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Infinitely Many Grand Orbits

MARK COMERFORD

1. Introduction

Sullivan’s non-wandering theorem is one of the best-known and most fundamental
results of classical rational iteration. We exhibit a counterexample which shows
that a natural consequence of this theorem no longer holds if one is allowed to
choose a different polynomial at each stage of the iterative process. The proof re-
lies heavily on properties of the local dynamics near a parabolic fixed point.

We begin by considering a sequence of rational functighg®>, = {R1, Rz,
R3, ...} of some fixed degreé > 2. Let 0,(z) be the composition of the firat
of these functions in the natural order; that is,

0, =R,oR,_10---0Rz0Ry.
We will also be interested in the compositions
Omn=RpoRy-10--0Rpui20Rpy1.
Define theFatou setF for such a sequence of rational functions as
F={zeC: {0n}52, is anormal family on some neighbourhoodzgf

the Julia set.7 is then simply the complement of the Fatou se€inNote that,
if {R,}°2, is a constant sequen¢®, R, R, ...}, then these definitions coincide
with the standard ones. One of the reasons for this definition of Julia and Fatou
sets is that we can formulate an analogue of the principle of complete invariance
in standard rational iteration. In order to do this, we shall introduce the following
terminology.

We start by fixing as before a sequer@, }°2 ; = {R1, Rz, R3, ...} of rational
functions of fixed degre€ > 2. With this in mind, for anyn > 0, let us define
the nth Julia set.7, to be the Julia set for the sequen@®, 1, R, 12, Ryy3, ...}
that we obtain from our original sequence simply by deleting thesfirsembers.
Thenth Fatou setis similarly defined as the Fatou set{d, 1, R4 2, Ry13,...}.
Note that, with these definitiongp = 7 andF, = F. We now state the principle
of complete invariance for random iteration as follows.

THEOREM 1.1. For any0 < m < n we haveQ,, ,(J,) = J, and Q,, ,(F) =
Fn., with Fatou components af,, being mapped surjectively onto those Bf

by Q.-
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The proof is a straightforward adaptation of the standard classical proof.

The notation introduced previously can also be extended in the obvious way
to cover sets and points. For a $éthat we introduce at stage, we setU,, =
0.m.»(U); for a pointx that is introduced at stage, we setr, = Q,, ,(x).

Itturns out that this scenario of using rational functions is somewhat too general
for proving significant results. The most natural restriction one can probably make
was introduced by Fornaess and Sibony [6], who considered sequences of monic
polynomials with uniformly bounded coefficients—that is, sequences of the form

Rn(Z) = Pn(Z) = Zd + adflnzd_l'i_ e ainl + aon,

where we can find som# > 0 suchthafa; ,| < Mforl<i <d—1landall e

N. From now on, we shall call such sequenbesinded polynomial sequences.
One of the advantages of this definition is that we can find some r&ldes

pending only on the coefficient boudd just described so that, for any sequence

{P,}°°, as before, it is easy to see that

|0.(z2)| —> o0 asn — oo, |z| > R,

which shows in particular that, as for classical polynomial Julia sets, there will be
a basin at infinity4 ., on which all points escape to infinity under iteration. Such
a radius will be called amscape radiugor the coefficient bound/.

2. Grand Orbits in the Classical Case
We start with the definition of a grand orbit for random iteration.

DErFINITION 2.1.  Let{P,}’°, be a bounded polynomial sequence andiebe
some subset of that is introduced at some stage> 0. We say that a se¥
appearing at some stage > 0 is in thegrand orbit of U if we can findN >
max{m, n} such thatQ,, x(V) = Q, y(U), and we writeG(U) for the set of all
suchV.

Form > 0 fixed, the set of alV at stagen with the above property is calldde
grand orbit of U at stagem, and we writeG,,(U). If m = n then we callg,(U)
theimmediategrand orbit ofU (at stager).

Basically, saying two setg andV are in the same grand orbit means that (at some
stage) they are mapped to the same set and so the dynamical behavior on each of
them is eventually the same. One should note that this definition is slightly dif-
ferent from the classical one. For example, a rational function whose (classical)
Fatou set contains a cycle of period 3 would give rise to three distinct grand orbits
according to our definition but to only one grand orbit using the standard defini-
tion such as is given in [7; 9].

We now state some well-known results from classical complex dynamics. For
proofs and terminology, the reader is referred to the standard references [5; 7;
8; 9]. We start with Sullivan’s famous non-wandering theorem.
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THEOREM 2.1 (Sullivan). LetR be a rational function and lel/ be a(classical)
Fatou component foR. ThenU is eventually periodic under iteration .

THeoreM 2.2 (Classification of Periodic Fatou Componentd)et R be a ratio-
nal function and leU be a(classica) Fatou component foR that is periodid(i.e.,
R°™(U) = U for somen > 1). Then we have one of the following four possibili-
ties forU:

(1) U contains an attracting or superattracting cycle
(2) U is a basin of a parabolic periodic point lying diU;
(3) U is a Siegel diskor

(4) U is a Hermanring.

For polynomials, the last possibility cannot occur because all Fatou components
associated with polynomials must be simply connected (in view of the maximum
principle) whereas Herman rings are doubly connected. The other result we need
to state is equally well known.

TueoreM 2.3 (Fatou, Shishikura, Epstein)Let R be a rational function of de-
greed. Then the number of nonrepelling cycles associated Riat mosd — 2.

By combining these last two results with Sullivan’s non-wandering theorem, we
obtain the following corollary.

CoroLLarY 2.1. The number of grand orbits of Fatou components associated
with a constant sequence arising from a polynon#iak finite.

Proof. By Theorem 2.2, each periodic Fatou component is associated with a non-
repelling cycle, and the number of grand orbits associated with that component
and its iterates is then equal to the period of that cycle. (Note that here we are
using therandomdefinition of grand orbit as given in Definition 2.1.) However,
Theorem 2.3 shows that we can have only finitely many grand orbits that are as-
sociated with some periodic Fatou component, whereas Sullivan’s non-wandering
theorem (Theorem 2.1) tells us that every grand orbit of Fatou components must
be associated with a periodic Fatou component. The result now follows. [

It is worth noting that, since we can find nonrepelling cycles of arbitrarily long
period even for quadratic polynomials of the fogh+ ¢, the actual number of
grand orbits of Fatou components—though finite—may be arbitrarily large. In
the random case, however, we can say more.

3. Grand Orbits in the Random Case
We start by stating the principal result of this paper.

THEOREM 3.1. There exists a bounded sequence of de@rpelynomials whose
corresponding Fatou set has infinitely many grand orbits.
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The proof will rely heavily on properties of the behavior of the iterates near a
parabolic periodic point. The reader is referred to [5] for an exposition that con-
tains proofs of the relevant facts that we shall make use of in the sequel.

We start by considering the polynomi&llz) = z? — z. This has a parabolic
fixed point at 0 and, if we look at the second iter@&(z) = z — 223 + z*, we
see that there are (as expected) two petals that are interchandgedAbso, the
expanding directions coincide with the imaginary axis and the contracting direc-
tions with the real axis. Finally, we have a “repelling tongue” that consists of the
two parts of A, (the attracting basin at infinity) that approach 0 from above and
below the real axis. Points in the repelling tongues will lie in repelling petals but
not in attracting ones. Because, near the origin, the attracting petals will contain
a region lying outside that bounded by curves of the farea £ky? + O(|y*?|)
for some constanit depending orP, we see that it will be easy to choose points
whose iterates are guaranteed to remain in the attracting petals and avoid the re-
pelling tongues.

The family? we will consider is based oA°? and contains (in addition t8°?
itself) translates of°? of the formz* — 2z% + z 4 ¢,,, where the constants,
are real, bounded, and at our disposal (any small bound su¢i aslildo). (We
could simply use translates @f instead, but using?°? is slightly simpler as it
preserves the order of points on the real axis near 0; since all polynomigls in
are simply compositions oP and translates of, the result will clearly follow
if we use these degree-4 polynomials instead of translatés)oNow let R be
an escape radius for the coefficient bound 2, so that (denotiig@yR) the cir-
cle about 0 of radiu®) the iterates of points lying outsid&0, R) will escape to
infinity, regardless of which polynomials frofd we iterate with. Our first main
task is to prove the following simple lemma concerning the dynamics associated
with sequences of polynomials taken frgm

Lemma 3.1. Let{P,}°2, be a sequence of polynomials chosen f@mnd letx;
andx; be two points on the real axis that lie in bounded Fatou components asso-
ciated with this sequence. Thepandx; lie in the same Fatou component if and
only if the line segment joining them also lies in this Fatou component.

Proof. The “if” part of the result is trivial. For the “only if” part, suppose and
x2 lie in the same Fatou componetitand lety be a path inJ joining x; to x».

If we denote the image of under complex conjugation by, then symmetry and
the fact that all polynomials involved have real coefficients imply tha also a
path inU joining x; andx,. It then follows easily from the maximum principle
that the straight line segment connecting the two points also must lie wWithin
which completes the proof. O

Before we start the construction proper, we need some observations concerning
distortion. We begin by considering a simply connected dorbathat is small,
approximately circular, and symmetric about the real axis. We will also require
thatU be small in comparison to its distance from the point 0. Having fixed such

a neighborhood, one of our requirements will be to construct our sequence so that
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(among other things) the iterates of such a neighborhood will be bounded, thereby
ensuring thaty will lie inside a Fatou component for such a sequence. Clearly,
this will be the case if the iterates 6f remain small and also remain small com-
pared to their distance from 0; this will guarantee that each iterate will lie in one
of the two attracting petals faP°?, which (as we shall see) is something we will
need.

In practice, in order to generate infinitely many grand orbits of Fatou compo-
nents, we will need to introduce infinitely many such neighborhoods. Our aim will
be to show that, at every stage, each one of these will lie in a Fatou component
and that different neighborhoods will lie in different components, thereby yield-
ing infinitely many grand orbits. These neighborhoods will be introduced as we
construct our sequence of polynomials, and we will need to consider them in ad-
jacent pairs. Toward that end, I&t and U? denote such a pair and let us also
consider a point?! lying on the real axis at approximately the midpoint between
them (see Figure 1). We are interested in the distortion of this picture because we
want to ensure our sequence is such that, if we move the pbattsome stags/
to 0, then the corresponding iteratestof and U2 will each lie in one of the at-
tracting petals forP°2; this is something we need in order to ensure thaand
U? lie in bounded Fatou components for the sequence of polynomials that we will
construct. We need to consider the following two cases.

U' U’
/—\ x] /\
Figure 1 Geometry for the Fatou domains

Case 1.Setx = 0. In order to investigate how the picture distorts, we need to
consider the local behavior &2 near the origin. So supposer iy is small and,
in addition, assume thag| < |x|. If we now letu + iv = P°?(x + iy), then
u=x—2(x3—3xy?) + (x* — 6x%y? + y9,
v=y—2@x% —y% + (4x°y — 4xy°);
from this it follows (providedx + iy is sufficiently small) that
1—6x2+42y?
1— 2x2+ 6y2
This shows that, if we consider the angle of the narrowest sector centeréd at
that containg/* and U2, then this angle will become smaller under iteration by

P°2, which will clearly be necessary in order to ensure that we can always place
the iterates ot/* andU? in the two attracting petals faP°? by movingx! to 0.

v

u
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Next we suppose that + iy, andx, + iy, are again two points close to 0 for
which |x1| < |x2| and that also satisfyi/x; = y»/x» = k, where|k| < 1/v/3
(i.e., the two points lie on the same line through the origin). ket iv; and
uz + iv, be the images of these points und&¥. Then, arguing as before, we
have

Ui

uz

x1||1—2x7 + 6y7
1— 2x22 + Gy%
1—x2(2 - 6k?)
1— x2(2 - 6k?)
providedx; is small enough. Combined with our earlier remark concerning an-
gles of sectors, this shows that the ratios dieid)/dist(U%, 0) and dianiU?)/
dist(U?, 0) become smaller under iteration B2 and also shows that the ratio
dist(U%, 0)/dist(U?, 0) becomes closer to 1.

These calculations show that the image of our original picture will look some-
thing like Figure 2 after we map' to 0 and apply a high iterate @°2. In partic-
ular, we see that the ratios digbht)/dist(U*, 0) and diangU?)/dist(U?, 0) will
decrease under iteration BP? and will, in fact, tend to zero as the number of
iterations withP°2 approaches infinity.

= + O(x})
X2

=2 + 0G| > |2

’

X2

X

Uy Uy
)Cl
m n /—\
N N
Figure 2 After treatment withP°?"

Case 2.Here we have that the corresponding paihiis 0 for another pair of
domains (one of which could easily be eitlié}t or U?) and that the diameters of
U' andU? are again small compared to their distances from 0—that is, smaller
than some fairly small constant (which, as we saw before, should be smaller than
1/4/3). That this can always be done will be shown later, but for now let us as-
sume that it is possible. To investigate the distortion under this situation, we apply
the standard analysis for the behavior of a function near a parabolic point. On each
petal, P°?(z) is conjugate via #4z? to the transformation

w' = g(w) = w+ 14 O(lw|?).
Also, if the absolute values ab* andw? are bigger than some large integefr
then we can apply the chain rule to obtain
lgwh) — gw?)| = [w — w?|A+ OM~¥?)).

The conjugacy t@ above shows that iterates of points near 0 urRférapproach
0 at a rate comparable to that of the sequeitgn }. Letz2, z2 be the iterates of
two such points undeP°2. Then we can certainly say that they will eventually lie
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within a distance less than (say)¥® of 0. Letw?, w? denote the image of these
sequences of points under the conjugacy= 1/4z2. If we choosez} andz? to
be less thav ~¥2 in absolute value for larg®, it follows that there are positive

constants” andK (depending only o) such that
00 1 2 0
C — C
H(l— m) < Ul H(H m)
n=N n lwg —wil n
and from this we may conclude that
K |wr{- — wlf
— < [
N1/8 |w::|l_- _ w]2-| N1/8

This shows (provided we choogg" andU? to be small enough initially) that all
ratios of the four quantities diag@’) and distU’, x%), i = 1, 2—as well as the an-
gle of the narrowest sector at that containg/* andU?>—can be made to change
as little as we wish by making*U U? lie within a sufficiently small disk about 0.

The result of examining these two cases, where 0 lies either at theydoétiveen

U' andU? or at the corresponding point for another such pair of domains, is that
we can be sure Figure 1 will distort either by an amount we can control or in such a
way as to actually improve—in the sense of ensuring thaand U2 will always

lie in attracting petals. We can summarize all we need in the following lemma.

LEMMA 3.2. Letk be a small positive constant that we may take to be less than
1/3, and lete > 0. LetU% U?, ..., U", U"*! be simply connected domains that
are symmetric about the real axis and are numbered from left to right and sep-
arated by pointsc?, x2, ..., x" on the real axis, so that’ lies betweertU/’ and
U'*L Then there exists & > 0 such that, if

diamUtuv?u-.-uU™™h <8,
and, fori =1,...,n,
diamU’)/dist(U’, x') < k
diamU 1 /dist U+, x7) < k,
then for any positive intege¥ andi =1, ..., n we have
diam(Uy,)/dist(Uy,, xy) < k(L+¢),
diam(Uj ™ /dist(Ui Y, xi) < k(L4 e¢),
whereU,, andx}, denote the images &f’ andx’ underP°?".

We now turn to proving the main result.

Proof of Theorem 3.1The theorem will be proved by running the inductive con-
struction that follows. This will generate, on the one hand, a sequence of poly-
nomials and, on the other, a sequence of domains each of which lies in a Fatou
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component for this sequence of polynomials and with different domains guaran-
teed to lie in different components at every stage. Before we start the induction,
we first fixe > 0 small enough so that

15 o1
Zg(l—i-sZ ) < 3

Induction: Stage 1We are now ready to start the construction proper. Begin
with two small domaing/! andU?, symmetric about the real axis, which we may
as welltake to be small disks symmetrically placed about 0 so thatthey lie in the two
attracting petals foP°?. We will also require (a) thal/* U U? have diameter less
thans,,» (using the notation from Lemma 3.2) and (b) that diaih)/dist(U*, 0)
and dianfU?),/dist(U?, 0) each be less thar/4 in value.

We now iteraten, ; times with P°2, wherem; 1 is large enough so that the in-
verse image of (0, R) at stagen; ; underP°2"11 has points above and below the
real axis that are less than 1 in absolute value.

This takes care of the “separation” part of the first induction step. For the
“distortion” part, we note that we can make; i larger if needed so that
dlam(U,i11 U U,ﬁl )< 58/16 Now apply a suitable polynomial fror® whose
constant terrrtll has been chosen S0 as to mavé and U2 to the left of O
and such that dlafniilzl 1+l)/dls;t( i1 4+1 0) < 1/4. By making é./4g smaller if
necessary, we can introduce another small diskwhose center lies to the
right of 0 so that diart/ . 1)/dist(Uy, .4, 0) is also less than/# while

diamUy, ;1 UUzZ 1V U D) < 86 '
Lastly, to be definite, let us label the sequence of polynomials generated so far
by usingP, to denote the polynomial that is th¢h to be applied. In other words,

P, =P°%forn <n <myy, andP,, 11 =2*—23+z+ 11

Induction Hypothesis: Stage Suppose now that the firat steps have been
carried out. We assume that, at the start of stagé, we have already constructed
and applied the firs¥,, members of our sequence of polynomials, which of course

we will label Py, Py, ..., Py,. We now have: + 2 domainsUy Uﬁ . UA’,'”+2
that we label from left to right as well as pointg, , xZ . ..., xy, WherexN

lies betweerl/;, and UA",jl. We first make an assumption concerning the close-
ness of points ind., ,, (the basin at infinity at stage) to each of the points
xl,x2, . x™Lf1 < m < N,_1 (whereN,_; denotes the start of stagg then

we assume there are suitable pointsdig, ,, each of which is within a distance

of less than n of the real axis. In other words, for eachcli < n + 1there are
points within a distance of less thamlof x! , lying both above and below the real
axis, whose orbits have escaped outdd®, 0) by stageN,, and are thus guar-
anteed to escape to infinity, regardless of which polynomials are chosen for our
sequence aftePy,, the last to be chosen so far. Note that even thatjgimay

not have actually been introduced by stagethere is no real problem. Either we
simply ignore this case and make no assumption, or we consider the preimage of
xi closest to 0 taken from the stage at which it was introduced.
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We assume with regard to the distortion pf this pictnre that, for each 1<
n + 1, diamUy, )/dist(Uy, , x}, ) and dianUy")/dist(U*, x}, ) are both less
than or equal to

g27i71 14 s 1
—]"[( ; )<Zj]1(1+ez <3

provided we choose small enough. In order to guarantee that we can control
future distortions, we will also need to ensure thigt U UZ U --- U Uy is suf-
ficiently small, with diameter less tha,-x+2,(,41).-

Induction Step: Stage+1 We start by choosing fror® the polynomialPy, 11
that movesc), to 0. Now applyP°? m, 11 times; because the firat, + 1 poly-
nomials are now fixed, we may choos 11 to be large enough to ensure the
existence of points in the preimage undey, v, m,,+1 of C(0, R), both above
and below the real axis, within a distance g+ 1) of x,ln and where 6 m <
N,. This ensures there exist points.iy, ,, lying above and below the real axis
and within a distance of/tn + 1) of x! for 0 < m < N,, that is, from the point
at which we started our sequence until the beginning of stage

We have now constructed the nemh 1 + 1 members of our sequence of
polynomials. Explicitly,Py, 11 = z —2z3+z —x}, andP,, = P°?for N, +2 <
m < N, +m,1+1 Our assumption in the induction hypothesis (thigt U Ug U

uu ”;“2 has diameter less thap,-«.+2,(,41) guarantees that, for eacrirom

2ton, diam(U;})/dist(U/, x! ) and diangU,/+%)/dist(U;+2, x!,) are both bounded

by
1 212 1
<| |(1+82 f)><1+s 1 > §

j=1

for N, +1<m < N, +m,1+ 1L Also, fori = 1 we have the stronger conclu-
sion that diang/})/dist(U?, x1 ) and diangU?2)/dist(U2, x1) are both less than

: [Tj_11+e277) < 1. Inview of our previous remarks, we see that the distortion
remains small.

This completes the first step of stage- 1 for the first pair of domains. We now
apply a polynomialP, » from P that moveScN U to 0 and then iterate:,, »
times with P°2. As before, by considering preimages of the cil€l®, R) we may
guarantee that, for & m < N,, there will be pornts ind , that are above and
be|0Wx and that lie within a dlstance/(ln +1) of xm

S|m|larly, thatUy U U7 U ‘U Uy*? has diameter less thaiy-o+2,.,11)
ensures that dla(“ﬂ/ )/drst( xb) and diantU/*1)/dist(U/*L, xi ) are both
bounded by

m’ m

1 212 1
<1_[(l+82 f)><1+s +1> <3
j=1
for Ny +mu1+1<m < N, +mu1+mu,2+2andfor3<i <n+2

Fori = 1,2, the corresponding assumption is that diakh)/dist(U!, x! ) and
diam(U+1/dist(U+2, x! ) are both less than

m ’ m
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1 n ) 271172 1
— —J —
4<H(l+82 ))(1+8n+1><3

j=1

for Ny +mu1+1<m < N, +m,1+ m, 2+ 2. Again, this ensures that the
distortion remains small and under control.

We now continue this process for all the other pairs of domains from left to
right. For the last pair the argument is the same, except we make the stronger
assumption thatn,, 1,41 is big enough to guarantee that, if we I8}, , =

Ny + Y0 my ;i +n+1 then
; 1 2 2y _ 1
diam(U, r:+1U U, n’+1U -+ U U"n/tl) < £8,2-03)(n42)-
This enables us to apply another polynom#gl . ., that moves all our domains
to the left of 0 and then introduce a new digg, 3 at stagen, , , + 1, which we
shall simply relabelv,, 1 so that

. 1 2 +3
dlam(UNHlU UNn+1U U U]<’1r1+1) < 8eo-+3y(ny2)

and also diartty*2)/dist(Uy 2, 0) and diantUy;*%)/dist(Uy*2, 0) are both less
than ¥4. We have now reached stagé,; and, as the notation suggests, stage
n + 1is finished and we are now at the start of stage?2.

This completes the induction. For each pair of neighborhddgisind U+
(where m is any natural number), the ratios diélj)/dist(U!, x! ) and
diam(U/*1)/dist(U/*L, x! ) remain bounded by/B; hence the iterates of each
domain will lie in one of the attracting petals f&°? and thus will certainly be
bounded. This guarantees that e&thwill lie in a Fatou component for the se-
guence of polynomials generated by our inductive scheme (suitably shifted to take
into account when each domain is introduced). On the other hand, the ppints
have bounded orbits but are approached arbitrarily closely by points.in,,
which implies that they must all lie in the corresponding iterated Juligigett
follows in view of Lemma 3.1 that, at each stage, all the domains will lie in dif-
ferent Fatou components. Therefore, we do indeed obtain infinitely many grand
orbits as desired. O
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