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On Parameter Spaces for Artin Level Algebras

J. V. Chipalkatti & A. V. Geramita

Let R = k [x1, . . . , xn] denote a polynomial ring and leth : N→ N be a numeri-
cal function. Consider the set of all graded Artin level quotientsA = R/I having
Hilbert functionh. This set (if nonempty) is naturally in bijection with the closed
points of a quasiprojective schemeL◦(h). The object of this note is to prove some
specific geometric properties of these schemes, especially forn = 2. The case
of Gorenstein Hilbert functions (i.e., whereA has type 1) has been extensively
studied, and several qualitative and quantitative results are known (see [17]). Our
results should be seen as generalizing some of them to the non-Gorenstein case.

After establishing notation, we summarize the results in the next section. See
[12; 17] as general references for most of the constructions used here.

1. Notation and Preliminaries

The base fieldk will be algebraically closed and of characteristic 0 (but see Re-
mark 4.11). LetV be ann-dimensionalk-vector space, and let

R =
⊕
i≥0

Symi V ∗, S =
⊕
i≥0

Symi V.

Let {x1, . . . , xn} and{y1, . . . , yn} be dual bases ofV ∗ andV (respectively), lead-
ing to identificationsR = k [x1, . . . , xn] andS = k [y1, . . . , yn]. There are internal
products (see [11, p. 476])

Symj V ∗ ⊗ Symi V → Symi−j V, u⊗ F → u · F,
makingS into a gradedR-module. This action may be seen as partial differentia-
tion; if u(x)∈R andF(y)∈ S, then

u · F = u(∂/∂y1, . . . , ∂/∂yn)F.

If I ⊆ R is a homogeneous ideal, thenI−1 is theR-submodule ofS defined as
{F ∈ S : u · F = 0 for all u∈ I }. This module (called Macaulay’s inverse system
for I ) inherits a grading fromS, soI−1=⊕i(I

−1)i . Reciprocally, ifM ⊆ S is a
graded submodule, then ann(M) = {u : u · F = 0 for all F ∈M} is a homoge-
neous ideal inR. In classical terminology, ifu · F = 0 and degu ≤ degF, then
u andF are said to beapolar to each other.
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For anyi,we have the Hilbert functionH(R/I, i) = dimk(R/I )i = dimk(I
−1)i .

The following theorem is fundamental.

Theorem 1.1 (Macaulay–Matlis duality). We have a bijective correspondence

{homogeneous idealsI < R} {gradedR-submodules ofS};
I −→ I−1, ann(M)←− M.

Moreover,I−1 is a finitely generatedR-module if and only ifR/I is Artin.

LetR/I = A be Artin with graded decomposition

A = k ⊕ A1⊕ · · · ⊕ Ad, Ad 6= 0, Ai = 0 for i > d.

Recall that
socle(A) = {u∈A : uxi = 0 for everyi}.

ThenAd ⊆ socle(A), andA is said to belevel if equality holds. This is true iff
I−1 is generated as anR-module by exactlyt := dimAd elements inSd. When
A is level, the numbert is called thetypeof A, and it coincides with its Cohen–
Macaulay type. ThusA is Gorenstein ifft = 1. The numberd is thesocle degree
of A. Altogether we have a bijection

{A : A = R/I Artin level of type t and socle degreed} G(t, Sd);
A −→ (I−1)d, R/ann(3)←− 3.

HereG(t, Sd) denotes the Grassmannian oft-dimensional vector subspaces ofSd.

Notice the canonical isomorphism

G(t, Sd) ' G(dimRd − t, Rd) (1)

taking3 to Id . We sometimes write3i for (I−1)i and3 for 3d = (I−1)d .

Remark 1.2. The algebraA is level iff 3d generatesI−1 as anR-module—that
is, iff the internal product map

αi : Rd−i ⊗3d → 3i

is surjective for alli ≤ d. This is so iff the dual map

βi : (R/I )i → Sd−i ⊗ (R/I )d
is injective for alli. This map can be written as

βi : u→
∑
M

yM ⊗ uxM, (2)

the sum quantified over all monomialsxM of degreed − i.
As a consequence, ifR/I is level then the graded pieceId determinesI by the

following recipe: Ii = {u ∈ Ri : u · Rd−i ⊆ Id} for i ≤ d, andIi = Ri for
i > d. In the terminology of [12] (a related terminology was originally introduced
by A. Iarrobino),I is theancestor idealof the vector spaceId .
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Remark 1.3. We can detect whetherR/I is level from the last syzygy module in
its minimal resolution. Indeed, let

0−→ Pn −→ · · · −→ P0 −→ R/I −→ 0 (†)

(whereP0 = R) be the graded minimal free resolution ofR/I, and let

0−→ R(−n) −→ R(−n+1)n −→ · · · ∧i(R(−1)n) −→ · · · −→ R −→ k −→ 0 (††)

be the Koszul resolution ofk. We will calculate the gradedR-moduleN =
TorRn (R/I, k) in two ways. If we tensor(†) with k, then all differentials are zero
and henceN = Pn ⊗ k. When we tensor(††) with R/I, the kernel in the left-
most place isN = socle(A)(−n). HenceA is level of socle degreed and typet
iff socle(A) ' k(−d )t , iff Pn ' R(−d − n)t .
HenceforthA = R/I always denotes a level algebra of typet and socle degreed,
loosely said to be of type(t, d ). Let B ⊆ Sd ⊗ OG denote the tautological bun-
dle onG(t, Sd); thus its fiber over a point3∈G is the subspace3. The internal
products give vector bundle maps

ϕi : Rd−i ⊗ B→ Si ⊗OG, 1≤ i ≤ d. (3)

Dually, there are maps

ϕ∗i : Ri ⊗OG→ Sd−i ⊗ B∗.
Now B∗ is the universal quotient bundle ofG(dimRd − t, dimRd) via (1), so its
fiber over the pointId is the subspaceRd/Id .

1.1. Definition of Level Subschemes

We fix (t, d ) and letG = G(t, Sd). The Hilbert function ofA is given by

H(A, i) = dim(Ri/Ii) = dim3i.

This motivates the following definition.
For integersi andr, let L(i, r) be the closed subscheme ofG defined by the

condition {rank(ϕi) ≤ r}. (Locally it is defined by the vanishing of(r + 1)-
minors of the matrix representingϕi.) Let L◦(i, r) be the locally closed sub-
schemeL(i, r) \ L(i, r − 1). ThusA represents a closed point ofL(i, r) (resp.
L◦(i, r)) wheneverH(A, i) ≤ r (resp.H(A, i) = r).

Let h = (h0, h1, h2, . . . ) be a sequence of nonnegative integers such thath0 =
1, hd = t, andhi = 0 for i > d. (It is a useful convention thathi = 0 for i < 0.)
Define scheme-theoretic intersections

L(h) =
d−1⋂
i=1

L(i, hi), L◦(h) =
d−1⋂
i=1

L◦(i, hi).

These are, respectively, closed and locally closed subschemes ofG(t, Sd). Via
the identification in (1), we will occasionally think of them as subschemes of
G(dimRd − t, Rd). The pointA = R/I lies inL(h) (resp.L◦(h)) iff dim k Ai ≤
hi (resp. dimk Ai = hi) for all i.
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Of course either of the schemes may be empty, and it is in general an open
problem to characterize thoseh for which they are not. Forn = 2, such a charac-
terization is given in Theorem 3.1. IfL◦(h) is nonempty then we will say thath is
a level Hilbert function.

1.2. The Structure ofL(h) for t = 1, n = 2

The structure of the parameter spaces for Gorenstein quotients ofR = k [x1, x2] is
rather well understood and provides a useful paradigm for our study of Artin level
quotients ofR having type> 1. An outline of this story is given below; see [12]
for details.

It is easy to show thatA = R/I is a graded Gorenstein Artin algebra iffI is
a complete intersection. ThusI = (u1, u2), whereu1, u2 are homogeneous and
degu1= a ≤ b = degu2. In this cased = a + b− 2, and the Hilbert function of
A is

H(i) =


i +1 for 0≤ i ≤ a −1,

a for a ≤ i ≤ b −1,

a + b − (i +1) for b ≤ i ≤ d;
in particular, it is centrally symmetric. We will denote this function byha. It fol-
lows that, for socle degreed, there are precisely

` =
{
(d + 2)/2 if d is even,

(d +1)/2 if d is odd,

possible Hilbert functions for GorensteinArtin quotients ofR. The collection{ha}
is totally ordered, that is,ha(j) ≤ ha+1(j) for all 0 ≤ j ≤ d and 1≤ a ≤ `. For
brevity, letLa denote the schemeL(ha) ⊆ PSd.

In fact,L◦a is the locus ofpower sumsof lengtha; that is,

L◦a = {F ∈PSd : F = Ld1 + · · · + Lda for someLi in S1},
with La its Zariski closure. ThusL1 can be identified with the rational normal
curve inPSd, andLa is the union of (possibly degenerate) secant(a − 1)-planes
toL1. In particular, dimLa = 2a −1.

Let zi = xd−i1 xi2; then Sym• Rd = k [z0, . . . , zd ] is the coordinate ring ofPSd.
Consider the Hankel matrix

Ca :=


z0 z1 · · · zd−a
z1 z2 · · · zd−a+1

...
...

...

za z`+1 · · · zd

,
and let℘a denote the ideal of its maximal minors. Then it is a theorem of Gru-
son and Peskine (see [14]) that℘a is perfect, prime, and equal to the ideal ofLa
in k [z0, . . . , zd ]. Now the Eagon–Northcott theorem implies thatLa ⊆ PSd is an
arithmetically Cohen–Macaulay variety.
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1.3. Summary of Results

In the next section, we derive an expression for the tangent space to a point of
L◦(h). This is a direct generalization of[17, Thm. 3.9] to the non-Gorenstein
case. For Sections 3 and 4, we assumen = 2. In Section 3, we give a geomet-
ric description of a point ofL◦(h) in terms of secant planes to the rational normal
curve, which generalizes the one just given fort = 1. We relate this description to
Waring’s problem for systems of algebraic forms and solve the problem forn = 2.
In the last section we prove a projective normality theorem for a class of schemes
L(i, r) using spectral sequence techniques. The results in the following three sec-
tions are largely independent of each other, so they may be read separately.

We thank the referee for several helpful suggestions, and specifically for con-
tributing Corollary 3.3. We owe the result of Theorem 3.1 to G. Valla. We also
acknowledge the help of John Stembridge’s Maple package “SF” for some calcu-
lations in Section 3.4.

2. Tangent Spaces to Level Subschemes

Let R = k [x1, . . . , xn] and letA = R/I be an Artin level quotient of type(t, d ).
Given a degree-0 morphismψ : I → R/I of gradedR-modules, we have induced
maps ofk-vector spacesψi : Ii → (R/I )i . We claim thatψd entirely determines
ψ. Indeed, letu ∈ Ii andxM be a monomial of degreed − i. Thenψd(uxM) =
ψi(u)x

M. But thenβi(ψi(u)) = ∑M y
M ⊗ ψd(uxM). Sinceβi is injective, this

determinesψi(u) uniquely. Thus we have an inclusion

HomR(I, R/I )0 ↪→ Homk(Id, Rd/Id), ψ → ψd. (4)

We also have a parallel inclusion

HomR(I
−1, S/I−1)0 ↪→ Homk(3, Sd/3). (5)

Recall that ifU is a vector space andW anm-dimensional subspace, then
the tangent space toG(m,U) atW (denotedTG,W) is canonically isomorphic to
Hom(W,U/W ). Thus

TG(t,Sd ),3 = Homk(3, Sd/3), TG(dimRd−t,Rd),Id = Homk(Id, Rd/Id).

Theorem 2.1. LetA = R/I be as before with Hilbert functionh and inclusions
(4) and (5).

(A) RegardingL◦(h) as a subscheme ofG(t, Sd), we have a canonical isomor-
phism

TL◦(h),3 = HomR(I
−1, S/I−1)0 = HomR(I

−1, (I 2)−1/I−1)0.

(B) RegardingL◦(h) as a subscheme ofG(dimRd − t, Rd),we have a canonical
isomorphism

TL◦(h),Id = HomR(I, R/I )0 = HomR(I/I
2, R/I )0.
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Proof. We begin by recalling the relevant result about the tangent space to a generic
determinantal variety (see [1, Chap. 2]).

Let M = M(p, q) denote the space of allp × q matrices overC or (equiva-
lently) the space of vector space mapsCp → Cq . SinceM is an affine space, it
follows for anyX ∈M that the tangent spaceTM,X can be canonically identified
with M. Fix an integerr ≤ min{p, q} and letMr be the subvariety of matrices
with rank≤ r. If X ∈Mr \Mr−1, thenX is a smooth point ofMr and

TMr,X = {Y ∈M : Y(kerX) ⊆ imageX}.
Now if 3∈L◦(i, r), thenϕi is represented in a neighborhoodU ⊆ G(t, Sd) of

3 by a matrix of sizet(d − i + 1)× (i + 1), whose entries are regular functions
onU. Writing M = M(t(d − i + 1), i + 1), these functions define a morphism
f : U → M. Thus the following is a fiber square:

U ∩ L◦(i, r) //

��

U

f

��

Mr
i

// M .

Hence

TL◦(i,r),3 = {τ ∈ TU,3 = Hom(3, Sd/3) : df(τ)∈ TMr,f(3)}.
(Heredf denotes the induced map on tangent spaces.)

This expression may be translated into the statement thatTL◦(i,r),3 consists of
all τ ∈ Homk(3, Sd/3) such that the broken arrow in the following diagram is
zero:

kerαi //

**VVVVVVVVVVVV Rd−i ⊗3 id⊗τ
// Rd−i ⊗ Sd/3

µ

��

Si/3i .

The mapµ comes from the internal product in an obvious way. This implies
thatτ ∈ TL◦(i,r),3 iff the compositeµ B (id⊗ τ) factors through imageαi = 3i.

Let τi : 3i → Si/3i denote the induced map. Now

TL◦(h),3 =
⋂
i

TL◦(i,hi ),3,

henceτ ∈ TL◦(h),3 iff it defines a sequence(τi) as just described that glues to give
anR-module mapI−1−→ S/I−1. This proves (A).

For (B), a parallel argument leads to this: an elementω ∈Homk(Id, Rd/Id) be-
longs toTL◦(i,r),Id iff, in the following diagram, the broken arrow can be filled in:
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Id ⊗ Sd−i ω⊗id
// Rd/Id ⊗ Sd−i

Ii

OO

//______ Ri/Ii .

OO

Here both vertical maps are given by formula (2); in particular, they are injec-
tive. Hence the broken arrow is unique if it exists, which we then denote byωi.

Thusω ∈ TL◦(h),Id iff it defines a sequence(ωi) as before that glues to give an
R-module mapI −→ R/I. This proves the theorem.

Remark 2.2. The scheme GradAlg(h) (defined by Kleppe [18]) parametrizes
graded quotients ofR (level or not) with Hilbert functionh. Its tangent space at
the pointR/I is also canonically isomorphic to Hom(I, R/I )0. See Remarks 3.10
and 4.3 in [17] for a more detailed comparison of these two spaces (in the Goren-
stein case).

3. Level Algebras in Codimension 2

In this section (and the next) we consider quotients ofR = k [x1, x2].

3.1. Preliminaries

LetA = R/I be an Artin level algebra with Hilbert functionH, type t, and socle
degreed. By Remark 1.3, we have a resolution

0−→ Rt(−d − 2) −→
d+1⊕
`=1

Re`(−`) −→ R −→ R/I −→ 0. (6)

Heree` is the number of minimal generators ofI in degreè , and
∑
e` = t + 1.

Hence

H(A, i) = (i +1)−
i∑
`=1

e`(i − `+1) for all i ≤ d +1. (7)

With a little manipulation, this implies

ei+1= 2H(A, i)−H(A, i −1)−H(A, i +1) for 0 ≤ i ≤ d. (8)

Hence the sequence(ei) can be recovered from the Hilbert function. Applying the
functor HomR(–, R/I ) to the resolution ofI, we have an exact sequence

0−→ Hom(I, R/I ) −→
d+1⊕
`=1

(R/I )e`(`) −→ (R/I )t(d + 2)

and so

dimk HomR(I, R/I )0 =
d∑
`=1

e`H(A, `). (9)
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The next result characterizes the level Hilbert functions of type(t, d ) in codi-
mension 2. It is due to G. Valla, who had kindly communicated its proof to the
second author several years ago. A more general version (that covers codimension
two nonlevel algebras) is stated by A. Iarrobino in [16, Thm. 4.6A].

Theorem 3.1 (Iarrobino,Valla). Leth = (h0, h1, . . . ) be a sequence of nonneg-
ative integers satisfyingh0 = 1, hd = t, andhi = 0 for i > d. ThenL◦(h) is
nonempty if and only if

2hi ≥ hi−1+ hi+1 for all 0 ≤ i ≤ d.
(By convention,hi = 0 for i < 0.)

Proof. The “only if ” part follows from (8). Assume thath satisfies the hypothe-
ses. Then we inductively deducehi ≤ i +1. Defineei = 2hi−1− (hi−2+ hi) for
1≤ i ≤ d +1 andei = 0 elsewhere. Then

∑d+1
i=1 ei = hd + h0 = t +1. Define a

sequence of integers
q : q1 ≤ q2 ≤ · · · ≤ qt+1

such that, for 1≤ i ≤ d + 1, the integeri occursei times. An easy calculation
shows that

∑
qi =∑ i · ei = t(d + 2).

LetM be thet × (t +1)matrix whose only nonzero entries areMi,i = xd+2−qi
1

andMi,i+1= xd+2−qi+1
2 for 1≤ i ≤ t, and letI be the ideal of its maximal minors.

SinceI is (x1, x2)-primary, it has depth 2. Thet + 1 maximal minors ofM are
nonzero, and they have degreesq1, . . . , qt+1. By the Hilbert–Burch theorem,R/I
has a resolution with Betti numbers as in (6). Then, by Remark 1.3, the pointA =
R/I lies inL◦(h).
Example 3.2. Let(t, d ) = (3,7) andh = (1,2,3,4,5,5,4,3,0). Thene5 =
e6 = 1, e8 = 2, andq = (5,6,8,8). Hence

M =
 x

4
1 x3

2 0 0

0 x3
1 x2 0

0 0 x1 x2


andI = (x 5

2, x
4
1x

2
2, x

7
1x2, x

8
1).

We owe the following observation to the referee.

Corollary 3.3. The level Hilbert functionsh of type(t, d ) are in bijection with
partitions ofd − t + 1 with no part exceedingt + 1.

Proof. Given h, defineµi = hi − hi+1 + 1 for 0 ≤ i ≤ d − 1. Thenµ =
(µd−1, . . . , µ1, µ0) is a partition as described in the corollary. Conversely, given
such a partition, we append zeros to make its length equal tod and then determine
hi recursively.

Remark 3.4. If h is a level Hilbert function, thenL◦(h) is an irreducible and
smooth variety. Indeed, the scheme GradAlg(h) is irreducible and smooth by a
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result of Iarrobino [15, Thm. 2.9], andL◦(h) ⊆ GradAlg(h) is a dense open sub-
set. Hence, from (9),

dimL◦(h) =
d∑
i=1

eihi =
d∑
i=1

hi(2hi−1− hi − hi−2). (10)

For instance, we have dimL◦(h) = 9 in Example 3.2.

3.2. Geometric Description of Points inL◦(h)
We start with an example to illustrate the description we have in mind. We need
the following classical lemma (see[17, pp.23–25; 19]).

Lemma 3.5 (Jordan). Letu∈Rm be a form factoring as∏
i

(ai x1+ bi x2)
µi , so that

∑
µi = m.

If n ≥ m, then(u)−1
n (the subspace of forms inSn that are apolar tou) equals∑

i

Sµi−1(biy1− aiy2)
n−µi+1 =

{∑
fi(biy1− aiy2)

n−µi+1 : fi ∈ Sµi−1

}
.

In particular, this is anm-dimensional vector space.

Example 3.6. Let(t, d ) = (2,6) and consider the level Hilbert function

h = (1,2,3,4,4,3,2,0).
Then3 ∈ L◦(h) defines a lineP3 in P6 (= PS6). We identify the subsetC6 =
{[L6] ∈PS6 : L∈ S1} as the rational normal sextic inPS6.

By formula (8),I = ann(3) has one minimal generator each in degrees 4,5,7.
Let u4 ∈ R4 be the first generator, factoring asu4 = ∏4

i=1(ai x1 + bi x2). For
simplicity, assume that [a1, b1], . . . , [a4, b4] are distinct points inP1. Then, by
Jordan’s lemma, the subspace(u4)

−1
6 ⊆ S6 is the span of(biy1− aiy2)

6 for 1≤
i ≤ 4. Let 54 denote the projectivizationP(u4)

−1
6 , which is the secant 3-plane

toC6 spanned by the four points [bi,−ai ]. Consider generatorsu5, u7 and define
55,57 analogously. (Of course,57 = PS6.) Now

(I−1)6 = ((u4, u5, u7)
−1)6 H⇒ P3 = 54 ∩55 ∩57.

Thus (the line corresponding to) every element3∈ L◦(h) is representable as an
intersection of secant planes to the rational normal curve, in a way that depends
only on the combinatorics ofh. If (say)u4 has multiple roots, then54 is tangent
to the curve at one or more points and so must be counted as a degenerate secant
plane.

Definition 3.7. LetCd = {[Ld ] : L ∈ S1} be the rational normal curve inPSd.
A linear subspace5 ⊆ PSd of (projective) dimensions will be called asecant
s-plane toCd if the scheme-theoretic intersectionCd ∩ 5 has length≥ s + 1.
(Then the length must equals +1, essentially by Jordan’s lemma.)
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Now, for an arbitrary level algebra in codimension 2, we have the following
description.

Proposition 3.8. Leth be a level Hilbert function and3∈L◦(h). Define a se-
quenceq as in the proof of Theorem 3.1. Then there exist secant(qi − 1)-planes
5qi such that

P3 = 5q1 ∩ · · · ∩5qt+1. (11)

Proof. The essential point already occurs in Example 3.6. Letq be one of theqi
andu∈ Iq a generator. Write

u =
∏
i

(ai x1+ bi x2)
µi .

Let 8i be the osculating(µi − 1)-plane toCd at the point(biy1 − aiy2)
d .

(This is the point itself ifµi = 1.) Algebraically,8i is the projectivization
P(Sµi−1(biy1− aiy2)

d−µi+1).

Let5q be the linear span of all the8i. Then dim5q = q − 1 and by Jordan’s
lemma,5q is the locus of formsF ∈ Sd that are apolar tou. Construct such a
plane5qi for eachqi. A form F lies in3 iff it is apolar to each generator ofI, iff
it belongs to

⋂
5qi . The proposition is proved.

Remark 3.9. The argument depends heavily on the fact that any zero-dimensional
subscheme ofCd is in linearly general position. This property characterizes ratio-
nal normal curves (see [13, p. 270]).

The preceding proposition admits a converse. Consider the following example.

Example 3.10. LetP3 ⊆ PS11 (= P11) be a line appearing as an intersection

P3 = 58 ∩5′8 ∩510,

where each5q is a secant(q−1)-plane toC11. Note that the planes intersect prop-
erly (i.e., in the expected codimension). We claim that3 belongs toL◦(h) for

h = 1 2 3 4 5 6 7 8 7 6 4 2 0.

Let W8 ⊆ S11 be the subspace such that58 = PW8, . . . . Assume58 intersects
C11 at points(biy1− aiy2)

11 with respective multiplicitiesµi
(
so that

∑
µi = 8

)
.

Let u8 ∈R8 be the element
∏
(ai x1+ bi x2)

µi ; then ann(W8) is the principal ideal
(u8). Define elementsu′8, u10 similarly. Now

I = ann(3) = ann(W8)+ ann(W ′8)+ ann(W10) = (u8, u
′
8, u10).

Since (by construction)R/I is a level algebra of type two, it follows thatI has three
minimal generators. Hence their degrees must be(8,8,10) and then the Hilbert
function ofR/I is determined by formula (8). This completes the argument.

Proposition 3.11. Let P3 ⊆ PSd be a(t − 1)-dimensional subspace that is ex-
pressible as an intersection
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P3 = 5q1 ∩ · · · ∩5qt+1,

where:

(i) 5qi is a secant(qi − 1)-plane toCd; and
(ii) the intersection is proper—that is,∑

i

codim(5qi,P
d) = codim(P3,Pd) = d − t + 1.

ThenR/ann(3)∈L◦(h), whereh0 = 1 andhi = 2hi−1− hi−2 − ei for 1≤ i ≤
d. Theei are defined by arranging theqi as in Theorem 3.1.

Proof. The proof is left to the reader.

Propositions 3.8 and 3.11 are natural generalizations of the description ofL(h) in
the Gorenstein case.

Example 3.12. The minimal Hilbert function of type(t, d ) is h = (1,2, . . . ,
t −1, t, . . . , t, 0), and thenL◦(h) = L(h) is the variety of secant(t −1)-planes to
Cd. Abstractly,L(h) ' Symt P1 ' Pt . See [2] for a description of the minimal
level Hilbert function whenn > 2.

The maximal function ishi = min{i +1, (d − i +1)t} for 1≤ i ≤ d. If we let

s0 =
⌈
t(d +1)

t +1

⌉
,

thenhs0 < s0 +1. Hence every3∈G(t, Sd) has an apolar form of degree≤ s0.

Using this formulation, the so-called Waring’s problem can be solved completely
for binary forms.

3.3. Waring’s Problem for Several Binary Forms

We will start with an informal account. Given binary formsF1, . . . , Ft of degree
d, we would like to find linear formsL1, . . . , Ls such that

Fi = ci1Ld1 + · · · + cisLds (12)

for somecij ∈ k. This is always possible fors = d + 1; indeed, if we choose
L1, . . . , Ld+1 generally then theLdi spanSd.

The “simultaneous” Waring’s problem (in one of its versions) is to find the
smallests that suffices for ageneralchoice ofFi. (See Bronowski [3] for a dis-
cussion ofn-ary forms.) Here we consider a more general version: we fixs and
consider the locus6 of forms {F1, . . . , Ft } that admit such a representation. In
practice, we allow not only representations as here but also generalized additive
decompositions (GADs) in the sense of[17, Def. 1.30].

Definition 3.13. A finite collectionL= {Li} ⊆ S1\ {0} of linear forms will be
calledadmissibleif any twoLi, Lj are nonproportional.

Definition 3.14. LetL be an admissible collection as just defined and let
F ∈ Sd. A GAD for F with respect toL is a collection{pi} of forms such that



198 J. V. Chipalkatti & A. V. Geramita

F =∑ i piL
d−αi
i with αi = degpi < d. (We set deg 0= −1 by convention.)

The integer̀ α =∑ i(αi +1) is called thelengthof the GAD.

If all αi = 0, then this reduces to expression (12). Given sequencesα andL such
that−1≤ αi < d, define a subspace

W(α,L) =
∑

SαiL
d−αi ⊆ Sd.

(By convention,S−1 = 0.) WriteLi = biy1− aiy2; then, by hypothesis, [ai, bi ]
represent distinct points ofP1.

Lemma 3.15 [17,Sec. 1.3]. With notation as above:

(a) A form lies inW(α,L) iff it is apolar to
∏

i(ai x1+ bi x2)
αi+1. In particular,

dimW(α,L) =∑ i(αi + 1).
(b) Let8i,αi be the osculatingαi-plane(empty, by convention, ifαi = −1) toCd

at the pointLdi ∈ Cd. Then the linear span of all{8i,αi }i is the projectiviza-
tion PW(α,L).

This is merely a rephrasing of Jordan’s lemma. Thus the subspacesW(α,L) ex-
actly correspond to secant(`α− 1)-planes toCd. Now let (d, t) be as before and
fix an integers such thatd +1> s ≥ t. Define

6s = {3∈G(t, Sd) : P3 lies on some secant(s −1)-plane ofCd}. (13)

Algebraically,3∈6s iff there exists an admissible collection{Li} such that each
F ∈3 has a GAD of length≤ s with respect to{Li}. There is no loss of generality
in assuming that{Li} has cardinalitys.

Now Waring’s problem can be interpreted as one of calculating dim6s. Evi-
dently, it is bounded by dimG(t, Sd) = t(d − t + 1). Let Us ⊆ Syms(PS1) be
the open subset of admissible collectionsL= {L1, . . . , Ls}, and consider the in-
cidence correspondence

6̃s = {(3,L)∈G(t, Sd)× Us : each element of3

admits a GAD of length≤ s w.r.t.L}.
Then6s is the image of the projectionπ1 : 6̃s → G(t, Sd).

Lemma 3.16. Each fibre of the projectionπ2 : 6̃s → Us is of dimensiont(s− t),
sodim6̃s = s + t(s − t).
Proof. Each3∈π−1

2 (L) is a subspace of the (finite) union⋃
`α≤s

W(α,L),

hence it is a subspace of one of theW. Now use the fact that dimG(t,W ) equals
t(dimW − t).
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Thus we have a naïve estimate,

dim6s ≤ min{s + t(s − t)︸ ︷︷ ︸
N1

, t(d − t +1)︸ ︷︷ ︸
N2

}. (14)

Theorem 3.17. In (14),we have an equality.

Proof. AssumeN1 < N2. We will exhibit a level Hilbert functionh of type(t, d )
such thaths = s and dimL◦(h) = N1. Then, by construction, for each3∈L◦(h)
there exists a nonzero form inRs that is apolar3. This form defines a secant
(s −1)-plane containingP3. HenceL◦(h) ⊆ 6s, which forces dim6s = N1.

Letm be the unique integer such that(m+1)t > s ≥ mt. ThenN1 < N2 forces
s ≤ d −m. Define a sequenceh by

hi =


i +1 for 0≤ i ≤ s −1,

s for s ≤ i ≤ d −m,
(d − i +1)t for d −m+1≤ i ≤ d,
0 for i > d.

It is an immediate verification thath is level. Now

es = 1, ed−m+1= s −mt, ed−m+2 = mt + t − s,
andei = 0 elsewhere, hence dimL◦(h) = N1.

For example, for(t, d, s) = (3,11,7) we have

h = 1 2 3 4 5 6 7 7 7 7 6 3 0.

If N1 ≥ N2, thens ≥ s0 (defined as in Example 3.12). But since everyP3 lies
on an(s0 −1)-secant,6s0 = G(t, Sd) and we are done.

The theorem implies that, givengeneralbinary formsF1, . . . , Ft , a reduction to
the expression (12) is always possible provided we have a sufficient number of
constants implicitly available on the right-hand side of (12). This is no longer so
for n ≥ 3, and the corresponding reduction problem is open. See [4] for one ap-
proach, where Theorem 3.17 is proved using a different method.

A length-s subscheme ofCd is called a polars-hedron of3 if 3 lies on the cor-
responding(s −1)-secant plane. We have shown that the variety of polars-hedra
of 3 is the projective spaceP(Rs/ann(3)s). Forn ≥ 3, the geometry of this va-
riety is rather more mysterious—see [7; 22].

3.4. An Analogue of the Catalecticant

An interesting special case occurs whenN1= N2−1, that is, when6s is a hyper-
surface inG(t, Sd). This is possible iff

(t +1) | (d + 2) and s = d +1− d + 2

t +1
.
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Then6s is set-theoretically equal toL(s, s) = {rank(B ⊗ Rd−s → Ss) ≤ s}.
NowL(s, s) is the zero scheme of a global section of the line bundle

∧s+1(B∗ ⊗ Sd−s) = OG(d − s +1).

Hence the fundamental class [L(s, s)] equals(d − s +1)c1(B∗)∈H 2(G,Z).
The preceding rank condition can be written as a determinant. For instance, let

t = 2, d = 7, ands = 5, and let

F1=
7∑
i=0

aiy
7−i
0 yi1, F2 =

7∑
i=0

biy
7−i
0 yi1

be linearly independent forms. Then the pencilP3 = P(span(F1, F2)) lies on a
secant 4-plane toC7 iff∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 a4 a5

a1 a2 a3 a4 a5 a6

a2 a3 a4 a5 a6 a7

b0 b1 b2 b3 b4 b5

b1 b2 b3 b4 b5 b6

b2 b3 b4 b5 b6 b7

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This is the analogue of the catalecticant for systems of binary forms.

Example 3.18. Even if6s is not a hypersurface, such determinantal conditions
can always be written down. For example, lett = 2, d = 5, and dimG(2, S5) =
8. The possible level Hilbert functions are

h1 : 1 2 2 2 2 2 0,

h2 : 1 2 3 3 3 2 0,

h3 : 1 2 3 4 3 2 0,

h4 : 1 2 3 4 4 2 0,

with dimL◦(h) = 2,5,6,8 respectively. Now62 = L(h1),which is set-theoret-
ically equal to any of the schemesL(i,2), i = 2,3,4 (as defined in Section1.1).
Similarly63 = L(h2), which is set-theoreticallyL(3,3). It is clear that we can
write the condition for3 ∈ G to lie in 62 (or 63) as the vanishing of certain
minors. Indeed, in general this can be done in more than one way.

We can calculate the classes of these schemes inG(t, Sd) by the Porteous for-
mula. We explain this briefly; see [10, Sec. 14.4] for the details.

Let E
α−→ F be a morphism of vector bundles on a smooth projective variety.

Assume thatE andF have rankse andf respectively and that the locusXr =
{rankα ≤ r} is of pure codimension(e − r)(f − r) in the ambient variety. Then
the fundamental class ofXr (which we denote by [Xr ]) equals the(e−r)× (e−r)
determinant whose(i, j)th entry equals the(f − r + j − i)th Chern class of the
virtual bundleF − E. By the Whitney product formula, the total Chern class
ct(F − E) = ct(F )/ct(E).
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We will follow the conventions of [10, Sec. 14.7] for Schubert calculus. Thus
theith Chern class of the tautological bundleB is (−1)i{1, . . . ,1}, where 1 occurs
i times. ForG(2, S5), we havect(B) = 1− {1} + {1,1}. A straightforward calcu-
lation (using the Maple package “SF”) shows that

[L(2,2)] = [L(4,2)] = 10{3,3} + 6{4,2}.
The formula does not apply toL(3,2), since it fails to satisfy the codimension
hypothesis. By a similar calculation,L(3,3) = 8{2,1}.

For anyI5 ∈ L(h1), a map in HomR(I, R/I ) is entirely determined by the
image of the unique generator inI2. Now the proof of Theorem 2.1 shows that the
spaceTL(2,2),I5 must be 2-dimensional, which impliesL(2,2) = L(h1). By the
Littlewood–Richardson rule,

[L(h1)] · {1,1} = 10{4,4};
that is, a general hyperplane� ⊆ PS5 contains ten secant lines of the rational nor-
mal quinticC5. Of course, these are the pairwise joins of the five points� ∩ C5.

Similarly,
[L(h1)] · {2,0} = 6{4,4};

that is, there are six secant lines toC5 touching a general 2-plane9. This can be
seen differently: the projection from9 mapsC5 onto a rational nodal quintic in
P2, and the six secants give rise to the six nodes of the image.

4. Free Resolutions of Level Subschemes

We continue to assumen = 2. Since the schemeL(i, r) is a degeneracy locus in
the sense of [1, Chap. 2], we can describe its minimal resolution following Las-
coux [20] provided it has the “correct” codimension inG(t, Sd).

This granted, in the presence of an additional numerical hypothesis (to be ex-
plained shortly) we can deduce that it is arithmetically Cohen–Macaulay in the
Plücker embedding. In particular, we obtain another proof of the known fact that
L(i, r) is always ACM in the Gorenstein case. In the sequel, we need the Borel–
Weil–Bott theorem for calculating the cohomology of homogeneous vector bun-
dles on Grassmannians. We refer to [5] for an explanation of the combinatorics
involved, but see also [21, p. 687].

Recall the definition ofL(i, r) given in Section1.1. To avoid trivialities, we as-
sumer < i + 1 throughout the section. From [1, Chap. 2] we have the following
estimate: ifc is the codimension of any component ofL(i, r) in G(t, Sd), then

c ≤ (rank(B ⊗ Rd−i )− r)(rankSi − r)
= (t(d − i +1)− r)(i +1− r). (15)

Consider the following conditions:

(C1) the schemeL(i, r) is equidimensional and equality holds in (15) for each
component;

(C2) r − (d − i)(i − r) ≥ t.
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We will impose conditions (C1) and (C2) on the data(t, d, i, r). The next result
shows the rationale behind (C2) as well as its scope of validity.

Lemma 4.1. The condition(C2)holds iff there is a level algebraA of type(t, d )
such thatH(A, i − 1) = i andH(A, i) ≤ r.
Proof. Given the existence ofA, we have

r − t = H(A, i)−H(A, d ) =
d−1∑
j=i

H(A, j)−H(A, j +1)

≥ (d − i)(H(A, i −1)−H(A, i)) ≥ (d − i)(i − r),
where the first inequality follows from Theorem 3.1. Conversely, assume (C2) and
define

hj =


j +1 for 0≤ j ≤ i −1,

min{r − (j − i)(i − r), t(d − j +1)} for i ≤ j ≤ d,
0 for j > d.

Thenh satisfies the hypotheses of Theorem 3.1, hence it is the Hilbert function of
a level algebraA. Evidently,hi−1= i andhi ≤ r.
Now assume thatL = L(i, r) satisfies (C1) (but not necessarily (C2)) and letc =
codimL. Then, by the central result of [20], we have a locally free resolution:

0−→ E−c −→ · · · −→ Ep −→ Ep+1

−→ · · · −→ E 0 −→ OL −→ 0 for − c ≤ p ≤ 0; (16)

whereE 0 = OG and

Ep =
⊕

ν(λ′ )−|λ|=p
Sλ(B ⊗Rd−i )⊗H ν(λ′ )(G′, Sλ′Q∗G′). (17)

This is to be read as follows:G′ denotes the GrassmannianG(r, Si), andQG′ its
universal quotient bundle. Theλ denote partitions andSλ the corresponding Schur
functors (where we follow the indexing conventions of [11, Chap. 6]).

Given a partitionλ, the Borel–Weil–Bott theorem implies that the bundleSλ′Q∗G′
(resident onG′) has nonzero cohomology in at most one dimension. This num-
ber (if it exists) is labeledν(λ′). The direct sum is quantified over allλ such that
ν(λ′) is defined. Sinceλ has at mostt(d − i +1) rows andi − r +1 columns, the
sum is finite.

Example 4.2. Let (t, d, i, r) = (2,7,5,4) and consider the level Hilbert
functions

h1 : 1 2 3 4 5 4 3 2 0,

h2 : 1 2 3 4 4 4 4 2 0.
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ThenL = L(5,4) is a union of two componentsL(h1),L(h2), each of codimen-
sion 4. Hence (C1) is satisfied and we have a resolution

0−→ E−4 −→ · · · −→ E−1−→ OG(2,S7) −→ OL −→ 0,

where

E−1= ∧5(B ⊗R2)⊗ S5,

E−2 = ∧6(B ⊗R2)⊗ S(21111)(S5)⊕ S(21111)(B ⊗R2),

E−3 = (B ⊗R2)⊗∧6(B ⊗R2)⊗∧5S5,

E−4 = [∧6(B ⊗R2)]
⊗2.

The ranks ofE 0, . . . , E−4 are 1,36,70,36,1, henceL is a Gorenstein scheme.
This resolution is equivariant with respect to the action of SL2 on the embedding
L ⊆ G.
The termSλ(B ⊗Rd−i ) decomposes as a direct sum⊕

ρ,µ

(SρB ⊗ SµRd−i )Cλρµ, (18)

quantified over all partitionsρ,µ of |λ|. The coefficientsCλρµ come from the Kro-
necker product of characters of the symmetric group. We explain this briefly; see
[11, p. 61] for details. Also see [6] for a tabulation ofCλρµ for small values of|λ|.

Let λ, ρ, µ be partitions of an integera, and letRλ,Rρ, Rµ denote the cor-
responding irreducible representations of the symmetric group ona letters (in
characteristic 0). ThenCλρµ is the number of trivial representations in the tensor
productRλ ⊗Rρ ⊗Rµ. In particular, this number is symmetric in the three parti-
tions involved. The main combinatorial result that we need is a direct corollary of
[8, Thm. 1.6].

Theorem 4.3 (Dvir). With notation as before, assumeCλρµ 6= 0. Then

ρ1 (the largest part inρ) ≤ (number of parts inλ) · (number of parts inµ).

Now we come to the main theorem of this section. Recall that a closed sub-
schemeX ⊆ PN is said to beprojectively normalif the mapH 0(PN,OP(m))→
H 0(X,OX(m)) is surjective form ≥ 0.

We will regardL(i, r) as a closed subscheme ofP
(∧t

Sd
)

via the Plücker em-
bedding ofG(t, Sd).

Theorem 4.4. Assume that the data(t, d, i, r) satisfy(C1).

(a) If (C2)holds, thenL(i, r) is projectively normal.
(b) Moreover, if eithert = 1 or (C2) is a strict inequality, thenL(i, r) is arith-

metically Cohen–Macaulay.

Proof. We will use the following criterion (see [9, p. 467]): An equidimensional
closed subschemeX ⊆ PN (of dim > 0) is arithmetically Cohen–Macaulay
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(ACM) iff it is projectively normal andHj(X,OX(m)) = 0 for allm∈Z and 0<
j < dimX.

Since the Grassmannian is projectively normal in the Plücker embedding (see
e.g. [1]), part (a) will follow if the mapH 0(OG(m))→ H 0(OL(m)) is shown to
be surjective form ≥ 0.

Form ∈ Z, we have a hypercohomology spectral sequence coming from the
resolution (16):

E
p,q

1 = Hq(G(t , Sd), Ep(m)), dp,qr → dp+r,q−r+1
r ,

Ep,q∞ ⇒Hp+q(OL(m)).
(19)

The terms live in the second quadrant, specifically in the range

−c ≤ p ≤ 0, 0 ≤ q ≤ t(d − t +1).

Now the theorem will follow from the next lemma.

Lemma 4.5.

(1) Assume that(C2)holds. ThenEp,q1 = 0 for m ≥ 0 andq 6= 0.
(2) Assume that eithert = 1or (C2) is strict. ThenEp,q1 = 0 form < 0 andq 6=

dimG(t, Sd).

Let us show that the lemma implies the theorem. First assumem ≥ 0 and (C2)
holds. Then the only nonzero term on the diagonalp + q = 0 is atp = q = 0.
HenceE 0,0∞ = H 0(OL(m)) is a quotient ofE 0,0

1 = H 0(OG(m)),which proves (a).
Now assumem arbitrary and that either (C2) is strict ort = 1. Let (p, q) be

such that 0< p + q < dimL. ThenEp,q1 = 0, which impliesHj(OL(m)) = 0
for j 6= 0,dimL. This proves (b).

Proof of Lemma 4.5.Let p, q be such thatEp,q1 6= 0. By hypothesis,Ep has a
summand

A = SρB ⊗ SµRd−i ⊗H ν(λ′ )(G′, Sλ′Q∗G′)

such thatH q(G(t, Sd),A(m)) 6= 0. Now:

(i) SµRd−i 6= 0 implies thatµ has at mostd − i +1 rows;
(ii) Sλ′Q∗G′ 6= 0 implies thatλ′ has at mosti − r +1 rows—that is,λ has at most

i − r +1 columns.

But then, by Dvir’s theorem,Cλρµ 6= 0 impliesρ1 ≤ (d − i +1)(i − r +1). The
next step is to use the Borel–Weil–Bott theorem onSρB ⊗OG(m). Let γ be the
sequence(m, . . . , m︸ ︷︷ ︸

d−t+1

; ρ1, . . . , ρt ). SinceHq(SρB⊗OG(m)) 6= 0,we haveq = lγ
(in the notation of [5]). But now

ρ1 ≤ (d − i +1)(i − r +1) ≤ d − t +1,
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so it is immediate thatlγ = 0 if m ≥ 0. If m < 0, thenlγ can only be a multiple
of d − t + 1. If t = 1, then necessarilylγ = d + 1= dimG. If t > 1, thenlγ <
dimG is possible only ifρ1 = d − t + 1, that is, only if (C2) is an equality. The
lemma is proved, and the proof of the main theorem is complete.

Example 4.6. (1) The data(t, d, i, r) = (3,16,13,11) satisfy (C1) and strict
(C2). Set-theoretically,L(13,11) = L(h) for

h = 1 2 . . . 11 12 13 11 9 6 3 0.

ThusL(13,11) ⊆ P
(∧3

S16
)

is ACM.
(2) Similarly the data(t, d, i, r) = (5,32,28,24) satisfy (C1) and strict (C2).

In this caseL(28,24) = L(h) for

h = 1 2 . . . 27 28 24 20 15 10 5 0.

Example 4.7. Choose an integers such thatt ≤ s <
t(d+1)
(t+1) . It then follows

that the data(t, d, s, s) satisfy both (C1) and (C2); in fact, (C2) is strict unless
s = t. Set-theoretically,L(s, s) = L(h), whereh is defined as in the proof of
Theorem 3.17.

If t = 1, then this is the functionhs defined in Section 1.2. By the Gruson–
Peskine theorem, we then know thatL(s, s) = L(hs) as schemes. We do not
know if this remains true fort > 1.

Example 4.8. Let t = 2 and choose integersi, d such thati ≥ 5 and 3i =
2d + 1. Then(2, d, i, i − 1) satisfy (C1) and (C2), with the latter being strict iff
i > 5. (We recover Example 4.2 fori = 5.) In this case,L(i, i − 1) is reducible
with two components of dimension 3i − 7 (i.e., codimension 4) each.

For instance, let(i, d ) = (9,13); thenL(9,8) = L(h1) ∪ L(h2), where

h1= 1 2 . . . 7 8 9 8 7 6 4 2 0,

h2 = 1 2 . . . 7 8 8 8 8 6 4 2 0.

Example 4.9. The data(t, d, i, r) = (3,14,11,9) satisfy (C2) but not (C1). In-
deed,L(11,9) = L(h1) ∪ L(h2) ∪ L(h3), where

h1= 1 2 . . . 8 9 10 11 9 7 5 3 0,

h2 = 1 2 . . . 8 9 9 9 9 9 6 3 0,

h3 = 1 2 . . . 8 9 10 10 9 8 6 3 0.

The componentsL(h1) andL(h2) have the expected dimension 27, butL(h3) is
28-dimensional.

Remark 4.10. By Lemma 4.1, it is easy to produce examples where (C2) holds.
In contrast, (C1) is rather restrictive. (Although for small values of(t, d ) it is sat-
isfied more often than not.) It would be worthwhile to characterize all sequences
h such thatL(h) is ACM (or projectively normal), but it is unlikely that the tech-
nique used here can be pushed any further.
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Remark 4.11. Some of the results proved here can be extended to char> 0 with
appropriate care. ReplacingS by the divided power algebra (see[17, Apx. A]), all
results until the beginning of Section 3.2 remain valid in arbitrary characteristic.
(The reference to partial differentiation should be ignored.)

All results in Sections 3.2–3.4 are valid for char> d. In Section 4 we need to
assume char= 0, since (inter alia) Lascoux’s result and the Borel–Weil–Bott the-
orem fail to hold in positive characteristic.
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