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A Heat Kernel Lower Bound
for Integral Ricci Curvature

Xianzhe Dai & Guofang Wei

1. Introduction

The heat kernel is one of the most fundamental quantities in geometry. It can be
estimated both from above and below in terms of Ricci curvature (see [1; 2; 7]).
The heat kernel upper bound has been extended to integral Ricci curvature by Gal-
lot in [4]. Here we extend Cheeger and Yau’s [2] lower bound to integral Ricci
curvature.

Our notation for the integral curvature bounds on a Riemannian manifold (M, g)

is as follows. For each x ∈M let r(x) denote the smallest eigenvalue for the Ricci
tensor Ric : TxM → TxM, and for any fixed number λ define

ρ(x) = |min{0, r(x) − (n − 1)λ}|.
Then set

k(p, λ,R) = sup
x∈M

(∫
B(x,R)

ρp
)1/p

,

k̄(p, λ,R) = sup
x∈M

(
1

volB(x,R)
·
∫
B(x,R)

ρp
)1/p

.

These curvature quantities evidently measure how much Ricci curvature lies be-
low (n − 1)λ in the (normalized) integral sense. Observe that k̄(p, λ,R) = 0 if
and only if Ric ≥ (n − 1)λ.

Let E(x, y, t) denote the heat kernel of the Laplace–Beltrami operator on a
closed manifold (M, g). For any real number λ, we use Eλ(x, y, t) to denote the
heat kernel on the model space of constant curvature λ. Our main result is as
follows.

Theorem 1.1. Let n > 0 be an integer, let p > n/2 and λ ≤ 0 be real numbers,
and let D > 0. Then there exists an explicitly computable ε0 = ε(n,p, λ,D)

such that, for any (M, g) with diamM ≤ D and for k̄(p, λ,D) ≤ ε0 and
k(p, λ,R) ≤ 1,

E(x, y, t) ≥ Eλ(x, y, t) − (k(p, λ,D))1/2C(n,p, λ,D)(t−(n+1)/2 + 1)

for any x, y ∈M and t > 0.
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Remark. When k(p, λ,R) = 0, this is the estimate of Cheeger and Yau. When
k(p, λ,R) > 0, however, the estimate becomes trivial for small and large t. One
can pick any 0 < T1 < T2 < ∞ in advance so that the estimate gives a positive
lower bound for T1 ≤ t ≤ T2. The constant ε0 will now depend on T1 and T2 as
well.

The basic strategy is the same as in Cheeger–Yau; namely, one transplants the
heat kernel on the model space to M and then compares using Duhamel’s princi-
ple. The new difficulty lies in controlling an error term that would be zero in the
presence of the pointwise Ricci curvature bound. Considerable care is needed for
controlling this error term. We prove a new comparison estimate of volume ele-
ments integrated over the directional spheres for integral Ricci curvature, which
should be of independent interest. We also need a Gaussian upper bound for the
heat kernel derived by combining Gallot’s upper bound estimate [4] of the heat
kernel with a remarkable result of Grigor’yan [6].

We refer to [3] for some general results concerning the on-diagonal lower bound
of the heat kernel.

Acknowledgment. We would like to thank the referee for some very construc-
tive suggestions.

2. Basic Facts on the Heat Kernel

Here we fix our notation and collect basic facts on the heat kernel that will be used
in our proof.

As in [2], we can define the Laplace–Beltrami operator for generalized Dirichlet
and Neumann boundary conditions on a general Riemannian manifold (possibly
incomplete) by choosing appropriate domains. The two coincide for a complete
manifold. The corresponding heat kernel can simply be defined by using a spectral
theorem. The heat kernel thus defined is always positive [2, Lemma 1.1], which
will be essential for our discussion.

The models as used in [2] need only to have the correct mean curvature on the
distance spheres. Here we restrict our models to the standard ones: simply con-
nected spaces of constant sectional curvature. The following result [2, Lemma 2.3]
is critical for Cheeger–Yau’s theorem and also for our work here.

Lemma 2.1. Let Eλ(r, t) denote the heat kernel on the model space of constant
curvature λ, where r = d(x, y). Then, for all r, t > 0,

∂

∂r
Eλ(r, t) < 0.

As mentioned previously, we also need uniform upper bounds on the heat kernel.
This is established in [4] for integral Ricci curvature.

Theorem 2.2. Given any real number λ ≤ 0 and given p > n/2 and D > 0,
there exists an explicitly computable ε0 = ε(n,p, λ,D) such that, for any (M, g)

with diamM ≤ D and k̄(p, λ,D) ≤ ε0,
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E(x, y, t) ≤ C(n,p, λ,D)(t−p + 1)

for any x, y ∈M and t > 0.

However, this estimate is not sufficient for our purpose. Fortunately one has the
following amazing result of [6, Thm. 1.1], which translates Gallot’s estimate into a
Gaussian upper bound. We let f(t) and g(t) denote regular functions in the sense
of [6] (which includes all piecewise power functions with nonnegative exponents).

Theorem 2.3. Let x and y be two points on an arbitrary smooth connected Rie-
mannian manifold M, for which one has

E(x, x, t) ≤ 1

f(t)
and E(y, y, t) ≤ 1

g(t)

for all 0 < t < T ≤ ∞. Then, for any C > 4 and some δ = δ(C) > 0,

E(x, y, t) ≤ 4A√
f(δt)

√
g(δt)

e−d(x,y)2/Ct,

where A is a constant coming from f and g.

Corollary 2.4. With the assumptions of Theorem 2.2, we have

E(x, y, t) ≤ C(n,p, λ,D)(t−p + 1)e−d(x,y)2/5t.

The final piece of information we need is a similar Gaussian-type estimate on the
derivative of the heat kernel on the model space.

Proposition 2.5. For the model space we have∣∣∣∣ ∂∂r Eλ(r, t)

∣∣∣∣ < C(n, λ)(t−(n+1)/2 + 1)e−d(x,y)2/5t.

Proof. The key point here is that, at the expense of some Gaussian bound, the
space derivative deteriorates the bound by a factor of only t1/2 whereas the time
derivative deteriorates the bound by a factor of t. This can be seen from, say, the
gradient estimate (Harnack inequality) of Li and Yau [7], which asserts that a pos-
itive solution of the heat equation satisfies

|∇u|2
u2

− α
ut

u
≤ n√

2

α2

α − 1
H + n

2

α2

t
for all α > 1,

where H denotes the lower bound on the Ricci curvature. The required time de-
rivative estimate follows from a result of [5, Cor. 3.2].

3. Comparison of the Volume Element

In [8], Petersen and Wei give a mean curvature comparison estimate in terms of
k(p, λ,R), allowing us to obtain the relative volume comparison for integral Ricci
curvature. Here we need a comparison of integral of the volume element just over
the directional spheres (instead of the balls).
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LetMn be a complete Riemannian manifold and let x ∈M. Around x we use ex-
ponential polar coordinates and write the volume element as d vol = ωdθn−1∧dt,

where dθn−1 is the standard volume element on the unit sphere S n−1(1). As t in-
creases ω becomes undefined, but we can simply define it to be zero at those t.

We have the important equation ω ′ = mω, where the prime indicates differentia-
tion along the radial direction and m is the mean curvature of the distance spheres
around x.

In the space form Mn
λ of constant sectional curvature λ, we can similarly write

the volume element as d vol = ωλdθn−1 ∧ dt and ω ′
λ = mλωλ.

Define ψ = ψ(t, θ) = max{0,m(t, θ) − mλ(t, θ)} and let ψ = 0 whenever it
becomes undefined. The following mean curvature comparison estimate is estab-
lished in [8].

Theorem 3.1. For p > n/2 and λ ≤ 0,(∫
B(x,r)

ψ2p d vol

)1/2p

≤ C(n,p)(k(p, λ, r))1/2. (3.1)

With the help of the mean curvature comparison estimate, we now deduce a com-
parison estimate for the volume element.

Lemma 3.2. There is a constant C(n,p, λ,R) such that, for any p > n/2, λ ≤
0, and r ≤ R, if k(p, λ,R) ≤ 1 then∫

S n−1 ω(r, θ) dθn−1∫
S n−1 ωλ(r, θ) dθn−1

≤ 1 + C(n,p, λ,R)(k(p, λ,R))1/2. (3.2)

Remark. The assumption k(p, λ,R) ≤ 1 is only for the simplicity of the state-
ment.

Proof of Lemma 3.2. We will prove a more general relative version. Define

u(r) =
∫
S n−1 ω(r, θ) dθn−1∫
S n−1 ωλ(r, θ) dθn−1

.

From the beginning of the proof of Lemma 2.1 in [8], for 0 ≤ r1 < r2 ≤ R we
have

u(r2) − u(r1) ≤ 1

vol S n−1

∫ r2

r1

∫
S n−1

ψ
ω

ωλ

dθn−1 ∧ dt.

Using Hölder’s inequality yields∫ r2

r1

∫
S n−1

ψ
ω

ωλ

dθn−1 ∧ dt

≤
(∫ R

0

∫
S n−1

ψ2pω dθn−1 ∧ dt

) 1
2p ·

(∫ r2

r1

(
ω− 1

2p−1
λ

∫
S n−1

ω

ωλ

dθn−1

)
dt

)1− 1
2p

≤ C(n,p)(k(p, λ,R))
1
2

(∫ R

0
ω− 1+α

2p−1
λ dt

) 1
1+α

·1− 1
2p

·
(∫ r2

r1

(∫
S n−1

ω

ωλ

dθn−1

)1+ 1
α

dt

) α
α+1

·
(
1− 1

2p

)
,
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where α > 0 is chosen so that p >
(1+α)(n−1)+1

2 ; therefore,
∫ R

0 ω− 1+α

2p−1
λ dt is inte-

grable. Thus u(r2) satisfies the integral inequality

u(r2) − u(r1) ≤ C(n,p, λ,R)(k(p, λ,R))
1
2

(∫ r2

r1

(u(t))1+ 1
α dt

) α
α+1

·
(
1− 1

2p

)
.

This implies

(u(r2) − u(r1))+ ≤ Ck
1
2

(∫ r2

r1

(u(t))1+ 1
α dt

) α
α+1

·
(
1− 1

2p

)
.

Let v = max{u − u(r1), 0} = (u − u(r1))+. Then u ≤ v + u(r1) and we have

v ≤ Ck
1
2

(∫ r2

r1

(v(t) + u(r1))
1+ 1

α dt

) α
α+1

·
(
1− 1

2p

)

or

v
α+1
α

· 2p
2p−1 ≤ (

Ck
1
2
)α+1

α
· 2p

2p−1

∫ r2

r1

(v(t) + u(r1))
α+1
α dt. (3.3)

Write
(v(t) + u(r1))

α+1
α = [

(v(t) + u(r1))
α+1
α

· 2p
2p−1

]1− 1
2p .

Now we use the inequality

(a + b)q ≤ 2q−1(aq + bq), a, b ≥ 0, q ≥ 1,

to obtain

(v(t) + u(r1))
α+1
α

2p
2p−1 ≤ [

2
α+1
α

· 2p
2p−1

−1(
v(t)

α+1
α

· 2p
2p−1 + u(r1)

α+1
α

· 2p
2p−1

)]1− 1
2p .

Now letting w = v
α+1
α

· 2p
2p−1, (3.3) becomes

w ≤ (
Ck

1
2
)α+1

α
· 2p

2p−1

∫ r2

r1

2
1
α
+ 1

2p
(
w(t) + u(r1)

α+1
α

· 2p
2p−1

)1− 1
2p dt.

Let w̄ be the solution of{
w̄ ′ = 2

1
α
+ 1

2p
(
Ck

1
2
)α+1

α
· 2p

2p−1
(
w̄(t) + u(r1)

α+1
α

· 2p
2p−1

)1− 1
2p ,

w̄(r1) = 0.

Then

w̄(r2) =
[(
u(r1)

α+1
α

· 2p
2p−1

) 1
2p + 1

2p
2

1
α
+ 1

2p
(
Ck

1
2
)α+1

α
· 2p

2p−1 (r2 −r1)

]2p

−u(r1)
α+1
α

· 2p
2p−1.

By Gronwall’s inequality we have

w ≤ w̄,

which means that

(u(r2) − u(r1))+ ≤
[(

u(r1)
α+1
α

· 1
2p−1 + 1

2p
2

1
α
+ 1

2p
(
Ck

1
2
)α+1

α
· 2p

2p−1 (r2 − r1)

)2p

− u(r1)
α+1
α

· 2p
2p−1

] α
α+1

·
(
1− 1

2p

)
.
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Using the inequality

(x + a)q − aq ≤ qx(x + a)q−1, q ≥ 1,

we obtain

(u(r2) − u(r1))+

≤ (
2

1
α
+ 1

2p (r2 − r1)
) α
α+1

·
(
1− 1

2p

)
Ck

1
2

(
u(r1)

α+1
α

· 1
2p−1

+ 1

2p
2

1
α
+ 1

2p
(
Ck

1
2
)α+1

α
· 2p

2p−1 (r2 − r1)

)q
,

where q = (2p − 1) α
α+1

(
1 − 1

2p

)
.

In particular, when r1 = 0 and k(p, λ,R) ≤ 1 it follows that

u(r2) − 1 ≤ C(n,p, λ,R)(k(p, λ,R))
1
2 .

4. Proof of Theorem 1.1

We follow the same basic strategy as in Cheeger and Yau, starting with Duhamel’s
principle (which needs to be justified because of the singularity of the distance
function at the cut locus).

Using integration by parts and the heat equation, we have

E(x, y, t) − Eλ(x, y, t)

= −
∫ t

0

∫
M

d

ds
(Eλ(x,w, t − s)) · E(w, y, s) d vol ds

+
∫ t

0

∫
M

Eλ(x,w, t − s) · d

ds
(E(w, y, s)) d vol ds

= −
∫ t

0

∫
M

d

ds
(Eλ(x,w, t − s)) · E(w, y, s) d vol ds

−
∫ t

0

∫
M

Eλ(x,w, t − s) · .E(w, y, s) d vol ds. (4.1)

Now

d

ds
Eλ = −.λEλ

= ∂ 2

∂r 2
Eλ + mλ(r)

∂

∂r
Eλ

= −.Eλ − (m(r, θ) − mλ(r))
∂

∂r
Eλ

≤ −.Eλ − (m(r, θ) − mλ(r))+
∂

∂r
Eλ,

since ∂
∂r
Eλ ≤ 0 by Lemma 2.1. Hence the right-hand side of (4.1) is
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≥
∫ t

0

∫
M

.Eλ(x,w, t − s) · E(w, y, s) d vol ds

−
∫ t

0

∫
M

Eλ(x,w, t − s) · .E(w, y, s) d vol ds

−
∫ t

0

∫
M

(m(r, θ) − mλ(r))+
∣∣∣∣∂Eλ

∂r
(x,w, t − s)

∣∣∣∣ · E(w, y, s) d vol ds.

The first two terms combined can be shown to be nonnegative by the same argu-
ment as in [2] (using the self-adjointness of the Laplacian and certain convexity
properties of the distance function at the cut locus). The last term is the extra error
term, which is

≥ −
∫ t

0

(∫
M

(m(r, θ) − mλ(r))
q
+ d vol

)1/q

·
(∫

M

∣∣∣∣∂Eλ

∂r
(x,w, t − s)E(w, y, s)

∣∣∣∣
q ′

d vol

)1/q ′

ds

for some q ≤ 2p to be chosen later. Here q ′ = q/(q − 1).
Now the first factor is controlled by Theorem 3.1 and the volume comparison

estimate from [8, Thm. 1.1]. For the second factor, by Corollary 2.4 and Proposi-
tion 2.5 we have∣∣∣∣∂Eλ

∂r
(x,w, t − s)E(w, y, s)

∣∣∣∣
≤ C[(t − s)−(n+1)/2 + 1][s−p1 + 1]e−d 2(x,w)/5(t−s)e−d 2(w,y)/5s.

Here p1 = n/2 + α will be chosen so that α > 0 is suitably small. In order to ap-
ply Corollary 2.4 we now need k̄(λ,p1,D) to be smaller than an explicit constant
ε0 (as determined by Gallot [4]).

We have to deal with the singularity caused by the heat kernel at t = 0. Divide∫ t

0 into
∫ t/2

0 + ∫ t

t/2 . If t > 1 then we divide further so that
∫ t

0 = ∫ 1/2
0 + ∫ (t−1)/2

1/2 +∫ t

(t−1)/2 . In the latter case the estimate for the middle term is straightforward. By
our previous remarks we may assume that s ≤ 1/2, so for 0 ≤ s ≤ t/2 we have

(t − s)−(n+1)/2 ≤ (t/2)−(n+1)/2, e−d 2(x,w)/5(t−s) ≤ 1,

which implies

∫ t/2

0

(∫
M

∣∣∣∣∂Eλ

∂r
(x,w, t − s)E(w, y, s)

∣∣∣∣
q ′

d vol

)1/q ′

ds

≤ C(t−(n+1)/2 + 1)
∫ t/2

0
(s−p1 + 1)

(∫
M

e−q ′d 2(w,y)/5s d vol

)1/q ′

ds.

Now, writing out the integral over the space using the exponential polar coordinate
around y yields
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∫
M

e−q ′d 2(w,y)/5s d vol =
∫ D

0
e−q ′r 2/5s

(∫
S n−1

ω(r, θ) dθ

)
dr.

Here we have used the fact that the integral is over the whole manifold. With the
curvature assumption on k(p, λ,D), we can apply the comparison estimate for
the volume element (Lemma 3.2) and obtain∫

M

e−q ′d 2(w,y)/5s d vol ≤ C

∫ D

0
e−q ′r 2/5sωλ(r) dr.

We then make a change of coordinate r1 = r/
√
s and deduce that∫

M

e−q ′d 2(w,y)/5s d vol ≤ Csn/2
∫ ∞

0
e−q ′r 2

1
ωλ(r1s

1/2)

s(n−1)/2
dr1.

Making use of the inequality

ωλ(r1s
1/2)

s(n−1)/2
≤ r n−1

1 exp
{
(n − 1)

√|λ|sr1
}

(which can be easily verified) and noticing that since s ≤ 1 this term is dominated
by e−q ′r 2

1 , we finally arrive at the following estimate for the
∫ t/2

0 part of the error
term

C(t−(n+1)/2−p1+n/2q ′+1 + 1),

where p1 and q must be chosen to satisfy the inequality

−p1 + n

2q ′ + 1 > 0.

Similarly (this time using the exponential polar coordinate around x), one has∫ t

t/2

(∫
M

∣∣∣∣∂Eλ

∂r
(x,w, t − s)E(w, y, s)

∣∣∣∣
q ′

d vol

)1/q ′

ds

≤ C(t−(n+1)/2−p1+n/2q ′+1 + 1).

Finally, we note that suitable choices for p1 and q can be easily made. For ex-
ample, q = n + 1 and p1 = (n + 1)/2 will do.
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