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Fatou Sets for Rational Maps of Pk

Kazutoshi Maegawa

1. Introduction

In this paper we study the dynamics of a rational self-map of P
k. We deal with

the Fatou set and give a rough classification of the dynamics on the Fatou compo-
nents for a rational map whose indeterminacy set is nonempty. Our result is just
the first step toward a complete classification of Fatou components, but it shows
us a new dynamical phenomenon.

For an algebraically stable (AS) rational self-map f of degree ≥ 2 of P
k, the

Fatou set is defined to be the set of all the Lyapunov stable points for f. The
connected components of the Fatou set are called Fatou components. The in-
determinacy set I (and, moreover, the extended indeterminacy set E) are auto-
matically disjoint from the Fatou set. Let Orb(x) denote the forward orbit of
x ∈ P

k. The main purpose of this paper is to show the following theorem. Keep in
mind that it is not a direct consequence of the definition of the Fatou set because
codimC I ≥ 2.

Theorem 1.1. Let f be an AS rational self-map of degree ≥ 2 of P
k, and let

U be a Fatou component for f. If there exists at least one point x ∈ U such that
Orb(x) ∩ I �= ∅, then Orb(y) ∩ I �= ∅ for any y ∈U.

From this theorem it follows that there are two types of Fatou components in terms
of the relationship between their respective limit maps and I. We call a Fatou com-
ponent that contains no point whose forward orbit accumulates at I a regular Fatou
component. We will show that any regular Fatou component is Stein. Further, we
will give a formula that relates the Green (1,1) current to the union of all regu-
lar Fatou components. This is an improvement on the theorem of Fornæss and
Sibony in [FS].
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2. Preliminaries

In this section we lay the groundwork for the results of Section 3. We begin by
recalling some definitions and basic facts concerning rational self-maps of P

k.

Let F be a polynomial self-map of C
k+1 such that all the component polyno-

mials are homogeneous, have the same degree, and have no common factor. Let
O be the origin of C

k+1. Because F maps any complex line through O that is
not contained in F −1(O) onto a complex line through O, it follows that the map
F induces a map f from P

k \ π(F −1(O)) to P
k such that π 
 F = f 
 π in

C
k+1 \F −1(O), where π is the canonical projection from C

k+1 \{O} to P
k. Let I

be the algebraic set in P
k given by the common zeros of all the component poly-

nomials of F, that is, I := π(F −1(O)). Then f is a holomorphic map outside I
and cannot extend to be continuous at I, since codimC I ≥ 2. The obtained map
f is called a rational self-map of P

k, and F is called the minimal defining polyno-
mial map for f. We call I the indeterminacy set for f. The degree of f is defined
to be the degree of F.

Definition 2.1. We set f(p) := ⋂
r>0 f(Ur(p) \ I ) for p ∈ I, where Ur(p)

is the ball centered at p and of radius r with respect to the Fubini–Study metric.
Then, f(p) is an algebraic set of dimension ≥ 1.

Set I1 := I and In := π(F −n(O)) for n ≥ 2. Then I1 ⊂ I2 ⊂ · · · . Let us recall
the definition of algebraically stable rational self-maps. See also [S].

Definition 2.2. Let f be a rational self-map of degree ≥ 2 of P
k. We say that

f is algebraically stable (AS) if codimC In ≥ 2 for any n ≥ 1.

Remark 2.3 (Iteration of AS rational self-map). Definition 2.2 is equivalent to
stating that there is no common factor of all the component polynomials of F n for
each n ≥ 1. Hence, F n induces a rational self-map of P

k whose indeterminacy
set is In (n ≥ 2). We denote the induced rational map by f n (n ≥ 2). Obviously,
such f n are also algebraically stable. Outside In, the map f n is equal to f 
· · ·
f
(n times), where 
 denotes a composition of maps in the usual sense. Let Orb(x)
denote the forward orbit {x, f(x), f 2(x), . . .} for x ∈ P

k.

We will use the following definitions and notation concerning dynamics of AS ra-
tional self-maps of P

k.

Definition 2.4. Let f be an AS rational self-map of degree ≥ 2 of P
k.

(a) We define the extended indeterminacy set E by E := ⋃
n≥1 In.

(b) We define the regular domain R by

R := {p ∈ P
k | p ∈ ∃V : an open set, I ⊂ ∃W : an open set

s.t. f n(V ) ∩ W = ∅ ∀n ≥ 0}.
We call points in R regular points and the others irregular points. It is easy to
show that R ⊂ P

k \ E.
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(c) Usually, a Lyapunov stable point is defined to be a point at which the se-
quence of the iterates is equicontinuous. In the present case, however, the meaning
of this is not so clear because dim f n(p) ≥ 1 for p ∈ In. Here we define Lyapunov
stability by saying that p ∈ P

k is a Lyapunov stable point for f if, for any ε > 0,
there exists a δ > 0 such that diam f n(Uδ(p)) < ε for all n ≥ 1.

If p ∈E, then p is not Lyapunov stable. Let us show this. Suppose to the con-
trary that p ∈ E is Lyapunov stable. Set ε to be so small that any ball in P

k that
is of radius ε > 0 is Stein. Take δ > 0 for ε. There is a positive integer m such
that Uδ(p) ∩ Im = ∅, so f m(Uδ(p)) contains an algebraic set of dimension ≥ 1.
Yet this is impossible, since f m(Uδ(p)) is contained in an ε-ball (recall that no
algebraic set of dimension ≥ 1 has a Stein neighborhood).

We define the Fatou set � by

� := {p ∈ P
k | p is a Lyapunov stable point}.

A connected component of � is called a Fatou component. The complement of
the Fatou set is called the Julia set J. From the preceding consideration, E ⊂ J.

By a normal family argument, it follows that � is an open subset in P
k. Actually,

� = {p ∈ P
k \ E | p ∈ ∃V : an open set s.t. {f n}n≥1 is a normal family in V }.

(d) Let U be a Fatou component. We say that g : U → P
k is the limit map in

U if there is a subsequence {f nj} that converges locally uniformly to g in U as
j → ∞.

Remark 2.5. Both R and � are backward invariant.

Remark 2.6. Regular points are also called normal points by several authors
(see e.g. [S]). In this paper, to avoid the confusion with points at which {f n}n≥1 is
normal, we use “regular”.

The following Propositions 2.7, 2.9, 2.12, 2.13, and 2.15 are contained in [FS] or
[U]. Although the assumptions in some of them differ from the original presenta-
tion, the original proofs are still valid under our assumptions.

Let ‖·‖ denote the Euclidian norm in C
k+1. Let f be an AS rational self-map

of degree d ≥ 2 of P
k, and let F be the minimal defining polynomial map for f.

Proposition 2.7. Let M := max‖x‖=1‖F(x)‖. Then M > 0 and

‖F(x)‖ ≤ M‖x‖d
for all x ∈ C

k+1.

Definition 2.8. We define the Green function for f by

G(x) = lim
n→∞

1

d n
log‖F n(x)‖, x ∈ C

k+1.

Proposition 2.9. (i) G ≡ −∞ or G is plurisubharmonic in C
k+1 such that

G(F(x)) = dG(x) and G(λx) = log|λ| + G(x) for all λ∈ C and all x ∈ C
k+1.
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(ii) If h(x) is a function on C
k+1 \ {O} such that h(x) − log‖x‖ is bounded,

then

lim
n→∞

1

d n
h(F n(x)) = G(x).

Let A be a sufficiently large positive number. Replacing h(x) by h(x) + A, the
sequence turns out to be decreasing.

Remark 2.10. Observe that it follows from (i) that G < 0 in a neighborhood of
O. This will be used later.

Remark 2.11. We say that an AS rational map f is dominating if f is generi-
cally of maximal rank k. For such f, the Green function G is plurisubharmonic
(see [S]).

When G �≡ −∞, we denote by T the (1,1) current in P
k such that π∗T = ddcG.

Proposition 2.12. Suppose G �≡ −∞. Then the Fatou set � ⊂ P
k \ supp T .

Proof. Letp ∈�. We can take a neighborhood V ofp and a subsequence {f nj}j≥1

that converges uniformly in V. We can assume that all f nj(V ) are contained in an
open set Z such that (a) there is a function hZ(x) in C

k+1 \ {O} that is plurihar-
monic in π−1(Z) and (b) hZ(x)− log‖x‖ is bounded in C

k+1 \ {O}. By Proposi-
tion 2.9(ii), limn→∞(1/d n)hZ(F

n(x)) = G(x). We can assume that the sequence
on the left-hand side is decreasing, so Harnack’s theorem applies to it in π−1(V ).

As a result, G(x) is pluriharmonic in π−1(V ).

Set BG := {G = 0}.
Proposition 2.13. Let W be a neighborhood of I. Set

Q := Q(W ) := {p ∈ P
k | f n(p)∈ P

k \W ∀n ≥ 0},
Q̃ := π−1(Q).

Then f(Q) ⊂ Q, the sequence definingG converges uniformly on Q̃, andBG ∩ Q̃

is contained in {x ∈ C
k+1 | r < ‖x‖ < R} for some 0 < r,R < +∞.

Proof. The forward invariance of Q is obvious. Set W̃ := π−1(W ), and let m =
min‖x‖=1, x∈Ck+1\W̃‖F(x)‖. Thenm > 0 and ‖F(x)‖ ≥ m‖x‖d for all x ∈ C

k+1\W̃.
Let M = max‖x‖=1‖F(x)‖. Then M > 0 and ‖F(x)‖ ≤ M‖x‖d for all x ∈ C

k+1

(Proposition 2.7). Hence, there is a constant 0 < C < +∞ such that
∣∣∣∣
1

d
log‖F n+1(x)‖ − log‖F n(x)‖

∣∣∣∣ < C

for all x ∈ Q̃ and all n ≥ 0. The uniform convergence of {(1/d n) log‖F n(x)‖} in
Q̃ follows and so G(x) = log‖x‖ + v(x) in Q̃, where v(x) is a bounded contin-
uous function in Q̃ such that v(λx) = v(x) for all x ∈ Q̃ and all λ∈ C. Thus, we
can take the desired 0 < r,R < +∞.
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Remark 2.14. Let p be a regular point. By definition, there exist a neighbor-
hood V of p and a neighborhood W of I such that f n(V )∩W = ∅ for all n ≥ 0.
So p ∈Q(W ).

Proposition 2.15 was stated for the Green functions of holomorphic self-maps of
P
k by Ueda [U], although his proof doesn’t concern the dynamics.

Proposition 2.15. Let P be a plurisubharmonic function in C
k+1 such that

P(λx) = log|λ| + P(x) for λ ∈ C and x ∈ C
k+1. Then the following statements

hold.

(i) Let p be a point in P
k, and let p̃ be a point in C

k+1\{O} such that π(p̃) = p.

Then P is pluriharmonic at p̃ if and only if there exist a neighborhood D of p
and a holomorphic map s : D → C

k+1 \O such that s(D) ⊂ BP := {P = 0}
and π 
 s = id.

(ii) The holomorphic map s in (i) is unique up to a constant factor with absolute
value 1.

3. Fatou Sets and Indeterminacy Sets

In this section we demonstrate the main theorem (Theorem 3.2).

Lemma 3.1. Let f be an AS rational self-map of degree ≥ 2 of P
k, and let

p be a point in the Fatou set � for f. Then p is a regular point if and only if
Orb(p) ∩ I = ∅.
Proof. It is obvious that, by definition, the regularity implies no accumulation of
the forward orbit at I. The inverse is also easy to see by considering the equicon-
tinuity of {f n} at p.

We will show a fundamental theorem about the forward orbits of points in the
Fatou set.

Theorem 3.2. Let f be an AS rational self-map of degree ≥ 2 of P
k, and let

U be a Fatou component for f. If there exists at least one point x ∈ U such that
Orb(x) ∩ I �= ∅, then Orb(y) ∩ I �= ∅ for any y ∈U.

Remark 3.3. This theorem is not a direct consequence of Lyapunov stability
(i.e., the local equicontinuity of {f n}n≥1 in the Fatou set) because codimC I ≥ 2.

Remark 3.4. Note that we don’t assume that U is periodic. Thus, if there exists
a wandering domain then it has this property.

Proof of Theorem 3.2. By Lemma 3.1 we need only prove the case R �= ∅. For
this case, by Proposition 2.13 and Remark 2.14 it follows that G �≡ −∞. Hence,
by Proposition 2.12, U ⊂ P

k \ supp T . Suppose that the forward orbit of p ∈ U

accumulates at I. We will show that the forward orbit of any point in some neigh-
borhood of p also accumulates at I.
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By Proposition 2.15, we can take a small neighborhood D of p and a holomor-
phic section s such that s(D) ⊂ BG. We can take a subsequence {f nj}j≥1 such
that {f nj}j≥1 converges uniformly in D as j → ∞ and {f nj(p)}j≥1 converges to
a point q in I as j → ∞. Without loss of generality, we can assume that there
is an open set W, which is a polydisk in a local chart, such that all f nj(D), j =
1, 2, . . . , are contained in W.

SetW ∗ := {x ∈ C
k+1 | r < ‖x‖}∩π−1(W ),where r is a sufficiently small pos-

itive number. We regard P
k+1 as the compactification of C

k+1 in the usual way.
Then W ∗ is hyperbolically imbedded in P

k+1 and F nj(s(D)) ⊂ W ∗ for all j ≥ 1
because f nj(D) ⊂ W and F nj(s(D)) ⊂ BG ⊂ {x ∈ C

k+1 | r < ‖x‖} for all j ≥ 1
(recall that G < 0 in a neighborhood of O). Hence {F nj 
 s}j≥1 is a normal family
as a sequence of maps from D to P

k+1.

Take a locally uniformly convergent subsequence {F nj(m) 
 s}m≥1. By shrinking
D,we assume that the convergence is uniform inD. Letψ be the limit map of this
sequence, and consider ψ(D). We will check that ψ(p) ∈ P

k+1 \ C
k+1. Suppose

that ψ(p)∈ C
k+1. By G(F nj(m) 
 s(p)) = 0 for all m ≥ 1 and by the upper semi-

continuity of G, it follows that G(ψ(p)) ≥ 0. However, G = −∞ in π−1(q)

and ψ(p) ∈ π−1(q). This is a contradiction. It therefore follows that ψ(p) ∈
P
k+1 \ C

k+1 and hence ψ−1(P k+1 \ C
k+1) �= ∅. We set A := ψ−1(P k+1 \ C

k+1);
then A is an analytic subvariety in D. If A is a proper subvariety in D then, by
applying the maximum principle to the holomorphic functions that are the com-
ponents of F nj(m) 
 s (m ≥ 1) and using the charts of D and C

k+1, we obtain a
contradiction. Hence, A = D. To show that the forward orbit of any point in
D accumulates at I, we have only to show that any point in D is an irregular
point (Lemma 3.1). But this now follows immediately from Proposition 2.13, Re-
mark 2.14, and the equality A = D.

The set of points in U whose forward orbits accumulate at I is an open set in U,
as we have shown. On the other hand, by Lemma 3.1 the set of points in U whose
forward orbits do not accumulate at I is also an open set in U. Since U is con-
nected, the forward orbit of any point in U accumulates at I if there is at least one
point in U whose forward orbit accumulates at I.

By Lemma 3.1 and Theorem 3.2, any Fatou component consists either of only reg-
ular points or of only irregular points.

Definition 3.5. A Fatou component U is regular if all points in U are regular.
Denote by �R the union of all regular Fatou components, and let �IR := � \�R.

There is an AS rational self-map of P
2 for which �R �= ∅ and �IR �= ∅.

Example 3.6. Consider an AS polynomial self-map of C
2 (⊂ P

2),

f [x : y : t] = [x 2 t : y3 : t 3].

For f, the indeterminacy set is I = {[1 : 0 : 0]}. X = {[0 : 1 : 0]} is a
super-attracting fixed point. A domain {|y| > |t |} is the basin of attraction for
X and a regular Fatou component. A domain {|x| < |t |, |y| < |t |} is another
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regular Fatou component. A domain {|x| > |t |, |y| < |t |} is an irregular Fatou
component such that any point in it goes to I in the forward time.

Ueda [U] proved that all the Fatou components for holomorphic self-maps of
degree ≥ 2 of P

k are Kobayashi hyperbolic. Here we will generalize his result
to the case of AS rational self-maps. In general, Fatou components are not neces-
sarily Kobayashi hyperbolic—for example, the basin of attraction of an attracting
fixed point for a Hénon map (this is a Fatou–Bieberbach domain). So here we will
give a sufficient condition.

Theorem 3.7. Let f be an AS rational self-map of degree ≥ 2 of P
k, and let U

be a Fatou component for f. If each point in ∂U is regular, then U is hyperboli-
cally imbedded in P

k.

Proof. It is obvious in light of Theorem 3.2 that U is a regular Fatou component.
Since U is relatively compact, we can take an open set W in Proposition 2.13 such
that U ⊂ Q(W ). Thus, by the same method [U] as in the case of holomorphic
maps, the hyperbolic imbeddedness of U follows.

Suppose G �≡ −∞. In [FS] it is shown that R \ supp T ⊂ �. Here we will show
that ∂(R \ supp T ) ⊂ J and R \ supp T is Stein.

Theorem 3.8. Let f be an AS rational self-map of degree ≥ 2 of P
k such that

G �≡ −∞. Then:

(i) �R = R \ supp T ;
(ii) �R is Stein.

Proof. (i) R \ supp T ⊂ � was shown in [FS]. By Theorem 3.2, any Fatou com-
ponent intersecting R \ supp T is regular, so R \ supp T ⊂ �R. By the definition,
�R ⊂ R. By Proposition 2.12, �R ⊂ P

k \ supp T . Hence, �R ⊂ R \ supp T .
(ii) We now show the pseudoconvexity of a connected component U of �R.

(Since U �= P
k, the pseudoconvexity implies the Steinness of U.) Let U1 be the

connected component of P
k \ supp T, which contains U. Let us recall Ueda’s

method used in [U] to show the Kobayashi hyperbolicity of Fatou components in
the case of holomorphic maps. Proposition 2.15 applies to points in U1, so let p be
a point inU1 and chooseD and s as in Proposition 2.15(i). By Proposition 2.15(ii),
the section s can be continued analytically along all curves in U1. Therefore, the
analytic continuation of s defines a covering manifold α : Ũ1 → U1 of U1 as well
as a holomorphic map s̃ : Ũ1 → C

k+1 such that π 
 s̃ = α, where s̃ is injective
and s̃(Ũ1) is in BG.

We set a polydisc 5 and a Hartogs figure H in 5 as follows:

5 := {(z, w)∈ C
k | z∈ C, w ∈ C

k−1, |z| < 1, |w| < 1},
H := {(z, w)∈ C

k | |z| < 1, |w| < r}
∪ {(z, w) | r1 < |z| < 1, |w| < 1}, 0 < r, r1 < 1.
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Let ψ : 5 → P
k be an injective holomorphic map such that ψ(H ) ⊂ U. We will

show that ψ(5) ⊂ U. Since U1 is pseudoconvex and U ⊂ U1, we have ψ(5) ⊂
U1. Since 5 is simply connected, there is a holomorphic map ψ1 : 5 → Ũ1 such
that α 
 ψ1 = ψ. Set ψ2 := s̃ 
 ψ1; then π 
 ψ2 = ψ and ψ2(5) ⊂ BG. We can
assume without loss of generality that ψ(H ) ⊂⊂ U. Since each point in U is a
regular point and ψ(H ) ⊂⊂ U, there is a neighborhood V of ψ(H ) contained in
U and a neighborhood W of I such that f n(V )∩W = ∅ for all n ≥ 0. Then, V ⊂
Q = Q(W ). (See Proposition 2.13 and Remark 2.14.)

Set S := {r < ‖x‖ < R}, where r and R are positive constants appearing in
Proposition 2.13. It follows that F n 
ψ2(H ) is contained in S for all n ≥ 0, since
ψ(H ) ⊂ Q and ψ2(H ) ⊂ BG. By applying the maximal principle to the compo-
nent functions of F n 
ψ2 in 5, it follows that F n 
ψ2(5) is contained in {‖x‖ <

R} for all n ≥ 0. Hence, {F n 
ψ2}n≥0 is a normal family in 5. This implies that
{f n}n≥0 is a normal family in ψ(5), since F n 
 ψ2(5) ⊂ BG and BG is disjoint
from a neighborhood of O. Therefore, ψ(5) ⊂ U.

In the rest of this section we will see some cases in which all the Fatou compo-
nents are Stein.

Let us regard P
k as the compactification of C

k; that is, P
k = C

k ∪ :, where
: is a hyperplane. We say that a polynomial self-map f of C

k is weakly regular
if f(: \ I ) ∩ I = ∅, where the latter f means the extended map onto P

k and I

the indeterminacy set (see [GS]). Note that weakly regular polynomial self-maps
are algebraically stable. We set X := f(: \ I ). Here X is an attractor: there is a
neighborhood V of X in P

k such that f(V ) ⊂⊂ V and
⋂

n≥0 f
n(V ) ⊂ X.

Proposition 3.9. Let f be a weakly regular polynomial self-map of degree ≥ 2
of C

k, and assume dim I = 0. Then the Fatou set � is Stein.

Proof. Let W ⊂ P
k be the basin of attraction for X, that is, W = ⋃

n≥0 f
−n(V ).

Obviously ∂W ⊂ J, so there are two types of Fatou components: one type is a
subset of W and the other type is a subset of the interior of P

k \W. Fatou com-
ponents of the first type are Stein because they are regular. We will show the
Steinness of the second type of Fatou component U. Clearly U is in C

k, so the
pseudoconvexity of U implies the Steinness of U. Let us use 5 and H as in the
proof of Theorem 3.8. Let ψ : 5 → P

k be an injective holomorphic map such
that ψ(H ) ⊂ U. We will show that ψ(5) ⊂ U. We may assume that ψ(H ) ⊂⊂
U. Let {f nj} be any subsequence of {f n} that converges locally uniformly in U,

and let φ be the limit map.
If there is a p ∈ ψ(H ) such that {f nj(p)} is bounded in C

k, then φ(ψ(H )) ⊂
C

k. By the maximal principle, {f nj} converges locally uniformly in ψ(5).

If there is a p ∈ ψ(H ) such that {f nj(p)} is unbounded, then φ(p) is a point
q in I. By the maximal principle and the connectedness of φ(ψ(H )), it follows
that φ(ψ(H )) = {q}. Hence there is a hyperplane L ⊂ P

k such that, for suf-
ficiently large j, the image f nj(ψ(H )) is disjoint from L and q is also disjoint
from L. By the pseudoconvexity of P

k \ L, it follows that f nj(ψ(5)) is also dis-
joint from L. We can take advantage of the coordinate in P

k \L (note that P
k \L



Fatou Sets for Rational Maps of P
k 11

is biholomorphic to C
k, apparently). In this coordinate, we may regard q as the

origin O of C
k. Again by the maximal principle, it follows that {f nj} converges

locally uniformly in ψ(5) to O.

We have shown that ψ(5) ⊂ U. Hence, U is pseudoconvex.

Remark 3.10. We can also prove the following assertion in the same manner as
for the preceding proposition.

Let f be a polynomial automorphism of degree ≥ 2 of C
k. Suppose that f, f −1

are weakly regular and that dim(I+ ∩ I−) = 0. Then �+ and �− are Stein. (Here
I± and �± are the indeterminacy sets and the Fatou sets for f±, respectively.)

Let X+ be the attractor for f+ and let W+ be the basin of attraction for X+. It is
sufficient to show that, for any point in C

k \W+, the forward orbit does not accu-
mulate at : \ (I+ ∩ I−). This has been shown in Proposition 1.7 of [GS].
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