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1. Introduction

The purpose of this paper is to present a classification of meromorphic semi-
complete vector fields under a mild additional assumption. Motivation for this
result comes in part from the fact that methods of differential equations and sin-
gularity theory can be employed to study certain problems in complex algebraic
geometry. Indeed, these problems can be thought of as special cases of more gen-
eral questions involving differential equations. Here we address some of these
questions about differential equations. We also indicate how part of the theory of
elliptic surfaces developed by Kodaira can be considered as a particular case of
our methods. It should be noted that the mild assumption mentioned previously is
always verified in these applications.

Another motivation for our classification is that it generalizes previous works
on holomorphic semi-complete vector fields whose interest was already settled.
An important reason for considering this generalization is the fact that meromor-
phic vector fields are more flexible than holomorphic ones in the sense that they
appear in several situations where the corresponding holomorphic vector fields do
not exist (a simple example being elliptic surfaces, cf. Example 2 to follow). A
general classification of meromorphic semi-complete vector fields is interesting
and would have additional applications (see Example 1); in fact, it would also be a
rather significant generalization of certain natural questions in complex geometry.
Whereas the discussion here combined with the results obtained in previous pa-
pers about holomorphic vector fields may lead to such classification, this attempt
would take us too far from the aim of the present article.

We say that a singular holomorphic foliation F defined on a neighborhood of
(0, 0) ∈ C2 has infinitely many leaves accumulating on (0, 0) if, for a small ball
B(ε) centered at (0, 0), the singular foliation F |B of B(ε) obtained by restriction
of F to B(ε) possesses infinitely many leaves accumulating on (0, 0). The main
result of this paper is the following theorem.

Main Theorem. Let Y be a holomorphic vector field with an isolated singu-
larity at (0, 0) ∈ C2 that has only a finite number of orbits accumulating on the
origin. Consider a meromorphic (nonholomorphic) function f defined on a neigh-
borhood of (0, 0) ∈ C2. Assume that X = fY is a meromorphic semi-complete
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vector field. Then, up to an inversible factor, X admits one of the following nor-
mal forms.

A. If Y has vanishing linear part at (0, 0), then X has one of the forms
(i) X111 = (xy(x − y))a[x(x − 2y)∂/∂x + y(y − 2x)∂/∂y] where a ∈Z,

(ii) X112 = (xy(x − y)2)a[x(x − 3y)∂/∂x + y(y − 3x)∂/∂y] where a ∈ Z,

or
(iii) X123 = (xy2(x−y)3)a[x(2x−5y)∂/∂x+y(y−4x)∂/∂y] where a ∈Z.

B. If the linear part of Y at (0, 0) does not vanish but is nilpotent, then
(i) Z112 = (y(y − x 2))a((2y − x 2)∂/∂x + 2xy∂/∂y) where a ∈Z,

(ii) Z123 = (y(y − x 2)2)a((3y − x 2)∂/∂x + 4xy∂/∂y) where a ∈Z, and
(iii) Z32 = (x3 + y2)a(2y∂/∂x − 3x 2∂/∂y) where a ∈Z.

C. If the linear part of Y at (0, 0) has an eigenvalue different from 0, then
(i) (xnym)af(mx∂/∂x − ny∂/∂y + h.o.t.), where a ∈Z and m, n∈N;

(ii) (xcy d)a(mx∂/∂x − ny∂/∂y), where a ∈ Z, m, n ∈ N, and cm − nd =
±1; and

(iii) (xy)a(x − y)(x∂/∂x − y∂/∂y), where a ∈Z.

The rest of this introduction is devoted to presenting the definition of a meromor-
phic semi-complete vector field, which is a meromorphic variant of the definition
given in [R1]. Some further examples will be provided as well.

A meromorphic vector field X on a neighborhood U of the origin (0, . . . , 0) ∈
Cn is by definition a vector field of the form

X = F1
∂

∂z1
+ · · · + Fn ∂

∂zn
,

where the Fi are meromorphic functions on U (i.e., Fi = gi/hi with gi, hi holo-
morphic on U). We denote by DX the union of the sets {hi = 0}. Of course, DX
is a divisor consisting of poles and indeterminacy points of X.

Definition. The meromorphic vector field X is said to be semi-complete on U
if and only if there exists a meromorphic map �sg : � ⊆ C × U → U, where �
is an open set of C× U, that satisfies the following conditions:

1.
d�sg(T, x)

dT

∣∣∣∣
T=0

= X(x) for all x ∈U \Dx;

2. �sg(T1 + T2, x) = �sg(T1,�sg(T2, x)), provided that both sides are well-
defined;

3. if (Ti, x) is a sequence of points in� converging to a point (T̂, x) in the bound-
ary of�, then�sg(Ti, x) converges to the boundary ofU \DX in the sense that
the sequence leaves every compact subset of U \DX.

The map�sg will be called the meromorphic semi-global flow associated toX (or
induced by X). Meromorphic semi-complete vector fields arise, for instance, in
the study of complete polynomial vector fields on affine algebraic surfaces.
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Example 1. Consider a (nonlinear) complete polynomial vector field

X = P∂/∂x +Q∂/∂y
(P,Q polynomials) defined on C2. Such vector fields are studied in [CeSc], but
here we propose a “dual approach” that relies on meromorphic semi-complete vec-
tor fields. Indeed, consider CP(2) as a compactification of C2. The vector fields
X can naturally be identified to a meromorphic vector field, still denoted by X,
defined on CP(2) and having “the line at infinity” as its divisor of poles. It is im-
mediate to check that X is a meromorphic semi-complete vector field on CP(2).
As an example, X may be chosen on C2 as

X(x, y) = x∂/∂x + (y + x4)∂/∂y.

The behavior of X on a neighborhood of the “line at infinity” is strongly influ-
enced by its “top-degree” homogeneous component. Thus, the general classifi-
cation of meromorphic semi-complete vector fields will have a number of conse-
quences on the original vector field X. This approach is expected to complement
recent results of [CeSc].

Meromorphic semi-complete vector fields also appear in connection with elliptic
(or ruled) surfaces, as shown by the next example.

Example 2 (Elliptic Surfaces). LetM be an elliptic surface; that is,M is a com-
plex compact surface together with a holomorphic map P : M → CP(1) such that
the generic fiber is an elliptic curve. Denote by KM the canonical line bundle of
M—namely, the holomorphic line bundle whose sections are (nondegenerated)
2-forms on M. Consider the canonical divisor of M (i.e., the divisor induced by
KM) and choose a representativeDM of this divisor such thatDM is invariant under
the fibration (i.e., DM is contained in a finite union of fibers possibly including
some singular ones). Thus KM admits a meromorphic section η whose divisor of
zeros/poles coincides withDM.We define a meromorphic vector fieldX onM by
letting

η(p)(X(p), ·) = DpP
whenever this equation makes sense. Clearly X is a meromorphic vector field
whose regular orbits are the fibers (level sets) P−1(z) (except for finitely many z∈
CP(1)). In the next section we shall prove that such an X is semi-complete (see
Corollary 2.9).

As pointed out by the referee, on a neighborhood of a singular fiber we can
multiply X by an appropriate holomorphic function and so obtain a holomorphic
semi-complete vector field defined on this neighborhood. Therefore, the classifi-
cation of holomorphic vector fields would be sufficient for most of our applications
to elliptic surfaces. Nonetheless, in other applications (such as those of Example1)
it is intrinsically important to allow strictly meromorphic vector fields.

Finally, there are many examples of meromorphic vector fields that are not propor-
tional (by a meromorphic function) to a holomorphic semi-complete vector field.
Here is one of the simplest possibilities.



36 Julio C. Rebelo

Example 3. Consider the vector field Z defined on a neighborhood of (0, 0) ∈
C2 and given byZ = x∂/∂x+y3∂/∂y. First we observe that the foliation FZ asso-
ciated to Z cannot support a holomorphic semi-complete vector field, as follows
from [R2]. However, by explicit integration we can see that the meromorphic vec-
tor field Y = Z/y2 is semi-complete.

The method employed here will be expanded considerably in subsequent papers.
In particular, we shall apply similar ideas to manifolds of dimension 3.

Acknowledgments. I am indebted to the referee for several useful comments
that allowed me to improve on the preliminary version. This work was conducted
for the Clay Mathematics Institute during the author’s visit to the IMS at Stony
Brook.

2. Preliminaries

This section contains a brief summary of the main properties of semi-complete
vector fields as well as a few other basic results. Most of the properties of mero-
morphic semi-complete vector fields discussed here are more or less immediate
adaptations of the analogous properties for holomorphic ones (see [R1] and [GR]).

Let us start by recalling the notion of a singular holomorphic foliation (details
can be found in [CeM]). A singular holomorphic foliation F defined on a neigh-
borhood U of (0, 0)∈C2 consists of an actual (i.e. regular) holomorphic foliation
defined on U \ {(0, 0)}. More generally, a singular holomorphic foliation with
isolated singularities p1, . . . ,pl defined on a complex surface M is nothing but a
regular holomorphic foliation defined onM \{p1, . . . ,pl}. It turns out that a local
singular holomorphic foliation F is always locally given as the orbits of a (local)
holomorphic vector field having only isolated singularities. In other words, given
a point p ∈ M, there is a neighborhood U of p and a holomorphic vector field
Y on U such that the orbits of Y define the foliation F on U. Furthermore, Y is
either nonsingular or has an isolated singularity at p (in which case p is a singular-
ity of F ). It also results from the preceding discussion that a meromorphic vector
fieldX can always locally be given asX = fαY/fβ,where fα,fβ are holomorphic
functions and Y is a holomorphic vector field with isolated zeros.

Consider a holomorphic vector field Y = F∂/∂x+G∂/∂y (with isolated singu-
larities) defining a singular holomorphic foliation F on a neighborhood of (0, 0)∈
C2. We say that F has eigenvalues λ1, λ2 at p if the eigenvalues of X at p are
λ1, λ2 (clearly λ1, λ2 are defined only up to a nonzero multiplicative constant).
Notice that a singularity of a foliation F is said to be simple if it possesses at least
one eigenvalue that is different from 0. More generally, the order of F at (0, 0) is
by definition the order of Y at (0, 0); that is, it is the degree of the first nontrivial
homogeneous component of the Taylor series of Y based at the origin.

The next step is to recall Seidenberg’s theorem from [S]. Fix a singular foliation
F defined on a neighborhood of (0, 0)∈C2. Let Y be a holomorphic vector field,
Y = F∂/∂x + G∂/∂y, defining F and having an isolated singularity at the ori-
gin. Let us denote by π1 the blow-up map from C̃2 → C2 and by F̃ 1 = π∗F the
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blow-up of F. Clearly, all the singularities of F̃ 1 are contained in the exceptional
divisor π−1(0) = E1 � CP(1).

Now we want to define the reduction tree of F. We assume that both eigenval-
ues of F at (0, 0) vanish (otherwise F is simple and already “reduced”). Let F̃ 1

and E1 = π−1(0) � CP(1) be as before. The triple (F̃ 1, E1, π) is the first stage of
the reduction tree of F. The reduction tree is completed at the first stage (i.e., it
consists of the triple (F̃ 1, E1, π)) if all the singularities of F̃ 1 are simple.

If the reduction tree is not completed at the first stage, then it continues as fol-
lows. Let p̃1,1, . . . , p̃1,l be those singularities of F̃ 1 that are not simple. We then
blow up F̃ 1 at each of the singularities p̃1,1, . . . , p̃1,l , producing a new foliation F̃ 2

along with a proper map+2 and an exceptional divisor E 2 = (π �+2)
−1(0). The

triple (F̃ 2, E 2, π �+2)will be the second stage of the reduction tree. Note that+2

(resp., E 2) is the composition (resp., sum or adjunction) of punctual blow-up maps
π1,1, . . . , π1,l (resp., CP(1)s associated to these punctual blow-up maps) based re-
spectively at p̃1,1, . . . , p̃1,l .

If all singularities of F̃ 2 are simple then the tree is completed. Otherwise we
proceed inductively by blowing up those singularities that are not simple. With
this notation we have the following.

Theorem 2.1 [S]. The reduction tree of F is finite. In other words, we have fo-
liations F̃ i along with proper maps +i and divisors E i obtained as before, with

F = F̃ 0 +1=π←−−−− (F̃ 1, E1)
+2←−− · · · +r←−− (F̃ r, E r ), (1)

such that the following statements hold.

1. E i (i = 1, . . . , r) is a tree in the sense of graphs consisting of CP(1)s that cor-
respond to sucessive blow-up maps. This means that the graph with vertices
represented by the CP(1)s of E i and edges by the points where two of these
CP(1)s intersect has no loop.

2. All the singularities of F̃ r are simple.

A separatrix for a singular foliation F is an irreducible analytic curve that contains
the singularity (0, 0)∈C2 and is invariant under F.We say that F is dicritical (or
that (0, 0) is a dicritical singularity of F ) if F has infinitely many separatrizes.

A simple singularity having exactly one eigenvalue different from 0 is said to
be a saddle node. It is well known (cf. [D]) that a saddle-node singularity is given
by a vector field Y admitting the Dulac’s normal form

[x(1+ λyp)+ yR(x, y)]∂/∂x + yp+1∂/∂y, (2)

where λ∈C and p ∈N∗.
We are now able to state a useful lemma.

Lemma 2.2. Assume that F is a (local) singular holomorphic foliation with only
finitely many leaves accumulating on the origin. Let (F̃ r, E r ) be the reduction
tree of F. Then:
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1. E r consists of CP(1)s that are invariant under F̃ r (if F is simple, i.e., r = 0,
then this item is empty);

2. if p̃ ∈ E r is a singularity of F̃ r, then F̃ r possesses two eigenvalues λ1, λ2 dif-
ferent from 0 at p̃. Furthermore, λ1/λ2 ∈R− (if F is simple, this item means
that F has two nonvanishing eigenvalues whose quotient belongs to R−).

Proof. First we suppose that F is not simple so that E r is not empty. To check
statement 1, suppose for a contradiction that there is a CP(1) in E r that is not in-
variant by F̃ r. Denoting this CP(1) byD0, it follows that (except for finitely many
points) the leaves of F̃ intersect D0 transversally. Since the “blow-down” map is
proper, the images of these leaves provide infinitely many separatrizes for F. This
clearly contradicts our assumption.

The proof of the lemma is now reduced to checking that, at a simple singularity,
a local foliation must have two nonvanishing eigenvalues with ratio in R− pro-
vided that this foliation possesses only finitely many leaves accumulating on the
origin.

Therefore we denote these eigenvalues by λ1, λ2 (λ1 �= 0). We claim that λ2 �=
0. In fact, if λ2 = 0 then the foliation is a saddle node and, by using Dulac’s
normal form (2), it is easy to ensure the existence of infinitely many leaves accu-
mulating on the origin. The resulting contradiction shows that λ2 �= 0.

Next suppose that λ1/λ2 ∈C \R− but that neither λ1/λ2 nor λ2/λ1 is a positive
integer. In this case, Poincaré’s theorem asserts that the foliation is linearizable on
a neighborhood of the origin. By explicit integration we conclude that the origin
is again accumulated by infinitely many leaves of the foliation.

Finally suppose that the quotient of the eigenvalues (say, λ1/λ2) belongs to N.

Here we have two possibilities: either the vector field is linearizable (and hence
possesses infinitely many separatrizes) or it is conjugate to a Poincaré–Dulac vec-
tor field given by

X = (nx + y n)∂/∂x + y∂/∂y. (3)

Again, an explicit integration shows that the foliation associated to a Poincaré–
Dulac vector field has infinitely many leaves accumulating on the origin. The
lemma is proved.

To close this section, we shall give some basic statements about meromorphic
semi-complete vector fields. Proofs will be left to the reader whenever they are
straightforward generalizations of the corresponding statements in [R1] and [GR].

If X is a meromorphic vector field and L is a regular leaf (or orbit) of X (i.e.,
L is a leaf of F restricted to the complement of the poles and singularities of X),
then L is naturally equipped with a holomorphic 1-form dT whose value on X
equals 1. The form dT is a “foliated” 1-form and is called time-form. When L
contains poles or singularities in its closure, dT may behave as a singular or as
a meromorphic form on a neighborhood of these points. Our first statement is a
simple but important lemma concerning integrals of dT over open curves.

Lemma 2.3 [R1]. Assume that X is a meromorphic semi-complete vector field
defined on a neighborhood U of (0, 0) ∈ Cn. Let L be a regular orbit of X and
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consider an embedded (one-to-one) curve c : [0,1]→ L. Then the integral of dT
on c is different from 0.

Remark 2.4. We want to point out the nonexistence of strictly meromorphic
semi-complete singularity in complex dimension 1. For example, the vector field
x−k∂/∂x defined on C∗ is not semi-complete around 0 ∈ C for every k ∈ N∗.
Indeed, the corresponding time-form is xk dx, whose integral on approriate em-
bedded curves vanishes. The general case of a vector field f∂/∂x, where f has a
pole at 0 ∈ C, can easily be derived from this fact (formally, one can also apply
Corollary 2.7).

Next we show a simple lemma concerning (open) Riemann surfaces that are given
by polynomial equations on the affine space. In other words, we shall consider a
quasi-projective (algebraic, irreducible) curve over C. If S is one such curve, we
take its closure in the corresponding projective space and denote by Ŝ the nonsin-
gular model of this closure (i.e., its normalization).

Lemma 2.5. Let S and Ŝ be as before, and assume that S is endowed with a
meromorphic semi-complete vector field. Then Ŝ is either a rational curve or an
elliptic curve. In fact, X is a holomorphic vector field with a holomorphic exten-
sion to Ŝ.

Proof. First we observe that S can be identified with a Zariski-open set of Ŝ. To
prove the lemma is clearly sufficient to show that X has a holomorphic exten-
sion to Ŝ. According to Remark 2.4, X does not have poles on S because it is
semi-complete. Similarly, a point p in Ŝ \ S cannot behave as a pole of X for the
same reason. Thus we need only show that such a point p cannot be an essential
singularity of X, either.

Thus we suppose for a contradiction that p ∈ Ŝ \ S is an essential singularity of
X. The time-form dT associated to X is given in local coordinates around p as
the inverse of X. Hence p is an essential singularity of dT as well. Now Picard’s
theorem promptly implies the existence of an open curve over which the integral
of dT must vanish. The resulting contradiction proves the lemma.

The following proposition actually holds in any dimension, but we shall state it
only for dimension 2. Fix an open domain U ⊆ C2 and suppose that we are given
a sequence of meromorphic semi-complete vector fields {Xi}i∈N on U.

Proposition 2.6 [GR]. Assume that {Xi} and U are as before. Suppose that
the pole divisors Di of Xi converge in the Haussdorff topology to some divisor D.
Suppose also that the order of the poles of {Xi} is uniformly bounded and that
{Xi} converges on compact sets of U \D toward a vector field X. Then X is a
meromorphic semi-complete vector field on U.

Consider a meromorphic vector fieldX = gY/h, where Y is a holomorphic vector
field with an isolated singularity at (0, 0) ∈ C2 and where g, h are holomorphic
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functions. Denote by Y k (resp. gr, hs ) the first nontrivial homogeneous compo-
nent of the Taylor series of Y (resp. g, h) centered at (0, 0) ∈C2 whose degree is
supposed to be k ∈ N (resp. s, r ∈ N). The vector field Xho = grY k/hs will be
called the first homogeneous component of X.

Corollary 2.7. Assume that X as just described is semi-complete on a neigh-
borhood of (0, 0)∈C2. Then Xho is semi-complete on the whole C2.

Proof. Fix ε > 0 such that X is semi-complete on the ball B(ε) of radius ε > 0
centered at (0, 0)∈C2. Given ρ > 0, let i0 ∈N be such that ρ/2i0 < ε. For every
i ≥ i0, we consider the vector field Xi defined on B(r) by

Xi(x, y) = 2i(r+k−s)X(x/2i , y/2i ).

Note thatXi converges toXho on B(ρ) when i →∞ satisfies all the assumptions
of Proposition 2.6. Since all theXi are clearly semi-complete on B(ρ), it follows
that Xho is also semi-complete on B(ρ). Since ρ > 0 is arbitrary, we conclude
that Xho is semi-complete on B(ρ) for all ρ ∈R+.

In order to show that Xho is semi-complete on the entire C2, we consider the
semi-global flows �n : �n ⊆ C × B(n) → B(n) associated to Xho on the ball
B(n) of radius n, n = 1, 2, . . . . Clearly there is no loss of generality in suppos-
ing that all the �n are connected. Then we set � = ⋃

n∈N�n and define a map
� : � ⊂ C × C2 → C2 in the following way: given (T,p) ∈ �, let n0 be such
that (T,p)∈�n0 . Next let �(T,p) = �n0(T,p). It is immediate to check that �
is well-defined and constitutes a meromorphic semi-global flow to Xho.

Another result that will be employed several times in the sequel is the following
proposition.

Proposition 2.8. LetM be a complex manifold and let D ⊂ M be an analytic
set (strictly contained inM). Assume that X is a meromorphic vector field onM
whose restriction to M \ D is semi-complete. Then M is semi-complete on the
whole ofM.

Proof. Let D0 be an irreducible component of D. We just need to prove that the
restriction of X to D0 is semi-complete. We can suppose that X is regular when
restricted to D0 (i.e., D0 is not contained in the divisor of poles or zeros of X). In
general, D0 may contain singularities of the foliation F associated toX; let us de-
note these singularities by p1, . . . ,pl. If LK is a compact part of D0 \{p1, . . . ,pl},
then it is sufficient to prove that the restriction ofX toLK is semi-complete. Since
LK is a compact part of a regular leaf, we can trivialize F on a neighborhood ofLK
by using finitely many coordinates. This provides an identification of (the restric-
tion of ) leaves of F in this neighborhood with LK itself. Under this identification,
the restrictions of X to the leaves in question converge (as in Proposition 2.6) to
the restriction of X to LK. It follows that X restricted to LK is semi-complete,
proving the proposition.
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In particular we are now able to prove that the vector field X constructed in Ex-
ample 2 of Section 1 is semi-complete. This is the content of our next corollary.

Corollary 2.9. Let M be an elliptic surface and consider the meromorphic
vector field X onM constructed in Example 2. Then X is semi-complete onM.

Proof. We consider the singular foliation F associated to X. Clearly the regular
leaves L of F are nothing but elliptic curves coinciding with the regular fibers of
P. Denote by D the divisor ofM consisting of the singular fibers. Also consider
the foliation F restricted to M \D. We first observe that the restriction of X to
a leaf L = P−1(q) in M \D is complete (and hence semi-complete). Since L is
an elliptic curve and is, in particular, compact, it is sufficient to show that the re-
striction of X to L is a globally defined holomorphic vector field. However, this
is clear because we can choose the meromorphic form η that does not have poles
on these regular fibers (i.e., DM is invariant by the fibration).

Next we shall prove that X restricted toM \D is semi-complete (indeed com-
plete). We must therefore define a semi-global flow associated to X onM \D. In
order to do so, we consider the mapping

�sg,X : C× (M \D)→ M \D
defined by�sg,X(T, q) = �X,Lq (T, q),whereLq stands for the leaf of F contain-
ing q and �X,Lq is the flow induced on Lq by the restriction of X. It is obvious
that �sg,X fulfills all the conditions required to be a semi-global (or global) flow
on M \D. Finally, thanks to Proposition 2.8, this flow extends to a semi-global
flow defined on the wholeM.

Corollary 2.10 is another immediate consequence of Proposition 2.8 and shows
that semi-complete vector fields behave naturally with respect to blow-ups.

Corollary 2.10. Assume that X is a meromorphic vector field that is semi-
complete on a neighborhood U of the origin in C2. Then the blow-up X̃ of X is
semi-complete on Ũ = π−1(U).

To finish this section we shall state two additional specific propositions concern-
ing semi-complete vector fields. The corresponding proofs are easy adaptations
of the original arguments appearing respectively in [R2] and [GR], and we have
included a brief sketch of them. Observe, however, that these propositions are au-
tomatic in the presence of a holomorphic first integral. In particular, they would
be automatic if we wanted to consider only applications to elliptic fibrations.

First suppose that we are given a vector field X of the form

X = xay bf(x, y)(mx(1+ h.o.t.)∂/∂x − ny(1+ h.o.t.)∂/∂y),

where f(0, 0) �= 0 and where a, b ∈ Z and m, n ∈ N. Denote by F the singular
foliation associated to X. Since the axes {x = 0} and {y = 0} are both invariant
under F, we can consider their local holonomies. Estimates carried out in [R2]
then show the following.
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Proposition 2.11 [R2]. Assume that X is semi-complete and that am − bn �=
0. Then the local holonomy of {y = 0} (resp., {x = 0}) is of finite order.

Sketch of proof. Let Bε ⊂ C be a small disc centered at 0 ∈ C for ε > 0 very
small. Also letBε,ε/2 be the annulus of radii ε/2 and ε. There is a holomorphic dif-
feomorphism R : (Bε,ε/2 \R−)×Bε → (Bε,ε/2 \R−)×C of the form R(x, y) =
(x, r(x, y)), with r(x, 0) = 0, which takes the foliation F associated to X to the
horizontal foliation of (Bε,ε/2 \ R−) × Bε (i.e., the foliation whose leaves are of
the form (Bε,ε/2 \ R−)× {y}).

The push-forward R∗X of X by R is semi-complete on (Bε,ε/2 \ R−) × Bε.
This vector field can also be written as y lF(x, r(x, y)) for some l ∈ Z. In partic-
ular, the vector field F(x, r(x, 0))∂/∂x must be semi-complete on Bε,ε/2 \ R−.
However, the function F(x, r(x, 0)) admits a holomorphic extension to Bε \ R−
and its asymptotic order at 0∈C turns out to be 1+ a − bn/m. Since am− bn �=
0, the integral of the corresponding time-form over a curve that makes m turns
around 0 ∈ {y = 0} vanishes. Hence the corresponding holonomy local diffeo-
morphism must coincide with the identity.

Next consider the vector field X111 = x(x − 2y)∂/∂x + y(y − 2x)∂/∂y (resp.
X112, X123). Let X≥3

111f be a vector field of the form

X
≥3
111f = f(x, y)(X111+ h.o.t.),

where f is a meromorphic function. We define the vector fields X≥3
112f and X≥3

123f
analogously. Finally, let F≥3

111 (resp. F≥3
112 ,F≥3

123) denote the singular foliation as-
sociated to X≥3

111f (resp. X≥3
112f ,X

≥3
123f ). As explained in [GR], the proof of the next

proposition uses a theorem due to Birkhoff and rediscovered later by Loray [L].

Proposition 2.12 [GR]. Suppose thatX≥3
111f (resp.X≥3

112f ,X
≥3
123f ) is semi-complete.

Suppose also that the divisor of poles/zeros of f is contained in the union of the
separatrizes of F≥3

111 (resp. F≥3
112 ,F≥3

123). If, in addition, the local holonomies of
the separatrizes of F≥3

111 (resp. F≥3
112 ,F≥3

123) are trivial, then F≥3
111 (resp. F≥3

112 ,F≥3
123)

is holomorphically conjugate to the foliation F111 (resp. F112,F123) associated to
X111 (resp. X112, X123).

Sketch of proof. We consider only the case of the vector field (resp. foliation)X≥3
111

(resp. F≥3
111 ). Denote by F̃≥3

111 the blow-up of F≥3
111 and note that F̃≥3

111 has exactly
three singularities p1,p2,p3 on the exceptional divisor π−1(0). These singulari-
ties correspond to the intersections with π−1(0) of each of the (proper transform
of the) separatrizes of F≥3

111 . Furthermore, the foliation F̃≥3
111 possesses eigenval-

ues equal to 1 and 3 at each of the singularities p1,p2,p3. For fixed i ∈ {1, 2, 3},
π−1(0) defines a separatrix for F̃≥3

111 at pi. We claim that the local holonomy of
this separatrix has order 3. Indeed, F̃≥3

111 has another separatrix at pi—namely, the
proper transform of the corresponding separatrix of F≥3

111 ,whose holonomy is triv-
ial by assumption. The claim then follows from the fact that the eigenvalues of
F̃≥3

111 at pi are 1 and 3.
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We now consider the global leafL0 of F̃≥3
111 given byL0 = π−1(0)\{p1,p2,p3}.

The holonomy of this leaf is a homomorphism from the fundamental group of L0

to Diff(C, 0) that factors through the group G = {a, b, c : a3 = b3 = c3 =
abc = id}. We claim that the image of the fundamental group of L0 in Diff(C, 0)
is abelian and therefore cyclic of order 3. Before proving this claim, we point out
that it implies our statement because it allows one to conjugate the foliations F̃≥3

111
and the blow-up F̃111 of F111 on a neighborhood of π−1(0). In fact, the construction
of this conjugacy follows standard techniques of foliation theory complemented
by a lemma of [MMo] that is necessary to extend it to neighborhoods of the sin-
gular points.

Finally, to prove the preceding claim we use the aforementioned result of
Birkhoff (cf. [L]). This result classifies all homomorphisms from the group G
(defined previously) to Diff(C, 0). Other than those with abelian image, these ho-
momorphisms are ramified coverings of the well-known representation of G ob-
tained through the tiling of C by equilateral triangles. Now we assume that the
subgroup of Diff(C, 0) determined by the holonomy of L0 is not abelian. There-
fore, it must be given as just indicated. It is now easy to check the existence of a
leaf L of F≥3

111 with a nontrivial period, that is, a loop c ⊂ L on which the inte-
gral of the corresponding time-form equals T0 �= 0. It can also be checked that
this leaf L accumulates on π−1(0). On the other hand, if � were the global flow
associated to X≥3

111 then the equation�(T0, x) = x should define a proper analytic
set containing L. This is impossible, since L accumulates on π−1(0). The propo-
sition is proved.

3. Reduction of Meromorphic Semi-Complete Singularities

Throughout this section, X stands for a meromorphic semi-complete vector field
defined on a neighborhood of the origin in C2. In other words, X is given by X =
fαY/fβ, where Y is a holomorphic vector field for which the origin is either a reg-
ular point or an isolated singularity. Furthermore fα,fβ are (nonidentically zero)
holomorphic functions. Let F denote the singular holomorphic foliation associ-
ated to X. In this section and the next, we shall prove the theorem stated in the
Introduction.

Let us say that a rational function P = Pα/Pβ is homogeneous if both Pα and
Pβ are homogeneous polynomials (possibly with different degrees).

Lemma 3.1. Consider the linear vector field Z = x∂/∂x + λy∂/∂y, where λ ∈
R−. Suppose that P = Pα/Pβ is a nonconstant homogeneous rational function.
Suppose also that PZ is semi-complete. Then:

1. λ is rational—that is, λ = −n/m for appropriate relatively prime positive in-
tegers m, n; and

2. P = xcy d, where mc − nd = 0 or ±1 if λ �= −1. For λ = −1, P may also
have the form (xy)a(x − y) for some a ∈Z.

Proof. Since there is no meromorphic semi-complete vector field in dimension 1
(cf. Remark 2.4), the zero set of Pβ must be invariant under Z. Since λ ∈ R−,
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the only separatrizes of Z are the axes {x = 0} and {y = 0}. Thus Pβ is of the
form xay b for some a, b ∈ N. Hence P has the form xcy dQ(x, y), where Q is a
homogeneous polynomial that is not divisible by x or y.

Observe that the orbit L of Z passing through the point (x1, y1), x1y1 �= 0, is
parameterized by A : T �→ (x1e

T, y1e
λT ). The restriction to L of the vector field

PZ is given in the coordinate T by P(x1e
T, y1e

λT )∂/∂T .

We now assume for a contradiction that λ is not rational. Hence the parameter-
ization A is a one-to-one map from C to L. It follows that the one-dimensional
vector field xc1y

d
1 e
(c+λd )TQ(x1e

T, y1e
λT )∂/∂T is semi-complete on C, and we note

that e(c+λd )TQ(x1e
T, y λT1 ) is an entire function on C. Since λ is not rational and

Q is a polynomial, we conclude that this function has an essential singularity at
infinity. The same argument of Lemma 2.5, which is based on Picard’s theorem,
provides a contradiction in this case. Hence λ must be rational.

Now set λ = −n/m for relatively prime positive integers m, n. The orbit L is
isomorphic to CP(1) minus two points. It follows from Lemma 2.5 that the non-
singular model of its closure is a rational curve. In particular, X can have at most
two singularities on L. Now suppose that λ �= −1. Then the polynomial Q must
be constant, for otherwise {Q = 0} intersects Lmore than twice. This would give
rise to more than two singularities forX on L, which is impossible. Thus the vec-
tor field PZ has the form xay bZ and, by explicit integration, we obtain the further
condition mc − nd = 0 or ±1.

On the other hand, if λ = 1 then the analogous argument shows thatQ is either
constant or linear. WhenQ is not constant modulo a linear change of coordinates,
we have Q = x − y. Hence PZ becomes xcy d(x − y)Z. Again explicit integra-
tion ensures that we must have c = d. The lemma is proved.

The rest of this section is devoted to discussing the nature of a meromorphic semi-
complete vector field X defined on a neighborhood of the origin (0, 0) ∈ C2 and
satisfying the following assumptions.

1. X = fαY/fβ,where Y is a holomorphic vector field with an isolated singularity
at (0, 0)∈C2 and fα,fβ are holomorphic functions.

2. The foliation F associated to X (or to Y ) has vanishing eigenvalues at (0, 0)∈
C2.

3. The blow-up F̃ of F is such that every singularity p̃ ∈ π−1(0) of F̃ has two
eigenvalues different from 0 whose quotient belongs to R−. Moreover, π−1(0)
is left invariant by F̃.

Let {p̃1, . . . , p̃k} ⊂ π−1(0) be the singularities of F̃. Denote by X̃ the blow-
up of X and recall that X̃ is semi-complete on a neighborhood of π−1(0) (cf.
Lemma 2.10). As in Corollary 2.7, denote by ord(Y ) (resp. ord(fα), ord(fβ)) the
order of Y (resp. fα,fβ) at the origin.

By assumption 3 we know that π−1(0)\ {p̃1, . . . , p̃k} is a regular leaf of F̃. The
order of X̃ on π−1(0) is equal to

ordπ−1(0)(X̃) = ord(Y )+ ord(fα)− ord(fβ)− 1. (4)
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In other words, given a point p̃ ∈ π−1(0), we have coordinates (x, t) ({x = 0} ⊂
π−1(0)) around p̃ such that

X̃ = x(ordπ−1(0)(X̃))X̃1,

where X̃1 is a meromorphic vector field whose divisor of zeros/poles does not
contain π−1(0). Clearly X̃ has a curve of zeros (resp. poles) on π−1(0) if and only
if ordπ−1(0)(X̃) > 0 (resp. ordπ−1(0)(X̃) < 0). We say that X̃ is regular on π−1(0)
if ordπ−1(0)(X̃) = 0. Our immediate goal is to prove Proposition 3.2.

Proposition 3.2. Assume thatX satisfies assumptions1, 2, and 3 and that π−1(0)
is invariant by F̃. Then F̃ possesses exactly three singularities. More precisely, if
Y k0 denotes the first nontrivial homogeneous component of Y (as in Corollary 2.7)
then, up to a multiplicative function, Y k0 is conjugate by a linear change of coor-
dinates to X111, X112, or X123.

We begin by showing that ordπ−1(0)(X̃) is different from 0. This is the content of
our next lemma.

Lemma 3.3. LetX be a meromorphic semi-complete vector field that satisfies the
preceding assumptions. Then ordπ−1(0)(X̃) �= 0.

Proof. Suppose for a contradiction that ordπ−1(0)(X̃) = 0. Because X̃ is semi-
complete, so is its restriction X̃|π−1(0) to π−1(0). This implies that X̃|π−1(0) ac-
tually extends to the entire π−1(0) as a holomorphic vector field. In particular,
X̃|π−1(0) has at most two singularities.

On the other hand, we know that k ≥ 3 and so there is a singularity p̃1∈ Sing F̃
such that

X̃ = t−1h1(m1x(1+ h.o.t.)∂/∂x − n1t(1+ h.o.t.)∂/∂t

on a neighborhood of p̃1 endowed with suitable coordinates (x, t). Again m1, n1

are positive integers and (6) ensures that m1/n1 �= 1. In particular, h1(0, 0) �= 0.
Thus Lemma 3.1 asserts that−n1/m1 = 0,−1, or 1. Sincem1, n1∈N∗ we see that
the unique possibility is n1/m1 = 1, which is impossible.

As the referee has pointed out, the subsequent proof of Proposition 3.2 may be
explained as follows. To each singularity p̃i of F̃ in π−1(0) we associate its mul-
tiplicity ni, namely, the order of the local holonomy of π−1(0) around p̃i . Then
π−1(0) can be viewed as an orbifold, and the statement of Proposition 3.2 as-
serts that this orbifold is of elliptic type in the sense that its universal covering is
C. Note that not all orbifolds of elliptic type appear in the list of the proposition
in question, since we have an additional constraint furnished by the fact that the
self-intersection of π−1(0) is−1. For example, the orbifold consisting of four sin-
gular points each with multiplicity 2 is elliptic as well. However, it is excluded
from the present case because the corresponding self-intersection would be −2
(nonetheless, it will appear later on). Clearly, orbifolds of rational type are also
compatible with the structure of semi-complete flows. These are excluded from
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the statement of Proposition 3.2 because the number of singularities is supposed
to be at least three. However, they will also appear later in the discussion of the
singular fibers of elliptic fibrations.

Fix a singularity p̃i (i = 1, . . . , k) of F̃. In view of our assumptions, we have
coordinates (x, t) around p̃i as before such that X̃ has the form

X̃ = x(ordπ−1(0)(X̃))
F1(x, t)

F2(x, t)
Ỹ,

where F1, F2 are holomorphic functions that do not vanish identically on {x = 0}
and where Ỹ = λ1x(1+h.o.t.)∂/∂x+ (λ2 t+h.o.t.)∂/∂t. However, since λ2/λ1∈
R−, it follows that Ỹ admits two smooth transverse separatrizes. Thus Ỹ has in-
deed the more precise form

Ỹ = λ1x(1+ h.o.t.)∂/∂x + λ2 t(1+ h.o.t.)∂/∂t.

In view of Lemma 3.1, the foregoing discussion may be summarized as follows.

Lemma 3.4. In appropriate local coordinates (x, t) that satisfy the preceding
conditions we have F1/F2 = t dh(x, t), where d ∈ Z and λ2/λ1 ∈ Q−. Either
h(0, 0) �= 0 or the set {h = 0} coincides with {x = t}, in which case λ1 = −λ2.

Fix a singularity p̃i ∈ Sing F̃ (i = 1, . . . , k) and consider a neighborhood Ui to-
gether with coordinates (xi, ti) ({xi = 0} ⊂ π−1(0)) such that X̃ has the form

X̃(xi, ti) = x(ordπ−1(0)(X̃))

i t
di
i hi[mixi(1+ h.o.t.)∂/∂xi − niti(1+ h.o.t.)∂/∂ti], (5)

where di ∈Z andmi, ni ∈N. The following elementary relations are general (i.e.,
they do not depend on the semi-completeness of X) and can be verified by an ex-
plicit calculation:

k = ordY + 1;
k∑
i=1

mi

ni
= 1. (6)

It follows in particular that mi/ni in (5) is always different from 1 because k ≥ 3
(recall that all the eigenvalues of F at the origin are 0). We conclude that hi(0, 0) �=
0 and hence that (ordπ−1(0)(X̃))mi − nidi = −1, 0, or 1.

Lemma 3.5. The integers ni (i = 1, . . . , k) satisfy the equation

k∑
i=1

(
1− εi

ni

)
= 2 (7)

for appropriate εi ∈ {−1, 0,1}.
Proof. Define εi = (ordπ−1(0)(X̃))mi − nidi so that εi ∈ {−1, 0,1}. Next consider
the Taylor expansion of fα (resp. fβ) in terms of homogeneous components f jα
(resp. f jβ ) of degree j ∈N, namely, fα =∑∞

j=r f
j
α

(
resp. fβ =∑∞

j=s f
j

β

)
. Thus

F1(x, t) = f rα(1, t)+ rα(x, t) (resp. F2(x, t) = f sβ (1, t)+ rβ(x, t)), where r and
s stand respectively for ord(fα) and ord(fβ) and where rα and rβ are holomorphic
functions. It promptly results that
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k∑
i=1

di = ord(fα)− ord(fβ). (8)

By definition, di = (ordπ−1(0)(X̃))mi/ni − εi/ni, so

ord(fα)− ord(fβ)

=
k∑
i=1

di = (ordπ−1(0)(X̃))

k∑
i=1

mi

ni
−

k∑
i=1

εi

ni

= −
k∑
i=1

εi

ni
+ (ord(Y )− 1+ ord(fα)− ord(fβ)) (by (8) and (6)).

Using (6) again, we obtain
∑k
i=1(1− εi/ni) = 2. The lemma is proved.

Recall that mi, ni are positive integers. Note that 1+ εi/ni ≥ 1/2 provided that
ni ≥ 2. It is easy to determine all possible solutions of equation (7), and this will
lead to the proof of Proposition 3.2.

Proof of Proposition 3.2. According to Lemma 3.3, the order of X̃ onπ−1(0) never
vanishes. We seek nonzero positive integers mi, ni such that

k∑
i=1

mi

ni
= 1;

k∑
i=1

(
1− εi

ni

)
= 2 for εi = −1, 0,1.

Because k ≥ 3, we can see that ni �= 1 for all i ∈ {1, . . . , k}; otherwise, the sum∑k
i=1(mi/ni) would be strictly greater than unity, which is impossible. For ni ≥

2 we have 1− εi/ni ≥ 1/2, so one can easily check that all the possible solutions
of

∑k
i=1(1− εi/ni) = 2 are: n1 = n2 = n3 = 3; n1 = n2 = 4 and n3 = 2; n1 =

2, n2 = 3, and n3 = 6; and n1 = n2 = n3 = n4 = 2. However,

1=
k∑
i=1

mi

ni
≥

k∑
i=1

1

ni
.

Thus the solution n1 = n2 = n3 = n4 = 2 can be discarded. Furthermore, the
other three possible solutions imply that all the mi involved are equal to 1. In
other words, the foliation F̃ k0 associated to the blow-up Ỹ k0 of Y k0 has exactly
three singularities on π−1(0). The eigenvalues of these singularities are propor-
tioned as 1 :1 :1 or 1 :1 : 2 or 3 : 2 :1. By blowing down these foliations we obtain
the desired normal forms corresponding to X111, X112, and X123. The proposition
is proved.

4. Classification of Meromorphic Semi-Complete Singularities

In this section, the proof of our Main Theorem (see Section 1) will be finished.
The first step is to strengthen Proposition 3.2 by proving the following theorem.
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Theorem 4.1. Assume thatX satisfies the assumptions of Proposition 3.2. Then,
up to a multiplicative function,X is holomorphically conjugate to Y k0; that is, the
foliation associated to X is F111, F112, or F123.

By Proposition 3.2 we know that X may be written as
fα

fβ
(Y k0 + h.o.t.).

Denote by f rα and f sβ the first nontrivial homogeneous component of fα and
fβ, respectively. In what follows we shall treat only the case Y k0 = X111 =
x(x − 2y)∂/∂x + y(y − 2x)∂/∂y. However, the other two cases are totally analo-
gous. With the preceding notation we may state our next lemma as follows.

Lemma 4.2. f rα /f
s
β = (xy(x − y))a for some a ∈Z.

Proof. By definition, f rα /f
s
β is the quotient of two homogeneous polynomials.

Furthermore, Corollary 2.7 shows that the vector field f rα Y
k0/f sβ is semi-complete

on the entire C2.

On the other hand, it may immediately be verified that the generic orbit of
Y k0 is a torus minus a finite number of points. The restriction of Y k0 to such an
orbit L induces a constant vector field in the corresponding parameterization of
L. Actually, L supports only these constant vector fields. In the same parame-
terization of L, the restriction of the vector field f rα Y

k0/f sβ must be constant, too
(cf. Lemma 2.5). Hence f rα /f

s
β is constant on L. Since L is a generic orbit, we

conclude that f rα /f
s
β is a first integral of Y k0. Therefore f rα /f

s
β = (xy(x − y))a,

establishing the lemma.

Recall that F (resp. F k0 ) is the singular foliation associated to X (resp. Y k0 ).

Moreover, F̃ (resp. F̃k0) stands for the blow-up of F (resp. F k0 ). Clearly F̃ and
F̃ k0 share the same singularities p̃1, p̃2, p̃3 in π−1(0). For every i ∈ {1, 2, 3}, the
eigenvalues of F̃ and F̃ k0 at p̃i are 1 and −3.

We also observe that L̃0 = π−1(0)\ {p̃1, p̃2, p̃3} is a regular leaf of F̃ and F̃ k0.

Hence it is possible to consider the holonomy groups G,Gk0 ⊂ Diff(C, 0) of L̃0

with respect to F̃, F̃ k0. Because F k0 is given by a homogeneous vector field, it
is preserved by homotheties. This implies that Gk0 commutes with homotheties
and thus is itself constituted by homotheties. Considering the eigenvalues of F̃ k0

at p̃i, we conclude that Gk0 is cyclic of order 3. In particular, G also contains at
least three elements.

Proof of Theorem 4.1. Clearly we can suppose that the three separatrizes of F co-
incide with the lines {x = 0}, {y = 0}, and {x = y}. Next we claim that the union
of zeros/poles of fα/fβ is contained in the union of these three lines. This is clear
for the poles, as pointed out in Remark 2.4. On the other hand, suppose for a con-
tradiction that fα vanishes on leaves of F other than the separatrizes. Consider
one such leaf L. Since the projective holonomy of F consists of at least three ele-
ments, it follows that L intersects {fα = 0} in three or more points. However, this
contradicts the fact that the restriction of X to L is semi-complete.
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By the foregoing observation and Lemma 4.2, we conclude thatX has the form

X = (xy(x − y))af [X111+ h.o.t.]

with f(0, 0) �= 0. We want to prove that X111 + h.o.t. is conjugate to X111 by a
diffeomorphism that is tangent to the identity. In order to do this, consider the
blow-up F̃ of F and a singularity p̃i ∈ π−1(0). As mentioned, the eigenvalues of
F̃ at p̃i are 1 and −3. The normal form just displayed then implies that the corre-
sponding vector field X̃ is given on a neighborhood of p̃i by

x3a+1t af̃ (x∂/∂x − 3t∂/∂t + h.o.t.),

for appropriate coordinates (x, t)with f̃ (p̃i) �= 0. Proposition 2.11 shows that the
local holonomies of the separatrizes of F̃ at p̃i are of finite order. Since the linear
part of the holonomy of the separatrix transverse to the exceptional divisor is 1,
it follows that this holonomy is, in fact, trivial. Now Proposition 2.12 establishes
the theorem.

Assume next that F is a singular holomorphic foliation on a complex surfaceM.
Suppose that S ⊆ M is a smooth compact Riemann surface left invariant by F and
denote by p1, . . . ,pl the singularities of F belonging to S. Given pi, i = 1, . . . , l,
consider local coordinates (x, y) around pi, where F is given by the vector field
F∂/∂x + G∂/∂y and where G = yg and {y = 0} ⊂ S. The index of F with re-
spect to S at pi is defined as

Indpi(F, S) = Res
∂

∂y

(
G

F

)
(x, 0) dx.

According to [CSa], one has

l∑
=1

Indpi(F, S) = S.S, (9)

where S.S denotes the self-intersection of S. Extensions of this formula to the case
of singular separatrizes can be found in [Su].

Now let us consider again the vector fields X111, X112, X123 and Z112, Z123, Z32.

Note that each of the vector fields X111, X112, X123 possesses exactly three separa-
trizes that are smooth. Their indices are

X111: −2,−2,−2;
X112: −1,−3,−3;
X123: −1,−2,−5.

The vector fields Z112 and Z123 each have two separatrizes, which are smooth and
tangent to each other. The indices of these separatrizes are

Z112: −2,−2;
Z123: −1,−4.

Finally, Z32 has a unique separatrix that is singular and has index 0. In particular,
all the smooth separatrizes of these vector fields have negative integer indices.
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Proof of Main Theorem. Consider a reduction tree for F as in (1) (cf. Theorem 2.1).
We shall argue by induction on the length of this reduction tree (i.e., by induction
on r). For r = 0 the statement is a consequence of Lemma 2.2, Corollary 2.7, and
Lemma 3.1. We suppose that the statement holds for any singularity whose reduc-
tion tree has length r0 ≥ 1. We shall prove that it also holds for a singularity F
with reduction tree of length r0 + 1.

Therefore, let F be a foliation whose reduction tree has length r0 + 1. By the
induction hypothesis, the singularities of F̃ 1 on E1 are of type A, B, or C (see
Section 1). Note, however, that E1 consists of a single rational curve whose self-
intersection is −1. Furthermore, if all of these singularities are of type C then the
induction step follows again from Theorem 4.1.

Thus we suppose the existence of a singularity p̃1 of type A or B. Note also that
a separatrix of a singularity of type A, B, or C is strictly negative. As mentioned
before, indices of separatrizes of singularities of form A or B are strictly negative
integers. Thus (9) implies that p̃1 is the unique singularity of F̃ 1 in E1 = π−1(0).
In addition, π−1(0) must define a smooth separatrix of index −1 for F̃ 1 at p̃1. By
inspecting the lists of indices we see that, around p̃1, F̃ 1 is given by one of the fol-
lowing vector fields: X112, X123, or Z123. For each of these cases the foliation F̃ 1

is uniquely determined on a neighborhood of E1 = π−1(0). In fact, consider two
foliations as above having a unique singularity in E1 = π−1(0) whose model is
(say) X112. Then a local conjugacy between these singularities around p̃1 (which
we may suppose to be the same modulo a linear change of coordinates) can imme-
diately be globalized to a neighborhood of the entire exceptional divisor, since its
holonomy is trivial. Hence each of the described cases gives rise, by blow-down,
to a unique foliation defined around (0, 0) ∈ C2 (up to change of coordinates).
These foliations are (respectively) Z112, Z123, or Z32. This completes the induc-
tion step and proves the theorem.

5. Elliptic Fibrations and Complements

In this last section we present an alternative treatment of Kodaira’s description
of elliptic fibrations. Our point of view also leads to some partial generalizations
of these results (for example, similar results apply to semi-complete vector fields
whose orbits need not be elliptic curves).

We place ourselves in the classical setting: M is a complex surface together
with a proper holomorphic map P : M → D ⊂ C (where D stands for the unit
disc) such that:

1. P defines a (regular) fibration ofM \P−1(0) over D \ {0}; and
2. P−1(p) is an elliptic curve for every p ∈D \ {0}.

The purpose of Kodaira’s theorem is to characterize the possible structures of a
singular fiber P−1(0). The advantage of our method is that it gives the structure
of the singularities of the foliation associated with P, and this cannot be obtained
a priori from such standard techniques as the classification of root systems of
affine type. With this information about the structure of the singularities in ques-
tion, we are able to immediately describe the singular foliation defined by P on
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a neighborhood of the singular fiber. In what follows we assume that P−1(0) is
not a regular elliptic curve. For the convenience of the reader, we first restate Ko-
daira’s theorem so as to include the description of the singularities of the foliation
associated to P; we then derive the description of the neighborhood of each sin-
gular fiber. Recall that we have supposed that our singular fibers do not contain an
elliptic curve (in which case the fiber would be a multiple of this elliptic curve).
We also assume that the singular fibers do not contain smooth rational curves of
self-intersection −1.

Theorem 5.1. LetM and P be as before. The structure of a singular fiber of P
is necessarily one of the following types. Note also that, except for Types I1 and
III, every irreducible component of the fiber is a smooth rational curve with self-
intersection −2.

Fibers of Type I1: A rational curve with a node singularity. This node singular-
ity corresponds to a singularity with eigenvalues (1,−1) for the fibration viewed
as a singular foliation.

Fibers of Type II: A rational curve with a cusp singularity. The foliation is that
associated to Z32.

Fibers of Type III: Two smooth rational curves with quadratic tangential inter-
section. Similarly to the preceding case, the foliation in question is that associated
to Z112.

Fibers of Type IV : Constituted by three smooth rational curves meeting trans-
versely at a common point. More precisely, the foliation associated to P is the
same foliation F111 associated to the vector field X111 (the separatrizes of F111 be-
ing the singular fiber).

•
•
•
• •

•
��

��

��
�� ����

Ãn
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D̃n

Figure 1 Fibers of Types Ãn and D̃n

Fibers of Type Ãn (or In, n ≥ 2): A “loop” of smooth rational curves. The
holonomy of the fibration around each irreducible component is trivial (but the
monodromy is not necessarily trivial, as this can be a multiple fiber). Finally, the
fibration viewed as a foliation has eigenvalues (1,−1) at each point of intersection
of two irreducible components.

Fibers of Type D̃n (or I ∗n ): The arrangement consists of smooth rational curves.
The rational curves indicated byA contain three singularities of the fibration whose
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respective eigenvalues are (−1, 2), (−1, 2), and (−1,1). The rational curves indi-
cated byB contain only one singularity having eigenvalues (2,−1). The remaining
curves possess two singularities, each with eigenvalues (−1,1). The holonomy of
the fibration has order 2 along the components A and is trivial around the other
components. A degenerate case of this fiber is constituted by a single curve A and
four curves B.

• • • • •
•
•

C B A B C

B

C

Ẽ6

• • • • • • •
•

D C B A B C D

D

Ẽ7

• • • • • • • •
•

G B A C D E B G

G

Ẽ8

Figure 2 Fibers of Types Ẽ6, Ẽ7, and Ẽ8

Fibers of Type Ẽ6 (or IV ∗): The arrangement of smooth rational curves can
be described as follows. The rational curve A contains three singularities, each
with eigenvalues (−2, 3) (and the holonomy alongA is Z/3Z). The curvesB con-
tain two singularities whose eigenvalues are (−3, 2) and (−1, 2). The holonomy
along the curve B is Z/2Z. Finally, the curves C contain a unique singularity
with eigenvalues (−2,1). Clearly, the holonomy along C is trivial.

Fibers of Type Ẽ7 (or III ∗): The description of this arrangement is as follows.
The rational curve A contains three singularities, two with eigenvalues (−3, 4)
and the other with eigenvalues (−1, 2); the holonomy alongA is Z/4Z. The curves
B contain two singularities with eigenvalues given (respectively) by (−4, 3) and
(−2, 3). The holonomy alongB is Z/3Z. The curvesC have two singularities with
eigenvalues (−3, 2) and (−1, 2), and the holonomy along C is therefore Z/2Z.

Finally, the curve D has only one singularity, whose eigenvalues are (−2,1) and
also have trivial holonomy.

Fibers of Type Ẽ8 (or II ∗): This last arrangement admits the following de-
scription. The rational curve A contains three singularities whose eigenvalues
are respectively (−1, 2), (−2, 3), and (−5, 6). The holonomy along A is Z/6/Z.
The curveB has two singularities with eigenvalues (−3, 2) and (−1, 2). The holo-
nomy along B is then Z/2Z. The curve C (resp.D,E) has two singularities with
eigenvalues (−6, 5), (−4, 5) (resp. (−5, 4), (−3, 4), and (−4, 3), (−2, 3)). The
holonomy alongC (resp.D,E) is Z/5Z (resp. Z/4Z,Z/3Z). Finally, the curveG
has trivial holonomy and a unique singularity whose eigenvalues are (−2,1).
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Remark 5.2. It follows from the preceding description that the order of the
holonomy of a component of a singular fiber is equal to the multiplicity of this
component.

Suppose now that we are given holomorphic maps P1 (resp. P2) from M1 (resp.
M2) to D ⊂ C defining elliptic fibrations in M1,M2. Denote by X1, X2 the cor-
responding semi-complete vector fields and by F1,F2 their associated foliations.
Theorem 5.3 follows as a consequence of this description. Whereas this theo-
rem may have been known before, I was unable to find it explicitly stated in the
literature.

Theorem 5.3. Suppose that P−1
1 (0) and P−1

2 (0) are singular fibers of type, say,
Ẽ6. Then there exist a neighborhood U1 ⊂ M1 (resp. U2 ⊂ M2) of P−1

1 (0) (resp.
P−1

2 (0)) that is invariant under F1 (resp. F2) as well as a C∞-diffeomorphism
h : U1 → U2 conjugating the restrictions of these foliations to the sets in question.
Moreover, h is transversely holomorphic.

Proof. Since P−1
1 (0) and P−1

2 (0) have the same type (Ẽ6), we consider their cor-
responding components C1

i and C2
i . We also consider the holonomy of C1

i minus
its singularities (resp. C2

i minus its singularities) relative to F1 (resp. F2). A con-
sequence of the previous discussion is that this holonomy is a finite cyclic group
whose order depends solely on the position of C1

i (resp. C2
i ) in P−1

1 (0) (resp.
P−1

2 (0)) and of the type of P−1
1 (0) (resp. P−1

2 (0)). In other words, given our as-
sumptions, the holonomies ofC1

i , C
2
i minus their singularities are holomorphically

conjugate. This enables us to conjugate the restrictions of the foliations F1,F2

to neighborhoods of C1
i , C

2
i (minus the corresponding singularities). However, a

classical argument in [MMo] shows that this conjugacy actually extends to neigh-
borhoods of the mentioned singularities. Therefore it extends to other components
of the singular fibers and eventually to neighborhoods U1, U2 of P−1

1 (0),P−1
2 (0)

as required.

Obviously we have analogous results concerning the other possible types of sin-
gular fibers. These results show that the only way we can have different neighbor-
hoods of a same singular fiber is by deforming the complex structure of the regular
fibers. In particular, a neighborhood P−1(D) of the singular fiber P−1(0) is com-
pletely determined by the structure of P−1(0) and by a meromorphic function h
defined on D that “measures the complex structure” of the regular fibers.

To obtain concrete models for all these fibers (in particular showing that all the
cases are realizable), we note that the vector fields X11, Z112, and Z32 induce pen-
cils of CP(2) viewed as the compactification of C2. By performing an appropriate
number of blow-ups at the singularities of these pencils contained in the “line at
infinity”, we can turn all of them into fibrations. These fibrations turn out to be
elliptic, and the proper transform of the “line at infinity” together with the excep-
tional divisors introduced are (respectively) of type Ẽ6, Ẽ7, and Ẽ8. These fibra-
tions also provide models for the fibers of Type IV, III, and II. Fibers of Type I1

and of Type Ãn or D̃n (i.e., In or I∗n) can easily be handled by a simple procedure
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of surgery. Finally, with the foregoing models we can reconstruct an elliptic sur-
face by assembling the models involved with the singular fibers and the remaining
regular fibration. With a little additional effort we then derive the complete de-
scription of all elliptic surfaces set forth by Kodaira [K].

With the notation used in the beginning of this section, we decompose the sin-
gular fiber P−1(0) into irreducible components Ci of multiplicity mi, i = 1, . . . , s
(notation: P−1(0) =∑s

i=1 miCi). Recall that we assume P−1(0) does not contain
smooth rational curves of self-intersection −1. Let us begin with a rather simple
lemma borrowed from [F, p. 172].

Lemma 5.4. Given an irreducible component Ci, either Ci = C1 is the unique
component of P−1(0) (and has arithmetic genus equal to 1) or Ci is a smooth ra-
tional curve with self-intersection −2.

Nonetheless, we observe that ifC1 is the unique component of P−1(0) thenC1.C1 =
0, where C1.C1 stands for the self-intersection of C1. Indeed, C1 is homologically
equivalent to a regular fiber.

Lemma 5.5. Suppose that C1 has an irreducible singularity. Then P−1(0) =
m1C1 and, in fact, we have Type II of Theorem 5.1.

Proof. Assume that p1 is an irreducible singularity ofC1. It follows from the Main
Theorem that the foliation is given around p1 by the vector fieldZ32. Consider the
meromorphic semi-complete vector field X defined onM, and suppose that X is
regular onC1. Then, up to normalization ofC1, X induces a semi-complete vector
field on C1 that has a singularity of order 2 (corresponding to p1). Such a vector
field is therefore holomorphic and so p1 must be its unique singularity. Hence p1

is the unique singularity of C1 and we have Type II.
In general we suppose that X has poles (or zeros) on C1. Again thanks to our

Main Theorem, we can write X on a neighborhood of p1 as f(x3 + y2)aZ32 for
some holomorphic function f, f(0, 0) �= 0, and some a ∈ Z. Because X pos-
sesses a global first integral, it is clear that—up to multiplying X by a power of
this first integral—we can eliminate the term x3 + y2. The new vector field (a
reparametrization of X) is regular on C1 and is still semi-complete, since it was
obtained by multiplying X by a function that is constant on its orbits. Thus the
preceding argument applies to prove the lemma.

To complement the preceding discussion, we suppose now that C1 has only re-
ducible singularities.

Lemma 5.6. Suppose that C1 has a reducible singularity. Then we have Type I1.

Proof. Assume that p1 is a reducible singularity of C1. We claim that p1 is a lin-
ear singularity of the corresponding foliation. Indeed, suppose for a contradiction
that it is of Type III or IV. The corresponding vector field would then be Z112 or
X111. Modulo multiplying by a suitable first integral, these vector fields induce a
singularity of order 2 on each of their separatrizes. Hence C1 would have more
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than one singularity of order 2, which is obviously impossible. We then conclude
that p1 is linear as desired. In particular, all singularities of C1 are nodal. Since
C1.C1 = 0, the index formula for reducible singularities (cf. [Su]) shows that the
eigenvalues of these singularities are (1,−1). Finally, there can exist only one such
singularity because it provides a holomorphic vector field with already two singu-
larities on the normalization of C1 (by the same argument employed previously).
This characterizes Type I1 of Theorem 5.1.

From now on we consider the most interesting cases of Theorem 5.1—namely,
those in which all the components of P−1 are smooth rational curves of self-
intersection−2. We denote by F the foliation given by the fibration and by X the
corresponding semi-complete vector field.

Lemma 5.7. Assume that F has a singularity in P−1(0) at which the eigenvalues
of F vanish. Then we have Type III or Type IV of Theorem 5.1.

Proof. Since the vector field Z32 is ruled out from our discussion (given that its
separatrix is singular), it follows that the index of each separatrix of the vector
fields in the Main Theorem is strictly negative.

Now suppose that p1 ∈ P−1(0) is a singularity at which the eigenvalues of F
vanish. Clearly the separatrizes of p1 are all contained in P−1(0). Again our Main
Theorem implies that the model of X around p1 is X112, X123, Z112, Z123, or of
Type IV. However, since the components of P−1(0) have self-intersection−2, the
fact that indices are strictly negative shows that the indices of F with respect to its
separatrizes at p1 cannot be less than−2. HenceX can only be the modelsX111 or
Z112. On the other hand, notice that the models X111 and Z112 have all separatrizes
of index −2. In particular p1 must be the unique singularity of the components
of P−1(0) passing through p1. Therefore, P−1(0) is constituted by these compo-
nents (i.e., P−1(0) is the union of the global separatrizes of F at p1). If the form
of X around p1 is X111 then we obtain Type IV of Theorem 5.1. The other possi-
bility leads to Type III. The lemma is proved.

Thanks to Lemma 5.7, we suppose in the sequel that all the singularities of F have
nontrivial eigenvalues. Since their quotient is negative rational, F will be given
around a singularity by a vector field of the form mx∂/∂x − ny∂/∂y (in suitable
coordinates).

We shall need an extension of Lemma 3.5. Suppose thatM is a complex surface
and that C ⊂ M is a smooth rational curve of negative self-intersection. Suppose
in addition thatX is a meromorphic semi-complete vector field defined on a neigh-
borhood of C whose associated foliation F leaves C invariant.

Denote by p1, . . . ,pk the singularities of F in C. Around each pi, we assume
the existence of local coordinates (xi, ti) (pi � (0, 0), {xi = 0} ⊂ C), where X
becomes X = mixi∂/∂xi − niti∂/∂ti with m, n∈N. Then we have the following
lemma.

Lemma 5.8. Assume that X, F, and C are as before. Then
∑k
i=1(1− εi/ni) = 2

for appropriate integers εi ∈ {−1, 0,1}.
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In other words, Lemma 5.8 extends Lemma 3.5 for smooth rational curves of ar-
bitrary negative self-intersection. The idea of the proof is to reduce the statement
to the case of Lemma 3.5 in which the self-intersection of C is −1. Let us first
make a few comments regarding the proof. We want to induce from X,F a semi-
complete vector field defined on a neighborhood of π−1(0) ⊂ C̃2 (i.e., a smooth
rational curve of self-intersection −1). In order to do this, it is not a priori suf-
ficient to have X defined on a neighborhood of C; rather, we shall need to have
X defined “globally” (on a vector bundle) so as to use a well-known birational
map.

Proof of Lemma 5.8. Let −n be the self-intersection of C. We denote by NC(n)
the normal bundle of C, which is uniquely determined by its Chern class because
it is a line bundle over a rational curve. Moreover, a theorem due to Grauert (see
[A]) ensures that a neighborhood of C in M is holomorphically equivalent to a
neighborhood of the zero-section in NC(n). Hence we identify the zero-section
of NC with C itself and consider a neighborhood V ∈ NC(n) of C equipped
with the semi-complete vector field X. Also note that NC(n) can be compacti-
fied into a CP(1) bundle over CP(1) (a “projective line bundle”) by adding the
“section at infinity”. The result of this compactification is the Hirzebruch surface
Fn. In particular, F1 is the compactification of C̃2 viewed as a line bundle over
π−1(0).

Claim. Without loss of generality, we can suppose thatX is a meromorphic vec-
tor field on the whole of Fn.

Proof. The proof is similar to the argument used in Corollary 2.7. Let V be a
neighborhood of C in NC(n) where X is semi-complete. We consider the auto-
morphism ?r : NC(n) → NC(n) consisting of multiplying vectors on the fibers
of NC(n) by 1/2r, r ∈N. In coordinates (x, y) for {y = 0} ⊂ C, the vector field
X is given as yah(x, y)Y, where a ∈ Z, {y = 0} does not constitute a divisor of
zeros/poles of h, and Y is a holomorphic vector field with isolated singularities.

The vector field Xr = 2ra?∗rX is semi-complete on ?−1
r (V ). Using Proposi-

tion 2.6, we conclude thatXr converges to a vector field defined and semi-complete
on NC when r goes to infinity. From the preceding construction, it is clear that
this limit is a vector field with a meromorphic extension to Fn fulfilling the re-
quired conditions.

Recall that F1 and Fn are birationally equivalent. Since X is now defined on the
whole of Fn, it induces a vector field X̃1 on F1. Denote by F̃1 the foliation asso-
ciated to X̃1. The foliation F̃1 has k + n − 1 singularities on π−1(0), denoted by
{p̃1, . . . , p̃k, q1, . . . , qn−1}. The singularities p̃i of X̃1 are equal to the singularities
pi of the original vector field X. On the other hand, the singularities qj are intro-
duced by the birational equivalence between F1 and Fn. They are of radial type.
More precisely, there are coordinates (xj, tj ) ({xj = 0} ⊂ π−1(0)) on a neighbor-
hood of qj in which X̃1 becomes
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X̃1 = (xj/tj )(ordπ−1(0)X̃1)t−1
j hj(xj∂/∂xj + tj∂/∂tj ) with hj(0, 0) �= 0.

The rest of the proof is now completely analogous to the proof of Lemma 3.5.

Combining Lemma 5.8 with the index formula (stating that
∑k
i=1(mi/ni) is equal

to the the absolute value of the self-intersection of C), we immediately derive our
next lemma.

Lemma 5.9. LetM,X,F,C be as in the statement of Lemma 5.8. Suppose that
the self-intersection of C is −2. Then k ≤ 4. Besides, if k = 4 (resp. 3) then the
4-tuple (resp. 3-tuple) formed by the ratios of the eigenvalues of the correspond-
ing singularities in C is one of the following:

4sing. (1,1/3,1/3,1/3), (1,1/2,1/4,1/4), (1,1/2,1/3,1/6), or
(1/2,1/2,1/2,1/2);

3sing. (1,1/2,1/2), (4/3,1/3,1/3), (2/3, 2/3, 2/3), (3/2,1/4,1/4),
(5/4,1/2,1/4), (3/4, 3/4,1/2), (3/2,1/3,1/6), (1/2, 4/3,1/6),
(1/2,1/3, 7/6), or (1/2, 2/3, 5/6).

Proof. Denote by k ∈ N the number of the singularities in question and suppose
that k ≥ 2. Also consider the equations

∑k
i=1(1− εi/ni) = 2 and

∑k
i=1(mi/ni).

We first deal with the case n1 = 1. It immediately follows that m1 = 1 and ε1 =
0,1. The case ε1 = 1 reduces to the cases treated in the proof of Proposition 3.2.
We see that there are at most four singularities whose eigenvalues are the first three
4-tuples in 4sing. The case ε1 = 0 is also easy to treat and leads to one or two ad-
ditional singularities; when this total is three singularities, one has n2 = n3 = 2
and m2 = m3 = 1 and so the case ε1 = 0 belongs to the list of 3sing.

Now we can suppose that ni ≥ 2 for all i. Then 1− εi/ni ≤ 1/2 and thus k ≤
4. For k = 4, we have ni = 2 and mi = 1 for all i ∈ {1, 2, 3, 4}.

Finally we consider k = 3 and ni ≥ 2. Solutions for ni verifying

3∑
i=1

(
1− εi

ni

)
= 2

are as in Proposition 3.2—namely, (3, 3, 3), (2, 4, 4), and (2, 3, 6). It is now clear
how to work out all the solutions in 3sing. The lemma is proved.

Proof of Theorem 5.1. We keep the preceding notations. We can suppose with-
out loss of generality that all singularities of F have nonvanishing eigenvalues.
Also, P−1(0) = ∑s

i=1 miCi does not contain smooth rational curves of self-
intersection −1. In fact, all the components Ci of P−1(0) are smooth rational
curves of self-intersection −2.

The following remark will often be used in the sequel: consider p ∈Ci ∩Cj ⊆
Sing F. If the index of F w.r.t. Ci at p is λ (λ ∈ Q−), then the index of F w.r.t.
Cj at p is λ−1. In particular, both λ and λ−1 must belong to [−2, 0) because the
self-intersection of Ci is −2 for every i = 1, . . . , r. Therefore Lemma 5.9 implies
that if some Ci contains four singularities then the ratios are (1/2,1/2,1/2,1/2).
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It is clear that the resulting fiber is a degenerate case of D̃n (which is also called
I∗n); namely, we have only one A-curve and four B-curves.

Hence we can suppose that each Ci (i = 1, . . . , r) contains at most three singu-
larities of F. Furthermore, if some Ci0 effectively contains three singularities then
the corresponding ratios of their eigenvalues are in the list

(1,1/2,1/2), (2/3, 2/3, 2/3), (3/4, 3/4,1/2), (1/2, 2/3, 5/6). (10)

Let us examine the case when C1 contains three singularities corresponding to
(1,1/2,1/2). This will lead us to the fiber D̃n (I∗n). The other three cases follow
the same pattern and are left to the reader (they lead respectively to the fibers Ẽ6,

Ẽ7, and Ẽ8).

So denote by p2,p3,p4 the singularities of F on C1 whose respective eigenval-
ues are 1,−1 and 1,−2 and 1,−2. Denote by C2 (resp. C3, C4) the component of
P−1(0) containing the separatrix of p2 (resp. p3,p4) that is transverse to C1. The
index of F w.r.t. C3 (resp. C4) at p3 (resp. p4) is −2, so C3, C4 does not con-
tain other singularities (i.e., P−1(0) “ends” at C3, C4). Nonetheless, the index of
F w.r.t. C2 at p2 is −1 and hence C2 must contain additional singularities. One
has two possibilities: C2 contains either two or three singularities.

If C2 contains three singularities then these are as in (1,1/2,1/2). Therefore
P−1(0) will “end” in the obvious way (it will consist of six components arranged
as in the Type D̃n). If C2 contains only two singularities then the other singular-
ity, denoted by p5, also has eigenvalues 1,−1. Denote by C5 the component of
P−1(0) containing the separatrix of p5 transverse to C2. The index of F w.r.t. C5

at p5 is still−1 and hence C5 must contain additional singularities. The preceding
alternative is verified again; that is, C5 contains either two or three singularities.
When C5 contains three singularities, they are as in (1,1/2,1/2) and so P−1(0)
ends. Otherwise C5 contains only two singularities and we continue inductively.
Since P−1(0) is compact, at some point we will meet a rational curve containing
three singularities so that P−1(0) will end. Clearly the resulting singular fiber is
of Type D̃n (I∗n).

Finally, it remains to analyze the case where all components of P−1(0) contain
only one or two singularities. This is rather easy and promptly leads to fibers of
Type Ãn (also called In). The proof of the theorem is complete.

References

[A] V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles
ordinaires, Mir, Moscow, 1980.

[CSa] C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic
vector fields, Ann. of Math. (2) 115 (1982), 579–595.

[CeM] D. Cerveau and J.-F. Mattei, Formes intégrables holomorphes singulières,
Astérisque 97 (1982).

[CeSc] D. Cerveau and B. Scardua, Complete polynomial vector fields in two complex
variables, preprint, Université de Rennes I.

[D] H. Dulac, Recherches sur les points singuliers des équations différentielles,
J. École Polytechnique 9 (1904), 1–125.



Meromorphic Vector Fields and Elliptic Fibrations 59

[F] R. Friedman, Algebraic surfaces and holomorphic vector bundles, Springer-
Verlag, New York, 1998.

[GR] E. Ghys and J. C. Rebelo, Singularités des flots holomorphes II, Ann. Inst.
Fourier (Grenoble) 47 (1997), 1117–1174.

[GrH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York,
1978.

[K] K. Kodaira, On compact analytic surfaces II, Ann. of Math. (2) 77 (1963),
563–626.

[L] F. Loray, Feuilletages holomorphes à holonomie résoluble, Ph.D. thèse, Univ.
Rennes I, 1994.

[MMo] J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École
Norm. Sup. (4) 13 (1980), 469–523.

[R1] J. C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble)
46 (1996), 411–428.

[R2] , Champs complets avec singularités non isolées sur les surfaces
complexes, Bol. Soc. Mat. Mexicana (3) 5 (1999), 359–395.

[S] A. Seidenberg, Reduction of singularities of the differentiable equation
Ady = B dx,Amer. J. Math. 90 (1968), 248–269.

[Su] T. Suwa, Indices of vector fields and residues of singular holomorphic foliations,
Hermann, Paris, 1998.

PUC-Rio
R. Marques de S. Vicente 225
Rio de Janeiro RJ CEP 22453-900
Brazil

jrebelo@mat.puc-rio.br

Current address
Institute for Mathematical Sciences
SUNY at Stony Brook
Stony Brook, NY 11794-3660

jrebelo@math.sunysb.edu


