mathfrak{T}} \in H_{\mathfrak{T}}^{*}(X)$ the equivariant cohomology class of the \mathfrak{T}-fixed-point set. We compute its image under $\rho: H_{\mathfrak{T}}^{*}(X) \rightarrow$ $\mathbb{C}[\mathcal{Z}]$.

Lemma 2. $\quad \rho\left(\left[X^{\mathfrak{T}}\right]_{\mathfrak{T}}\right)$ is the restriction to \mathcal{Z} of the Jacobian determinant of the polynomial functions $v \mathcal{W}\left(x_{1}\right)-2 \mathcal{V}\left(x_{1}\right), \ldots, v \mathcal{W}\left(x_{n}\right)-2 \mathcal{V}\left(x_{n}\right)$ in the variables x_{1}, \ldots, x_{n}.

Proof. Let T_{X} be the tangent bundle to X. Then \mathcal{W} yields a \mathfrak{T}-invariant global section of T_{X} with zero scheme $X^{\mathfrak{T}}$. Thus, we have $c_{n}^{\mathfrak{T}}\left(T_{X}\right)=\left[X^{\mathfrak{T}}\right]_{\mathfrak{T}}$ in $H_{\mathfrak{T}}^{*}(X)$. On the other hand, T_{X} carries a \mathfrak{B}-linearization and so, by Lemma 1, we have

$$
\rho\left(c_{n}^{\mathfrak{T}}\left(T_{X}\right)\right)(x, v)=\operatorname{Tr}_{\wedge^{n} T_{x} X}\left(v \mathcal{W}_{x}-2 \mathcal{V}_{x}\right)
$$

This is the Jacobian determinant of $v \mathcal{W}\left(x_{1}\right)-2 \mathcal{V}\left(x_{1}\right), \ldots, v \mathcal{W}\left(x_{n}\right)-2 \mathcal{V}\left(x_{n}\right)$.
We will also need the following easy result of commutative algebra; we will provide a proof, for lack of a reference.

Lemma 3. Let P_{1}, \ldots, P_{n} be polynomial functions in x_{1}, \ldots, x_{n} that are weighted homogeneous for a positive grading defined by $\operatorname{deg} x_{j}=a_{j}$. If the origin is the
unique common zero to P_{1}, \ldots, P_{n}, then the Jacobian determinant $J\left(P_{1}, \ldots, P_{n}\right)$ is not in the ideal $\left(P_{1}, \ldots, P_{n}\right)$.

Proof. We begin with the special case where P_{1}, \ldots, P_{n} are homogeneous. We argue by induction on n, the result being evident for $n=1$. Let d_{1}, \ldots, d_{n} be the degrees of P_{1}, \ldots, P_{n}. We have the Euler identities

$$
\begin{gathered}
x_{1} \frac{\partial P_{1}}{\partial x_{1}}+\cdots+x_{n} \frac{\partial P_{1}}{\partial x_{n}}=d_{1} P_{1} \\
\vdots \\
x_{1} \frac{\partial P_{n}}{\partial x_{1}}+\cdots+x_{n} \frac{\partial P_{n}}{\partial x_{n}}=d_{n} P_{n}
\end{gathered}
$$

which we view as a system of linear equalities in x_{1}, \ldots, x_{n}. The determinant of this system is the Jacobian $J\left(P_{1}, \ldots, P_{n}\right)=J$. For $1 \leq i, j \leq n$, let $J_{i, j}$ be its maximal minor associated with the i th line and the j th column. Then we have

$$
\begin{equation*}
x_{i} J=\sum_{j=1}^{n}(-1)^{j-1} d_{j} P_{j} J_{i j} \tag{22}
\end{equation*}
$$

Assume that $J \in\left(P_{1}, \ldots, P_{n}\right)$ and write

$$
J=f_{1} P_{1}+\cdots+f_{n} P_{n}, \quad \text { with } f_{1}, \ldots, f_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] .
$$

Using (22) for $i=1$, it follows that $\left(x_{1} f_{1}-d_{1} J_{11}\right) P_{1}$ is in the ideal $\left(P_{2}, \ldots, P_{n}\right)$. But P_{1}, \ldots, P_{n} form a regular sequence in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, since they are homogeneous and the origin is their unique common zero. Therefore, $x_{1} f_{1}-d_{1} J_{11} \in$ $\left(P_{2}, \ldots, P_{n}\right)$. In other words, $J_{11} \in\left(x_{1}, P_{2}, \ldots, P_{n}\right)$.

After a linear change of coordinates, we can assume that $\left(x_{1}, P_{2}, \ldots, P_{n}\right)$ is a regular sequence. For $2 \leq i \leq n$, let

$$
Q_{i}\left(x_{2}, \ldots, x_{n}\right)=P_{i}\left(0, x_{2}, \ldots, x_{n}\right)
$$

Then, in $\mathbb{C}\left[x_{2}, \ldots, x_{n}\right]$ we have

$$
J_{11}\left(0, x_{2}, \ldots, x_{n}\right) \in\left(Q_{2}, \ldots, Q_{n}\right)
$$

Now $J_{11}\left(0, x_{2}, \ldots, x_{n}\right)=J\left(Q_{2}, \ldots, Q_{n}\right)$, and Q_{2}, \ldots, Q_{n} are homogeneous polynomial functions of x_{2}, \ldots, x_{n} having the origin as their unique common zero. But this contradicts the inductive assumption, which completes the proof in the homogeneous case.

Consider now the case where P_{1}, \ldots, P_{n} are quasi-homogeneous for the weights a_{1}, \ldots, a_{n}. Let y_{1}, \ldots, y_{n} be indeterminates; then the functions

$$
\left(y_{1}, \ldots, y_{n}\right) \mapsto P_{i}\left(y_{1}^{a_{1}}, \ldots, y_{n}^{a_{n}}\right)
$$

$(1 \leq i \leq n)$ are homogeneous polynomials with the origin as their unique common zero. Their Jacobian determinant is

$$
\left(\prod_{i=1}^{n} a_{i} y^{a_{i}-1}\right) J\left(P_{1}, \ldots, P_{n}\right)\left(y_{1}^{a_{1}}, \ldots, y_{n}^{a_{n}}\right)
$$

By the first step of the proof, this function of $\left(y_{1}, \ldots, y_{n}\right)$ is not in the ideal generated by the $P_{i}\left(y_{1}^{a_{1}}, \ldots, y_{n}^{a_{n}}\right)$. Thus, $J\left(P_{1}, \ldots, P_{n}\right)\left(x_{1}, \ldots, x_{n}\right)$ cannot be in $\left(P_{1}, \ldots, P_{n}\right)$.

Proof of Theorem 1. The functions $\mathcal{V}\left(x_{1}\right), \ldots, \mathcal{V}\left(x_{n}\right)$ satisfy the assumption of Lemma 3 because (a) they are quasi-homogeneous for the grading defined by the action of \mathfrak{T} and (b) o is the unique zero of \mathcal{V}. Thus, the Jacobian determinant of these functions is not in the ideal that they generate. By Lemma 2, it follows that $\rho\left(\left[X^{\mathfrak{T}}\right]_{\mathfrak{T}}\right)$ is not divisible by v in $\mathbb{C}[\mathcal{Z}]$ for $\mathbb{C}[\mathcal{Z}] /(v)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /$ $\left(\mathcal{V}\left(x_{1}\right), \ldots, \mathcal{V}\left(x_{n}\right)\right)$.

The $\mathbb{C}[z]$-linear map $\rho: H_{\mathfrak{T}}^{*}(X) \rightarrow \mathbb{C}[\mathcal{Z}]$ defines a map

$$
\bar{\rho}: H^{*}(X) \cong H_{\mathfrak{T}}^{*}(X) /(z) \rightarrow \mathbb{C}[\mathcal{Z}] /(v)
$$

a graded ring homomorphism. It suffices to prove that $\bar{\rho}$ is an isomorphism. Note that the spaces $H^{*}(X)$ and $\mathbb{C}[\mathcal{Z}] /(v)$ have dimension r, so it suffices to check the injectivity of $\bar{\rho}$.

The image in $H^{*}(X)$ of $\left[X^{\mathfrak{T}}\right]_{\mathfrak{T}}$ is r [pt], where [pt] denotes the cohomology class of a point. Thus, $\bar{\rho}([\mathrm{pt}]) \neq 0$. Let $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ be a basis of $H^{*}(X)$ consisting of homogeneous elements, and let $\left(\beta_{1}, \ldots, \beta_{r}\right)$ be the dual basis for the intersection pairing $(\alpha, \beta) \mapsto \int_{X}(\alpha \cup \beta) \cap[X]$. Then the homogeneous component of degree $2 n$ in each product $\alpha_{i} \cup \beta_{j}$ equals [pt] if $i=j$ and is zero otherwise. Assume that $\bar{\rho}\left(t_{1} \alpha_{1}+\cdots+t_{r} \alpha_{r}\right)=0$ for some complex numbers t_{1}, \ldots, t_{r}. Multiplying by $\bar{\rho}\left(\beta_{j}\right)$ and taking the homogeneous component of degree $2 n$, we obtain $t_{j} \bar{\rho}([\mathrm{pt}])=0$, whence $t_{j}=0$. Thus $\bar{\rho}$ is injective, and the proof is complete.

10. The Equivariant Push-Forward

Next we describe the equivariant push-forward map

$$
\int_{X}: H_{\mathfrak{T}}^{*}(X) \rightarrow H_{\mathfrak{T}}^{*}(\mathrm{pt})=\mathbb{C}[z]
$$

associated to the map $X \rightarrow \mathrm{pt}$. Note that \int_{X} is $\mathbb{C}[z]$-linear and homogeneous of degree $-2 n$. Denote by J the restriction to \mathcal{Z} of the Jacobian determinant of the polynomial functions

$$
v \mathcal{W}\left(x_{1}\right)-2 \mathcal{V}\left(x_{1}\right), \ldots, v \mathcal{W}\left(x_{n}\right)-2 \mathcal{V}\left(x_{n}\right)
$$

in the variables x_{1}, \ldots, x_{n}. Then J is homogeneous of degree $2 n$, as follows from Lemma 2.

Theorem 4. For any $f \in \mathbb{C}[\mathcal{Z}]$, the function

$$
v \mapsto \sum_{(x, v) \in \mathcal{Z}} \frac{f(x, v)}{J(x, v)}
$$

is polynomial. Furthermore, for any $\alpha \in H_{\mathfrak{T}}^{*}(X)$,

$$
\begin{equation*}
\left(\int_{X} \alpha\right)(v)=\sum_{(x, v) \in \mathcal{Z}} \frac{\rho(\alpha)(x, v)}{J(x, v)} \tag{23}
\end{equation*}
$$

Proof. Since $\mathbb{C}[\mathcal{Z}]$ is a graded free $\mathbb{C}[v]$-module of rank r, we may choose a homogeneous basis f_{1}, \ldots, f_{r} with $f_{1}=1$. As $J \notin(v)$, we may also assume $f_{r}=$ J. If $f \in \mathbb{C}[\mathcal{Z}]$, let $\varphi(f)$ be the r th coordinate of f in this basis. Then the map

$$
\mathbb{C}[\mathcal{Z}] \times \mathbb{C}[\mathcal{Z}] \rightarrow \mathbb{C}[v], \quad(f, g) \mapsto \varphi(f g)
$$

is a nondegenerate bilinear form, since it reduces modulo (v) to the duality pairing on $\mathbb{C}[\mathcal{Z}] /(v)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\mathcal{V}\left(x_{1}\right), \ldots, \mathcal{V}\left(x_{n}\right)\right)$. If $\left(g_{1}, \ldots, g_{r}\right)$ is the dual basis with respect to $\left(f_{1}, \ldots, f_{r}\right)$ for this bilinear form, then g_{1}, \ldots, g_{r} are homogeneous and satisfy $\operatorname{deg}\left(f_{i}\right)+\operatorname{deg}\left(g_{i}\right)=2 n$ for all i. As a consequence, the kernel of φ is generated by f_{1}, \ldots, f_{r-1} and also by g_{2}, \ldots, g_{r} as a $\mathbb{C}[z]$-module. Since $J=f_{r}$, we have $\varphi\left(J g_{1}\right)=\cdots=\varphi\left(J g_{r-1}\right)=0$, so that $\varphi\left(J f_{2}\right)=\cdots=$ $\varphi\left(J f_{r}\right)=0$ whereas $\varphi\left(J f_{1}\right)=\varphi(J)=1$.

Let

$$
\operatorname{Tr}: \mathbb{C}[\mathcal{Z}] \rightarrow \mathbb{C}[v]
$$

be the trace map for the (finite, flat) morphism $p: \mathcal{Z} \rightarrow \mathbb{A}^{1}$. Then

$$
\operatorname{Tr}(f)(v)=\sum_{(x, v) \in \mathcal{Z}} f(x, v)
$$

for all $v \in \mathbb{A}^{1}$; in particular, $\operatorname{Tr}(1)=r$. Since Tr is homogeneous of degree 0 and $\mathbb{C}[z]$-linear, its kernel is a graded complement of the $\mathbb{C}[v]$-module $\mathbb{C}[v]=\mathbb{C}[v] f_{1}$ in $\mathbb{C}[\mathcal{Z}]$. It follows that this kernel is generated by f_{2}, \ldots, f_{r}. Thus, we have

$$
\operatorname{Tr}(g)=r \varphi(J g)
$$

for all $g \in \mathbb{C}[\mathcal{Z}]$. This equality holds then for all $g \in \mathbb{C}[\mathcal{Z}]\left[v^{-1}\right]$ and hence for all rational functions on \mathcal{Z}. Note that J restricts to a nonzero function on any component of \mathcal{Z}, so $1 / J$ is a rational function on \mathcal{Z}. We thus have

$$
\operatorname{Tr}(f / J)=r \varphi(f)
$$

for any $f \in \mathbb{C}[\mathcal{Z}]$; this implies the first assertion. The second assertion follows from the localization theorem in equivariant cohomology.

11. Some Concluding Remarks

If $\alpha \in H_{\mathfrak{T}}^{*}(X)$ is a product of equivariant Chern classes, then (23) is the equivariant Bott residue formula for regular \mathfrak{B}-varieties (cf. [4]).

Using similar methods, one can also extend (23) to obtain a formula for the equivariant Gysin homomorphism associated to an equivariant morphism of regular smooth projective B-varieties (cf. [1] for the case of flag varieties).

More generally, consider a smooth projective variety X with an action of an arbitrary torus T such that X^{T} is finite. Then the precise version of the localization theorem given in [10] yields a reduced affine scheme whose coordinate ring is the equivariant cohomology ring of X (see [5] for details and applications). The scheme \mathcal{Z} in this paper gives a more explicit picture, but the requirement of a regular \mathfrak{B}-action is harder to satisfy. It would be nice to be able to relax the regularity assumption and so allow $X^{\mathfrak{U}}$ to have positive dimension.

Acknowledgments. The second author thanks Shrawan Kumar for asking the question that led to Theorem 1 and Dale Peterson for describing his result (Theorem 3).

References

[1] E. Akyildiz and J. B. Carrell, An algebraic formula for the Gysin homomorphism from G / B to G / P, Illinois J. Math. 31 (1987), 312-320.
[2] ——, A generalization of the Kostant-Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3934-3937.
[3] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.
[4] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967), 231-244.
[5] M. Brion, Poincaré duality and equivariant (co)homology, Michigan Math. J. 48 (2000), 77-92.
[6] J. B. Carrell, Bruhat cells in the nilpotent variety and the intersection rings of Schubert varieties, J. Differential Geom. 37 (1993), 651-668.
[7] -, Deformation of the nilpotent zero scheme and the intersection ring of invariant subvarieties, J. Reine Angew. Math. 460 (1995), 37-54.
[8] F. DeMari, C. Procesi, and M. Shayman, Hessenberg varieties, Trans. Amer. Math. Soc. 332 (1992), 529-534.
[9] A. Giventhal and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), 609-641.
[10] R. M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality and the localization theorem, Invent. Math. 131 (1998), 25-84.
[11] B. Kostant, Flag manifold quantum cohomology, the Toda lattice and the representation with highest weight, New Series Selecta Math. 2 (1996), 43-91.
[12] D. Peterson, Quantum cohomology of G / P, unpublished manuscript.
[13] J. Tymoczko, Decomposing nilpotent Hessenberg varieties over classical groups, preprint, arXiv:math.AG/0211226.
M. Brion

Université de Grenoble I
Département de Mathématiques
Institut Fourier
UMR 5582 du CNRS
38402 Saint-Martin d'Hères Cedex France

Michel.Brion@ujf-grenoble.fr
J. B. Carrell

Department of Mathematics
University of British Columbia
Vancouver, BC V6T 1Z2
Canada
carrell@math.ubc.ca

[^0]: Received November 27, 2002. Revision received May 29, 2003.
 The second author was partially supported by the Natural Sciences and Engineering Research Council of Canada.

