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1. Introduction

An extremal elliptic surface over C is an elliptic surface such that the rank of the
Néron–Severi group equals h1,1 and there are finitely many sections.

Their main application, until now, is in the classification of singular fibers on
certain elliptic surfaces: Once a configuration of singular fibers on an extremal
elliptic surface is known, one can construct from this configuration many other
configurations of singular fibers on elliptic surfaces, where the genus of the base
curve and the geometric and arithmetic genus of the surface remain fixed. In [S]
these operations are called elementary transformations and are, a priori, valid only
for K3 surfaces. Actually, all elementary transformations are combinations of
twisting and deformations of the J-map (terminology from [M1,VIII.2; M2]) and
hence are valid for any elliptic surface.

The classification of singular fibers on a rational elliptic surface was given more
than ten years ago (see [M2; OSh; P]). Recently there has been given a classifica-
tion of all singular fibers of ellipticK3 surfaces with a section (see [S]). From the
classification of configurations of singular fibers on rational surfaces (see [M2])
and K3 surfaces (see [S]), we know that any configuration can be obtained from
an extremal configuration using elementary transformations.

In this paper we give a complete classification of extremal elliptic surfaces
with constant j-invariant (Theorem 3.3). We use this classification to prove the
following.

Theorem 1.1. Let π : X → P
1 be an elliptic surface without multiple fibers. As-

sume that pg(X) > 1. Then X does not satisfy infinitesimal Torelli if and only if
j(π) is constant and π is extremal.

Kiı̆ [K, Thm. 2] proved infinitesimal Torelli for elliptic surfaces without multiple
fibers and nonconstant j-invariant. Saitō [Sa] proved in a different way infinites-
imal Torelli for elliptic surfaces without multiple fibers and j-invariant different
from 0 and 1728.

For elliptic surfaces with nonconstant j-invariant, we will give the following
structure theorem.
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Theorem 1.2. Suppose π : X → C is an elliptic surface without multiple fibers
and nonconstant j-invariant. Then the following statements are equivalent.

(1) π is extremal.
(2) j(π) is not ramified outside 0,1728,∞; the only possible ramification indices

above 0 are 1, 2, 3 and above 1728 are 1, 2; and π has no fibers of type II,
III, IV, or I ∗

0.

(3) There exists an elliptic surface with π ′ : X ′ → C with j(π ′) = j(π); the fi-
bration π ′ has no fibers of type II ∗, III ∗, or IV ∗ and at most one fiber of type
I ∗

0 ; and π ′ has precisely 2pg(X)+ 4 − 4g(C) singular fibers.

We will give a similar theorem that includes the Mordell–Weil group. Let m, n ∈
Z≥1 be such that m|n and n > 1. Let Xm(n) be the modular curve parameterizing
triples ((E,O), P,Q), such that (E,O) is an elliptic curve, P ∈ E is a point of
order m, and Q∈E is a point of order n.

If (m, n) /∈ {(1, 2), (2, 2), (1, 3), (1, 4), (2, 4)} then there exists a universal fam-
ily forXm(n),which we denote byEm(n). Denote by jm,n : Xm(n) → P

1 the map
usually called j.

From the results of [Sh1, Secs. 4 & 5] it follows that Em(n) is an extremal el-
liptic surface. The following theorem explains how to construct many examples
of extremal elliptic surfaces with a given torsion group.

Theorem 1.3. Fix m, n ∈ Z≥1 such that m|n and (m, n) /∈ {(1,1), (1, 2), (2, 2),
(1, 3), (1, 4), (2, 4)}, and let j ∈ C(C) be nonconstant. Then there exists a unique
elliptic surface π : X → C with j(π) = j, and MW(π) has Z/nZ × Z/mZ as
a subgroup if and only if (a) j is of (3, 2)-type, not ramified outside 0,1728,∞,

and (b) j = jn,m � g for some g : C → Xm(n).

The extremal elliptic surface with j(π) = j and Z/nZ × Z/mZ is a subgroup
of MW(π), which is the unique surface with only singular fibers of type Iν.

If π : X → P
1 is an extremal semistable rational elliptic surface, then X is deter-

mined by the configuration of singular fibers (see [MP, Thm. 5.4]). It seems that
this statement applies only to rational elliptic surfaces, for if X is a K3 surface
then a similar statement does not hold.

Theorem 1.4. There exist pairs of extremal semistable elliptic K3 surfaces,
πi : Xi → P

1 (i = 1, 2), such that MW(π1) ∼= MW(π2), the configuration
of singular fibers of the πi coincide, and X1 and X2 are nonisomorphic.

This gives a negative answer to [ATZ, Question 0.2]. The essential ingredient for
the proof comes from [SZ, Table 2].

The paper is organized as follows. Section 2 contains some definitions and sev-
eral standard facts. In Section 3 we give a list of extremal elliptic surfaces with
constant j-invariant, surfaces that behave differently than the nonconstant ones.
There are exactly five infinite families of extremal elliptic surfaces with constant



Extremal Elliptic Surfaces and Infinitesimal Torelli 143

j-invariant (three of dimension 1, one of dimension 2, and one of dimension 3).
In Section 4 we explain this different behavior by proving Theorem 1.1.

In Section 5 we explain how twisting can reduce the problem of classification.
In Section 6 we link the ramification of the j-map and the number of singular
fibers of a certain elliptic surface. This, combined with the results of Section 5,
gives a proof of Theorem 1.2. Section 7 contains a proof of the version with the
description of the group of sections (Theorem 1.3), and in Section 8 we prove The-
orem 1.4. In Section 9 we give a classification of extremal elliptic surfaces with
g(C) = pg(X) = q(X) = 1. Section 10 contains a proof of the fact that, for any
positive k, there exist elliptic surfaces with only one singular fiber; the singular
fiber must be of type I12k or I ∗

12k−6, and both occur.

Acknowledgments. Part of this research was done during the author’s stay as
EAGER pre-doc at the Turin node of EAGER. The author would like to thank Al-
berto Conte and Marina Marchisio for making this possible. The author wishes to
thank Bert van Geemen and Jaap Top for useful conversations on this topic and to
thank Frederic Mangolte for suggesting [N]. The author wishes to thank the ref-
eree for suggesting several improvements. Parts of this paper will be part of the
author’s Ph.D. thesis.

2. Preliminaries and Conventions

Assumption 2.1. By a curve we mean a nonsingular projective complex curve.
By a surface we mean a nonsingular projective complex surface.

Definition 2.2. An elliptic surface is a triple (π,X,C) with X a surface, C a
curve, and π a morphismX → C such that almost all fibers are irreducible genus-
1 curves and X is relatively minimal. We denote by j(π) : C → P

1 the rational
function such that j(π)(P ) equals the j-invariant of π−1(P ) whenever π−1(P ) is
nonsingular.

A Jacobian elliptic surface is an elliptic surface together with a section σ0 : C →
X to π. The set of sections of π is an abelian group, with σ0 as the identity ele-
ment. Denote this group by MW(π).

An extremal elliptic surface is an elliptic surface such that ρ(X) = h1,1(X) and
MW(π) is empty or finite. Let L be the fundamental line bundle [R1π∗OX]−1.

Assumption 2.3. All elliptic surface are without multiple fibers.

Remark 2.4. To an elliptic surface π : X → C we can associate its Jacobian
fibration Jac(π) : Jac(X) → C. The Hodge numbers hp,q, the Picard number
ρ(X), the type of singular fibers of π, and deg(L) are all invariant under taking
the Jacobian fibration.

Remark 2.5. If P is a point on C such that π−1(P ) is singular, then j(π)(P )
behaves as follows.
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Kodaira type of fiber over P j(π)(P )

I ∗
0 �=∞

Iν, I
∗
ν (ν > 0) ∞

II, IV, IV ∗, II ∗ 0
III, III ∗ 1728

Definition 2.6. Let X be a surface and let C and C1 be curves. Let ϕ : X →
C and f : C1 → C be two morphisms. Then we denote by X ×C C1 the smooth,
relatively minimal model of the ordinary fiber product of X and C1.

We use the line bundle L only to simplify notation. Note that deg(L) = pg(X)+
1 − g(C) = pa(X)+ 1. (See [M1, Lemma IV.1.1].)

Recall the following theorem.

Theorem 2.7 [Sh2, Thm. 1.3 & Cor. 5.3]. Let π : X → C be a Jacobian ellip-
tic surface such that deg(L) > 0. Then the Néron–Severi group ofX is generated
by the classes of σ0(C), a fiber, the components of the singular fibers not inter-
secting σ0(C), and the generators of the Mordell–Weil group. Moreover, let S be
the set of points such that π−1(P ) is singular and letm(P ) be the number of irre-
ducible components of π−1(P ). Then

ρ(X) := rank(NS(X)) = 2 +
∑
P∈S

(m(P )− 1)+ rank(MW(π)).

Definition 2.8. Supposeπ : X→ C is an elliptic fibration. Denote by&(Jac(π))
the subgroup of the Néron–Severi group of Jac(π) generated by the classes of
σ0(C), a fiber, and the components of the singular fibers not intersecting σ0(C).

Let ρtr (π) = rank&(Jac(π)).

Note that if π : X → P
1 has deg(L) = 0 then ρtr = 2, although Theorem 2.7

does not apply.

Definition 2.9. Let π : X → C be an elliptic surface. Define:

(a) a(π) as the number of fibers of type II ∗, III ∗, IV ∗;
(b) b(π) as the number of fibers of type II, III, IV ;
(c) c(π) as the number of fibers of type I ∗

0 ;
(d) d(π) as the number of fibers of type I ∗

ν with ν > 0; and
(e) e(π) as the number of fibers of type Iν, ν > 0.

Definition 2.10. Letπ : X → C be an elliptic surface and letP ∈C(C). Define
vP (.P ) as the valuation at P of the minimal discriminant of the Kodaira–Néron
model, which equals the topological Euler characteristic of π−1(P ).

Proposition 2.11. Let π : X → C be an elliptic surface. Then∑
P∈C(C)

vP (.P ) = 12 deg(L).
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Proof. This follows from Noether’s formula (see [M1, III.4.4]).

Proposition 2.12. For any elliptic surface π : X → C that is not a product, we
have

h1,1(X)−ρtr (π) = 2(a(π)+b(π)+c(π)+d(π))+e(π)−2 deg(L)−2+2g(C).

Proof. Recall from [Mi, Lemma IV.1.1] that

h1,1 = 10 deg(L)+ 2g(C).

From Kodaira’s classification of singular fibers and Proposition 2.11 it follows that

ρtr (π) = 2 + 12 deg(L)− 2(a(π)+ b(π)+ c(π)+ d(π))− e(π).

Combining these finishes the proof.

Corollary 2.13. Let π : X → C be an elliptic surface (not a product) with
constant j-invariant. Then π is extremal if and only if π has deg(L)+ 1 − g(C)

singular fibers.

Proof. If j is constant, then e(π) = d(π) = 0.

3. Constant j-Invariant

In this section we give a list of all extremal elliptic surfaces with constant j-
invariant.

Lemma 3.1. Suppose π : X → C is an extremal elliptic surface such that j(π)
is constant. Then g(C) ≤ 1.

Proof. If j(π) is constant then vP (.P ) ≤ 10 for every point P. Hence, by Propo-
sition 2.11 and Corollary 2.13 it follows that

12 deg(L) =
∑

P |π−1(P ) singular

vP (.p) ≤ 10(deg(L)+ 1 − g(C)),

and from this it follows that g(C) ≤ 1.

Lemma 3.2. Suppose π : X → C is an extremal elliptic surface such that j(π)
is constant. Then one of the following occurs.

(1) g(C) = 1; deg(L) = 0, and X is a hyperelliptic surface.
(2) g(C) = 0; j(π) �= 0,1728; deg(L) = 1.
(3) g(C) = 0; j(π) = 0; 1 ≤ deg(L) ≤ 5.
(4) g(C) = 0; j(π) = 1728; 1 ≤ deg(L) ≤ 3.

Proof. Suppose g(C) = 1. Then π has deg(L) singular fibers, so

12 deg(L) =
∑

vP (.P ) ≤ 10 deg(L).

Therefore, deg(L) = 0 and so X is a hyperelliptic surface.
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Suppose g(C) = 0. If deg(L) = 0 then π is birational to a projection from a
product, so by definition π is not extremal.

Suppose deg(L) > 0. Assume j(π) �= 0,1728. Then all singular fibers are of
type I ∗

0. Since the Euler characteristic of such a fiber is 6, Proposition 2.11 implies
that there are exactly 2 deg(L) singular fibers. Applying Corollary 2.13 yields

2 deg(L) = deg(L)+ 1,

and from this we know that deg(L) = 1.
Assume j(π) = 1728; then all singular fibers are of type III, I ∗

0, III
∗. From

this it follows that vP (.P ) ≤ 9. By Proposition 2.11 and Proposition 2.12 we have

12 deg(L) ≤ 9(a(π)+ b(π)+ c(π)) = 9 deg(L)+ 9,

so 1 ≤ deg(L) ≤ 3.
If we assume j(π) = 0 then similarly we obtain 1 ≤ deg(L) ≤ 5.

Theorem 3.3. Suppose π : X → C is an elliptic surface with j(π) constant.
Then π is extremal if and only if either (a) C is a curve of genus 1 and Jac(X) is
a hyperelliptic surface or (b) C ∼= P

1 and Jac(π) has a model that is isomorphic
to one of (i), (ii), or (iii) as follows.

(i) (j(π) = 0) y2 = x3 +f(t), where f(t) comes from the following table (the
left-hand side indicates the positions of the singular fibers, and α, β, γ ∈
C − {0,1} are pairwise distinct).

II IV I ∗
0 IV ∗ II ∗ pg f(t)

0 ∞ 0 t

0 ∞ 0 t 2

0,∞ 0 t 3

1 0,∞ 1 t 5(t − 1)2

1 0 ∞ 1 t 4(t − 1)3

0,1,∞ 1 t 4(t − 1)4

α 0,1,∞ 2 t 5(t − 1)5(t − α)3

α,1 0,∞ 2 t 5(t − 1)4(t − α)4

β α, 0,1,∞ 3 t 5(t − 1)5(t − α)5(t − β)4

0,1,∞, α, β, γ 4 t 5(t − 1)5(t − α)5(t − β)5(t − γ )5

(ii) (j(π) = 1728) y2 = x3 +g(t)x, where g(t) comes from the following table
(α �= 0,1).

III I ∗
0 III ∗ pg g(t)

0 ∞ 0 t

0,∞ 0 t 2

1 0,∞ 1 t 3(t − 1)2

0,1,∞, α 2 t 3(t − 1)3(t − α)3

(iii) (j(π) �= 1728) y2 = x3 + at 2x + t 3, with singular fibers of type I ∗
0 at t =

0 and t = ∞.
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Proof. The three cases listed follow directly from Corollary 2.13 and Lemma 3.2.
Since all are very similar, we discuss only the case j(π) = 0 and pg = 2. In this
case, Jac(π) has a model isomorphic to

y2 = x3 + f(t),

with f a polynomial such that 13 ≤ deg(f ) ≤ 18, and vP (f ) ≤ 5 for all finite P.
At all zeros of f there is a singular fiber. If deg(f ) < 18 then the fiber over t =
∞ is also singular.

If π is extremal then from Corollary 2.13 it follows that π has exactly four sin-
gular fibers. Assume that the fibers with the highest Euler characteristic are over
t = ∞, 0,1. Since 5 + 5 + 5 + 3 = 5 + 5 + 4 + 4 are the only two ways of writ-
ing 18 as a sum of four positive integers smaller than 6, we obtain (after applying
an isomorphism, if necessary) that f equals either

t 5(t − 1)5(t − α)3 or t 5(t − 1)4(t − α)4.

Remark 3.4. Note that all extremal elliptic surfaces with constant j-invariant
and pg(X) > 1 have moduli.

4. Infinitesimal Torelli

In the previous section we gave examples of families of elliptic surfaces with
maximal Picard number. In this section we prove that these surfaces are counter-
examples to infinitesimal Torelli. Moreover, we give a complete solution for in-
finitesimal Torelli for elliptic surfaces (with a section) over P

1.

SupposeX is a smooth complex algebraic variety. Then the first-order deforma-
tions ofX are parameterized byH1(X,6X),with6X the tangent bundle ofX. The
isomorphism Hp,q(X) = Hq(X,7p) and the contraction map 6X ⊗OX

7
p

X →
7
p−1
X give a cup product map,

H1(X,6X)⊗Hp,q(X) → Hp−1,q+1(X),

and from this one obtains the infinitesimal period map

δk : H1(X,6X) →
⊕
p+q=k

Hom(Hp,q(X),Hp−1,q+1(X)).

The (holomorphic) map δk is closely related to the period map. Assume that
ϕ : X → B is a proper, smooth, surjective holomorphic map between complex
manifolds with connected fibers and that, for all t ∈ B, the vector spaceH k(Xt ,C)

carries a Hodge structure of weight k with Xt := ϕ−1(t). Fix a point 0 ∈ B, and
let U be a small simply connected open neighborhood of 0 such that the Kodaira–
Spencer at the point 0 is injective. Define

Pp,k : U → Grass

(∑
i≥p

hi,k−i , H k(X0)

)

by sending t to
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(⊕
i≥p

H i,k−i(Xt )
)

⊂ H k(X0,C)

via the identificationH k(X0,C) ∼= H k(Xt ,C). (Note thatU is simply connected.)
Then the differential of

⊕
d Pp,k is injective if and only if δk is injective. (See [Sa,

Sec. 2] or [V, Chap. 10].)
We say that X satisfies infinitesimal Torelli if and only if δdim(X) is injective.

Note that, if X is an elliptic surface with a section and base P
1, then δk (k �=

dimX) is the zero-map.
If X is a rational surface, then there is no variation of Hodge structures. If X is

aK3 surface, then infinitesimal Torelli follows from [PjS]. This section will focus
on the case pg(X) > 1.

There is an easy sufficient condition (see [K; LWP]) for checking infinitesimal
Torelli for manifolds with divisible canonical bundle. The following result is a
direct consequence of [LWP, Thm. 1′].

Theorem 4.1. LetX be a compact Kähler n-manifold with pg(X) > 1. Let L be
a line bundle such that

(1) L⊗k = 7n
X for some k > 0;

(2) the linear system corresponding to L has no fixed components of codimen-
sion 1; and

(3) H 0(X,7n−1
X ⊗ L) = 0.

Then δn is injective.

We want to apply the above theorem whenX is an elliptic surface and L = OX(F ).

Lemma 4.2. Let π : X → P
1 be an elliptic surface. Assume that X is not bira-

tional to a product C × P
1. Then, for n > 0,

dimH 0(X,71(nF )) =
{
n− 1 if j(π) is not constant,

n− 1 + max(0, n+ d + 1) if j(π) is constant,

where d = deg(L)− #{P ∈C(C) | π−1(P ) singular}.
Proof. By [Sa, Prop. 4.4(I)] we know that π∗71

X
∼= 71

P1 if j(π) is not constant,
which gives the first case.

If j(π) is constant then we have the following exact sequence (by [Sa, Prop.
4.4(II)]):

0 → 71
P1 → π∗71

X → OP1(d ) → 0.

Tensoring with OP1(n) gives

dimH 0(X,71
X(nF )) = dimH 0(P1, 71

P1(n))+ dimH 0(P1,OP1(n+ d))

= n− 1 + max(0, n+ d + 1),

using that dimH1(P1, 71
P1(n)) = 0.

Corollary 4.3. Suppose π : X → P
1 is an elliptic surface (cf. Assumption 2.3)

such that pg(X) > 1, and suppose that j(π) is nonconstant or π is not extremal.
Then X satisfies infinitesimal Torelli.
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Proof. Let F be a smooth fiber of π. Note that O(F )⊗(pg(X)−1) = 72
X (see [Sh2,

Thm. 2.8]) and |F | is the elliptic fibration, hence without base-points.
We claim that dimH 0(X,71(F )) = 0. If this is not the case, then by Lemma 4.2

j(π) is constant and π has at most deg(L)+ 1 singular fibers. From Lemma 2.13
it follows that j(π) is extremal.

Apply now Theorem 4.1 with L = O(F ).
Proposition 4.4. Let ϕ : X → B be a family of surfaces with pg(X0) > 0 and
such that, for all t ∈ B, the set {t ′ | Xt ∼= Xt ′ } is zero-dimensional. Let r be the
Picard number of a generic member of the family ϕ. Suppose that either pg(X0) >

1 and
dim B ≥ 1

2pg(X)(h
1,1 − r)

or pg(X0) = 1 and
dim B ≥ (h1,1 − r).

Then, for all t, the surface Xt does not satisfy infinitesimal Torelli.

Corollary 4.5. Let ψ : X → B be a nontrivial family of surfaces such that
ρ(Xt) = h1,1(Xt) for all t. Then Xt does not satisfy infinitesimal Torelli.

Corollary 4.6. Let π : X → P
1 be an extremal elliptic surface with constant

j-invariant and pg(X) > 1. Then X does not satisfy infinitesimal Torelli.

Proof. From Remark 3.4 it follows that X is a member of a positive-dimensional
family of surfaces with r = h1,1(X0).

Proof of Proposition 4.4. Fix a base point 0 ∈ B and let X be isomorphic to the
fiber over 0. For any t ∈ B, denote by Xt the fiber over t. Let & be a lattice of
rank r such that & ↪→ NS(X0); we can fix the identification of Hodge structures
H 2(X0,C) ∼= H 2(Xt ,C) such that & ↪→ NS(Xt).

Let T(Xt) be the orthogonal complement of the image of & in H 2(Xt ,Z).
Then T(Xt)⊗ C carries a sub-Hodge structure, and we consider variation of this
Hodge structure (cf. [vGT, Sec. 6]). Since the variation of the Hodge structure on
H 2(X,C) is determined by the variation of the sub-Hodge structures & and T,
and since & remains of pure type (1,1), we have the following diagram:

X −−−→ Xk�
�

B ψ−−−→ Bk�ρ
H1(X0,6X0 )

δ2−−−→ Hom(H 2,0(X0 ),H
1,1(X0 ))⊕ Hom(H1,1(X0 ),H

0,2(X0 ))	
	

Im(ρψ) −−−→ Hom(T 2,0(X0 ), T
1,1(X0 ))⊕ Hom(T 1,1(X0 ), T

0,2(X0 )),

where Xk is the Kuranishi family of X0 and Bk is its base.
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From this diagram one deduces dim Im(ρψ) ≤ 2(h1,1 − r)h2,0. Using Serre
duality and a result of Griffiths, one can show (cf. [vGT, Sec. 6]) that Im(ρψ) has
dimension at most 1

2 (h
1,1 − r)h2,0 if h2,0 > 1 and has dimension at most h1,1 − r

if h2,0 = 1.

Remark 4.7. The referee pointed out that the factorization

B → Hom(T 2,0(X0), T
1,1(X0)) → Hom(H 2,0(X0),H

1,1(X0))

can be proven as follows.
Let t ∈ Bk be a direction for which the image of & remain divisors. Then the

kernel of a cup product with t consists of the classes of type (1,1) infinitesimally
fixed in that direction.

Theorem 4.8. Let π : X → P
1 be an elliptic surface (cf. Assumption 2.3), and

assume that pg(X) > 1. ThenX does not satisfy infinitesimal Torelli if and only if
j(π) is constant and π is extremal.

Proof. Combine Corollary 4.3 and Corollary 4.6.

Remark 4.9. Note that the hyperelliptic surfaces form a family of elliptic sur-
faces with pg(X) = 0, so they do not satisfy infinitesimal Torelli.

Remark 4.10. In [C, Sec. 4], Chakiris gives different but invalid formulas for
dimH 0(X,71(nF )). He uses them to deduce a formula for dimH1(X,6X),

which he then uses to prove that generic global Torelli holds. Even with the
use of these incorrect formulas his proof of generic global Torelli seems to remain
valid—after a small modification. His formulas would imply that infinitesimal
Torelli holds for any elliptic surface with a section. The same erroneous formulas
lead Beauville to state [B2, p. 13], in a survey paper on Torelli problems, that in-
finitesimal Torelli holds for arbitrary elliptic surface with a section. Theorem 4.8
shows instead that this is true only under the condition that j(π) is not constant or
π is not extremal.

The argument used to prove that several elliptic surfaces satisfy infinitesimal Torelli
relies heavily on C = P

1. Saitō proved (using other techniques) that, if π : X →
C is an elliptic surface with nonconstant j-invariant, thenX satisfies infinitesimal
Torelli. We consider now the case that the j-invariant is constant, and we try to
find surfaces for which infinitesimal Torelli does not hold.

Lemma 4.11. Let ϕ : X → B be a family of elliptic surfaces with pg(X0) > 1,
constant j-invariant, and s singular fibers. Let g(C) be the genus of the base
curve of a generic member of this family. Suppose we have that {t ′ | Xt ∼= Xt ′ } is
zero-dimensional for all t and that

dim B > (s − deg(L)+ g(C)− 1)h2,0.

Then, for all t, Xt does not satisfy infinitesimal Torelli.
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Table 1

g(C) pg(X) deg(L) smax

[
6
5 deg(L)

] [
4
3 deg(L)

]
1 2 2 3 3 3
1 3 3 4 4 4
1 4 4 5 5 –
1 5 5 6 6 –
2 2 1 2 2 2

Proof. Note that ρ(Xt) ≥ ρtr (π) for all t ∈ B and

h1,1(X)− ρtr (π) = 2s − 2 deg(L)− 2 + 2g(C).

Apply now Proposition 4.4.

Example 4.12. Letψ : X → B be a maximal-dimensional family of elliptic sur-
faces with 2 deg(L) singular fibers of type I ∗

0. Then dim B = 3g−3+2 deg(L)+1.
We have that h2,0 > 1 and

dim B > (s − deg(L)+ g(C)− 1)h2,0

holds if and only if h2,0 = 2 and g(C) ∈ {1, 2, 3} or h2,0 = 3 and g(C) = 4. In
all these cases, any member of the family ψ is a counterexample to infinitesimal
Torelli.

Example 4.13. Let ψ : X → B be a maximal family of elliptic surfaces with j-
invariant 0 or 1728 and with s singular fibers. Then dim B = 3g − 3 + s.

Using h2,0 = deg(L)+ g(C)− 1, we obtain that

dim B > (s − deg(L)+ g(C)− 1)h2,0

holds if and only if

s <
deg(L)2 − g(C)2 + 5g(C)− 4)

deg(L)+ g(C)− 2
.

From Noether’s condition, the smallest s that is possible is 6
5 deg L. From this we

can deduce

deg(L) < −3g(C)+ 6 +
√

4g(C)2 − 11g(C)+ 16.

All combinations of g(X) andpg(X) satisfying the previous conditions are men-
tioned in Table 1. There smax denotes the maximum number of singular fibers such
that the maximal family with smax singular fibers has dim(B) larger than the upper
bound for the dimension of the period domain. The columns with

[
6
5 deg(L)

]
and[

4
3 deg(L)

]
denote the minimal number of singular fibers for an elliptic surface

with j-invariant 0 or 1728, whenever this is smaller than smax.
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5. Twisting

In this section we study the behavior of h1,1(X)− ρtr (X) under twisting when X
is a Jacobian elliptic surface.

To a Jacobian elliptic surface π : X → C we can associate an elliptic curve
in P

2
C(C) corresponding to the generic fiber of π. Denote this elliptic curve by

E1. Conversely, to an elliptic curve E ′/C(C) we can associate an elliptic surface
π ′ : X ′ → C.

Let πi : Xi → C (i = 1, 2) be two Jacobian elliptic surfaces such that j(πi) �=
0,1728. Then there exists an isomorphism ϕ : X1 → X2 such that π2ϕ = π1 if
and only if the associated elliptic curves E1 and E2 are isomorphic over C(C).

This statement is equivalent to j(E1) = j(E2), and the quotient of the minimal
discriminants of E1/C(C) and E2/C(C) is a twelfth power (in C(C)∗).

If j(E1) = j(E2), then (under our assumptions) the quotient of the minimal
discriminants is a sixth power, say u6. From this it follows that E1 and E2 are iso-
morphic over C(C)

(√
u
)
. We callE2 the twist ofE1 by u and denote this byE(u)1 .

Actually, we are not interested in the function u but rather in the places at which
the valuation of u is odd.

Definition 5.1. Let π : X → C be a Jacobian elliptic surface. Fix 2n points
Pi ∈C(C). Let E/C(C) be the Weierstrass model of the generic fiber of π.

A Jacobian elliptic surface π ′ : X ′ → C is called a quadratic twist of π by
(P1, . . . , Pn) if the Weierstrass model of the generic fiber of π ′ is isomorphic to
E(f ),whereE(f ) denotes the quadratic twist ofE by f in the aforementioned sense
and f ∈ C(C) is a function such that vPi (f ) ≡ 1 mod 2 and vQ(f ) ≡ 0 mod 2 for
all Q /∈ {Pi}.

A *-minimal twist of π is a twist π̃ : X̃ → C such that none of the fibers are of
type II ∗, III ∗, IV ∗, or I ∗

ν and at most one fiber is of type I ∗
0.

The existence of the twist follows easily from the fact that Pic0(C) is divisible.
If g(C) > 0 and we fix 2n points P1, . . . , P2n, then there exist 22g(C) twists by
(P1, . . . , P2n).

Note that a *-minimal twist is a twist for which pg(X) (and pa(X)) is mini-
mal. Later on we will introduce another notion of minimality: the twist for which
h1,1(X) − ρtr (π) is minimal. A *-minimal twist of an elliptic curve need not be
unique, but the configuration of the singular fibers of any two *-minimal twists of
the same surface are equal.

If P is one of the 2n distinguished points, then the fiber of P changes in the
following way (see [M1, V.4]).

Iν ↔ I ∗
ν (ν ≥ 0), II ↔ IV ∗, III ↔ III ∗, IV ↔ II ∗.

Lemma 5.2. Let π : X → C be a Jacobian elliptic surface, and let Pi ∈ C(C)
be 2n points. Let π ′ : X ′ → C be a twist by (Pi). Then

h1,1(X ′)− ρtr (π
′) = h1,1(X)− ρtr (π)+

2n∑
i=1

cPi ,
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with

cPi =




1 if π−1(Pi) is of type I0, IV
∗, III ∗, or II ∗;

0 if π−1(Pi) is of type Iν or I ∗
ν with ν > 0;

−1 if π−1(Pi) is of type II, III, IV, or I ∗
0.

Proof. Suppose π−1(Pi) is of type I0. Then π ′−1(Pi) is of type I ∗
0. The Euler char-

acteristic of this fiber is 6, so this point causes h1,1 to increase by 5. An I ∗
0 fiber

has four components not intersecting the zero-section. Hence ρtr increases by 4.
The other fiber types can be handled similarly.

Lemma 5.3. Suppose we have a Jacobian elliptic surface π : X → C with non-
constant j-invariant. There exist finitely many twists π ′ of π such that the nonneg-
ative integer h1,1 − ρtr is minimal under twisting. These twists are characterized
by b(π ′) = c(π ′) = 0.

Proof. It is easy to see that there are at most finitely many twists with c(π ′) = 0.
Hence it suffices to show that b(π ′) = c(π ′) = 0 if h1,1(X ′) − ρtr (π

′) is mini-
mal under twisting. From Lemma 5.2 it follows that we need only show that, for
any elliptic surface, there exists a twist with b(π ′) = c(π ′) = 0.

Consider a *-minimal twist π̃ : X̃ → C. Note that e(π̃) > 0 (otherwise the j-
invariant would be constant).

Suppose b(π̃) + c(π̃) is even. Twist by all points with a fiber of type II, III,
IV, or I ∗

0. The new elliptic surface has b = c = d = 0.
Suppose b(π̃) + c(π̃) is odd. Twist by all points with a fibers of type II, III,

IV, or I ∗
0 and one point with a fiber of type Iν. The new elliptic surface has b =

c = 0 and d = 1.

Remark 5.4. The classification (in [SZ]) of extremalK3 surfaces is a classifica-
tion of the root lattices corresponding to the singular fibers. In general one can not
decide which singular fibers correspond to these lattices, since each of the pairs
(I1, II ), (I2, III ), and (I3, IV ) gives rise to the same lattice (A0, A1, A2). From
Lemma 5.3 it follows that this is not a problem when π is extremal.

Proposition 5.5. Let π1 : X1 → C be an elliptic surface with j(π1) noncon-
stant. Let π : X → C be a *-minimal twist of Jac(π1) with associated line bundle
L. Let π̃ : X̃ → C be a twist for which h1,1 − ρtr is minimal. Then

h1,1(X̃)− ρtr (X̃) = 2g(C)− 2 deg(L)− 2 + #{singular fibers for π}.
Proof. From Proposition 2.12 and Lemmas 5.3 and 5.2 we have that deg(L̃) =
deg(L)+ (d(π̃)+a(π̃)− c(π))/2, d(π̃)+ e(π̃) = e(π), and a(π̃) = b(π). This
yields

h1,1(X̃)− ρtr (X̃) = 2g(C)− 2 deg(L̃)− 2 + 2(a(π̃)+ d(π̃))+ e(π̃)

= 2g(C)− 2 deg(L)− 2 + b(π)+ c(π)+ e(π).

Finally note that a(π) = d(π) = 0.
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Corollary 5.6. Let π̃ : X̃ → C be an elliptic surface with j(π) nonconstant.
Then π̃ is extremal if and only if π̃ has no fibers of type II, III, IV, or I ∗

0, and the
*-minimal twist of its Jacobian π : X → C has 2 deg(L) + 2 − 2g(C) singular
fibers.

6. Configurations of Singular Fibers

In order to apply the results of the previous section, we need to know which ellip-
tic surfaces have a minimal twist with 2 deg(L)+ 2 − 2g(C) singular fibers. We
shall need the following definition.

Definition 6.1. A function f : C → P
1 is called of (3, 2)-type if the ramifica-

tion indices of the points in the fiber of 0 are at most 3 and in the fiber of 1728 are
at most 2.

For the connection between functions of (3, 2)-type and certain subgroups of
SL2(Z) see [B1].

Proposition 6.2. Let π : X → C be an elliptic surface with j(π) nonconstant
and such that π is a *-minimal twist. Then j(π) is of (3, 2)-type and is not ram-
ified outside 0,1728,∞ if and only if there are 2 deg(L) + 2 − 2g(C) singular
fibers.

Proof. Denote by

(a) n2 the number of fibers of π of type II,
(b) n3 the number of fibers of π of type III,
(c) n4 the number of fibers of π of type IV,
(d) n6 the number of fibers of π of type I ∗

0, and
(e) mν the number of fibers of π of type Iν (ν > 0).

Let r = ∑
νmν.

The ramification of j(π) is as follows (using [M1, Lemma IV.4.1]). Above 0 we
have n2 points with ramification index 1 modulo 3, n4 points with index 2 modulo
3, and at most (r − n2 − 2n4)/3 points with index 0 modulo 3. In total, we have
at most n2 + n4 + (r − n2 − 2n4)/3 points in j(π)−1(0). Above 1728 we have
n3 points with index 1 modulo 2 and at most (r − n3)/2 points with index 0 mod-
ulo 2. So j(π)−1(1728) has at most n3 + (r − n3)/2 points. Above ∞ we have∑
mν points.
These statements together imply that

#j(π)−1(0)+ #j(π)−1(1728)+ #j(π)−1(∞)

≤ 2
3n2 + 1

2n3 + 1
3n4 + 5

6 r +
∑

mν,

with equality if and only if j(π) is of (3, 2)-type.
Hurwitz’s formula implies that

r + 2 − 2g(C) ≤ #j(π)−1(0)+ #j(π)−1(1728)+ #j(π)−1(∞),
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with equality if and only if there is no ramification outside 0, 1728, and ∞. Hence

r ≤ 12g(C)− 12 + 4n2 + 3n3 + 2n4 + 6
∑

mν

and, by Proposition 2.11, ∑
ini + r = 12 deg(L).

Substituting gives

2 deg(L)+ 2 − 2g(C) ≤ n2 + n3 + n4 + n6 +
∑

mν,

with equality if and only if (a) j(π) is not ramified outside 0, 1728, and ∞ and
(b) j(π) is of (3, 2)-type.

This enables us to prove our next theorem.

Theorem 6.3. Suppose π : X → C is an elliptic surface with nonconstant j-
invariant. Then the following three statements are equivalent.

(1) π is extremal.
(2) j(π) is of (3, 2)-type, not ramified outside 0,1728,∞, and π has no fibers

of type II, III, IV, or I ∗
0.

(3) The minimal twist π ′ of Jac(π) has 2 deg(L)+ 2 − 2g(C) singular fibers.

Proof. Apply Proposition 6.2 to Corollary 5.6.

Remark 6.4. Frederic Mangolte pointed out to me that the equivalence of (1)
and (2) was already proved in [N].

Remark 6.5. Consider functions f : C → P
1 up to automorphisms of C. If we

fix the ramification indices above 0,1728,∞ and demand that f be unramified at
any other point, then there are only finitely many f with that property. A small
deformation of f in Mord(C,P1), the moduli space of morphisms C → P

1 of
degree d, has more critical values.

Hence the j-invariants of any extremal elliptic surface lie “discretely” in
Mord(C,P1). By Lemma 5.3, to any j-invariant there correspond only finitely
many extremal elliptic surfaces (by Lemma 5.3). Therefore, extremal elliptic sur-
faces over P

1 with geometric genus n and nonconstant j-invariant lie discretely in
the moduli space of elliptic surfaces over P

1 with geometric genus n.

Suppose that π : X → P
1 has 2pg(X)+ 4 singular fibers of type Iν and no other

singular fibers. Let f : P
1 → P

1 be a cyclic morphism ramified at two points
P such that π−1(P ) is singular. Then Fastenberg [F, Thm. 2.1] has proved that
the base-changed surface has Mordell–Weil rank 0. In fact, she proved that the
base-changed surface is extremal. The first surface is also extremal (by Proposi-
tion 5.6). A slightly more general variant is the following.
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Example 6.6. Suppose π : X → C is an extremal elliptic surface, and let
f : C ′ → C be a finite morphism. Then the base-changed elliptic surface π ′:
X ′ → C ′ is extremal if f is not ramified outside the set of points P such that
π−1(P ) is multiplicative or potential multiplicative.

In that case, the composition j ′ : C ′ −→ C
j−→ P

1 is not ramified outside 0, 1728,
and ∞, and the ramification indices above 0 and 1728 are at most 3 and 2. More-
over, there are no fibers of type II, III, IV, or I ∗

0.

An easy calculation shows that all elliptic surfaces for which Fastenberg’s results
[F, Thm.1] hold are either extremal elliptic surfaces or have a twist that is extremal.
Moreover, these surfaces have no fibers of type I ∗

0 and so all elliptic surfaces for
which her results hold lie discretely in the moduli spaces mentioned above.

7. Mordell–Weil Groups of Extremal Elliptic Surfaces

It remains to classify which Mordell–Weil groups can occur. However, we can
give only a partial answer to this problem.

Let m, n ∈ Z≥1 be such that m|n and n > 1. Recall from Section 1 that Xm(n)
is the modular curve parameterizing triples ((E,O), P,Q) such that (E,O) is an
elliptic curve, P ∈E is a point of order m, and Q∈E is a point of order n.

If (m, n) /∈ {(1, 2), (2, 2), (1, 3), (1, 4), (2, 4)} then there exists a universal fam-
ily forXm(n),which we denote byEm(n). Denote by jm,n : Xm(n) → P

1 the map
that is usually called j.

From the results of [Sh1, Secs. 4 & 5] it follows that Em(n) is an extremal el-
liptic surface. The following theorem explains how to construct many examples
of extremal elliptic surfaces with a given torsion group.

Theorem 7.1. Fix m, n ∈ Z≥1 such that m|n and (m, n) /∈ {(1,1), (1, 2), (2, 2),
(1, 3), (1, 4), (2, 4)}, and let j ∈ C(C) be nonconstant. Then there exists a unique
elliptic surface π : X → C with j(π) = j, and MW(π) has Z/nZ × Z/mZ as
a subgroup if and only if (a) j is of (3, 2)-type, not ramified outside 0,1728,∞,

and (b) j = jn,m � g for some g : C → Xm(n).

The extremal elliptic surface with j(π) = j and Z/nZ × Z/mZ is a subgroup
of MW(π), which is the unique surface with only singular fibers of type Iν.

Proof. Let π : X → C be an elliptic surface such that MW(π) has a subgroup
isomorphic to G := Z/mZ × Z/nZ. Then j : C → P

1 can be decomposed in
g : C → Xm(n) and jm,n : Xm(n) → P

1, andX is isomorphic to Em(n)×Xm(n) C.

Conversely, for any base changeπ ′ ofϕm,n : Em(n) → Xm(n), the groupMW(π ′)
has G as a subgroup.

Moreover, since ϕm,n has only singular fibers of type Iν, the same holds for π ′.
An application of Theorem 6.3 concludes the proof.

Remark 7.2. Let n = 2 and m ≤ 2. Then any elliptic surface with j(π) =
jm,n � g has G = Z/nZ × Z/mZ as a subgroup of MW(π).
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8. Uniqueness

Artal Bartolo, Tokunaga, and Zhang [ATZ] expect that an extremal elliptic sur-
face is determined by the configuration of the singular fibers and the Mordell–Weil
group. More precisely, they raise the following question.

Question 8.1. Supposeπ1 : X1 → P
1 andπ2 : X2 → P

1 are extremal semistable
elliptic surfaces such thatMW(π1) ∼= MW(π2) and the configurations of singular
fibers of π1 and π2 are the same.

AreX1 andX2 isomorphic? If so, is there then an isomorphism that respects the
fibration and the zero-section?

By [MP, Thm. 5.4], this is true if X1 and X2 are rational elliptic surfaces. If X1

and X2 are K3 surfaces, then the question is answered by the following theorem.

Theorem 8.2. There exist precisely nineteen pairs (π1 : X1 → P
1, π2 : X2 →

P
1) of extremal elliptic K3 surfaces such that π1 and π2 have the same configu-

ration of singular fibers, MW(π1) and MW(π2) are trivial, and X1 and X2 are
not isomorphic. Of these pairs, thirteen are semistable. There is also a unique
pair for which this statement holds with MW(π1) = MW(π2) = Z/2Z that is
not semistable.

Proof. From [SZ, Table 2] there exist nineteen pairs of surfaces (X1, X2) such that
the transcendental lattices of X1 and X2 lie in distinct SL2(Z)-orbits, they admit
elliptic fibrations πi : Xi → P

1 such thatMW(π1) = MW(π2) = 0, and the con-
tributions of the singular fibers as sublattices of the Néron–Severi lattice coincide.

From Remark 5.4 we know that, for extremal elliptic surfaces, the sublattices
determine the singular fibers. Since the transcendental lattices are in different
SL2(Z)-orbits, the surfaces are not isomorphic.

The rest of the statement follows from the same table in [SZ].

Remark 8.3. From these surfaces one should be able to construct other pairs
of extremal elliptic surfaces, with isomorphic Mordell–Weil groups and the same
configuration of singular fibers, such that the geometric genus is higher than 1.

Start with two nonisomorphic extremal elliptic K3 surfaces with the same
configuration of singular fibers and the same Mordell–Weil group. Then the j-
invariants of both surfaces are unequal modulo automorphism of P

1.

We can base-change both surfaces in such a way that the base-changed surfaces
remain extremal (cf. Example 6.6); they have the same configuration of singular
fibers and their j-invariants are unequal modulo an automorphism of P

1.

The configuration of singular fibers gives restrictions on the possibilities for
the torsion part of the Mordell–Weil group. One can hope that this is sufficient to
prove that the Mordell–Weil groups are isomorphic.

Note that the base-changed surfaces are not isomorphic, since a surface that is
not a K3 surface has at most one elliptic fibration.
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Remark 8.4 (“Case 49”). In [ATZ] it is proven that there are two elliptic sur-
faces with MW(πi) = Z/5Z and singular fibers 2I1, I2, 2I5, I10 and there exists
no isomorphism between them that respects the fibration. In [SZ] it is proven that
both surfaces are isomorphic. For any other pair of (semistable) extremal elliptic
K3 surfaces with #MW(π) > 4 and the same singular fibers configuration, there
exists an isomorphism that respects the fibration [ATZ, Thm. 0.4].

9. Extremal Elliptic Surfaces with pg = 1 and q = 1

An elliptic surface with a section and q = 1 needs to have a genus-1 base curve.
This implies that, for an extremal elliptic surface with pg = 1 and q = 1, we have
deg(L) = 1. The minimal twist of an extremal elliptic surface with pg = 1 and
q = 1 has two singular fibers.

The following table lists all possible pairs of fiber types such that the sum of the
Euler characteristics is 12. Several of these surfaces are already described in the
literature (see the references cited in the table’s bottom row).

F1 I11 I10 I9 I8 I7 I6 I10 I9 I8 I6

F2 I1 I2 I3 I4 I5 I6 II III IV I ∗
0

[AlR4] [AlR3] [AlR1] [AlR2]

Remark 9.1. Note that the six configurations with two Iν fibers are already ex-
tremal. The configurations with one additive and one multiplicative fiber are not
extremal. If we twist by the two points with a singular fiber we obtain an extremal
elliptic surface, but then the degree of L is 2—except for the I6 I

∗
0,whose extremal

twist has one singular fiber of type I ∗
6.

Proposition 9.2. All these configurations exist except I7 I5.

Proof. This is a consequence of the following lemmas. Note that the existence
of elliptic surfaces over P

1 with the singular fibers mentioned hereunder follows
from [P].

Lemma 9.3. The configurations with Ik I12−k exist for k = 2, 4, 6.

Proof. Let π : X → P
1 be an elliptic surface with two III fibers, a fiber of type

Ik/2, a fiber of type I6−k/2, and no other singular fibers. Let ϕ : C → P
1 be a

degree-2 cover ramified at the four points where the fiber of π is singular. Then
π ′ : X×P1 C → C has two fibers of type I ∗

0, a fiber of type Ik, and a fiber of type
I12−k. Twisting by the two points with I ∗

0 fibers gives the desired configuration.

Lemma 9.4. The configurations I8 IV and I6 I
∗
0 exist.

Proof. For the first claim, letπ : X → P
1 be an elliptic surface with two III fibers,

a fiber of type II, a fiber of type I4, and no other singular fibers. Let ϕ : C →
P

1 be a degree-2 cover ramified at the four points where the fiber of π is singular.
Then π ′ : X×P1 C → C has two fibers of type I ∗

0, a fiber of type I8, and a fiber of
type IV. Twisting by the two points with a I ∗

0 fiber gives the desired configuration.
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For the second, let π : X → P
1 be an elliptic surface with three III fibers, a

fiber of type I3, and no other singular fibers. Let ϕ : C → P
1 be a degree-2 cover

ramified at the four points where the fiber of π is singular. Then π ′ : X ×P1 C →
C has three fibers of type I ∗

0 and a fiber of type I6. Twisting by two points with a
I ∗

0 fiber gives the desired configuration.

For the other four configurations we have a different strategy. We simply show
that the j-map with the right ramification indices exists. This is equivalent to giv-
ing the monodromy representation.

Lemma 9.5. The configurations I11 I1, I9 I3, II I10, and III I9 exist.

Proof. For the two configurations of type Iµ Iν we need to find curvesC and func-
tions j : C → P

1 of degree 12 such that above ∞ there are two points with ramifi-
cation indices µ and ν, all points above 0 have ramification index 3, and all points
above 1728 have ramification index 2 (see [M1, Lemma IV.4.1]).

By the Riemann existence theorem it suffices to give two permutations σ0, σ1

in S12 such that σ0 is the product of six disjoint 2-cycles, σ1 is the product of four
disjoint 3-cycles, σ0σ1 is the product of a µ-cycle and a ν-cycle, and the subgroup
generated by σ0 and σ1 is transitive (see [M3, Cor. 4.10]).

For I1 I11 we use

(12 3)(4 5 6)(7 8 9)(101112) ∗ (13)(2 4)(5 7)(810)(911)(612)

= (1)(3 2 5 8117 610 912 4)

For I3 I9 we use

(12 3)(4 5 6)(7 8 9)(101112) ∗ (16)(4 9)(3 7)(210)(512)(811)

= (14 7)(2119 510 3 812 6)

Similarly, the existence of II I10 follows from

(12)(3 4)(5 6)(7 8)(910) ∗ (14 7)(2 5 8)(3 6 9) = (13 5 7 2 610 9 4 8),

and the existence of III I9 follows from

(2 3)(4 5)(6 7)(8 9) ∗ (14 7)(2 5 8)(3 6 9) = (15 9 2 4 6 8 3 7).

Lemma 9.6. The configuration I7 I5 does not exist.

Proof. A computer search informed us that the permutations needed for the exis-
tence of I7 I5 do not exist.

Corollary 9.7. Let ki be positive integers such that
∑
ki = 12 with i ≥ 2, and

if i = 2 then (k1, k2) �= (7, 5) or (5, 7). Then there exist a curve C of genus 1 and
an elliptic surface π : X → C such that the configuration of singular fibers of π
is

∑
Iki .

Proof. Use the monodromy representation as in [M2, Rem. after Cor. 3.5].
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10. Elliptic Surfaces with One Singular Fiber

In the previous section we proved that there exists an elliptic fibration with an I6

and an I ∗
0 fiber. Twisting by the points with a singular fiber yields an elliptic sur-

face with one singular fiber of type I ∗
6. We will prove that, for fixed deg(L), there

are two possible configurations that can be realized as elliptic surfaces.

Proposition 10.1. Suppose π : X → C is an elliptic surface with one singular
fiber. The fiber is of type I ∗

12k−6 or I12k for some k ∈ Z>0, and g(C) ≥ k in the first
case and g(C) ≥ k+1 in the second. Conversely, all these configurations occur.

Proof. Since the Euler characteristic of the singular fiber is 12 deg(L), the only
possible configurations are Iν and I ∗

ν .

Fix a rational elliptic surface π : X → P
1 with three fibers of type III and one

fiber of type I3. (The existence follows from [P].) Fix k a positive integer. Take a
curve C such that ϕ : C → P

1 has degree 4k− 2 and is ramified at the four points
that have the singular fibers—and above such a point there is exactly one point.

The base change π ′ : X×P1 C → C has three fibers of type I ∗
0 and one fiber of

type I12k−6. Twisting by all four points with a singular fiber yields an elliptic sur-
face with one singular fiber, and this fiber is of type I ∗

12k−6. If we replace 4k − 2
by 4k, we obtain an elliptic surface with one fiber of type I12k.

For any elliptic surface with only one singular fiber, which is of type I ∗
12k−6,

the following statement holds: the j-map C → P
1 has degree 12k − 6, one point

above ∞, at most 4k − 2 points above 0, and at most 6k − 3 points above 1728.
This implies that the base curve has genus at least k. A similar argument shows
that, if the only singular fiber is of type I12k, then the base curve has genus at
least k + 1.
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