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Rational Approximation on the Unit Sphere in C2
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1. Introduction

For a compact set X ⊂ Cn, we denote by R(X) the closure in C(X) of the set of
rational functions holomorphic in a neighborhood of X. We are interested in find-
ing conditions onX which imply that R(X) = C(X), that is, conditions implying
that each continuous function on X is the uniform limit of a sequence of rational
functions holomorphic in a neighborhood of X.

When n = 1, the theory of rational approximation is well developed. Exam-
ples of sets without interior for which R(X) �= C(X) are well known, the “Swiss
cheese” being a prime example. On the other hand, the Hartogs–Rosenthal theorem
states that if the two-dimensional Lebesgue measure of X is zero, then R(X) =
C(X).

In higher dimensions, there is an obstruction to rational approximation that does
not appear in the plane. For X ⊂ Cn, we denote by X̂r the rationally convex hull
of X, which can be defined as the set of points z ∈ Cn such that every polyno-
mial Q with Q(z) = 0 vanishes at some point of X. The condition X = X̂r (X

is rationally convex) is both necessary for rational approximation and difficult to
establish, in practice, when n > 1; in the plane, every compact set is rationally
convex.

We will consider primarily subsets of the unit sphere ∂B in C2. We have been
motivated by a desire to obtain an analogue of the Hartogs–Rosenthal theorem in
this setting. Basener [5] has given examples of rationally convex sets X ⊂ ∂B for
which R(X) �= C(X); his examples have the form {(z, w) ∈ ∂B : z ∈E}, where
E ⊂ C is a suitable Swiss cheese. These sets have the property that σ(X) > 0,
where σ is three-dimensional Hausdorff measure on ∂B. It is reasonable to con-
jecture that if X is rationally convex and σ(X) = 0, then R(X) = C(X). This
paper contains several contributions to the study of this question.

In Section 2 we employ a construction of Henkin [10]. For a measure µ sup-
ported on ∂B orthogonal to polynomials, Henkin produced a functionKµ ∈L1(dσ)

satisfying ∂̄bKµ = −4π2µ. Lee and Wermer established that, if X ⊂ ∂B is ra-
tionally convex and if µ ∈R(X)⊥ (i.e.,

∫
g dµ = 0 for all g ∈R(X)), then Kµ

extends holomorphically to the unit ball. We show that, if the extension belongs
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to the Hardy space H1(B), then µ must be the zero measure. Under an assump-
tion on the size of the rational hull of small tubular neighborhoods ofX,which we
call the hull-neighborhood property, we are able to show that Kµ satisfies a cer-
tain boundedness condition (see Lemma 2.4). From this we deduce (in the proof
of Theorem 2.5) thatKµ ∈H1(B) ifX is a subset of a Lipschitz graph lying in ∂B.
Hence, in this case the only measure µ∈R(X)⊥ is the zero measure, so R(X) =
C(X). (In Section 4 we show how the same result can be established for graphs of
Hölder functions.) Section 2 also includes an example of a class of sets satisfying
the hull-neighborhood property.

In Section 3 we study the algebra generated by R(E) and a smooth function f
on a plane setE; we show that, if this algebra has maximal ideal spaceE but does
not contain all continuous functions on E, then there is a subset E0 of E on which
f ∈R(E0) and R(E0) �= C(E0). We then use this result to establish rational ap-
proximation on certain graphs lying in ∂B.

We use the following notation in addition to that already introduced: B will de-
note the unit ball in C2; coordinates of points in C2 will be denoted either by using
subscripts such as z = (z1, z2) or by p = (z, w), according to the context. We
use π to denote projection to the first coordinate; that is, π(z,w) = z. If z, ζ are
points in C2, then 〈z, ζ〉 will denote the usual Hermitian inner product of z and ζ.

2. Rational Approximation and the Henkin Transform

A basic tool of approximation theory in the plane is the Cauchy transform µ̂ of a
measure µ. If µ is a finite complex measure with compact support, then

µ̂(z) =
∫

dµ(ζ)

ζ − z
.

The Cauchy transform µ̂(z) is integrable with respect to Lebesgue measure m on
the plane, is analytic in z off the support ofµ, and satisfies the fundamental relation

∂µ̂

∂z̄
= −πµ

in the sense of distributions; that is,∫
φ dµ = 1

π

∫
C

∂φ

∂z̄
µ̂ dm. (1)

In [10], Henkin studied global solutions to the inhomogeneous tangential
Cauchy–Riemann equations on the boundary of strictly convex domains in Cn.

His work produced transforms analogous in certain respects to the Cauchy trans-
form. In the particular case that concerns us, the boundary of the unit ball in C2,

Henkin introduced the kernel

H(z, ζ) = 〈Tz, ζ〉
|1 − 〈z, ζ〉|2 ,

where Tz = (z2,−z1). Given a measureµ supported on a setX ⊂ ∂B, the Henkin
transform of µ is defined by
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Kµ(z) =
∫
X

H(z, ζ) dµ(ζ).

Henkin showed that the integral defining Kµ converges σ -a.e. on ∂B and that Kµ

is integrable with respect to dσ on ∂B and is smooth on ∂B \X. Further, if µ sat-
isfies the condition ∫

X

P dµ = 0 for all polynomials P, (2)

then Kµ satisfies
∂̄bKµ = −4π2µ. (3)

Here ∂̄b is the tangential Cauchy–Riemann operator on ∂B. Equation (3) means
that ∫

φ dµ = 1

4π2

∫
∂B

Kµ ∂̄φ ∧ ω (4)

for all functions φ smooth in a neighborhood of ∂B, where ω(z) = dz1 ∧ dz2. An
elementary proof of (4) is presented in Lee’s thesis [14]; Varopoulos [19, Sec. 3.2]
has also given an exposition of Henkin’s results for the case of the ball.

Note that the condition (2) that µ be orthogonal to polynomials (satified by all
µ ∈R(X)⊥) is necessary for the solution of (3), and observe that (3) implies Kµ

is a CR function on ∂B \ X. Lee and Wermer [15] proved that, if X is rationally
convex, then Kµ extends holomorphically from ∂B \ X to B for any µ ∈R(X)⊥.
We may state this as follows.

Theorem 2.1. Suppose X is a rationally convex subset of ∂B. Let µ be a mea-
sure on X such that µ ∈R(X)⊥, and let Kµ be its Henkin transform. Then there
exists a function kµ, holomorphic in a neighborhood of B̄ \X, with kµ = Kµ on
∂B \X.
We let H1(B) denote the Hardy space of functions g holomorphic on B satisfying

sup

{∫
∂B

|g(r)| dσ : r < 1

}
< ∞,

where g(r)(z) ≡ g(rz) for z ∈ ∂B. For g ∈H1(B), lim r→1 g
(r) ≡ g∗ exists σ -a.e.

on ∂B, and g(r) → g∗ as r → 1 in L1(dσ).

Lemma 2.2. Let X be a rationally convex subset of ∂B with σ(X) = 0. Let µ
be a measure on X with µ ⊥ R(X), and let kµ be the holomorphic extension of
Kµ to B (as in Theorem 2.1). If kµ ∈H1(B), then µ is the zero measure.

Proof. It suffices to show that
∫
φ dµ = 0 for every function φ ∈ C1(C2). Note

that σ(X) = 0 implies that k∗
µ = Kµ at σ -almost all points of ∂B, and so by (4)

we have ∫
X

φ dµ = 1

4π2

∫
∂B

k∗
µ ∂̄φ ∧ ω = lim

r→1

1

4π2

∫
∂B

k(r)µ ∂̄φ ∧ ω.

By Stokes’s theorem,
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∫
∂B

k(r)µ ∂̄φ ∧ ω =
∫
B

∂̄(k(r)µ ∂̄φ ∧ ω) =
∫
B

∂̄(k(r)µ ) ∧ ∂̄φ ∧ ω = 0

for fixed r, since k(r)µ is holomorphic in B. This shows that
∫
φ dµ = 0 for all φ ∈

C1(C2) and completes the proof.

Thus, to prove that R(X) = C(X) for a rationally convex subset of ∂B with
σ(X) = 0, it suffices to show that kµ ∈ H1(B) for every µ ⊥ R(X). We will
use this approach to establish rational approximation on certain subsets of ∂B. It
should be noted that the condition σ(X) = 0 is necessary in the preceding lemma.
If X is the rationally convex set constructed by Basener, then R(X) �= C(X) and
there exist nonzero measures µ∈R(X)⊥ for which kµ ∈H1(B) [3].

We begin with a general estimate on the Henkin transform.

Lemma 2.3. If X ⊂ ∂B, µ is a measure supported on X, and z∈ ∂B, then

|Kµ(z)| ≤ 4‖µ‖
dist4(z,X)

. (5)

Proof. For any ζ, z∈ ∂B,
|z− ζ|2 = |z|2 + |ζ|2 − 2 Re(〈z, ζ〉) = 2 Re(1 − 〈z, ζ〉) ≤ 2|1 − 〈z, ζ〉|;

thus, for ζ ∈X and z∈ ∂B we have

dist2(z,X) ≤ 2|1 − 〈z, ζ〉|. (6)

From this we obtain an estimate on Henkin’s kernel H : for z∈ ∂B and ζ ∈X,
|H(z, ζ)| = |〈Tz, ζ〉|

|1 − 〈z, ζ〉|2 ≤ 4|Tz||ζ|
dist4(z,X)

= 4

dist4(z,X)
,

from which (5) follows immediately by the definition of Kµ.

We would like to establish an estimate similar to (5) for the holomorphic exten-
sion kµ of Kµ to B given by Theorem 2.1 for rationally convex X. We shall do
this for the class of sets satisfying the following strong notion of convexity with
respect to rational functions.

Definition. Given X ⊂ C2, let Xε = {z ∈ Cn : dist(z,X) < ε}. We say that
X has the hull-neighborhood property (abbreviated (H-N)) if there exists k > 0
such that, if we put E = π(X), then for all ε > 0 we have

[Xε] r̂ ∩ π−1(E) ⊂ Xkε. (7)

In other words, given z ∈ C2 with π(z) ∈ π(X) and ε > 0 so that dist(z,X) >
kε, there exists a polynomial Q with Q(z) = 0 whose zero set does not meet Xε.

Since π(X̂r) = π(X), it is clear that if X has property (H-N) then X is rationally
convex. Also, for X ⊂ ∂B, [Xε] r̂ is contained in the ball of radius 1 + ε centered
at the origin, so [Xε] r̂ ⊂ X2+ε. Hence, for X ⊂ ∂B, there exists k > 0 such that
(7) holds for all ε > 0 if and only if there exists k > 0 such that (7) holds for all
sufficiently small ε.
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Lemma 2.4. Assume X ⊂ ∂B has property (H-N). Then there exists a constant
c such that, for all p ∈B with π(p)∈π(X) and all µ∈R(X)⊥, we have

|kµ(p)| ≤ c‖µ‖
dist4(p,X)

. (8)

Proof. Fix p ∈ B and set δ = dist(p,X). If ε > 0 satisfies kε < δ then, by hy-
pothesis p /∈ [Xε] r̂. Hence there exists a polynomial Q with Q(p)= 0 such that
the zero set V of Q does not meet Xε. Note that kµ is continuous on V ∩ B̄ with
boundary values Kµ on V ∩ ∂B. By the maximum principle, |kµ| attains its maxi-
mum on V ∩ B̄ at a point p0 ∈ ∂B ∩V and so, by Lemma 2.3,

|kµ(p)| ≤ |Kµ(p0)| ≤ 4‖µ‖
dist4(p0, X)

≤ 4‖µ‖
ε4

.

Since the preceding inequality holds whenever kε < δ, we obtain (8).

Let � denote the closed unit disk in the complex plane. For a function defined
on �, we let )(f ) ⊂ C2 denote the graph of f over �. Lip(�) will denote the
set of Lipschitz functions on �—that is, those functions f for which there exists
a constant M > 0 such that |f(z) − f(z ′)| ≤ M|z − z ′| for all z, z ′ ∈ �; the
least such M we call the Lipschitz constant for f. The main result of this section
is the following approximation theorem for subsets of Lipschitz graphs with the
hull-neighborhood property.

Theorem 2.5. Let f ∈ Lip(�), and assume )(f ) ⊂ ∂B. If X ⊂ )(f ) has prop-
erty (H-N), then R(X) = C(X).

Proof. We will show that, under the hypotheses of Theorem 2.5, kµ ∈H1(B) for
each µ ∈R(X)⊥. By Lemma 2.2, since σ()(f )) = 0 this will imply that every
measure in R(X)⊥ is identically zero and hence R(X) = C(X). Fix µ ∈R(X)⊥
and write k = kµ. Let (z, w) denote the coordinates in C2. We show that k ∈
H1(B) by estimating k on the slices z = constant. To do this, we first introduce
some notation and prove a lemma.

For z ∈ �, let Dz = {
w : |w| < √

1 − |z|2 }
and let γz be the boundary of Dz.

If g is a function holomorphic in B and z∈ �, we let gz denote the slice function
gz(w) = g(z,w) with w ∈Dz. If for some s > 0 we have gz ∈Hs(Dz), that is,

sup

{∫ 2π

0

∣∣gz(r√1 − |z|2eiθ)∣∣s dθ : 0 < r < 1

}
< ∞, (9)

then g∗
z(w) = lim r→1 gz(rw) exists for almost all w ∈ γz. If also g∗

z(w)∈L1 with
respect to linear measure on γz, then in fact gz ∈H1(Dz) (see [8, Thm. 2.11]) and∫ 2π

0

∣∣g(z, r√1 − |z|2eiθ)∣∣ dθ is increasing in r.

Lemma 2.6. Let X be a subset of ∂B with σ(X) = 0. Suppose g is holomorphic
in a neighborhood of B̄ \ X, g|∂B ∈ L1(dσ), and, for some s > 0, gz ∈ Hs(Dz)

for almost all z∈ �. Then g ∈H1(B).
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Proof. First note that if f is any positive function defined (σ -a.e.) on ∂B, then
(see [17, Prop. 1.47])∫

∂B

f dσ =
∫

�
dm(z)

∫ 2π

0
fz

(√
1 − |z|2eiφ) dφ. (10)

Set G = g|∂B. The hypotheses imply, for m-almost all z ∈ �, that G|γz = g∗
z is

defined almost everywhere and is integrable with respect to linear measure on γz
and that gz ∈H1(Dz). Thus, if r < 1 then by (10) we have∫

∂B

|g(r)| dσ =
∫

�
dm(z)

∫ 2π

0

∣∣grz(r√1 − |z|2eiφ)∣∣ dφ

≤
∫

�
dm(z)

∫ 2π

0

∣∣g∗
rz

(√
1 − |rz|2eiφ)∣∣ dφ.

The change of variables z ′ = rz converts the last integral above to

1

r 2

∫
|z ′|≤r

dm(z ′)
∫ 2π

0

∣∣G(
z ′,

√
1 − |z ′|2eiφ)∣∣ dφ ≤ 1

r 2

∫
∂B

|G| dσ,

again by (10). Since G ∈ L1(dσ), we find that
∫
∂B

|g(r)| dσ is bounded indepen-
dently of r, so g ∈H1(B).

By Lemma 2.6, the proof of Theorem 2.5 will be complete if we can show that,
for some s > 0, kz ∈Hs(Dz) for almost all z∈ �. Fix z∈ �. We may assume z∈
π(X), for if z /∈π(X) then kz is holomorphic in a neighborhood of the closure of
Dz and there is nothing to prove. If p = (z, w) with w ∈Dz, then for any p ′ =
(z ′, f(z ′)) we have

|w − f(z)| ≤ |w − f(z ′)| + |f(z ′)− f(z)|
≤ |w − f(z ′)| +M|z− z ′|
≤

√
M 2 + 1 |p − p ′|

by the Cauchy–Schwarz inequality, so

|w − f(z)| ≤
√
M 2 + 1 dist(p,X). (11)

By Lemma 2.4, it follows that

|k(p)| ≤ C

dist4(p,X)
≤ C ′

|w − f(z)|4
(12)

for some constant C ′. Write f(z) = √
1 − |z|2eiφ. Then, using (12), for r < 1 we

obtain∫ 2π

0

∣∣kz(r√1 − |z|2eiθ)∣∣1/8
dθ ≤ (C ′)1/8

(1 − |z|2)1/4
∫ 2π

0

1

|re iθ − eiφ|1/2
dθ

= C ′′
∫ 2π

0

1

|re iθ − 1|1/2
dθ.
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For |θ | ≤ π/3 we have cos(θ) ≤ 1 − θ 2/4, which implies

|1 − re iθ |1/2 = [1 + r 2 − 2r cos(θ)]1/4 ≥ [(1 − r)2 + rθ 2/2]1/4 ≥ (r/2)1/4
√
θ.

It follows from this that the last integral is bounded independently of r, for r near
1, and so k ∈H1/8(Dz) for all z∈ �. This completes the proof.

Remark. The special case of Theorem 2.5 when f is continuously differentiable
on � can also be obtained as a direct consequence of Theorem 4.3 of [4].

We close this section by exhibiting a class of sets with the hull-neighborhood prop-
erty. Recall that a real submanifold of Cn is said to be totally real if, at each point,
its tangent space contains no complex line.

Theorem 2.7. Let f ∈C∞(�), and assume )(f ) is a totally real submanifold of
C2. If X is a compact polynomially convex subset of )(f ), then X has property
(H-N).

Proof. For p ∈ C2, let δ(p) = dist(p, )(f )). Since )(f ) is totally real, a result
of Hörmander and Wermer ([12], or see [1, Lemma 17.2]) implies that there is a
neighborhood U of X in C2 such that δ2 is strictly plurisubharmonic on U.

SinceX is polynomially convex, there exists a compact polynomial polyhedron
3, X ⊂ 3 ⊂ U, where 3 = {|Pj | ≤ 1, j = 1, . . . , k} with each Pj a polynomial.
We may assume that |Pj | ≤ 1/2 onX for each j, and that the coordinate functions
are contained among the Pj . Define a function 5 on C2 by

5 = max{|P1|, . . . , |Pk|} − 3
4 .

Then 5 = 1/4 on ∂3 and 5 < 0 on X.
Choose ε0 > 0 so small that5 < 0 onXε0 . We will show that whenever p ∈ C2

satisfies π(p)∈π(X) and dist(p,X) >
√
M 2 + 1ε for some ε < ε0,whereM is

the Lipschitz constant for f, then there is a polynomial Q with Q(p) = 0 whose
zero set does not meet Xε. By the remarks following the definition of (H-N), this
will complete the proof.

Choose a constant κ > 0 so that κδ2(p) < 1/4 for all p ∈ ∂3. Then, on a
neighborhood N of ∂3, we have κδ2 < 5. Define

F =
{

max(5, κδ2) on 3 ∪N,

5 on C2 \3.
Then F is well-defined and plurisubharmonic on C2. For ε < ε0, set

9ε = {q ∈ C2 : F(q) ≤ κε2}.
Then 9ε is compact and Xε ⊂ 9ε, for if dist(q,X) < ε then 5(q) < 0; hence

F(q) = κδ2(q) ≤ κ dist2(q,X) < κε2,

implying q ∈9ε. Also, since F is plurisubharmonic, 9ε is polynomially convex
(this follows from [11, Thm. 4.3.4]). Supposep satisfies dist(p,X) >

√
M 2 + 1ε.

We distinguish two cases: either (i) F(p) = κδ2(p) or (ii) F(p) = 5(p). In the
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first case, we find (as in the proof of Theorem 2.5) that if we write p in coordi-
nates as p = (z, w) then |w − f(z)| ≤ √

M 2 + 1|p − p ′| whenever p ′ ∈ )(f ),
implying dist(p,X) ≤ √

M 2 + 1δ(p), and so

F(p) ≥ κ dist2(p,X)

M 2 + 1
> κε2

and thus p /∈ 9ε. By the polynomial convexity of 9ε, there exists a polynomial
Q, nonvanishing on 9ε, with Q(p) = 0; since Xε ⊂ 9ε, Q does not vanish on
Xε. In the second case, we must have 5(p) > 0 and so |Pj(p)| > 3/4 for some
j. Set Q = Pj − Pj(p). Then Q(p) = 0, but since 5 < 0 on Xε it follows that
|Pj | < 3/4 on Xε, so Q cannot vanish on Xε. In both cases, we have found the
required polynomial Q, and the proof is complete.

Finally we note that the approach in this section is related to the problem of de-
termining when X is a removable singularity for integrable CR functions. In this
context, we may say thatX is removable forL1 CR functions ifX has the property
that, whenever g ∈ L1(dσ) and ∂̄bg = 0 off X, g extends to a function in H1(B)

(see [2]). By (3), ∂̄bKµ = 0 off X whenever µ ∈R(X)⊥ and so, by the remarks
following Lemma 2.2, R(X) = C(X) for any subset of ∂B with σ(X) = 0 that is
removable for L1 CR functions. An extensive bibliography on this question and a
survey of recent results is contained in [16].

3. The Algebra Generated by R(E) and a Smooth Function

In this section we study the algebra generated by R(E) and a smooth function on
a planar setE. We then apply our results to the question of rational approximation
on certain subsets of ∂B.

If A is a uniform algebra on a compact space X, we write M(A) for its maxi-
mal ideal space and view elements of M(A) as homomorphismsm : A → C. We
will identify each point x ∈X with the point evaluation mx ∈ M(A) defined by
mx(h) = h(x). If A = R(X) for some compact subset X ⊂ Cn, then M(A) can
be identified with X̂r via m ∈ M(A) → (m(z1), . . . , m(zn)), where (z1, . . . , zn)

are the coordinate functions. This correspondence is a homeomorphism.
If F is a family of continuous functions on a compact space X, then [F ] will

denote the algebra generated by F, that is, the smallest closed subalgebra ofC(X)
containing F. In [20], Wermer studied the algebra A = [z, f ] on � generated
by the identity function z and a smooth function f. Under the assumption that
M(A) = �, he showed that A consists of those continuous functions on � whose
restrictions to the zero set E of ∂f/∂z̄ lie in R(E). We will make use of the fol-
lowing generalization of Wermer’s result due to Anderson and Izzo [4, Thm. 4.2].

Lemma 3.1. Let G be a collection of continuously differentiable functions on �,
and set A = [G ]. Assume the function z lies in A and that M(A) = �. Set T ={
ζ ∈ � : ∂g

∂z̄
(ζ) = 0 ∀g ∈ G}

. Then A = {g ∈C(�) : g|T ∈R(T )}.



Rational Approximation on the Unit Sphere in C2 113

In order to pass from algebras on compact subsets of the disk to algebras on the
disk, we will need two results on extension algebras. The first is due to Bear [6].

Lemma 3.2. Let A 0 be a uniform algebra on a compact subset X0 of a compact
space X. Put A = {h∈C(X) : h|X0 ∈ A 0}. If M(A 0) = X0, then M(A) = X.

Lemma 3.3. Let A, A 0, X, and X0 be as in Lemma 3.2. Assume G0 is a sub-
set of C(X0) with [G0 ] = A 0. Let G ⊂ C(X), and assume that (i) [G ] contains
all continuous functions on X vanishing in a neighborhood of X0 and (ii) G|X0 =
G0. Then [G ] = A.
Proof. Clearly G ⊂ A and so it suffices to show, given h ∈ A, that

∫
h dµ = 0

for all measures µ∈ [G ]⊥. For any such measure the hypothesis that [G ] contains
all continuous functions vanishing near X0 implies supp(µ) ⊂ X0. Since h|X0 ∈
A 0, we may choose a sequence hj of polynomials in elements of G0 converging
to h on X0. By hypothesis (ii), we may assume each hj is the restriction to X0 of
an element of [G ]. Then∫

X

h dµ =
∫
X0

h dµ = lim
j→∞

∫
X0

hj dµ = 0

since µ∈ [G ]⊥.

Given a compact E ⊂ C, we write f ∈ C1(E) if f is the restriction to E of a
function that is continuously differentiable in some neighborhood of E.

Theorem 3.4. LetE be a compact subset of C, and take f ∈C1(E). Assume that
M([R(E), f ]) = E. If [R(E), f ] �= C(E), then there exists a compact subset
E0 of E such that R(E0) �= C(E0) and f |E0 ∈R(E0).

Proof. Let E and f satisfy the hypotheses of the theorem. Without loss of gen-
erality, E is a compact subset of the open unit disk. Set A = {h ∈ C(�) : h|E ∈
[R(E), f ]}. Since M([R(E), f ]) = E by hypothesis, Lemma 3.2 implies that
M(A) = �. Fix any smooth extension of f to � (we denote the extension by
f, also). Since R(E) is generated by the set of functions holomorphic in a neigh-
borhood of E, Lemma 3.3 implies that A is generated by the set G consisting of
f together with all functions smooth on � and holomorphic in a neighborhood of
E. Set E0 = {

ζ ∈ � : ∂g

∂z̄
(ζ) = 0 ∀g ∈ G}

. Clearly E0 ⊂ E. By Lemma 3.1, A =
{h ∈ C(�) : h|E0 ∈R(E0)}. Since f ∈ A, f |E0 ∈R(E0). If R(E0) = C(E0),

then A = C(�) and hence [R(E), f ] = C(E), contrary to hypothesis.

As mentioned in the introduction, Basener gave examples of rationally convex sub-
sets X of ∂B with R(X) �= C(X). To explain Basener’s construction, we recall
the notion of a Jensen measure. Given a uniform algebra A on X, a probability
measure σ onX is said to be a Jensen measure form∈ M(A) if, for every h∈ A,

log|m(h)| ≤
∫
X

log|h| dσ.
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If m is point evaluation at some p0 ∈X, then the point mass δp0 at p0 is trivially
a Jensen measure for m. Every Jensen measure σ for m represents m: m(h) =∫
h dσ for all h∈ A. Basener’s assumption for X ⊂ ∂B was the following condi-

tion on E = π(X):

(B) For all z0 ∈E, the only Jensen measure for z0 relative to R(E) is δz0 .

It can be shown (see [7, Thm. 3.4.11]) that (B) is equivalent to the condition that
the set of functions harmonic in a neighborhood ofE be dense inC(E). Examples
of setsE ⊂ C satisfying (B) for whichR(E) �= C(E) can be found in [7, pp. 192–
195] and [18, Sec. 27].

Basener showed that ifX ⊂ ∂B has the formX = {(z, w)∈ ∂B : z∈E},where
E is a compact subset of the open unit disk satisfying (B), then X is rationally
convex; in fact, his proof shows (see also [18, Sec. 19.8]) that the same is true for
any X ⊂ ∂B for which π(X) = E ⊂ int(�) satisfies (B). Our next lemma has a
similar flavor.

Lemma 3.5. Let E be a compact subset of C satisfying (B), and let f ∈ C(E).
Then M([R(E), f ]) = E.

This can be proved by an argument essentially the same as that of Basener men-
tioned previously, but a simpler approach is to note that it is an immediate conse-
quence of the following easy lemma (which strengthens Lemma 2.2 of [13]).

Lemma 3.6. Suppose that A and B are uniform algebras on a compact space X
and that A ⊂ B. If x ∈X is such that the only Jensen measure for x relative to A
is δx and if m∈ M(B) coincides with point evaluation at x when restricted to A,
then m is point evaluation at x on all of B.

Proof. Let µ be a Jensen measure for m (as a functional on B). Then obviously
µ is a Jensen measure for the restriction of m to A, that is, for point evaluation at
x on A. Hence, by hypothesis, µ = δx. Since µ represents m, we conclude that
m is point evaluation at x on all of B.

If A is a uniform algebra on X, then a point p ∈X is a peak point for A if there
exists a function f ∈ A with f(p) = 1 while |f | < 1 on X \ {p}. When X is a
compact planar set, Bishop proved that R(X) = C(X) if almost every point of X
is a peak point for R(X).

Theorem 3.7. LetE be a compact subset of C satisfying (B), and let f ∈C1(E).

If almost every point ofE is a peak point for [R(E), f ], then [R(E), f ] = C(E).

Proof. Suppose that [R(E), f ] �= C(E). By Lemma 3.5, M([R(E), f ]) = E.

We may then apply Theorem 3.4 to produce a compact subsetE0 ofE with f |E0 ∈
R(E0) and R(E0) �= C(E0). If z ∈E0 is a peak point for [R(E), f ], choose g ∈
[R(E), f ] peaking at z. Since g|E0 ∈R(E0), the point z is a peak point forR(E0).

By Bishop’s peak-point theorem, R(E0) = C(E0), which is a contradiction.
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Corollary 3.8. Let E be a compact subset of the open unit disk satisfying (B),
let f ∈C1(E), and set X = {(z, f(z)) : z∈E}. If X ⊂ ∂B, then R(X) = C(X).

Proof. Let A be the algebra on X generated by r(z) and w, where (z, w) are co-
ordinates in C2 and r ranges over R(E). Since A ⊂ R(X), it suffices to show
that A = C(X). Moreover, A is isometrically isomorphic to the algebra on E
generated by R(E) and f, and it is therefore enough to show [R(E), f ] = C(E).

Each point of ∂B is a peak point for polynomials and hence a peak point for A,
so every point of E is a peak point for [R(E), f ]. By Theorem 3.7, [R(E), f ] =
C(E).

It is reasonable to conjecture that Theorems 3.4 and 3.7 remain valid if the hypoth-
esis that f ∈C1(E) is replaced by the assumption that f is merely continuous on
E. We have no proof or counterexample.

Finally, we remark that Theorem 3.7 can also be obtained in a different fashion
by combining our Lemma 3.5 with Theorem 4.3 of [4].

4. Approximation on Hölder Graphs

In this section we show that the hypothesis f ∈ Lip(�) of Theorem 2.5 may be
weakened to the assumption that f satisfies a Hölder condition with exponent α
(0 < α < 1) on E = π(X). That is, we assume there exists an M such that, for
all z, z ′ ∈E,

|f(z)− f(z ′)| ≤ M|z− z ′|α. (13)

In order to establish Theorem 2.5 under the hypothesis that f satisfies (13), it suf-
fices to show (cf. (11) in the proof of Theorem 2.5) that there exists a constant C
such that, for z∈E and w ∈Dz,

|w − f(z)| ≤ C dist((z, w),X)α. (14)

From (14) it follows, as in the proof of Theorem 2.5, that if p = (z, w) then we
have the estimate

|k(p)| ≤ C ′

|w − f(z)|4/α
,

from which we infer that k ∈H α/8(Dz) for all z∈ �, completing the proof.
To establish (14), we fix p = (z, w) and take p ′ = (z ′, f(z ′)) ∈ X so that

dist(p,X) = |p − p ′|. Then

|w − f(z)| ≤ |w − f(z ′)| + |f(z ′)− f(z)|
≤ |w − f(z ′)| +M|z− z ′|α
≤ (M 2 + 1)1/2(|w − f(z ′)|2 + |z− z ′|2α)1/2

and so

|w − f(z)|2/α
dist2(p,X)

≤ (M 2 + 1)1/α(|w − f(z ′)|2 + |z− z ′|2α)1/α
|w − f(z ′)|2 + |z− z ′|2 . (15)
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Set x = |w − f(z ′)| and y = |z − z ′|. Note that dist2(p,X) = x 2 + y2 ≤ 4,
since p and p ′ are points in the closed unit ball. The quantity

G(x, y) = (x 2 + y2α)1/α

x 2 + y2

on the right of (15) is clearly bounded on 1 ≤ x 2 + y2 ≤ 4 and so, to complete
the proof of (14), it suffices to show that G(x, y) is bounded for x 2 + y2 < 1.
Applying the elementary inequality (A+B)p ≤ 2p(Ap+Bp) for positiveA,B, p,
we obtain

(x 2 + y2α)1/α ≤ 21/α(x 2/α + y2) ≤ 21/α(x 2 + y2),

where in the last inequality we have used the fact that x < 1. Therefore,G(x, y) ≤
21/α for x 2 + y2 < 1, and the proof is finished.
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