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The Third Cauchy–Fantappiè Formula of Leray

Cezar Joi ţa & Finnur Lárusson

Introduction

In the third paper [L1] in his famous seriesProblème de Cauchy,Jean Leray
founded the modern theory of residues. This paper is reprinted in Leray’sŒuvres
scientifiques[L2] with an introduction by G. M. Henkin. In it, almost as an aside,
Leray presents three representation formulas for holomorphic functions on a do-
main in affine space, calling them the first, second, and third Cauchy–Fantappiè
formulas. The first formula, nowadays often called the Cauchy–Leray formula, is
truly fundamental: most integral representation formulas can be derived from it in
one way or another. For an introduction to this area of complex analysis, see [B]
and [K]. The second and third formulas, obtained from the first one using resi-
due theory, have received little attention in the literature. The proof of the second
formula is straightforward, but the third one turns out to be quite subtle. We will
show by means of examples that it does not hold without some additional condi-
tions not mentioned by Leray. We present and study sufficient conditions and a
necessary condition for the third formula to hold and, in the case of a contractible
domain, characterize it cohomologically.

We assume that the reader is familiar with approximately the first half of Leray’s
paper [L1], including the coboundary map and the associated long exact homology
sequence, absolute and relative residues, the residue formula, and the interaction
of the residue map with several natural cohomology maps. To establish a context
and notation, we begin by reviewing Leray’s derivation of the three formulas.

1. The Cauchy–Fantappiè Formulas

We start with a number of definitions, following Leray. LetX be a domain inCn
(n ≥ 1), and letY = P n×X. Leray assumes thatX is convex, but we do not. We
define

Q = {(ξ, x)∈ Y : ξ · x = ξ0 + ξ1x1+ · · · + ξnxn = 0}
and

Pz = {(ξ, x)∈ Y : ξ · z = 0} = hyperplane×X
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for z ∈X, which will be thought of as a fixed base point throughout. These are
smooth hypersurfaces inY intersecting transversely. Here,ξ0, . . . , ξn are homo-
geneous coordinates for a pointξ ∈P n. Define also

ω(x) = dx1∧ · · · ∧ dxn,

ω ′(ξ) =
n∑
k=1

(−1)k−1ξk dξ1∧ · · · ∧ d̂ξk ∧ · · · ∧ dξn,
and

ω∗(ξ) =
n∑
k=0

(−1)kξk dξ0 ∧ · · · ∧ d̂ξk ∧ · · · ∧ dξn.

Then we have that(ξ · z)−nω ′(ξ) is a well-defined holomorphic(n−1)-form and
(ξ · z)−n−1ω∗(ξ) is a well-defined holomorphicn-form onP n \{ξ : ξ · z = 0}. Let

8z = ω ′(ξ) ∧ ω(x)
(ξ · z)n and 9z = ω∗(ξ) ∧ ω(x)

(ξ · z)n+1
.

Then8z is a holomorphic(2n − 1)-form and9z is a holomorphic 2n-form on
Y \ Pz, with poles of ordern andn+1 alongPz respectively, and

d8z = n9z.
We usually omit the subscriptz.

We will work with homology and cohomology groups throughout the paper.
Leray uses integral homology with the torsion part removed; we might as well use
homology with complex coefficients. Our cohomology groups will be complex
de Rham groups, both absolute and relative.

The projectionQ \ P → X \ {z} is a fibration with contractible fiberCn−1,

so it is a homotopy equivalence and induces isomorphisms on all homology and
cohomology groups. The boundary mapH2n(X,X \ {z}) → H2n−1(X \ {z})
is injective with a 1-dimensional source. Its image (i.e., the kernel of the map
H2n−1(X \{z})→ H2n−1(X)) is generated by the image of a unique integral class
αz in H2n−1(Q \ P) on whichi−n8 > 0. The image ofα in H2n−1(X \ {z}) is
represented by the boundary of any smoothly bounded relatively compact subdo-
main ofX containingz, with the appropriate orientation. It may be checked that
the orientation is given by the outward normal whenn ≡ 1,2 (mod 4) and by the
inward normal whenn ≡ 0,3 (mod 4).

With these definitions we can now state the first formula. For the proof, see [L1,
Sec. 56].

The First Cauchy–Fantappiè Formula. If f is a holomorphic function on a
domainX in Cn and if z∈X, then

f(z) = (n− 1)!

(2πi)n

∫
αz

f8z.

Here, byf8z we mean8 multiplied by f precomposed with the projection
Y → X. Note thatf8 is closed onQ \ P (since it is holomorphic of degree
equal to the dimension ofQ \ P) and so the integral makes sense.
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For n = 1, this is the Cauchy formula. In most applications,α is represented
by a cycle that is a graph over the boundary of a subdomain containingz. This
case is well described in Berndtsson’s survey [B], as are variants with weight fac-
tors and related solution formulas for the∂̄ operator. For an example whereα is
represented by a cycle that is not a graph, see [K, 4.5].

Now we move on to the second formula. We wish to expressα as the image
of a class inH2n−2(Q ∩ P) by Leray’s coboundary mapδ : H2n−2(Q ∩ P) →
H2n−1(Q \ P). Let us representα by the(2n− 1)-real-dimensional smooth sub-
manifold

M = {([x · z̄− |x|2, x̄1− z̄1, . . . , x̄n − z̄n], x) : x ∈ ∂B}
of Y with the orientation specified previously, whereB b X is the open ball of ra-
diusε > 0 centered atz. Note thatξ · x = 0 andξ · z = −ε2 for (ξ, x) ∈M, so
M ⊂ Q\P. Using the same formula onB \{z} and taking closure inQ,we obtain
a 2n-real-dimensional smooth submanifold ofQ, isomorphic toB̄ with z blown
up, with boundaryM. It intersectsP transversely in the common fiberP n−1 of P
andQ overz. This fiber represents a classβz ∈ H2n−2(Q ∩ P), oriented so that
δβ = −α. Applying the residue formula (which says that the residue map is the
dual ofδ/2πi) to the first formula, we obtain immediately the second formula.

The Second Cauchy–Fantappiè Formula. If f is a holomorphic function on
a domainX in Cn and if z∈X, then

f(z) = − (n− 1)!

(2πi)n−1

∫
βz

ResQ∩P (f8z).

By Leray’s long exact sequence, the kernel ofδ is the image of the mapH2n(Q)→
H2n−2(Q ∩ P) that is induced by intersecting withP, which is injective because
H2n(Q \ P) = 0. Hence,β is the unique class withδβ = −α if and only if
H2n(Q) = 0, which is the case ifX is contractible.

The classβ is never a boundary inP. To obtain the third formula we must ex-
pressβ as a relative boundary with respect to a new smooth hypersurfaceS in Y
such thatP, Q, andS are in general position. Consider the following diagram:

H2n−2(P ∩ S)y
β ∈H2n−2(Q ∩ P) −−→ H2n−2(P )

p

y y
H2n−1(P,Q ∪ S) ∂−−→ H2n−2(Q ∩ P, S) −−→ H2n−2(P, S) .

Assume thatpβ = ∂γ for someγ ∈H2n−1(P,Q ∪ S) (i.e., thatβ is homologous
in P to a cycle inP ∩S). We will refer to this as thetopological conditiononS. It
holds if the mapH2n−2(P ∩S)→ H2n−2(P ) is surjective. It also holds if, but not
only if, S contains a fiber of the projectionP → X: in Example C of Section 3,
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the inclusionP ∩ S ↪→ P is a homotopy equivalence, butS does not contain a
P -fiber. Note thatγ is uniquely determined modulo the image ofH2n−1(P, S).

Leray shows that the residue map Res commutes withp∗ and anti-commutes
with the dual∂∗ of the boundary map. Note thatf8 vanishes on(Q \ P) ∩ S
for dimensional reasons, so it represents a class inH 2n−1(Q \P, S). Now, by the
second formula,

− (2πi)
n−1

(n−1)!
f(z)

=
∫
β

ResQ∩P f8 =
∫
β

ResQ∩P p∗(f8) =
∫
β

p∗ Res(Q∩P,S) f8

=
∫
pβ

Res(Q∩P,S) f8 =
∫
∂γ

Res(Q∩P,S) f8 =
∫
γ

∂∗ Res(Q∩P,S) f8

= −
∫
γ

Res(P,Q∪S) ∂∗(f8).

The map∂∗ is the dual of the boundary map∂ in relativehomology. It is not sim-
ply the exterior derivative. To calculate∂∗(f8)∈H 2n(Y \ P,Q ∪ S), we extend
f8 to a smooth form onY \P, vanishing onS \P, and differentiate. If8|S \P =
0, then the extension can be chosen to bef8 itself, and∂∗(f8) is represented
by d(f8) = fd8 = nf9. Leray [L1, p. 155] seems to assume that this is so;∂∗
becomesd, and his third formula reads as follows.

The Third Cauchy–Fantappiè Formula. Letf be a holomorphic function on
a domainX in Cn, and letz ∈X. LetS be a smooth hypersurface inY such that
Pz, Q, andS are in general position. Then

f(z) = n!

(2πi)n−1

∫
γ

Res(P,Q∪S) f9z

for everyγ ∈ ∂−1(pβz) ⊂ H2n−1(P,Q ∪ S).
Here we viewf9 as a class inH 2n(Y \ P,Q ∪ S), which the residue map takes
toH 2n−1(P,Q ∪ S). At this point, the reader might find it helpful to consult Ex-
ample A in Section 3 to see what the formula looks like in a simple case.

Without some additional conditions onS, the third formula is false,as shown by
Examples A, D, and E in Section 3. The third formula fails in two different ways
in these examples. In Examples D and E,n = 2 and the integral on the right-hand
side is not independent of the choice ofγ in ∂−1(pβ) for f = 1. In Example A,
X = C andH1(P,Q ∪ S) is 1-dimensional and so there is only one choice ofγ,

but the formula fails forf ∈ O(C) with f(1) 6= 0. We do not have an example
where the formula holds forf = 1 but fails for otherf. In fact, we know noth-
ing about the set of functions for which the formula holds beyond the obvious fact
that it is a vector subspace ofO(X).

An important special case in which the third formula does hold is whenS is the
preimage of a smooth hypersurfaceS0 in X. Then8|S \ P clearly vanishes, the
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topological condition is satisfied, and it is easy to see thatPz, Q, andS are in gen-
eral position if and only ifz /∈ S0. Examples B and C in Section 3 show that the
third formula holds not only whenS is a preimage.

Before presenting our examples, we give various answers to the question of
when the third formula holds, starting with a sufficient condition that is also nec-
essary in the contractible case.

2. Necessary and Sufficient Conditions

Throughout this section,X is a domain inCn, z ∈X, f ∈ O(X), S is a smooth
hypersurface inY such thatPz, Q, andS are in general position, andS satisfies
the topological condition∂−1(pβz) 6= ∅.

From our discussion in the previous section, it is clear that the third formula
holds if and only if

Res(P,Q∪S) ∂∗Q(f8) = Res(P,Q∪S) d(f8) on ∂−1(pβ) ⊂ H2n−1(P,Q ∪ S),
where we have written∂Q for the boundary map

H2n(Y \ P,Q ∪ S)→ H2n−1(Q \ P, S)
that previously was simply denoted∂, because now we also want to consider the
boundary map

∂S : H2n(Y \ P,Q ∪ S)→ H2n−1(S \ P,Q).
For convenience, let us writeϕ for f8. As already described,∂∗Qϕ is represented
by dσ, whereσ|Q \ P = ϕ andσ|S \ P = 0. Now ϕ also represents a class
in H 2n−1(S \ P,Q), and ∂∗Sϕ is represented bydτ, whereτ |Q \ P = 0 and
τ |S \ P = ϕ. Hence,dϕ − ∂∗Qϕ = ∂∗Sϕ.

Consider the following diagram:

H 2n−2(P,Q)
p∗−−→ H 2n−2(P )

i∗
y i∗

y
H 2n−3(P ∩Q ∩ S) ∂∗−−→ H 2n−2(P ∩ S,Q) p∗−−→ H 2n−2(P ∩ S)

∂∗
y ∂∗

y
H 2n−2(P ∩Q,S) ∂∗−−→ H 2n−1(P,Q ∪ S)

p∗
y p∗

y
H 2n−2(P ∩Q) ∂∗−−→ H 2n−1(P,Q) .

The rows and columns are parts of long exact sequences. The top and bottom
squares commute. Let us verify that the middle square anti-commutes, pretend-
ing for a moment (to simplify the notation) thatQ andS are hypersurfaces inP.
Take a closed formω0 onQ ∩ S and extend it to a formω onP. The upper part
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of the square works like this: first,∂∗ω0 = dω|S; then we extenddω|S to a form
ω1 onP such thatω1|Q = 0, and∂∗(dω|S) = dω1. The lower part of the square
works like this: first,∂∗ω0 = dω|Q; then we extenddω|Q to a formω2 on P
such thatω2|S = 0, and∂∗(dω|Q) = dω2. We must show thatdω1+ dω2 = 0
in H 2n−1(P,Q ∪ S). This holds becausedω1+ dω2 = d(ω1+ ω2 − dω) and
ω1+ ω2 − dω = 0 onQ ∪ S.

Write ρ = Res(P,Q∪S) ∂∗Sϕ. We have seen that the third formula holds if and
only if ρ = 0 on∂−1(pβ)—that is, if and only ifρ = 0 onγ and on Ker∂, where
γ is some element of∂−1(pβ). This is equivalent toρ ∈ Im ∂∗, sayρ = ∂∗σ with
σ ∈H 2n−2(P ∩Q,S), andp∗σ(β) = ρ(γ ) = 0.

Let us now assume thatX is contractible. ThenH2n−2(P ∩Q) is generated by
β, sop∗σ(β) = 0 impliesp∗σ = 0. Hence, the third formula is equivalent toρ ∈
∂∗(Kerp∗), that is, toρ coming fromH 2n−3(P ∩ Q ∩ S) (which is, of course,
trivial whenn = 1).

The anti-commuting square

ϕ ∈H 2n−1(S \ P,Q) ∂∗
S−−→ H 2n(Y \ P,Q ∪ S)

Res

y Res

y
H 2n−2(P ∩ S,Q) ∂∗−−→ H 2n−1(P,Q ∪ S)3 ρ

shows thatρ comes fromH 2n−2(P ∩ S,Q) with preimage−Res(P∩S,Q) ϕ there.
By chasing the big diagram, we see thatρ comes fromH 2n−3(P ∩ Q ∩ S) if
and only if p∗ Res(P∩S,Q) ϕ = ResP∩S ϕ comes fromH 2n−2(P,Q). Now the
mapp∗ : H 2n−2(P,Q)→ H 2n−2(P ) is zero because the mapi∗ : H 2n−2(P )→
H 2n−2(P ∩ Q), which follows it in the long exact cohomology sequence, is an
isomorphism. Hence, the third formula holds if and only if ResP∩S ϕ is zero in
H 2n−2(P ∩ S) (here, we viewϕ as representing a class inH 2n−1(S \P)). This is
equivalent to the existence of a smooth(2n−2)-formσ onS \P such thatϕ+dσ
extends smoothly toS. In the general case, whenX is not necessarily contractible,
this is a sufficient condition for the formula to hold.

Let us now derive a necessary condition for the third formula to hold. This con-
dition fails in Examples D and E in Section 3. The third formula implies that the
integral on its right-hand side is independent of the choice ofγ in ∂−1(pβ), that is,∫

pθ

Res(P,Q∪S) dϕ = 0 for every θ ∈H2n−1(P, S).

Viewing dϕ as also representing a class inH 2n(Y \ P, S) that is the image byp∗
of the class represented bydϕ in H 2n(Y \ P,Q ∪ S), we see that this condition
is equivalent to Res(P,S) dϕ vanishing inH 2n−1(P, S). This is equivalent todϕ
coming fromH 2n(Y, S), which means that there is a smooth(2n− 1)-form σ on
Y \ P with σ|S \ P = 0 such thatd(ϕ − σ) extends smoothly toY.

We have proved the following result.

Theorem. LetX be a domain inCn, z ∈X, f ∈O(X), andS a smooth hyper-
surface inY such thatPz, Q, andS are in general position andS satisfies the
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topological condition. For Leray’s third formula to hold for this data, it is neces-
sary that

Res(Pz,S) f9z = 0 in H 2n−1(Pz, S)

and sufficient that

ResPz∩S f8z = 0 in H 2n−2(Pz ∩ S).
WhenX is contractible, this sufficient condition is also necessary.

In order to derive a characterization of the third formula, we do not actually
needX to be contractible. The preceding argument shows that it suffices to have
H2n−2(P ∩Q) andH2n−2(P ) = H2n−2(P n−1×X) be 1-dimensional (each gen-
erated byβ).

There is no shortage of other sufficient conditions for Leray’s third formula to
hold. One is thatϕ|S \ P extend holomorphically toS: then, surely, its residue
alongP ∩ S vanishes. Examples B and C in Section 3 illustrate this. Another is
for H2n−1(S \ P)→ H2n−1(S) to be injective: then every class inH 2n−1(S \ P)
lies in the image ofH 2n−1(S). A third sufficient condition is that∂∗Qϕ anddϕ
have the same residue along(P,Q∪S), as is evident from our discussion preced-
ing the statement of the formula. This is equivalent to the existence of a smooth
(2n−1)-formσ onY \P with σ|S \P = 0 andσ = ϕ onQ\P such thatd(ϕ−σ)
extends smoothly toY.

We have pinched Leray’s third formula between this sufficient condition and
the necessary condition that such a formσ exist without requiring thatσ = ϕ on
Q \ P. We have also pinched Leray’s third formula between the sufficient con-
dition that ResP∩S ϕ = 0 and the (same) necessary condition that∂∗ ResP∩S ϕ =
−Res(P,S) dϕ = 0.

We conclude this section by pointing out that ifS contains a fiber of the projec-
tion P → X (which, by Example C of Section 3, is stronger than the topological
condition), then the sufficient condition8|S \P = 0 actually implies our strong-
est and most obvious sufficient condition: thatS be the preimage of a hypersurface
in X. We may assume thatz = 0. First, in the affine coordinatesyj = ξj/ξ0, we
have

8 = y n1d
(
y2

y1

)
∧ · · · ∧ d

(
yn

y1

)
∧ ω(x);

so, changing to the coordinatesw1 = y1 andwj = yj/y1 for j = 2, . . . , n, we
have8 = 0 on the subset ofS \P whereξ1 6= 0 if and only ifdw2∧ · · · ∧ dwn ∧
dx1∧ · · ·∧dxn = 0 there. This is equivalent to∂s/∂w1= 0 for any local defining
functions for S, that is, toS consisting of curves on whichw2, . . . , wn, x1, . . . , xn
are constant. Hence, for everyx ∈X, S ∩ (Cn × {x}) is a union of lines through
the origin, or is the origin itself, or is empty. Adding the point at infinity to each
of these affine lines yields the closure ofS \ P in Y, which equalsS sinceS \ P
is dense inS (this clearly follows fromP andS being in general position, but
P 6⊂ S is enough). Hence, the assumption thatS contains aP -fiber implies that
S contains the whole fiberP n × {x} for somex ∈X. Because it is a hypersurface,
S cannot also contain{0} × X, so its image by the projectionY → X (which is
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proper and hence takes a subvariety to a subvariety) must be a hypersurface inX

with S as its preimage inY.

3. Examples

In this section, we present the following five examples of smooth hypersurfacesS

in P n×X such thatPz, Q, andS are in general position forz = 0 andS contains
a fiber of the projectionP → X, soS satisfies the topological condition; that is,
the basic assumptions in the third Cauchy–Fantappiè formula are in place.

A. Examples withX = C, where the third formula holds (to show what it looks
like in the simplest case) and where it fails.

B. A more involved example withX = C, where8|S \ P extends holomorphi-
cally toS and so the third formula holds, althoughS is not the preimage of a
subset ofX.

C. Same as Example B, but withX = C2; also, a modification of this exam-
ple that satisfies the topological condition even though it does not contain a
P -fiber.

D. An example withn = 2,where the necessary condition Res(P,S) f9 = 0 (and
hence the third formula) fails forf = 1; here,X is contractible but not convex.

E. An example withX = C2 where the necessary condition fails forf = 1; here,
the computations are considerably more complicated than in Example D.

Example A. We first consider the third Cauchy–Fantappiè formula in the sim-
plest case, withX = C andz = 0. Letting η = ξ0/ξ1, we haveP = {η = 0} ∼=
C, Q = {η+ x = 0}, and9 = η−2dx ∧ dη. TakeS = {aη+ x = 1} with a ∈C.
ThenP, Q, andS are in general position andS satisfies the topological condition.
In fact,S contains theP -fiber abovex = 1, andγ ∈H1(P, {0,1}) is represented
by any path〈1,0〉 in C from 1 to 0. Let

σ = aη + x −1

η
(dη + dx)− η + x

η
(adη + dx)

=
(
(1− a)x

η
− 1

η

)
dη +

(
a −1− 1

η

)
dx.

The first expression forσ shows that it vanishes onQ ∪ S, and the second one
shows that

dσ = (a −1)
dη

η
∧ dx −9,

so Res(P,Q∪S) 9 is represented by the form(a−1)dx. If f ∈O(C), then similarly
fσ vanishes onQ ∪ S and

f9 + d(fσ) = dη

η
∧ d(f(x)((a −1)x +1)),

so Res(P,Q∪S) f9 is represented by the formd(f(x)((a−1)x+1)), and the third
formula looks as follows:
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f(0) =
∫
〈1,0〉

d(f(x)((a −1)x +1)) = f(0)− af(1).

Clearly, the formula holds for allf ∈ O(C) only whena = 0, but it fails for f
with f(1) 6= 0 whena 6= 0.

Example B. Again, we takeX = C andz = 0, but nowS is defined by the
equation

s(ξ0, ξ1, x) = ξ2
0 + ξ1(ξ0 + ξ1)(x −1) = 0.

Clearly,S is not the preimage of a subset ofC, andP ∩ S is the point above 1
in C. It is easily verified thatS is smooth and thatP, Q, andS are in general
position.

We claim that8|S \ P (and hencef8|S \ P for everyf ∈ O(X)) extends
holomorphically toS. Working nearP, whereξ1 6= 0, and using the affine coor-
dinateη = ξ0/ξ1, we have8 = dx/η. OnS nearP we havex = 1− η2/(η +1),
sodx = −η(η + 2)/(η + 1)2dη and8 = −(η + 2)/(η + 1)2dη, which extends
holomorphically acrossη = 0. Hence, the third formula holds. Let us check this
by calculating the integrand Res(P,Q∪S) f9. We work on the neighborhood ofP
whereξ1 6= 0. Let q be the defining functionη + x for Q. Let

σ = f

η
(sdq − qds) = −f(x)(x −1)2

η
dη − f

η
dx + θ,

whereθ is smooth nearP. Thenσ vanishes onQ ∪ S and

f9 + dσ = dη

η
∧ d(f(x)(x −1)2)+ dθ,

so the residue Res(P,Q∪S) f9 is represented by the formd(f(x)(x − 1)2). Inte-
grating this form along a path from 1 to 0 givesf(0).

Example C. Here,X = C2, z = 0, andS is defined by the equation

s(ξ0, ξ1, ξ2, x1, x2) = ξ3
0 + ξ3

1 (x1−1)+ ξ3
2(x2 − 2) = 0.

Note thatS is not the preimage of a curve inX and thatS contains theP -fiber
above(1,2). Lengthy but routine computations show thatS is smooth and thatP,
Q, andS are in general position. We will show that8|S \ P extends holomor-
phically toS, so the third formula holds. LetUk be the subset ofS whereξk 6= 0
(k = 1,2). We shall verify that8|S \ P extends acrossP onU2; the case ofU1

is analogous. In the affine coordinatesy0 = ξ0/ξ2 andy1 = ξ1/ξ2, we have8 =
−y−2

0 dy1∧ dx1∧ dx2. On S ∩ U2 we havex2 = 2− y3
0 − y3

1(x1− 1), so there
8 = 3dy0 ∧ dy1∧ dx1, which clearly extends acrossP.

Now take

s(ξ0, ξ1, ξ2, x1, x2) = ξ3
0 + ξ3

1 (x1−1)+ ξ3
2(x2 − 2)+ 2ξ2

1ξ2.

Just as before,S is smooth,P, Q, andS are in general position, and8|S \P ex-
tends holomorphically toS. Also,S is not the preimage of a curve inX; in fact, it
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is easy to see thatS does not even contain aP -fiber. All the same,S satisfies the
topological condition, as we will now verify. Consider the projectionπ : P ∩S ↪→
P = P1 × X → P1. SinceP → P1 is a homotopy equivalence, if we can show
thatπ is a homotopy equivalence then so is the inclusionP ∩ S ↪→ P, and the
topological condition follows.

We will show thatπ is a fibration with contractible fibers. NowP ∩S is given by
the equationsξ0 = 0 andξ3

1 (x1−1)+ξ3
2(x2−2)+2ξ2

1ξ2 = 0. The fibers ofπ are
lines inC2 because the coefficients ofx1 andx2 do not vanish simultaneously. We
claim thatπ is surjective. Namely, ifξ = [ξ1, ξ2] ∈P1 andξ1 6= 0, we setx2 = 0
andx1= ξ−3

1 (ξ3
1 +2ξ3

2−2ξ2
1ξ2). Then(ξ, x)∈P ∩S andπ(ξ, x) = ξ. If ξ2 6= 0,

we takex1= 0 andx2 = ξ−3
2 (ξ3

1 +2ξ3
2−2ξ2

1ξ2). Finally,π is locally trivial: over
U = {ξ ∈P1 : ξ1 6= 0}, the trivialization map isπ−1(U)→ U ×C, (ξ, x1, x2) 7→
(ξ, x2), and the inverse map is given byx1= 1− ξ−3

1 (ξ3
2(x2− 2)+ 2ξ2

1ξ2). Over
{ξ2 6= 0}, the trivialization is given by(ξ, x1, x2) 7→ (ξ, x1) and the inverse map
is obtained in the same way.

Example D. Here,n = 2, z = 0, andS is defined by the equation

s(ξ0, ξ1, ξ2, x1, x2) = ξ2
0 + ξ1(ξ1+ ξ2)(x1−1)x2 + ξ2

2(x
2
2 +1) = 0

over a contractible domainX in C2 that will be specified later. Note thatS con-
tains theP -fibers over(1,±i). Computations (whose details will not be repro-
duced here) show that:

(i) S is smooth outsideP ;
(ii) at each point ofP ∩ S, S is smooth and in general position with respect toP

except over the point(1,0);
(iii) at each point of(Q ∩ S) \ P, Q andS are in general position except over a

finite set inC2 that does not contain(1,±i) or the base point(0,0); and
(iv) at each point ofP ∩Q ∩ S, the three surfaces are in general position.

Let us show that the necessary condition fails—in other words, that Res(P,S) 9 6=
0. LetU = {ξ2 6= 0}. It suffices to prove that Res(P∩U,S∩U) 9|U 6= 0. In the fol-
lowing, we will work onU but omit it from the notation. In the affine coordinates
y0 = ξ0/ξ2 andy1= ξ1/ξ2,

9 = y−3
0 dy0 ∧ dy1∧ dx1∧ dx2

and
s = y2

0 + y1(y1+1)(x1−1)x2 + x 2
2 +1.

Let

τ = s

y2
0

dy1∧ dx1∧ dx2 + (x1−1)dy1∧ dx2 − x2dy1∧ dx1

2y2
0

∧ ds.

Thenτ |S clearly vanishes and

dτ = 2

(
1

y0
− 1

y3
0

)
dy0 ∧ dy1∧ dx1∧ dx2,
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so

9 + 1

2
dτ = dy0

y0
∧ dy1∧ dx1∧ dx2

and Res(P,S) 9 is represented by the formdy1∧dx1∧dx2 = d((1−x1)dy1∧dx2).

We need to show that this form is not null-cohomologous onP relative toS.
By Leray’s long exact sequence and contractibility ofX, it suffices to show that
(1− x1)dy1∧ dx2 is not exact onS ∩ P. Now onS ∩ P we have

1− x1=
x 2

2 +1

x2y1(y1+1)

(where the denominator does not vanish), and integrating the form(1− x1)dy1∧
dx2 over the 2-cycle

y1= εeiθ , x2 = εeiη, x1= 1− 1+ ε2e2iη

ε2ei(θ+η)(1+ εeiθ ) , θ, η ∈ [0,2π],

in S ∩P with 0< ε < 1 (using the 1-dimensional residue formula) doesnot yield
zero.

Therefore,X must satisfy the following conditions:X is contractible,X con-
tains(0,0) and(1,±i), X avoids a certain finite set not containing these points,
andX contains the set of points(x1, x2) as before withθ, η ∈ [0,2π] for someε ∈
(0,1). This set is a 2-dimensional real submanifold ofC2 that does not discon-
nectC2. We can, for instance, takeX to be the complement of a broken half-line
joining the points we must avoid and going out to infinity.

Example E. Here,X = C2, z = 0, andS is defined by the equation

s(ξ0, ξ1, ξ2, x1, x2) = ξ2
0 + (ξ2

1 + 3ξ1ξ2x2 + 2ξ2
2x

2
2)(x1−1)+ ξ2

2(x
3
2 +1) = 0.

Clearly,S contains the threeP -fibers above
(
1, 3
√−1

)
. Calculations—which are

considerably more complicated than the corresponding ones in Example D (and
for which one may want to use a computer algebra system)—show thatS is smooth
and thatP, Q, andS are in general position.

Working onU = {ξ2 6= 0} (which again will be omitted from the notation) with
affine coordinatesy0 = ξ0/ξ2 andy1 = ξ1/ξ2, we shall show that Res(P,S) 9 6=
0. Let

τ = s

y2
0

dy1∧dx1∧dx2− y1dx1∧ dx2 − (x1−1)dy1∧ dx2 + x2dy1∧ dx1

3y2
0

∧ds.

We see thatτ |S = 0 and compute that

dτ = 2

(
1

y0
− 1

y3
0

)
dy0 ∧ dy1∧ dx1∧ dx2.

Hence, as before, Res(P,S) 9 is represented by the formdy1∧ dx1∧ dx2, and we
must show thatθ = (1− x1)dy1∧ dx2 is not exact onS ∩ P.
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The projection(y1, x1, x2) 7→ (y1, x2) restricts to an isomorphism ofS ∩ P \
{(y1+ x2)(y1+ 2x2) = 0} ontoC2 \ {(y1+ x2)(y1+ 2x2) = 0} with inverse
given by

1− x1=
x3

2 +1

(y1+ x2)(y1+ 2x2)
.

Setu = y1 + x2 andv = y1 + 2x2, so nowx2 = v − u, y1 = 2u − v, and
dy1 ∧ dx2 = du ∧ dv. The map(y1, x1, x2) 7→ (u, v) is an isomorphism of
S ∩ P \ {(y1+ x2)(y1+ 2x2) = 0} ontoC2 \ {uv = 0}, and the push-forward
(v−u)3+1

uv
du∧ dv of θ is not exact on the image: just integrate it over the product of

two small circles centered at the origin, using the 1-dimensional residue formula.
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