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The Third Cauchy—Fantappie Formula of Leray

CEZAR JoITA & FINNUR LARUSSON

Introduction

In the third paper [L1] in his famous seriégobleme de Cauchylean Leray
founded the modern theory of residues. This paper is reprinted in L&Eayses
scientifique$L 2] with an introduction by G. M. Henkin. In it, almost as an aside,
Leray presents three representation formulas for holomorphic functions on a do-
main in affine space, calling them the first, second, and third Cauchy—Fantappié
formulas. The first formula, nowadays often called the Cauchy—Leray formula, is
truly fundamental: most integral representation formulas can be derived from itin
one way or another. For an introduction to this area of complex analysis, see [B]
and [K]. The second and third formulas, obtained from the first one using resi-
due theory, have received little attention in the literature. The proof of the second
formula is straightforward, but the third one turns out to be quite subtle. We will
show by means of examples that it does not hold without some additional condi-
tions not mentioned by Leray. We present and study sufficient conditions and a
necessary condition for the third formula to hold and, in the case of a contractible
domain, characterize it cohnomologically.

We assume that the reader is familiar with approximately the first half of Leray’s
paper [L1], including the coboundary map and the associated long exact homology
sequence, absolute and relative residues, the residue formula, and the interaction
of the residue map with several natural cohomology maps. To establish a context
and notation, we begin by reviewing Leray’s derivation of the three formulas.

1. The Cauchy—Fantappié Formulas

We start with a number of definitions, following Leray. Létbe a domain irC”
(n > 1), andletY = P" x X. Leray assumes that is convex, but we do not. We
define
O0={¢Ex)eY: i&-x=8+&xa+ - +&x, =0}
and
P, ={(,x)eY :&.z=0} = hyperplanex X
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for z € X, which will be thought of as a fixed base point throughout. These are
smooth hypersurfaces inintersecting transversely. Herg, ..., &, are homo-
geneous coordinates for a polng P”. Define also

w(x)=dxiA--- Ndx,,

W€ =Y (D dis A AdECA - A dE,,
k=1
and

0" () = ) (~D'EdEo Ao AdELA - AdEy.
k=0
Then we have that - ) " w’'(§) is a well-defined holomorphi¢: — 1)-form and
(€ - 2)7"Yw* (&) is a well-defined holomorphie-form onP” \ {¢ : £ - z = 0}. Let
®. = o'(§) A w(x) and . = w*(§) A w(x).
E-2)" (- o)ntt
Then ®, is a holomorphia2n — 1)-form and W, is a holomorphic 2-form on
Y \ P,, with poles of orden andn + 1 along P, respectively, and
dd, = nV,.

We usually omit the subscript

We will work with homology and cohomology groups throughout the paper.
Leray uses integral homology with the torsion part removed; we might as well use
homology with complex coefficients. Our cohomology groups will be complex
de Rham groups, both absolute and relative.

The projectionQ \ P — X \ {z} is a fibration with contractible fibeE"~?,
so it is a homotopy equivalence and induces isomorphisms on all homology and
cohomology groups. The boundary ma&p,(X, X \ {z}) — Hz,—1(X \ {z})
is injective with a 1-dimensional source. Its image (i.e., the kernel of the map
Hy,_1(X \{z}) = H2,-1(X)) is generated by the image of a unigue integral class
a, in Hy,_1(Q \ P) on whichi™® > 0. The image ofx in H,,_1(X \ {z}) is
represented by the boundary of any smoothly bounded relatively compact subdo-
main of X containingz, with the appropriate orientation. It may be checked that
the orientation is given by the outward normal whes 1, 2 (mod 4 and by the
inward normal whem = 0, 3 (mod 4.

With these definitions we can now state the first formula. For the proof, see[L1,
Sec. 56].

THE FirsT CAUCHY-FANTAPPIE FORMULA. If f is a holomorphic function on a
domainX in C" and ifz € X, then

fez (Z)Hffz

Here, by f®, we mean® multiplied by f precomposed with the projection
Y — X. Note that f® is closed onQ \ P (since it is holomorphic of degree
equal to the dimension @ \ P) and so the integral makes sense.
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Forn = 1, this is the Cauchy formula. In most applicationsis represented
by a cycle that is a graph over the boundary of a subdomain containifigis
case is well described in Berndtsson’s survey [B], as are variants with weight fac-
tors and related solution formulas for theperator. For an example wherds
represented by a cycle that is not a graph, see [K, 4.5].

Now we move on to the second formula. We wish to exptess the image
of a class inH,,_2(Q N P) by Leray’s coboundary map: Hz,_»(Q N P) —
H,,_1(Q \ P). Let us represent by the(2n — 1)-real-dimensional smooth sub-
manifold

M={([x-Z—|x|2%1— 21 ....%n — Zn], X) 1 x €3B)}

of Y with the orientation specified previously, whe®es X is the open ball of ra-
diuse > 0 centered at. Note thatt - x = 0 andé - z = —e? for (¢, x) € M, so

M c Q\ P. Using the same formula aB\ {z} and taking closure i@, we obtain

a 2n-real-dimensional smooth submanifold @f isomorphic toB with z blown

up, with boundaryM. It intersectsP transversely in the common fibEr— of P
and Q overz. This fiber represents a clags € H,,_»(Q N P), oriented so that

88 = —a. Applying the residue formula (which says that the residue map is the
dual of§/27i) to the first formula, we obtain immediately the second formula.

THE SECOND CAUCHY-FANTAPPIE FoRMULA. If f is @ holomorphic function on
adomainX in C" and ifz € X, then

(n — 1!

f(z)z_(ZTW .

Regpnp(fP,).
By Leray’s long exact sequence, the kernel ifthe image of the maf,,(Q) —
H,_2(Q N P) that is induced by intersecting with, which is injective because
H,,(Q \ P) = 0. Hence,8 is the unique class withg = —« if and only if
H>,(Q) = 0, which is the case iX is contractible.

The class8 is never a boundary i®. To obtain the third formula we must ex-
pressp as a relative boundary with respect to a new smooth hypersusfat
such thatP, Q, andS are in general position. Consider the following diagram:

Hz,—2(PNS)

!

IB € H2n—2(Q N P) — H211—2(P)

g l
Haua(P,QUS) —> Hay 2(QNP.S) —> Hzo(P,S).

Assume thapB = 9y for somey € H,,_1(P, Q U S) (i.e., thatg is homologous
in P toacycleinP NS). We will refer to this as théopological conditioron S. It
holds if the mapH,,_>(P N'S) — Hy,_»(P) is surjective. It also holds if, but not
only if, S contains a fiber of the projectioR — X: in Example C of Section 3,
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the inclusionP N S — P is a homotopy equivalence, bftdoes not contain a
P-fiber. Note thaty is uniquely determined modulo the imager$, _1(P, S).

Leray shows that the residue map Res commutes wiithnd anti-commutes
with the duala* of the boundary map. Note thgkd vanishes on(Q \ P) N S
for dimensional reasons, so it represents a claggimi(Q \ P, S). Now, by the
second formula,

B @iyt
(n — 1!

=/Re%m> f(D:/Re%np P*(fcb):/P* Resoners) [P
B B B

f(2)

2/ Resonp,s) f® :/ Resonps) f® = / 9" Respnp.s) [P
B ay 4

= —/ ReSP,QUS) 8*(f<1>)
14

The mapo* is the dual of the boundary maypin relativehomology. It is not sim-
ply the exterior derivative. To calculadé( f®) € H?*(Y \ P, Q U S), we extend
f® to a smooth form o \ P, vanishing onS \ P, and differentiate. Ifb|S\ P =
0, then the extension can be chosen toflie itself, anda*(f®) is represented
byd(f®) = fd® = nfW. Leray [L1, p. 155] seems to assume that this isago;
becomes!, and his third formula reads as follows.

THE THIRD CAUCHY-FANTAPPIE FORMULA. Let f be a holomorphic function on
adomainX in C", and letz € X. Let S be a smooth hypersurface ihsuch that
P,, O, andS are in general position. Then

n!
f2) = @niyi /y Resp gus) fY:

for everyy € 37Y(pB,) C Hazp_1(P, QU S).

Here we viewf W as a class itH?"(Y \ P, Q U S), which the residue map takes
to H?"~X(P, Q U S). At this point, the reader might find it helpful to consult Ex-
ample A in Section 3 to see what the formula looks like in a simple case.

Without some additional conditions ¢h the third formula is falseas shown by
Examples A, D, and E in Section 3. The third formula fails in two different ways
in these examples. In Examples D andiEs 2 and the integral on the right-hand
side is not independent of the choicejofn 3—X(pp) for f = 1. In Example A,
X = CandHy(P, Q U S) is 1-dimensional and so there is only one choice of
but the formula fails forf € O(C) with f(1) # 0. We do not have an example
where the formula holds fof = 1 but fails for otherf. In fact, we know noth-
ing about the set of functions for which the formula holds beyond the obvious fact
that it is a vector subspace 6¥(X).

An important special case in which the third formula does hold is whisrthe
preimage of a smooth hypersurfaggin X. Then®|S \ P clearly vanishes, the
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topological condition is satisfied, and it is easy to see Bhap, andS are in gen-
eral position if and only it ¢ So. Examples B and C in Section 3 show that the
third formula holds not only whes is a preimage.

Before presenting our examples, we give various answers to the question of
when the third formula holds, starting with a sufficient condition that is also nec-
essary in the contractible case.

2. Necessary and Sufficient Conditions

Throughout this section¥ is a domain inC", z € X, f € O(X), S is a smooth
hypersurface irt such thatP,, Q, andS are in general position, anfisatisfies
the topological conditiod—(pB.) # 9.

From our discussion in the previous section, it is clear that the third formula
holds if and only if

Resp gus) ) (fP) = Resp gus) d(fP) on 9N pB) C Hay-a(P, QU S),
where we have writtefiy for the boundary map
Hy,(Y\ P, QUS) — Hpy-1(Q\ P, S)

that previously was simply denotéd because now we also want to consider the
boundary map

85': HZn(Y \ P, Q U S) - H211—1(S\P7 Q)

For convenience, let us writefor f®. As already describedy, ¢ is represented
by do, wherea|Q \ P = ¢ anda|S \ P = 0. Now ¢ also represents a class
in H2"~Y(S \ P, Q), and d}¢ is represented byz, wheret|Q \ P = 0 and
T[S\ P = ¢. Hencedy — 950 = d5¢.

Consider the following diagram:

I_IZn—Z(P7 Q) p_*) H2n—2(P)

| |

HZ3(PNQNS) - HZ2PNS,0) <> HZ2PNS)

.| ol

H¥"2(PNQ,§) —— H>YP,QUS)

p*l I’*l
H¥2(PNQ) —— H»LP, Q).

The rows and columns are parts of long exact sequences. The top and bottom
squares commute. Let us verify that the middle square anti-commutes, pretend-
ing for a moment (to simplify the notation) th@ and S are hypersurfaces if.

Take a closed forrmg on Q N S and extend it to a forrw on P. The upper part
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of the square works like this: firsdwo = dw|S; then we extendw|S to a form
w1 on P such thatw1]Q = 0, andd*(dw|S) = dw1. The lower part of the square
works like this: first,0*wg = dw|Q; then we extendiw|Q to a formw, on P
such thatw,|S = 0, andd*(dw|Q) = dw,. We must show thadw, + dw, =0
in H2"~Y(P, 0 U S). This holds becauséwi + dw; = d(w1 + w» — dw) and
w1+ wr—dw=00nQUS.

Write p = Resp gus) 05¢. We have seen that the third formula holds if and
only if p = 0 onda—(pp)—thatis, if and only ifo = 0 ony and on Ke®, where
y is some element af~%(pp). This is equivalent tg € Im 8*, sayp = 3*c with
oce H”2(PNQ,S),andp*s(B) = p(y) = 0.

Let us now assume that is contractible. Thert,,_>(P N Q) is generated by
B, sop*o(B) = 0impliesp*s = 0. Hence, the third formula is equivalent gos
d*(Ker p*), that is, top coming fromH?"~3(P N Q N S) (which is, of course,
trivial whenn = 1).

The anti-commuting square

pe H XS\ P, Q) a—§> H>(Y\P,QUYS)

Resl Resl

H»2(PNS, Q) —— HZYP QUS)5p

shows thajp comes fromH2"~2(P N S, Q) with preimage—Respns, o) ¢ there.
By chasing the big diagram, we see thatomes fromH?*~3(P N Q N §) if
and only if p* Respns.0) ¢ = Resns ¢ comes fromH?"~2(P, Q). Now the
mapp*: H¥'~2(P, Q) — H?'~?(P) is zero because the map: H?"~2(P) —
H?'~2(P N Q), which follows it in the long exact cohomology sequence, is an
isomorphism. Hence, the third formula holds if and only if Rgsp is zero in
H?=2(P N S) (here, we viewp as representing a classi#?"~1(S \ P)). Thisis
equivalent to the existence of a smo@@h — 2)-formo on S\ P such thaty +do
extends smoothly t8. In the general case, wheéhis not necessarily contractible,
this is a sufficient condition for the formula to hold.

Let us now derive a necessary condition for the third formula to hold. This con-
dition fails in Examples D and E in Section 3. The third formula implies that the
integral on its right-hand side is independent of the choigeiafd —1( pg), that s,

/ Resp gusyde =0 forevery6 € Hy,_1(P, S).
po
Viewing dg as also representing a classiif”(Y \ P, S) that is the image by*
of the class represented by in H>'(Y \ P, Q U S), we see that this condition
is equivalent to Res sy dy vanishing inH2"~1(P, §). This is equivalent talg
coming fromH2"(Y, §), which means that there is a smo@#n — 1)-form o on
Y \ Pwitho|S\ P = 0 such thatl/(¢ — o) extends smoothly t&.

We have proved the following result.

THEOREM. LetX be adomaininC”, ze X, f € O(X), andS a smooth hyper-
surface inY such thatP,, Q, and S are in general position and satisfies the
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topological condition. For Leray’s third formula to hold for this data, it is neces-
sary that

Resp,s) f¥, =0 in H*7X(P,, $)
and sufficient that

Reg. s f®, =0 in H*2(P,NS).

WhenX is contractible, this sufficient condition is also necessary.

In order to derive a characterization of the third formula, we do not actually
needX to be contractible. The preceding argument shows that it suffices to have
Hy,_»(P N Q) andHy,_»(P) = H,_>(P"! x X) be 1-dimensional (each gen-
erated byg).

There is no shortage of other sufficient conditions for Leray’s third formula to
hold. One is thatp|S \ P extend holomorphically t&: then, surely, its residue
along P N S vanishes. Examples B and C in Section 3 illustrate this. Another is
for Ho,_1(S \ P) — Ha,_1(S) to be injective: then every class #%*~%(S \ P)
lies in the image oftf '~ 1(S). A third sufficient condition is thad};¢ anddy
have the same residue alog® Q U S), as is evident from our discussion preced-
ing the statement of the formula. This is equivalent to the existence of a smooth
(2n—1-formo onY \ P witho|S\ P = 0ando = ¢ onQ\ P suchthatl(¢ — o)
extends smoothly t&.

We have pinched Leray’s third formula between this sufficient condition and
the necessary condition that such a farmaxist without requiring thad = ¢ on
0 \ P. We have also pinched Leray’s third formula between the sufficient con-
dition that Regns ¢ = 0 and the (same) necessary condition hiaResns ¢ =
—Resp 5 dp =0.

We conclude this section by pointing out thafi€ontains a fiber of the projec-
tion P — X (which, by Example C of Section 3, is stronger than the topological
condition), then the sufficient conditiah| S \ P = 0 actually implies our strong-
est and most obvious sufficient condition: tifdie the preimage of a hypersurface
in X. We may assume that= 0. First, in the affine coordinates = &;/&o, we

have
® = yfd<2> A A d(ﬁ) A w(x):
y1 y1

so0, changing to the coordinates = y; andw; = y;/y1for j =2,...,n, we
have® = 0 on the subset df \ P where&; # 0ifand only ifdw, A - - - A dw, A
dxiA---Adx, = 0there. Thisis equivalent x/dw; = 0 for any local defining
functions for S, that is, toS consisting of curves on whicho, ..., w,, x1, ..., x,
are constant. Hence, for everye X, S N (C" x {x}) is a union of lines through
the origin, or is the origin itself, or is empty. Adding the point at infinity to each
of these affine lines yields the closure$f, P in Y, which equalsS sincesS \ P

is dense inS (this clearly follows fromP and S being in general position, but
P ¢ S is enough). Hence, the assumption thatontains aP-fiber implies that
S contains the whole fibé?” x {x} for somex € X. Because it is a hypersurface,
S cannot also contaif0} x X, so its image by the projectionn — X (which is
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proper and hence takes a subvariety to a subvariety) must be a hypersut¥ace in
with S as its preimage if.

3. Examples

In this section, we present the following five examples of smooth hypersuifaces
inP" x X such thatP,, Q, andS are in general position far = 0 andS contains
a fiber of the projectiol? — X, so S satisfies the topological condition; that is,
the basic assumptions in the third Cauchy—Fantappié formula are in place.

A. Examples withX = C, where the third formula holds (to show what it looks
like in the simplest case) and where it fails.

B. A more involved example witlX = C, where®|S \ P extends holomorphi-
cally to S and so the third formula holds, althoughs not the preimage of a
subset ofX.

C. Same as Example B, but witi = C?; also, a modification of this exam-

ple that satisfies the topological condition even though it does not contain a

P-fiber.
D. An example withh = 2, where the necessary condition Res, f¥ = 0 (and
hence the third formula) fails fof = 1; here,X is contractible but not convex.
E. Anexample with = C? where the necessary condition fails foe= 1; here,
the computations are considerably more complicated than in Example D.

ExampLE A. We first consider the third Cauchy—Fantappié formula in the sim-
plest case, wittk = C andz = 0. Lettingn = &p/&1, we haveP = {n = 0} =
C, Q0 ={n+x=0}, and¥ = n2dx Adn. TakeS = {an +x = 1} witha e C.
ThenP, Q, andS are in general position arfisatisfies the topological condition.
In fact, S contains theP-fiber abovex = 1, andy € Hi(P, {0, 1}) is represented
by any path(1, 0) in C from 1to Q Let

an+x — n+x

1
o =———(@@n+dx) -
n

(adn + dx)

n
x 1 1
- ((1— @)~ — —)dn + (a ~1- —)dX-
n n n

The first expression fos shows that it vanishes o@ U S, and the second one
shows that

d
do:(a—l)—n/\dx—\lf,
n

so Resgp, gus) W is represented by the forta —1)dx. If f € O(C), then similarly
fo vanishes orQ U S and

d
fU +d(fo) = 7’7 Ad(f(x)((a — Dx + D),

so Resgp,gus) fV is represented by the fordt( f(x)((a —1)x + 1)), and the third
formula looks as follows:
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f0) = /m) d(f(x)((a =Dx +1) = f(O) —af@.

Clearly, the formula holds for alf € O(C) only whena = 0, but it fails for f
with f(1) # 0 whena # 0.

ExampLE B. Again, we takeX = C andz = 0, but now S is defined by the
equation
s (5o, €1, %) = &5 + &uEo + E)(x =D = 0.

Clearly, S is not the preimage of a subset©f and P N S is the point above 1
in C. It is easily verified thatS is smooth and thaP, Q, and S are in general
position.

We claim that®|S \ P (and hencef®|S \ P for every f € O(X)) extends
holomorphically toS. Working nearP, whereé; # 0, and using the affine coor-
dinaten = £q/&1, we haved = dx/n. On S nearP we havex =1— n%/(n + 1),
sodx = —n(n + 2)/(n +D?dn and® = —(nn + 2)/(n + 1)?dn, which extends
holomorphically acrosg = 0. Hence, the third formula holds. Let us check this
by calculating the integrand Resyus) f¥. We work on the neighborhood &t
whereé; # 0. Let g be the defining function + x for Q. Let

S (x —1)2d f
n

a:i(sdq—qu)z— n— —dx +6,
n n

whered is smooth neaP. Theno vanishes orQ U S and
d
F +do = ZLAd(f(x)(x — D) + db,
n

so the residue Resgus) f W is represented by the foren(f(x)(x — 13?). Inte-
grating this form along a path from 1 to 0 giv¢€0).

ExampLE C. Here, X = C? z =0, andS is defined by the equation

s(Eo, &1, 62, X1, x2) = £5 + E2(x1 — D) + £3(xp — 2) = 0.

Note thatS is not the preimage of a curve i and thatS contains theP-fiber
above(1, 2). Lengthy but routine computations show tlsas smooth and thag,
Q, and S are in general position. We will show thdt] S \ P extends holomor-
phically to S, so the third formula holds. L&t be the subset of whereg; # 0
(k = 1,2). We shall verify thatb|S \ P extends acros® on Us; the case ol/;
is analogous. In the affine coordinates= &y/&2 andy; = &1/&,, we haved =
—yo2dy1 A dx1 A dxz. On'S N U, we havex; = 2 — y§ — y3(x1 — 1), so there
® = 3dyg A dy1 A dxi, which clearly extends acrogs
Now take

s(Eo, £1, £2, X1, X2) = £5 + E2(x1 — 1) + E3(x2 — 2) + 28%&,.

Just as before§ is smooth,P, Q, andS are in general position, anbl| S \ P ex-
tends holomorphically t§. Also, S is not the preimage of a curve i in fact, it
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is easy to see that does not even containR-fiber. All the sameSg satisfies the
topological condition, as we will now verify. Consider the projectionP NS —

P = P! x X — PL SinceP — P!is a homotopy equivalence, if we can show
thatz is a homotopy equivalence then so is the incluston § < P, and the
topological condition follows.

We will show thatr is a fibration with contractible fibers. Nof®N S is given by
the equationgo = 0 andé3(x1 — 1) +£3(x, — 2) +2£2€, = 0. The fibers ofr are
lines inC? because the coefficients of andx, do not vanish simultaneously. We
claim thatr is surjective. Namely, i = [£1, &»] e P* and&; # 0, we setx, = 0
andx; = & 3(53 4263 — 2£28,). Then(g, x) e PNS andr (€, x) = £. If £, # 0,
we takex; = 0 andx, = &, (&3 4 2£3 — 2£2¢,). Finally, r is locally trivial: over
U = {£ eP1: & # 0}, the trivialization map ist 2 (U) — U x C, (£, x1, xp) —
(&, x2), and the inverse map is given by=1— §1‘3(§23(x2 —2) + 2£2&,). Over
{&, # 0}, the trivialization is given by¢, x1, x2) — (&, x1) and the inverse map
is obtained in the same way.

ExampLE D. Here,n =2, 7 =0, andS is defined by the equation

s(Eo, &1, E2, X1, X2) = £ + E1(E1+ E2)(x1 — Dxp + E2(x2+1) =0

over a contractible domai in C? that will be specified later. Note th&tcon-
tains theP-fibers over(l, £i). Computations (whose details will not be repro-
duced here) show that:
(i) Sis smooth outside;
(ii) at each point ofP N S, S is smooth and in general position with respecPto
except over the pointL, 0);
(iii) at each pointof(Q N S) \ P, Q andS are in general position except over a
finite set inC? that does not contaifi, i) or the base point0, 0); and
(iv) ateach point ofP N Q N S, the three surfaces are in general position.
Letus show thatthe necessary condition fails—in other words, that Re® #
0. LetU = {&, # 0}. It suffices to prove that Resy, snuy ¥|U # 0. In the fol-
lowing, we will work onU but omit it from the notation. In the affine coordinates
yo = &o/&2 andys = &1/&,
v = ya3dy0 Adyy ANdxi Adxo
and
s=y24+yi(y1+D(x1—Dxp +x2 41
Let
(x1 —Ddys A dxp — x2dy1 A dx;

Ads.
28

T = izdyl Adxi Adxo+
Yo
Thent|S clearly vanishes and

1 1
dt = 2<— — —3>dy0 VAN dy1 Adxi A dxop,
Yo Yo
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S0
1

dyo

U+ —dt = — /\dy]_/\dxl/\de
2 Yo

and Reg, ) ¥ is represented by the fordy; Adxi Adxy = d((1—x1)dyiAdxz).

We need to show that this form is not null-cohomologousPomelative to S.

By Leray’s long exact sequence and contractibilityXgfit suffices to show that

(1 — x1)dy1 A dxy is not exact or§ N P. Now onS N P we have

x22 +1
1= ———
x2y1(y1+1)

(where the denominator does not vanish), and integrating the fbrx;)dy; A
dx, over the 2-cycle

1—x

l+ 82621'17
g2ei®+n (1 + se"e)’
in SN P with 0 < ¢ < 1(using the 1-dimensional residue formula) doesyield
zero.

Therefore,X must satisfy the following conditionsX is contractible X con-
tains (0, 0) and (1, £i), X avoids a certain finite set not containing these points,
andX contains the set of points, x2) as before witlo, n € [0, 2] for somee €
(0,1). This set is a 2-dimensional real submanifold®f that does not discon-
nectC2. We can, for instance, také to be the complement of a broken half-line
joining the points we must avoid and going out to infinity.

yi=¢ce’, xpy=¢ge", x;1=1

0, n €0, 2],

ExaMPLE E. Here X = C? z =0, andS is defined by the equation
s(Eo, £1. &2, X1, X2) = £3 + (7 + Bt1oxo + 262x2) (01 — D + £2(x3 + 1) = 0.

Clearly, S contains the thre@-fibers above(L 5/—_1) Calculations—which are
considerably more complicated than the corresponding ones in Example D (and
for which one may want to use a computer algebra system)—show thaimooth
and thatP, Q, andS are in general position.

Working onU = {&, # 0} (which again will be omitted from the notation) with
affine coordinateso = &y/&2 andy; = &/&», we shall show that Ress) W #
0. Let

y1dx1 A dxz — (x1 — Ddys A dxa + x2dy1 A dxa ~d
S.

s
T = —zdyl/\dxl/\dxz— >
Yo 35

We see that|S = 0 and compute that
1 1
dt =2 — — 3 a’yo/\dyl/\dxl/\dxg.
Yo Yo

Hence, as before, Rgss) ¥ is represented by the foray; A dx1 A dx2, and we
must show thaf = (1 — x1)dy; A dx, is hot exact or§ N P.
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The projection(ys, x1, x2) — (y1, x2) restricts to an isomorphism ¢fn P \
{(y1+ x2)(y1+ 2x2) = 0} onto C? \ {(y1 + x2)(y1 + 2x2) = O} with inverse
given by

xg’ +1
T it a1t 2x)
Setu = y; + xp andv = y; + 2x, SONOWx2 = v — u, y; = 2u — v, and
dy1 A dxy = du A dv. The map(y, x1, x2) +— (u, v) is an isomorphism of
SN P\{(y14 x2)(y1+ 2x3) = 0} ontoC? \ {uv = 0}, and the push-forward
("+33Hdu A dv of 6 is not exact on the image: just integrate it over the product of
two small circles centered at the origin, using the 1-dimensional residue formula.
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