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Measures of Transcendency for Entire Functions

Dan Coman & Evgeny A. Poletsky

1. Introduction

If X is a non-pluripolar compact set in C
k and P is a polynomial of degree n on

C
k, then the Bernstein–Walsh inequality (see [K]) is

|P(z)| ≤ ‖P ‖Xe
nVX(z), (1)

where ‖P ‖X is the uniform norm of P on X and VX(z) is the extremal function of
X. For example, if z = (z1, . . . , zk) and X = �k = {z ∈ C

k : |zj | ≤ 1, 1 ≤ j ≤
k} is the unit polydisk, then

VX(z) = L(z) = max{log+|z1|, . . . , log+|zk|}.
If X is pluripolar then, in general, such estimates are impossible.

Let Pn be the space of polynomials of degree at most n on C
2 and let �(z, r)

denote the closed disk centered at z and of radius r in C. For an entire function f

on C we define

Mn(f, r) = Mn(r) = sup{‖Pf‖�r
: P ∈ Pn, ‖Pf‖� ≤ 1},

where Pf (z) = P(z, f(z)), �r = �(0, r), and � = �(0,1).
If f is a polynomial of degree d, then it follows from the Bernstein–Walsh in-

equality that Mn(f, r) ≤ r dn for r ≥ 1. To prove certain deep theorems in tran-
scendental number theory, Tijdeman [T] showed that Mn(f, r) ≤ exp(Cn2 log+ r)

when f(z) = ez (see also [B]). Later we proved in [CP] that, in this case,

Mn(f, r) = exp
(

1
2n

2 log+ r + o(n2)
)
.

The latter estimate is asymptotically sharp. In both papers the authors used highly
specific features of the exponential function.

In this paper (see the inequality (6) and Theorem 4.2) we give an effective
method to obtain upper estimates for Mn(f, r) when f is an arbitrary entire tran-
scendental function.

The results in [T] and [CP] can be viewed as a generalization of the classical
Bernstein–Walsh inequality to the case of polynomials of variables z and f(z).

When f is a polynomial,

mn(f, r) = mn(r) = logMn(f, r)
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grows like a linear function of n, but in the transcendental case we have by Corol-
lary 2.6 that

lim inf
n→∞

mn(f, r)

n2
≥ 1

2
log r.

Thus, mn(f, r) grows at least like n2.

For many applications it is useful to know the order of the asymptotics of
mn(f, r) in n, that is, to find the minimal α(f ) > 0 such that

lim sup
n→∞

mn(f, r)

nα(f )
< ∞.

Until now even the existence of functions f with 2 < α(f ) < ∞ was not known.
An example in [BLMT] shows that there is an entire function f such that

lim sup
n→∞

mn(f, r)

nα
= ∞

for all α > 0, so in this case α(f ) = ∞. The method developed in Section 4
allows us in Section 6 to prove, for every α ≥ 3, the existence of entire func-
tions f having order of growth 1 and type 1/e such that α − 1 ≤ α(f ) ≤ α. More
precisely,

0 < lim sup
n→∞

mn(f, r)

nα−1
and lim sup

n→∞
mn(f, r)

nα
< ∞.

This shows that the order of the asymptotics of mn does not depend only on the
order of f.

Another interesting characteristic of the function f is the maximal number of
zeros Zn(f, r) = Zn(r) of Pf (z) in the disk �r when P ∈ Pn. This is closely
related to mn(f, r). The function Zn(f, r) counts the maximal number of intersec-
tion points of the graph of f in C

2 with algebraic curves of degree at most n over
the disk �r. In Section 2 we show that

mn(f, r/3)

log r + 16
≤ Zn(f, r) ≤ 2mn(f, 3r).

The characteristic Mn(f, r) gives a bound on the growth of the restriction of
|P(z,w)|, P ∈ Pn, to the graph of f in C

2. To obtain estimates on |P | at every
point, we introduce

En(f ) = En = sup{‖P ‖�2 : P ∈ Pn, ‖Pf‖� ≤ 1}
and we let en = logEn. A simple normal family argument shows that En(f ) is
finite if f is transcendental. Then, by (1) we have

|P(z,w)| ≤ ‖P ‖KEn(f )enL(z,w), (2)

where P ∈ Pn and K = {(z, f(z)) : |z| ≤ 1}. In [CP] we proved the asymptoti-
cally sharp estimate

en = 1
2n

2 log n + O(n2)

when f(z) = ez. In this paper we prove upper estimates on En for general tran-
scendental functions. Thus one can obtain a Bernstein–Walsh-type inequality (2)
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for the special pluripolar set K, provided there are effective estimates on the con-
stants En(f ).

Toward this end, we give in Section 3 an appropriate version of Cartan’s lemma
for polynomials. This lemma allows us to obtain in Section 4 an upper estimate
for En(f ) in terms of Mn(f, r) and the nth diameter (see Section 3) of the set
D(θ, r) = {z ∈�r : f(z) = eiθ }. Roughly speaking, En(f ) ≤ Mn(f, r)r

nδ−n(r)

if, for every θ, the set D(θ, r) has at least n+1 points and δ(r) is the minimal dis-
tance between these points. Combining this with the upper estimate on Mn(f, r)

in terms of En(f ), which follows from (1), we obtain effective estimates on En(f )

in terms of M(f, r) = ‖f ‖�r
and the nth diameter of the set D(θ, r). In Section 5

we apply these estimates to the case of f(z) = ep(z), where p is a polynomial.
If f is a polynomial of degree d, then En and Zn are equal to ∞ when n ≥ d and

Mn(f, r) ≤ r dn for all n. The exponential function realizes the least bounds for
Zn(r) and Mn(r) in the class of transcendental functions. In our point of view, the
characteristics of f studied in this paper measure how far f is from polynomials—
that is, the transcendency of f. This explains the title of the paper.

2. Relationship between Zn(r) and mn(r)

For an entire function g and r > 0, we let Z(g, r) be the number of zeros of g in
the disk �r and let M(g, r) = max|z|=r |g(z)|.

Let F be a finite-dimensional linear subspace of entire functions containing
constants. We introduce

MF (r) = sup{M(f, r) : f ∈ F, ‖f ‖� ≤ 1}
and

ZF (r) = sup{Z(f, r) : f ∈ F }.
Since F contains constants, ZF (r) coincides with the maximal valency in �r of
functions from F.

We will need the following theorem of Jenkins and Oikawa (see [JO, p. 670]).

Theorem 2.1. Let

f =
∞∑
k=0

akz
k

be a p-valent holomorphic function in the unit disk, µp = maxk≤p|ak|, and 0 <

r < 1. Then
M(f, r) < A(p)µp(1 − r)−2p,

where A(p) = (p + 2)23p−1 exp(pπ2 + 1/2).

The following theorem establishes the relationship between MF (r) and ZF (s).

Theorem 2.2. If 1 < s < r and f ∈ F, then

MF (r) ≥
(
r 2 + s2

2rs

)ZF (s)
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and
MF (r) ≤ e(log r+16)ZF (3r).

Proof. Let us take f ∈ F with ‖f ‖� = 1 and let a1, . . . , am, where m = ZF (s),

be the zeros of f in �s. We form a Blaschke product

B(z) = r m

m∏
j=1

z − aj

r 2 − āj z

on �r. If g = f/B then M(g, r) = M(f, r). By the maximum modulus principle,
M(g, s) ≤ M(f, r). Hence

M(f, s) ≤ M(B, s)M(f, r).

Since |z| ≤ s and |aj | ≤ s for s < r, we have∣∣∣∣ z − aj

r 2 − āj z

∣∣∣∣ ≤ s + |aj |
r 2 + |aj |s ≤ 2s

r 2 + s2
,

so

1 ≤ M(f, s) ≤
(

2rs

r 2 + s2

)m

M(f, r) ≤
(

2rs

r 2 + s2

)m

MF (r).

For the second inequality we take any f ∈ F such that M(f,1) = 1. Let t =
3r. As noted after the definition of ZF (r), the function g(z) = f(tz) = ∑

akz
k

is at most p-valent in �, where p = ZF (t). Direct computation shows that the
constant A(p) in Theorem 2.1 does not exceed exp(14p). Hence, by this theorem
and the Cauchy inequality we have

M(f, r) = M

(
g,

r

t

)
< e14pM

(
g,

1

t

)
tp

(
1 − r

t

)−2p

.

Since M(g,1/t) = M(f,1) = 1 and t = 3r, it follows that

M(f, r) < e14prp
(

27

4

)p

< e(log r+16)p.

Corollary 2.3. For all r > 1 we have

mF (r/3)

log r + 16
≤ ZF (r) ≤ 2mF (3r),

where
mF (r) = logMF (r).

Proof. By the first inequality from Theorem 2.2,

MF (3r) ≥
(

10

6

)ZF (r)

.

Therefore,
2mF (3r) ≥ ZF (r).
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If r > 3 then, by the second inequality from Theorem 2.2,

MF (r/3) ≤ e(log r+16)ZF (r).

If r ≤ 3 then mF (r/3) = 0 and the inequality is evident.

Let Fk be an increasing sequence of linear subspaces of entire functions of finite
dimensions Nk and containing constants. Since the dimension of Fk is finite, the
function

Wk(z) = sup{log|f(z)| : f ∈ Fk, ‖f ‖� = 1}
is continuous. As a consequence, we conclude that Wk is subharmonic. Moreover,
letting f ≡ 1 we see that Wk ≡ 0 on � and Wk ≥ 0 on C.

We say that the sequence of Fk satisfies the Bernstein–Walsh inequality if there
are numbers ak (k = 1, 2, . . . ) and a function ω(r) such that Wk(z) ≤ akω(|z|).
If the function

W(z) = lim sup
k→∞

Wk(z)

ak

is finite when 1 < |z| < ∞ and is not identically equal to 0, then we say that W
is the Bernstein–Walsh extremal function of the sequence Fk.

The following corollary follows immediately from Corollary 2.3.

Corollary 2.4. A sequence Fk satisfies the Bernstein–Walsh inequality for
some choice of numbers ak if and only if

ZFk
(r) ≤ akG(r), r > 1, k ≥ 0,

for some function G(r). It has a Bernstein–Walsh extremal function for a choice
of numbers ak if and only if the function

lim sup
k→∞

Zk(r)

ak

is finite when 1 < r < ∞ and is not identically equal to zero.

The following theorem provides a priori lower estimates for ZF and MF .

Theorem 2.5. If the dimension of F is N, then

MF (r) ≥ e(N−1) log r .

Proof. Let us take a basis f1, . . . , fN in F and consider the matrix A consisting of
the first N −1 rows of the Wronskian for this system of functions at z = 0. There
is a nonzero vector c = {cj} such that Ac = 0. If

f(z) =
N∑

j=1

cjfj(z)

then f �≡ 0, because the functions fj are linearly independent over C and all the
first N − 2 derivatives of f at the origin are equal to 0. Hence Z(f,1) ≥ N − 1.
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Dividing f by M(f,1) yields a function g with M(g,1) = 1. Applying the maxi-
mum principle to g(z)/zN−1, we obtain

M(g, r) ≥ rN−1 = e(N−1) log r .

Our main interest in this paper is in the case when F = {Pf : P ∈ Pn}. Then the
dimension of F is N = (n + 1)(n + 2)/2 and we have both Zn(r) = ZF (r) and
mn(r) = mF (r). The results so far yield the following corollary.

Corollary 2.6. For every integer n ≥ 0 and for r ≥ 1,

mn(r/3)

log r + 16
≤ Zn(r) ≤ 2mn(3r), mn(r) ≥ n2 + 3n

2
log r.

3. Cartan’s Lemma and the nth Diameter

We refer to [L] for the following estimate, due to H. Cartan.

Lemma 3.1. Let P be a monic polynomial of degree n on C. For every h > 0
there exist at most n closed disks Cj of radii rj (j = 1, . . . , k, k ≤ n) such that
r1 + · · · + rk ≤ 2eh and |P(z)| > hn for all z∈ C \ ⋃

Cj .

That the number of these exceptional disks Cj is at most n = degP follows from
the proof of this lemma (see [L]).

For a set G ⊂ C and an integer n ≥ 1, we define the nth diameter of G by

diamn(G) = inf

{
r1 + · · · + rk : k ≤ n, G ⊂

k⋃
j=1

Cj(rj )

}
,

where Cj(rj ) are closed disks of radii rj > 0. It is clear that diamn(G) = 0 if
|G| ≤ n, where |G| is the number of points in G, and that diamn(F ) ≤ diamn(G)

if F ⊂ G. We have the following simple fact.

Lemma 3.2. If n < |G| < +∞ and δ = min{|z − w| : z,w ∈ G, z �= w}, then
diamn(G) ≥ δ/2.

Using the nth diameter, Cartan’s lemma can be stated as follows: If P is a monic
polynomial of degree n on C and if h > 0, then

diamn({z∈ C : |P(z)| ≤ hn}) ≤ 2eh.

It is essential for this estimate that P be monic. Otherwise, we prove the following
Cartan-type result.

Lemma 3.3. Let P be a polynomial of degree n on C. Then, for every 0 < h ≤
1/(8e) and every t ≥ 2, the nth diameter of the set

Gt =
{
z∈ C : |P(z)| ≤ ‖P ‖�

(
h|z|
t 2

)n

, 2 ≤ |z| ≤ t

}

does not exceed 36eh.
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Proof. Let z0 ∈ ∂� be such that |P(z0)| = ‖P ‖�, and let α = P(z0). The poly-
nomial Q(w) = wnP(t 2/w + z0)/α is monic and, by Cartan’s lemma, the set

F = {w ∈ C : |Q(w)| ≤ (2h)n}
is contained in the union of l ≤ n closed disks Cj(wj, rj ) of centers wj and radii
rj (j = 1, . . . , l ), with r1 + · · · + rl ≤ 4eh. We consider the set

Ft = F ∩ {w ∈ C : |w| ≥ t 2/(t + 1)}
and those circles Cj that intersect {|w| ≥ t 2/(t +1)}. After renumbering these cir-
cles we have for some k ≤ l ≤ n that Ft ⊂ C1(w1, r1) ∪ · · · ∪ Ck(wk, rk), where
r1 + · · · + rk ≤ 4eh and

|wj | ≥ t 2/(t + 1) − rj > rj, j = 1, . . . , k,

since rj ≤ 4eh ≤ 1/2 and t ≥ 2. It follows that 0 /∈Cj(wj, rj ).

Let φ be the map φ(w) = t 2/w + z0. If z /∈ φ(F ) and |z| ≥ 2, then

|P(z)| > ‖P ‖�(2h)n |z − z0|n
t 2n

≥ ‖P ‖�
(
h|z|
t 2

)n

.

Hence Gt ⊂ φ(Ft ) ⊂ φ(C1) ∪ · · · ∪ φ(Ck). Since 0 /∈Cj, it follows that φ(Cj ) is
a closed disk of radius

Rj = t 2rj

|wj |2 − r 2
j

≤ t 2rj

(t 2/(t + 1) − rj )2 − r 2
j

= (t + 1)2rj

t 2 − 2rj(t + 1)

≤ (t + 1)2rj

t 2 − t − 1
≤ 9rj,

since 2rj ≤ 1 and t ≥ 2. Hence diamn(Gt) ≤ R1 + · · · + Rk ≤ 36eh.

4. Relationship between En and mn(r)

Let f be a transcendental entire function, and let

m(r) = mf (r) = max{log+ M(f, r), log+ r}.
If P ∈ Pn and ‖Pf‖� ≤ 1, then by (2) we have

log|P(z, f(z))| ≤ en + nmax{log+|z|, log+|f(z)|},
where en = logEn. Thus

mn(r) ≤ en + nm(r). (3)

Combining (3) with Corollary 2.6, we obtain an a priori estimate

en ≥ n2

4
log rn, (4)

where rn is the solution of the equation m(rn) = (n/4) log rn. Choosing a tran-
scendental entire function f such that m(f, r) ≤ φ(r) log r, where φ(r) grows to
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∞ as slow as we want, we see that en can increase arbitrarily fast. This happens
because slow-growing functions are close to polynomials.

Since mn(r) is a convex function of log r and since mn(1) = 0, we have

mn(r) ≤ en + nm(t)

log t
log r, 1 ≤ r ≤ t. (5)

Substituting for t the solution tn of the equation nm(t) = en yields

mn(r) ≤ 2en
log tn

log r, 1 ≤ r ≤ tn. (6)

Now, to get effective estimates for mn(r) we will obtain bounds for en. For θ ∈
[0, 2π] and r ≥ 2 we let

D(θ, r) = {z∈ C : 2 ≤ |z| ≤ r, f(z) = eiθ },
dn(θ, r) = min{1, diamn(D(θ, r))}.

If P(z,w) is a polynomial we let Pθ(z) = P(z, e iθ ). We denote by S = ∂� the
unit circle and by Sr = ∂�r the circle of radius r centered at the origin.

Lemma 4.1. Let P ∈ Pn with ‖Pf‖� ≤ 1 and r ≥ 2. Then, for any θ,

log‖Pθ‖� ≤ mn(r) + n log
36er

dn(θ, r)
.

Proof. Without loss of generality we may assume that Pθ �≡ 0 and dn(θ, r) > 0.
Since |P(z, f(z))| ≤ emn(|z|), we know that |Pθ(z)| ≤ emn(|z|) when z ∈ D(θ, r).

We take h < dn(θ, r)/(36e). Then 36eh < diamn(D(θ, r)) and so, by Lemma 3.3,
there is a point z∈D(θ, r) where

‖Pθ‖�
(
h|z|
r 2

)n

< |Pθ(z)| ≤ emn(|z|).

Thus
log‖Pθ‖� ≤ mn(|z|) − n log|z| + 2n log r − n logh.

By Corollary 2.6, the function g(t) = mn(t)−n log t is a convex function of log t,

g(1) = 0, and g(t) ≥ 0 when t ≥ 1. It follows that g is increasing and therefore

log‖Pθ‖� ≤ mn(r) + n log r − n logh.

Since h < dn(θ, r)/(36e) was arbitrary, this implies the lemma.

Theorem 4.2. Suppose that r ≥ 2 and dn(θ, r) ≥ a on a set E ⊂ S of length l.

Then

en ≤ nm(er) log r + n log(er)

(
log

36er

a
+ 4π

l

)
.

The proof requires some auxiliary lemmas.

Lemma 4.3. Let 0 < ρ < 1 < R and let E ⊂ S be a set of length l. Then, for
z∈� the regularized relative extremal function,
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ω(z,E,�R) ≤ − (1 − ρ) logR

(1 + ρ) log(R/ρ)

l

2π
.

Proof. The (regularized) relative extremal function ω(z) = ω(z,E,�R) is the
maximal negative subharmonic function in �R that does not exceed −1 on a sub-
set E ′ ⊂ E of length l (see e.g. [K]). So, for every z∈ Sρ we have

ω(z) ≤ 1

2π

∫ 2π

0
P(z, θ)ω(eiθ ) dθ ≤ −C = − l(1 − ρ)

2π(1 + ρ)
,

since the Poisson kernel P(z, θ) ≥ (1 − ρ)/(1 + ρ). Hence, for z∈�R,

ω(z)

C
≤ ω(z, Sρ,�R) = max

{
log(|z|/R)

log(R/ρ)
,−1

}
.

Therefore on S we have ω(z) ≤ −C logR/log(R/ρ).

Lemma 4.4. Let P(z,w) be a polynomial of degree n, and let E ⊂ S be a set of
length l. Then

sup{‖Pθ‖� : eiθ ∈E} ≥ ‖P ‖�2 exp

(
−4πn

l

)
.

Proof. Suppose that ‖P ‖�2 = 1, and let h be the supremum of ‖Pθ‖� when eiθ ∈
E. Let E ′ = � × E and 0 < ρ < 1 < R. Since

ω((z,w),E ′,�R × �R) = max{ω(z,�,�R), ω(w,E,�R)},
by Lemma 4.3 for (z, w)∈�2 we obtain

ω((z,w),E ′,�R × �R) ≤ −C = − (1 − ρ) logR

(1 + ρ) log(R/ρ)

l

2π
.

By (1) in the case of the bidisk,

log|P(z,w)| ≤ nmax{log|z|, log|w|};
hence log|P(z,w)| ≤ n logR on �R × �R. Therefore,

log|P(z,w)| − n logR

n logR − logh
≤ ω((z,w),E ′,�R × �R) ≤ −C

when (z, w)∈�2. But ‖P ‖�2 = 1 and so

−n logR ≤ (1 − ρ) logR

(1 + ρ) log(R/ρ)

l

2π
(logh − n logR)

for every 0 < ρ < 1 < R. We divide this by logR and then let R ↘ 1. It follows
that

logh ≥ 2πn

l

(1 + ρ) log ρ

1 − ρ
.

The lemma follows by letting ρ ↗ 1.

Proof of Theorem 4.2. Let us take P ∈ Pn such that ‖Pf‖� = 1 and ‖P ‖�2 = En.

By Lemma 4.4 there exists, for each ε > 0, a number eiθ ∈E such that
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‖Pθ‖� ≥ En exp

(
−4πn

l
− ε

)
.

By Lemma 4.1,

en − 4πn

l
− ε ≤ mn(r) + n log

36er

dn(θ, r)
.

By (5) we have

mn(r) ≤ (en + nm(er))
log r

log(er)
.

Using this and dn(θ, r) ≥ a yields

en ≤ (en + nm(er))
log r

log(er)
+ n log

36er

a
+ 4πn

l
+ ε.

Letting ε ↘ 0, it follows that

en

log(er)
≤ nm(er)

log r

log(er)
+ n

(
log

36er

a
+ 4π

l

)
,

which implies the conclusion.

Theorem 4.2 has the following corollary, which will be employed in studying con-
crete classes of functions in Sections 5 and 6. For r ≥ 2 and 0 < δ ≤ 2, we define
Arδ as the subset of those eiθ ∈ S such that (i) D(θ, r) has at least n + 1 elements
and (ii) the minimal distance between them is greater than or equal to δ.

Corollary 4.5. Let r ≥ 2 and 0 < δ ≤ 2. If λ(Arδ) is the length of Arδ in S,

then

en ≤ nm(er) log r + n log(er)

(
log

72er

δ
+ 4π

λ(Arδ)

)
.

Proof. We can assume that λ(Arδ) > 0. The corollary follows directly from The-
orem 4.2 and Lemma 3.2, since for eiθ ∈Arδ we have dn(θ, r) ≥ δ/2.

5. The Case f(z) = ep(z)

We consider here entire functions of the form f(z) = ep(z), where p is a poly-
nomial of degree ρ ≥ 1. The special case p(z) = z was studied by different
techniques in [T] and [CP].

Theorem 5.1. There exist constants C,C ′, C ′′ > 0 depending only on the poly-
nomial p such that, for every n ≥ 1 and r ≥ 1, we have

n2 log n

2ρ
− C ′n2 ≤ en(f ) ≤ Cn2 log n,

mn(r) ≤ C ′′(n2 log r + nrρ).
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In particular, if P is a polynomial of degree n on C
2 then

|P(z,w)| ≤ ‖P ‖KeCn2 log n+nmax{ log+|z|,log+|w|} ∀(z, w)∈ C
2,

|P(z, ep(z))| ≤ ‖P ‖KeC ′′(n2 log+|z|+n|z|ρ) ∀z∈ C,

where K = {(z, ep(z)) : |z| ≤ 1}.
In the proof we need the following lemma.

Lemma 5.2. There exist constants 0 < c1 < 1 < C1 depending only on p such
that if r = C1n

1/ρ and δ = c1n
−1+1/ρ then Arδ = S, where Arδ is the set from

Corollary 4.5.

Proof. Let eiθ ∈ S. For k = 0, . . . , m we choose zk such that

p(zk) = i(θ + 2kπ).

Since degp = ρ and since k ≤ m, it follows that |zk| ≤ Cm1/ρ for some con-
stant C > 1. If |z| ≤ Cm1/ρ we have |p ′(z)| ≤ C ′m1−1/ρ, where C ′ is a constant.
Therefore, if k, l ≤ m (k �= l ) then

2π ≤ |p(zk) − p(zl)| ≤ C ′m1−1/ρ |zk − zl|.
Hence there exists a constant C1 > 1 such that, if r = C1n

1/ρ, then the annulus
{2 ≤ |z| ≤ r} contains at least n+1 points zk. Moreover, if k �= l then |zk − zl| >
c1n

−1+1/ρ, where c1 > 0 is a constant.

Proof of Theorem 5.1. There exists a constant C ′ such that, for r ≥ 1,

m(r) = max{log r, logM(f, r)} ≤ C ′r ρ.

By (3) and Corollary 2.6 we obtain

en ≥ n2

2
log r − C ′nrρ.

Taking r = n1/ρ yields the lower bound on en.

In order to prove the upper estimate, we let r = C1n
1/ρ and δ = c1n

−1+1/ρ be as
in Lemma 5.2. Since Arδ = S, by Corollary 4.5 we have

en ≤ nm(er) log r + n log(er)

(
log

72er

δ
+ 2

)

= nm(C1en
1/ρ) log(C1n

1/ρ) + n log(C1en
1/ρ)(log(C ′

1n) + 2)

≤ Cn2 log n,

where C is a constant.
For the estimate on mn(r), we can use (6) with tn = n1/ρ and the upper bound

on en to get
mn(r) ≤ C2n

2 log r, 1 ≤ r ≤ n1/ρ,

where C2 is a constant. Combining this with (3) yields
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mn(r) ≤
{

C2n
2 log r if 1 ≤ r ≤ n1/ρ,

Cn2 log n + C ′nrρ if r ≥ n1/ρ.

So mn(r) ≤ C ′′(n2 log r + nrρ) for all r ≥ 1, where C ′′ is a constant.

We remark that, by Theorem 5.1 and Corollary 2.6, if f(z) = ep(z) then for every
n ≥ 1 and r ≥ 1 we have that

log r

2
≤ mn(r)

n2
≤ C ′′ log r + C ′′r ρ

n
,

log+(r/3)

2 log r + 32
≤ Zn(r)

n2
≤ 2C ′′ log(3r) + C ′′′r ρ

n
.

6. An Entire Gap Series of Order 1

We consider the entire function

f(z) =
∞∑
k=1

(
z

nk

)nk

, (7)

where nk is an increasing sequence of positive integers such that

n1 ≥ 10, nk+1 ≥ n2
k for k ≥ 1. (8)

The function f has order of growth ρ = 1 and type µ = 1/e. By Stirling’s formula
n! ≤ e(n/e)n

√
n (see [R]) it follows that (e/n)n ≤ e/(n − 1)!, so we obtain

Mf (r) < Mg(r) ≤ rer/e < er, r ≥ 0,

where g(z) = ∑∞
n=1(z/n)

n. Let [x] denote the greatest integer in x. We have the
following theorem.

Theorem 6.1. Let f be defined by (7), where {nk} satisfies (8). There exists a
constant C > 0 such that, if k ≥ 1 and nk ≤ n < nk+1, then

mn(n) − n2 ≤ en(f ) ≤ 2nnk+1 log nk+1 + Cnnk+1,

mn(r) ≥ (max{n2/2, [n/nk]nk+1}) log r, r ≥ 1,

mn(r) ≤
(

2nnk+1 + Cnnk+1

log nk+1

)
log r, 1 ≤ r ≤ nk+1.

Corollary 6.2. Let f be defined by (7), where n1 ≥ 10, nk+1 = nα−1
k , and

α ≥ 3. There exists a constant C > 0 such that, if k ≥ 1, then

mn(r)

nα
≤

(
2 + C

log n

)
log r, 1 ≤ r ≤ n,

mn(r)

nα−1
≥ log r

2α−1
, nk ≤ n ≤ 2nk, r ≥ 1,

log r

2
≤ mn(r)

n2
≤ 4 log r + C log r

log n
,

nk

2
≤ n < nk, 1 ≤ r ≤ n.
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We note that, by the results of Section 2, this corollary shows the following inter-
esting fact: The maximal number of intersection points (z, w) between the graph
of f and algebraic curves of degree n that lie over a disk of fixed radius {|z| ≤ r0}
grows like n2 if nk/2 ≤ n < nk and at least like nα−1 if nk ≤ n ≤ 2nk. This is in
contrast to the case of the function f(z) = ep(z) from Section 5.

The proof of Theorem 6.1 uses the techniques from Section 4 and relies on the
study of the roots of the equation f(z) = eiθ.

Theorem 6.3. If f and {nk} are as in Theorem 6.1 and if θ ∈ [0, 2π], then all
roots of the equation f(z) = eiθ are simple and are located as follows: each an-
nulus {nk −1 < |z| < 2nk}, k ≥ 1, contains exactly nk − nk−1 roots, where n0 =
0. Moreover, if f(z) = f(ζ) = eiθ and z �= ζ then |z − ζ| > 5.

In the proof of Theorem 6.3 we need the following lemmas.

Lemma 6.4. If |z| = R ≥ 1 and n ≥ 1, then∣∣∣∣
∞∑

j=n

(
z

j

)j ∣∣∣∣ ≤ eR
(
R

n

)n

,

∣∣∣∣
n∑

j=1

(
z

j

)j ∣∣∣∣ ≤ eRn.

Proof. If g(z) = ∑∞
n=1(z/n)

n, then
∣∣∣∣

∞∑
j=n

(
z

j

)j ∣∣∣∣ ≤
∞∑

j=n

(
R

j

)j

= Rn

nn

(
1 +

∞∑
k=1

Rknn

(n + k)n+k

)

≤
(
R

n

)n

(1 + g(R)) ≤ eR
(
R

n

)n

,

∣∣∣∣
n∑

j=1

(
z

j

)j ∣∣∣∣ ≤
n∑

j=1

(
R

j

)j

≤ Rng(1) < eRn.

Lemma 6.5. Let n ≥ 2. If |z − z0| ≤ |z0|/(2n), then

3n|z0|n−1|z − z0|
2

≥ |zn − zn
0 | ≥ n|z0|n−1|z − z0|

2
.

Proof. Since

h(z) − h(0) = z

∫ 1

0
h′(rz) dr = z

∫ 1

0
h′(0) dr + z2

∫ 1

0
r

∫ 1

0
h′′(trz) dt dr,

we can use h(z) = (1 + z)n to obtain

|(1 + z)n − 1| ≥ n|z|
∣∣∣∣1 − (n − 1)|z|(1 + |z|)n−2

2

∣∣∣∣.
If |z| ≤ 1/(2n), then

|(1 + z)n − 1| ≥ n|z|
(

1 − (1 + 1/(2n))n

4

)
≥ n|z|

(
1 −

√
e

4

)
≥ n|z|

2
.
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Thus

|zn − zn
0 | = |z0|n

∣∣∣∣
(

1 + z − z0

z0

)n

− 1

∣∣∣∣ ≥ n|z0|n−1|z − z0|
2

.

The proof of the other inequality is similar.

Proof of Theorem 6.3. We fix θ ∈ [0, 2π], and for k ≥ 1 we let:

Ak = {z∈ C : nk − 1 < |z| < 2nk};

Tk(z) =
k∑

j=1

(
z

nj

)nj

, Qk(z) = f(z) − Tk(z);

R1 = n1, Rk =
(

n
nk

k

n
nk−1
k−1

)1/(nk−nk−1)

for k ≥ 2.

Since nk−1 ≤ √
nk, n1 ≥ 10, and n2 ≥ 100, we have for k ≥ 2 that

nk < Rk = nk

(
nk

nk−1

)nk−1/(nk−nk−1)

< nkn
1/(

√
nk−1)

k ≤ 102/9nk. (9)

Let

P1(z) =
(

z

n1

)n1

− eiθ = 1

n
n1
1

(zn1 − R
n1
1 eiθ )

and

Pk(z) =
(

z

nk−1

)nk−1

+
(

z

nk

)nk

= znk−1

n
nk

k

(znk−nk−1 + R
nk−nk−1
k )

if k ≥ 2.
We show first that, for each k ≥ 1, the equation f(z) = eiθ has nk − nk−1 sim-

ple solutions ζkj (j = 1, . . . , nk − nk−1) in the annulus Ak, located as follows. If
zkj are the roots of Pk with |zkj | = Rk, then there is a root ζkj with |ζkj − zkj | <
1/2. Assuming this, we notice that by (9) the disks |z − zkj | ≤ 1/2 are contained
in Ak. Using (9), we have

|zkj − zkl| ≥ 2Rk sin
π

nk − nk−1
≥ 2nk sin

π

nk

> 6

for j �= l. It follows that

|ζkj − ζkl| ≥ |zkj − zkl| − |ζkj − zkj | − |ζkl − zkl| > 5.

To prove this claim, we fix a number zkj with Pk(zkj ) = 0 and |zkj | = Rk. We
write the equation f(z) = eiθ in the following form:

P1(z) + Q1(z) = 0 for k = 1; (10)

Pk(z) + (Tk−2(z) + Qk(z) − eiθ ) = 0 for k ≥ 2, (11)

where T0 = 0. We will apply Rouché’s theorem on each disk |z− zkj | ≤ 1/2. By
(9) we have

|zkj |
2(nk − nk−1)

≥ nk

2(nk − nk−1)
≥ 1

2
.



Measures of Transcendency for Entire Functions 589

Applying Lemma 6.5 with |z − zkj | = 1/2 and n = nk − nk−1 then yields

|Pk(z)| ≥ n|z|nk−1

4nnk

k

Rn−1
k >

nk(nk − 1)nk−1

4nnk

k

(
1 − nk−1

nk

)
Rn−1

k

= 1

4

(
1 − 1

nk

)nk−1
(

1 − nk−1

nk

)
nk

Rk

(
Rk

nk

)nk−nk−1

.

Using (9) and (8), we obtain nk/Rk > 1/2, 1 − nk−1/nk ≥ 0.9, and

(1 − 1/nk)
nk−1 > (1/4)nk−1/nk > 1/2.

Therefore,

|Pk(z)| > 1

20

(
Rk

nk

)nk−nk−1

for |z − zkj | = 1/2.

By Lemma 6.4 and (8), it follows that for |z − zkj | = 1/2 we have

|Qk(z)| ≤
( |z|
nk+1

)nk+1

e|z| <
(

2nk

nk+1

)nk+1

e2nk

≤ (
2n−1/2

k+1

)nk+1
e2

√
nk+1.

As nk+1 ≥ n2
1 ≥ 100, we get

|Qk(z)| < 5−100e20 < 5−80 for |z − zkj | = 1/2.

Thus for k = 1 we obtain |P1(z)| > 1/20 > |Q1(z)| for |z−z1j | = 1/2. Hence, by
Rouché’s theorem, equation (10) has exactly one solution in each disk |z − z1j | <
1/2.

For k ≥ 2 and |z − zkj | = 1/2, by Lemma 6.4 we have

|Tk−2(z)| ≤ e|z|nk−2 < e(2nk)
√
nk−1,

so
|Tk−2(z) + Qk(z) − eiθ | < αk := e(2nk)

√
nk−1 + 2.

Using (8) and (9), it follows for |z − zkj | = 1/2 that

|Pk(z)| > 1

20

(
Rk

nk

)nk−nk−1

= 1

20

(
nk

nk−1

)nk−1

≥ βk := 1

20
n
nk−1/2
k .

Since
√
nk−1 − nk−1/2 < 0, nk ≥ n2

k−1, and nk−1 ≥ 10, we have

αk/βk = 20
(
e2

√
nk−1n

√
nk−1−nk−1/2

k + 2n−nk−1/2
k

)
≤ 20

(
e2

√
nk−1n

2
√
nk−1−nk−1

k−1 + 2n−nk−1
k−1

)
≤ 20

(
e2

√
10102

√
10−10 + 2 · 10−10

)
< 1.

Hence, by Rouché’s theorem, equation (11) has exactly one solution in each disk
|z − zkj | < 1/2.

To complete the proof, we show that ζkj are the only roots of the equation f(z) =
eiθ by proving that it has exactly nk solutions in the disk |z| < 3nk (k ≥ 1). We
write the equation in the form
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(z/nk)
nk + (Tk−1(z) + Qk(z) − eiθ ) = 0.

If |z| = 3nk, then |z/nk|nk = 3nk and by Lemma 6.4 and (8) we have

|Qk(z)| ≤
(

3nk

nk+1

)nk+1

e3nk ≤ (
3n−1/2

k+1

)nk+1
e3

√
nk+1 ≤ 0.3100e30,

|Tk−1(z)| ≤ e(3nk)
nk−1 ≤ e(3nk)

√
nk if k ≥ 2.

If k = 1 and |z| = 3n1, then |Tk−1(z) + Qk(z) − eiθ | < 2 < 3n1. If k ≥ 2 and
|z| = 3nk then

|Tk−1(z) + Qk(z) − eiθ | ≤ e(3nk)
√
nk + 2 < 3nk,

since nk ≥ 100. The conclusion now follows by Rouché’s theorem.

Proof of Theorem 6.1. By Corollary 2.6 we have that mn(t) ≥ (n2/2) log t for all
t ≥ 1. Following an idea of [BLMT], we let

P(z,w) = (w − Tk(z))
[n/nk ], Tk(z) =

k∑
j=1

(
z

nj

)nj

.

Then degP ≤ n and Pf has a zero of order N = [n/nk]nk+1 at z = 0. By the
maximum principle we obtain MPf

(r) ≥ MPf
(1)rN for r ≥ 1, which gives the

lower bound on mn(r). By (3) we have mn(r) ≤ en + nm(r). Using m(r) < r and
letting r = n then yields the lower bound on En.

To prove the upper bound on En, we let r = 2nk+1 and δ = 2. By Theo-
rem 6.3 we have Arδ = S, where Arδ is the set from Corollary 4.5. Using m(er) <

r + log(er) and Corollary 4.5, we obtain

en ≤ nm(er) log r + n log(er)

(
log

72er

δ
+ 2

)

≤ n(2nk+1 + C log nk+1) log(2nk+1) + Cn(log nk+1)
2

≤ 2nnk+1 log nk+1 + Cnnk+1.

Finally, using (5) with r = nk+1 and the foregoing upper bound on En, we have
for 1 ≤ t ≤ nk+1 that

mn(t) ≤ en + nm(nk+1)

log nk+1
log t ≤

(
2nnk+1 + Cnnk+1

log nk+1

)
log t.

Proof of Corollary 6.2. The first inequality follows because nk+1 ≤ nα−1 when
nk ≤ n < nk+1. If nk ≤ n ≤ 2nk then [n/nk] ≥ 1 and nk+1 = nα−1

k ≥ (n/2)α−1,

so by Theorem 6.1 we have

mn(r) ≥
[
n

nk

]
nk+1 log r ≥

(
n

2

)α−1

log r, r ≥ 1.

If nk/2 ≤ n < nk then, by Theorem 6.1,
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mn(r) ≤
(

2nnk + Cnnk

log nk

)
log r ≤

(
4n2 + 2Cn2

log n

)
log r,

where 1 ≤ r ≤ n.
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