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Affine Dimension: Measuring the
Vestiges of Curvature

Daniel M. Oberlin

1. Introduction

The purpose of this paper is to introduce a set function, which we call affine di-
mension, and then apply it to the study of convex curves inR2. Though we be-
lieve the geometric results obtained here—as well as questions concerning their
higher-dimensional generalizations—to be intrinsically interesting, the original
motivation for introducing affine dimension stems from its connection (as a natu-
ral necessary condition) to certain important problems in harmonic analysis. This
connection is spelled out in Proposition 2 at the end of this section (see also Propo-
sitions 3 and 4 in Section 3). For earlier applications to harmonic analysis of spe-
cial cases of the affine measures introduced here, see [1; 2; 7; 8].

The definition of affine dimension is largely analogous to the definition of
Hausdorff dimension. But there is an important difference that, as we shall see,
renders affine dimension sensitive to curvature. For example, the Hausdorff di-
mensions of a circle and a line segment are equal, but their affine dimensions will
differ. The following observation is intended to motivate the definition of affine
dimension: Forp ≥ 2, consider the smallest rectangle containing the portion of
the curve(t, tp) corresponding to 0≤ t ≤ ε; that rectangle has measure on the
order ofε1+p, which tends to 0 asp increases—that is, as the curve(t, tp) be-
comes “flatter”. Thus, forE ⊆ Rn andα, δ > 0, we consider sums of the form∑|Rj |α/n, whereE ⊆ ⋃Rj, eachRj is a rectangle of diameter< δ, and|Rj | is
the Lebesgue measure ofRj . By analogy to the definition of Hausdorff measures,
we defineAαδ(E) to be the infimum of such sums. Next we define

Aα(E)
.= lim
δ→0+

Aαδ(E).

One sees in the usual way thatAα is an outer measure onRn that restricts to a mea-
sure on theσ -algebra of Borel subsets ofRn. We will refer to this measure asα-
dimensional affine measure onRn. The equivalent definition with parallelepipeds
instead of rectangles is clearly invariant under equiaffine transformations (as de-
fined in [5], these are the affine mappings onRn that preserve Lebesgue measure).
Finally, we define dima(E) to be the infimum of{α > 0 : Aα(E) < ∞}. If
dim(E) stands for the Hausdorff dimension ofE ⊆ Rn, then it is clear from the
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definitions that dima(E) ≤ dim(E). It is easy to check that ifE is contained in
an (n − 1)-dimensional hyperplane then dima(E) = 0. On the other hand, if0
is any sufficiently smooth curve inR2 that is not a line segment, we will see that
dima(0) = 2

3.

The main results of this paper deal with a class of convex curves0 in R2. The
curves we consider will be graphs over finite closed intervals [a, b] of continuous
convex functionsφ. Any suchφ will be absolutely continuous with nondecreasing
derivativeφ ′. When0 is (say)C(2), there is a well-known relationship between
the curvature of0 andφ ′′. Under our less restrictive requirement thatφ be contin-
uous and convex,φ ′′ will still exist pointwise a.e. with respect to Lebesgue mea-
sure. However, the role ofφ ′′ in considerations of curvature will be taken by the
Lebesgue–Stieltjes measureµ induced on(a, b) by the nondecreasing function
φ ′. (Technically, asφ ′ may exist only almost everywhere on [a, b], we consider
µ([x, y)) to be defined by the equation

µ([x, y)) = lim
t→y−

φ ′(t)− lim
t→x−

φ ′(t)

for a < x < y < b.) In what follows, [a, b], φ, 0, andµwill be as just described.
We will also use the notation Lip(α) to stand for the space of functionsf on [a, b]
satisfying a Lipschitz condition of orderα.

Theorem 1. The inequalitydima(0) ≤ 2
3 holds.

Theorem 2. Suppose that, for someα, β ∈ (0,1), we haveφ ′ ∈ Lip(α) and
dim(supp(µ)) = β. Thendima(0) ≤ 2β

2+α .

Theorem 3. If dima(0) <
2
3, thenµ is singular with respect to Lebesgue mea-

sure on[a, b].

Corollary. If φ ′′ exists everywhere on[a, b] and if dima(0) <
2
3, then0 is a

line segment.

Theorem 4. If φ ′ ∈ Lip(α) for someα ∈ (0,1) and if dima(0) <
2α

2+α , then0
is a line segment.

Theorem 5. There is a constantC such that—ifφ ∈C(2), λ is the measure on0
given bydλ = φ ′′(x)1/3dx, and ν is the restriction to0 of 2

3-dimensional affine
measure—thenC−1λ ≤ ν ≤ C · λ.
Comments. (a) It follows from the Corollary to Theorem 3 that if0 is a (not
necessarily convex)C(2) curve with dima(0) < 2

3 then0 is a line segment. This
is analogous to the fact that if0 is any curve (continuous image of [0,1]) with
dim(0) < 1 then0 is a point.

(b) It follows from Theorems 2 and 4 that ifα ∈ (0,1), dim(supp(µ)) = α,

andφ ′ ∈ Lip(α), then dima(0) = 2α
2+α . Thus, for example, ifφ ′ is the Can-

tor–Lebesgue function on [0,1] (see e.g. [3, p. 38]) then dima(0) = log 4
log18. More

generally, for anyτ ∈ [0, 2
3

]
there will be0 with dima(0) = τ. The curves0
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produced in this manner will have the property that [a, b] has a dense open sub-
set such that, over each of its components,0 is a line segment. Rather different
examples of0 with dima(0) = τ will be the subject of Section 3.

(c) We will see in Section 3 (comment (i) after the proof of Proposition 4) that
there are curves0 with dima(0) = 2

3 andµ discrete. This bears on the question
of a converse to Theorem 3.

(d) The measureλ in Theorem 5 is calledaffine arclengthmeasure on0; The-
orem 5 is the statement that, on curves0, affine arclength is uniformly equivalent
to 2

3-dimensional affine measure. This is analogous to the relationship between
Euclidean arclength and 1-dimensional Hausdorff measure.

(e)We will address questions concerning higher-dimensional analogues of some
of these results in a later paper.

The remainder of this paper is organized as follows. Section 2 contains proofs for
the results just stated, and in Section 3 we construct some interesting curves and
look at certain of their geometric and harmonic-analytic properties. In the balance
of this section we complete the comparison between affine dimension and Haus-
dorff dimension and then point out the relationship between affine dimension and
certain problems in harmonic analysis.

Proposition 1. Supposen ≥ 2 andE ⊆ Rn. Then

max{0, n(dim(E)− n+ 1)} ≤ dima(E) ≤ dim(E).

Proof. It is enough to establish the lower bound for dima(E). Suppose that
dima(E) < α ≤ n. Then, for anyδ ∈ (0, 1

2

)
, there is a covering ofE by a

countable collection of rectanglesRj such that eachRj has diameter bounded by
δ and such that ∑

|Rj |α/n ≤ 1.

Let δj be the smallest of the side lengths ofRj and choose nonnegative integers
N
j

l such that, ifs2, . . . , sn are the other side lengths ofRj, then

(N
j

l −1)δj < sl ≤ Nj

l δj for l = 2, . . . , n.
Let

Mj =
n∏
l=2

N
j

l

and note that
Mj ≤ δ−(n−1)

j (1)

sinceNj

l δj ≤ 1
(
since the diameter ofRj is bounded by1

2

)
. NowRj is contained

in the union ofMj cubes of side lengthδj . If we setβ = α/n + n − 1, then it
follows from (1) that

Mjδ
β

j ≤ (Mjδ
n
j )

α/n.

ThusMjδ
β

j ≤ C|Rj |α/n for some constantC depending only onn. ThenE is con-
tained in a union of cubesCk such that eachCk has diameter bounded byδ and
such that
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diam(Ck)

β ≤ C
∑
|Rj |α/n ≤ C.

Since this is true for everyδ ∈ (0, 1
2

)
and for everyα with dima(E) < α ≤ n, it

follows fromβ = α/n+ n−1 that dim(E) ≤ dima(E)/n+ n−1.

It is neither very difficult nor very interesting to check that the bounds in Proposi-
tion 1 cannot be improved.

Next we consider a relationship between affine dimension and two problems in
harmonic analysis. Letλ be a nonnegative Borel measure onRn. The two prob-
lems are:

(C) determine the indicesp andq such that the convolution estimate

‖λ ∗ f ‖q ≤ C(λ, p, q)‖f ‖p (2)

holds forf ∈Lp(Rn);
(R) determine the indicesp andq such that the Fourier restriction estimate

‖f̂ ‖Lq(λ) ≤ C(λ, p, q)‖f ‖Lp (3)

holds forf ∈Lp(Rn).
We have the following result.

Proposition 2. Suppose the nonnegative and nontrivial Borel measureλ is sup-
ported onE. If (2) holds, thendima(E) ≥ n(1/p − 1/q). If (3) holds, then
dima(E) ≥ nq(1− 1/p).

Proof. Assume that (2) holds. LetR be a rectangle inRn and setR ′ = R − R.
Then

|R|〈λ, χR〉 ≤ 〈λ, χR ∗ χR ′ 〉 = 〈λ ∗ χR ′ , χR〉 ≤ C(λ, p, q)|R|1/p|R ′|1−1/q .

Thus, ifα = n(1/p − 1/q) then there exists aC such thatλ(R) ≤ C|R|α/n. So if
E ⊆ ⋃Rj, it follows that‖λ‖ ≤ C∑|Rj |α/n. Hence dima(E) ≥ n(1/p − 1/q)
as desired. The second assertion will follow similarly from the inequalityλ(R) ≤
C|R|q−q/p. And this is a consequence of (3) and the existence off such that

χR ≤ f̂ and ‖f ‖p ≤ C|R|1−1/p.

(If R is centered at the origin and has axes parallel to the coordinate axes, then
such anf can be obtained by takinĝf = ∏

i exp(−ai x 2
i ) for suitableai; one

deals with the general case by translation and rotation.)

2. Proofs

Proof of Theorem 1

By replacing(a, b) with any(a ′, b ′) such thata < a ′ < b ′ < b, we may assume
thatφ is Lipschitz on [a, b]. Supposea ≤ c ≤ d ≤ b. Consider the regionR ′ in
R2 given by
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(x, y) : c ≤ x ≤ d, φ(x) ≤ y ≤

(
φ(c)+ (x − c)φ(d )− φ(c)

d − c
)}

and the smallest rectangleR containingR ′ and whose top edge is the segment
forming the top part of the boundary ofR ′. (Such anR will exist if, for example,
φ is monotone on [c, d ].) We will say that “R is the rectangle over [c, d ]”. Then

|R| ≤ 2|R ′| = 2
∫ d

c

(
φ(c)+ (x − c)φ(d )− φ(c)

d − c − φ(x)
)
dx

≤ 2
∫ d

c

∫ x

c

∣∣∣∣φ(d )− φ(c)d − c − φ ′(s)
∣∣∣∣ ds dx

= 2

d − c
∫ d

c

∫ x

c

∣∣∣∣∫ d

c

(φ ′(t)− φ ′(s)) dt
∣∣∣∣ ds dx

≤ 2(d − c)2µ([c, d )).
Now fix δ > 0 and let{xj } be a partition of [a, b] such thatxj − xj−1 < δ for
all j and such thatφ is monotone on each [xj−1, xj ]. LetRj be the rectangle over
[xj−1, xj ]. Then∑

|Rj |1/3 ≤
∑

(xj − xj−1)
2/3µ([xj−1, xj ))

1/3 ≤ (b − a)2/3µ([a, b))1/3

by Hölder’s inequality. Sinceφ is Lipschitz, the diameter ofRj is O(δ). Thus
dima(0) ≤ 2

3.

Proof of Theorem 2

Fix β ′ > β. Since dim(supp(µ)) ≤ β, for anyδ > 0 one can find a finite covering
of supp(µ) by disjoint intervals [aj, bj ] with eachbj − aj < δ and with∑

(bj − aj )β ′ ≤ 1, (4)

say. IfRj is the rectangle over [aj, bj ] then, as in the proof of Theorem 1,

|Rj | ≤ (bj − aj )2µ([aj, bj )) ≤ C(bj − aj )(2+α),
where the last inequality follows from the assumptionφ ′ ∈ Lip(α). Thus∑

|Rj |
β ′

2+α ≤ C (5)

by (4). Note also that, sinceφ is Lipschitz, eachRj has diameterO(δ). Now0 ∼⋃
Rj is a finite union of line segments and can therefore be covered by a finite

union of rectanglesSl each having diameter< δ and such that∑
|Sl|

β ′
2+α ≤ 1.

With (5) this shows that dima(0) ≤ 2β ′
2+α . Sinceβ ′ > β was arbitrary, dima(0) ≤

2β
2+α as desired.
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Proof of Theorem 3

We will require an elementary covering lemma whose proof we omit.

Lemma. Given a finite collection of closed intervals, there is a subcollection
with the same union and with the property that no point belongs to more than two
intervals of the subcollection.

Find δ > 0 such that dima(0) < 2
3+δ . Writing m for Lebesgue measure onR,

assume that
(sχE)dm ≤ dµ (6)

for somes > 0 and some BorelE ⊆ R. It will be enough to show thatm(E) =
0. Fix ε > 0 and find a finite collection{Ij } of pairwise disjoint closed intervals
such that

m
(
E1

(⋃
Ij

))
< ε.

Let β be the infimum of{dist(Ij, Ik) : j 6= k}. Cover0 by a finite collection{Rj }
of closed rectangles each having diameter< min(ε, β) and such that∑

|Rj |
1

3+δ ≤ 1.

This is possible since dima(0) < 2
3+δ . Let {[al, bl ]} be the collection of intervals

obtained by projecting the intersections0 ∩Rj onto thex-axis. EachRj will give
rise to at most three such intervals. Suppose [al, bl ] andRj are associated in this
way. Since the map

(x, y) 7→ (x − y, φ(x)− φ(y))
takes [al, bl ] × [al, bl ] into Rj −Rj and has Jacobian equal to|φ ′(x)− φ ′(y)|, it
follows that ∫ bl

al

∫ bl

al

|φ ′(x)− φ ′(y)| dx dy ≤ |Rj − Rj | = 4|Rj |.
Because∫ bl

al

∫ bl

y

|φ ′(x)− φ ′(y)| dx dy =
∫

[al,bl )
(bl − u)(u− al) dµ(u),

it follows that∑(∫
[al,bl )

(bl − u)(u− al) dµ(u)
) 1

3+δ ≤ C
∑
|Rj |

1
3+δ ≤ C

(
whereC = 2

1
3+δ
)
. Now each [al, bl ] intersects at most one of the intervalsIk,

since the diameter of eachRj is < β. By applying the covering lemma and then
shrinking or discarding each remaining [al, bl ] as necessary, we replace{[al, bl ]}
by a collection{[ck, dk]} satisfying
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χ[ck,dk ] ≤ 2,⋃

Ik =
⋃

[ck, dk],

and ∑(∫
[ck,dk)

(dk − u)(u− ck) dµ(u)
) 1

3+δ ≤ C. (7)

Let [c̃k, d̃k] have the same center as [ck, dk] but 9
10 the length. We will need the

fact that ∑
m([c̃k, d̃k] ∩ E) ≥ 4

5
m(E)− 2ε. (8)

To see this, note that ∑
(dk − ck) ≤ 2

∑
m(Ij ),

so ∑
m([ck, dk] ∼ [c̃k, d̃k]) ≤ 1

5

∑
m(Ij ).

Then

m
(
E ∩

⋃
[c̃k, d̃k]

)
≥ m

(⋃
Ik ∩

⋃
[c̃k, d̃k]

)
− ε

≥ m
(⋃

Ik ∩
⋃

[ck, dk]
)
−
∑

m([ck, dk] ∼ [c̃k, d̃k])− ε

≥ m
(⋃

Ik ∩
⋃

[ck, dk]
)
− 1

5

∑
m(Ik)− ε

= 4

5
m
(⋃

Ik

)
− ε ≥ 4

5
(m(E)− ε)− ε.

Now let τ = 5+2δ
6+2δ so that 2(3τ − 2) = 6+4δ

6+2δ and 2(1− τ) = 1
3+δ . Then, by (8)

and (6),

4

5
m(E)− 2ε ≤

∑
m([c̃k, d̃k] ∩ E) ≤

∑
(dk − ck)τ

(
µ([c̃k, d̃k] ∩ E)

s

)1−τ

=
∑

(dk − ck)τ−2(1−τ)
(
µ([c̃k, d̃k] ∩ E)

s
(dk − ck)2

)1−τ

≤ C

s1−τ
∑

(dk − ck)3τ−2

(∫
[ck,dk)

(dk − u)(u− ck) dµ(u)
)1−τ

.

By the Schwarz inequality and the definition ofτ, this last sum is dominated by

C

s1−τ

(∑
(dk − ck)

6+4δ
6+2δ

)1
2
(∑(∫

[ck,dk)
(dk − u)(u− ck) dµ(u)

) 1
3+δ
)1

2

. (9)

Since we havedk − ck < ε for eachk (the diameter of eachRj is< ε),∑
(dk − ck)

6+4δ
6+2δ ≤ ε 2δ

6+2δ

∑
(dk − ck) ≤ 2ε

2δ
6+2δ (b − a).

With (7) and (9) this leads to
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4

5
m(E)− 2ε ≤ C

s1−τ ε
δ

6+2δ (b − a) 1
2 .

Sinceε is arbitrary, it follows thatm(E) = 0 as desired.

Proof of Corollary

If φ ′ is differentiable at each point of [a, b] then it follows thatdµ = φ ′′(x)dx.

Proof of Theorem 4

Suppose 0< β < α/2. Sinceφ ′ ∈ Lip(α) it is easy to see that there exists aC
(depending onφ andβ) such that, ifa ≤ c < d ≤ b, then∫ d

c

dµ(u)

((d − u)(u− c))β ≤ C(d − c)
α−2β. (10)

Now fix ν with dima(0) < ν < 2α
2+α and fix δ > 0. Cover0 by rectanglesRj

each having diameter< δ and such that∑
|Rj |ν/2 ≤ 1.

Let the intervals{[al, bl ]} be the projections of the intersections0 ∩ Rj onto the
x-axis. Then each of the [al, bl ] has length< δ and, as in the proof of Theorem 3,∑(∫ bl

al

(bl − u)(u− al) dµ(u)
)ν/2

≤ C. (11)

Hölder’s inequality implies that

µ([al, bl ]) ≤
(∫ bl

al

dµ(u)

((bl − u)(u− al))γ r ′
)1/r ′(∫ bl

al

((bl−u)(u−al))γ r dµ(u)
)1/r

if r andr ′ are conjugate exponents. If
(

1
r
, 1
r ′
) = ( ν2,1− ν

2

)
andγ = ν

2 thenγ r ′ =
ν

2−ν <
α
2 while γ r = 1 andα − 2γ r ′ .= τ > 0. Thus (10), (11), andbl − al < δ

lead to
µ([a, b]) ≤

∑
µ([albl ]) ≤ Cδτ/r ′ .

Since this holds for anyδ > 0, it follows thatµ = 0.

Proof of Theorem 5

Supposea ≤ c < d ≤ b. If the rectangleR contains the arc{(x, φ(x)) : c ≤ x ≤
d} of 0, it follows as in the proof of Theorem 3 that∫ d

c

φ ′′(x)(d − x)(x − c) dx ≤ 2|R|.
Thus∫ d

c

φ ′′(x)1/3
dx =

∫ d

c

φ ′′(x)1/3
((d − x)(x − c))1/3((d − x)(x − c))−1/3 dx

≤ (2|R|)1/3

(∫ d

c

((d − x)(x − c))−1/2 dx

)2/3

= 21/3π2/3|R|1/3,
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where the first inequality is a consequence of Hölder’s inequality. With a regular-
ity argument, this shows thatλ ≤ 25/3ν.

For the reverse inequality, fixε, δ > 0 and [e, f ] ⊆ [a, b]. Write γ ([e, f ]) for
the portion of0 over [e, f ]. It will be enough to assume thatφ is monotone on
[a, b] and to show that

A
2/3
δ (γ ([e, f ])) ≤ 24/3

∫ f

e

φ ′′(x)1/3 dx + 24/3ε1/3(b − a). (12)

Chooseδ ′ ∈ (0, δ) so small that if [c, d ] ⊆ [a, b] andd − c < δ ′ then the rectan-
gleR over [c, d ] (see the proof of Theorem 1) has diameter< δ. Recall from that
proof that we then have

|R| ≤ (d − c)2µ([c, d ]).

Now cover [e, f ] ∩ {φ ′′ < ε} by a finite collection of intervals [aj, bj ] such that
bj − aj < δ ′, [aj, bj ] ⊆ {φ ′′ < 2ε}, and

∑
(bj − aj ) ≤ 2(b − a). Then, ifRj is

the interval over [aj, bj ], it follows that∑
|Rj |1/3 ≤ 24/3ε1/3(b − a). (13)

Next, cover [e, f ] ∩ {φ ′′ ≥ ε} by a finite collection of intervals [ck, dk] ⊆ [e, f ]
such that, for eachk, we havedk − ck < δ ′ and

max{φ ′′(x) : x ∈ [ck, dk]} ≤ 2 min{φ ′′(x) : x ∈ [ck, dk]}.
By the covering lemma from the proof of Theorem 3 we can also assume that∑
χ[ck,dk ] ≤ 2. If Tk is the rectangle over [ck, dk], it follows that

|Tk| ≤ (dk − ck)3 max{φ ′′(x) : x ∈ [ck, dk]}
≤ 2(dk − ck)3 min{φ ′′(x) : x ∈ [ck, dk]}

and so

|Tk|1/3 ≤ 21/3
∫ dk

ck

φ ′′(x)1/3 dx.

Then∑
|Tk|1/3 ≤ 21/3

∑∫ dk

ck

φ ′′(x)1/3 dx

= 21/3
∫ f

e

φ ′′(x)1/3
∑

χ[ck,dk ] dx ≤ 24/3
∫ f

e

φ ′′(x)1/3 dx.

With (13), this gives (12).

3. Some Examples

In this section we will construct a family of curves0 = 0η indexed by a param-
eterη ∈ (0,1). It will turn out that dima(0η) = 2

3+η and that, from the point of
view of the problems (C) and (R) mentioned in Section 1, these curves are as nice
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as possible given their affine dimensions. We will also observe that the curves0η
possess a certain homogeneity property.

To begin, for a nonnegative integern letDn be the set
{ j

2n
}2n−1
j=0 . Fix η ∈ (0,∞)

and define the measureµ (= µη) by

µ =
∞∑
n=1

1

2n(1+η)
∑
x∈Dn

δx.

For 0≤ x ≤ 1, defineφ(x) by

φ(x) =
∫ x

0
µ([0, x)). (14)

Then0, the graph ofφ over [0,1], is a curve of the class described in Section 1.

Lemma. We havedima(0) ≤ 2
3+η .

Proof. It is enough to show that there exists aC such that, for anyδ > 0, there is a
covering of0 by a finite collection{Rk} of rectangles each having diameterO(δ)

and such that
∑|Rk| 1

3+η ≤ C. So fix δ. Choose a positive integern with 2−n ≤
δ. For j = 0, . . . ,2n − 1, chooseaj, bj with j

2n < aj < bj <
j+1
2n in such a man-

ner that the union of the 2·2n segments of0 over intervals of the form
[ j

2n , aj
]

or[
bj,

j+1
2n
]

can be covered by a finite collection of rectanglesSl with
∑|Sl| 1

3+η ≤ 1
and such that eachSl has diameter< δ.

(
Sinceφ is continuous, this is easily ac-

complished by takingaj close to j

2n andbj close toj+1
2n .
)

As observed in the proof
of Theorem 1, the portion of0 over [aj, bj ] lies inside a rectangleTj with

|Tj | ≤ (bj − aj )2µ([aj, bj )).
It is easy to check thatµ([aj, bj )) ≤ C2−n(1+η) so that

∑|Tj | 1
3+η ≤ C. The fact

thatφ is Lipschitz shows that each of the rectanglesTj has diameterO(δ). Now
let {Rk} = {Sl} ∪ {Tj }.

That dima(0) ≥ 2
3+η is a consequence of Proposition 2 and either of the next

two propositions.

Proposition 3. Let λ be the measure onR2 given bydλ = dx on 0 =
{(x, φ(x)) : 0 ≤ x ≤ 1}. Then the convolution inequality(2) holds with

(
1
p
, 1
q

) =( 4+η
6+2η ,

2+η
6+2η

)
.

The proof of Proposition 3 requires a lemma.

Lemma. There is a positive constantC such that, ifc, d ∈R, then∣∣∣∣∫ 1

0
ei(cx+dφ(x)) dx

∣∣∣∣ ≤ C|d|− 1
2+η .

Proof. Split the integral into integrals over{|c + dφ ′| ≤ |d| 1
2+η
}

and
{|c + dφ ′| ≥ |d| 1

2+η
}
.
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Van der Corput’s lemma [9, p. 197] bounds the second of these. For the first, note
that {|c + dφ ′| ≤ |d| 1

2+η
} ⊆ [α, β],

where

φ ′(β)− φ ′(α) ≤ 2|d|−
1+η
2+η .

One easily checks that, for some positiveC,

(β − α)1+η ≤ C(φ ′(β)− φ ′(α)).
This leads toβ − α ≤ C|d|− 1

2+η and the desired bound for the first integral.

Proof of Proposition 3.The proof is a standard application of complex interpo-
lation; see [1, Sec. 2] for a similar argument presented in more detail. Define an
analytic family{8z} of distributions by

〈f,8z〉 = 1

0
(
z+1
2

) ∫ 1

0

∫ ∞
−∞

f(x, φ(x)+ s)|s|z ds dx.

If <z = 0, then8z is a bounded function onR2 and so convolution with8z maps
L1 (= L1(R2)) intoL∞. If <z = − 3+η

2+η then the formula (see [4, p. 359]) for the
Fourier transform of |s|z

0
(
z+1
2

)
combined with the lemma just proved shows that convolution with8z mapsL2

intoL2. Stein’s interpolation theorem thus implies that convolution with8−1 maps
Lp into Lq when

(
1
p
, 1
q

) = ( 4+η
6+2η ,

2+η
6+2η

)
. Since8−1 is a nonzero multiple ofλ,

the proof of Proposition 3 is complete.

The following corollary is analogous to Theorem 5.

Corollary. There is a constantC (depending onη) such that, ifλ is as before
and if ν is the restriction to0 of 2

3+η -dimensional affine measure, thenC−1λ ≤
ν ≤ Cλ.
Proof. Proposition 3 and the proof of Proposition 2 yield the inequalityλ(R) ≤
C|R| 1

3+η for rectanglesR. This implies thatλ ≤ C · ν. For the reverse inequality,
fix [e, f ] ⊆ [a, b]. Writing γ ([e, f ]) for the portion of0 over [e, f ], it is enough
to establish that

A
2

3+η
δ (γ ([e, f ])) ≤ C(f − e)

for any δ > 0. This can be done by slightly modifying the proof of the lemma
preceding Proposition 3: observe that the “1” in that proof can be replaced by any
ε > 0 and use only as manyTj as required to ensure thatγ ([e, f ]) ⊆⋃Rk.

Proposition 4. With λ as in Proposition 3, the restriction inequality(3) holds
whenever1

q
= (3+ η)(1− 1

p

)
and1≤ p < 4+2η

3+2η .
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Proof. The proof is analogous to the proof in [8]. The only significant modifica-
tion is that (6) in [8] must be replaced by the inequality∫ 1

0

(∫ 1

0
χT (t − s, φ(t)− φ(s)) ds

)2+η
dt ≤ C|T |, (15)

where|T | is the Lebesgue measure of an arbitrary BorelT ⊆ R2. Following an
argument from [6], we regard (15) as an

(L2+η,1(R2), L2+η(dλ))

estimate for the operatorf 7→ λ ∗ f. As such, (15) is equivalent to the adjoint(
L

2+η
1+η (dλ), L

2+η
1+η ,∞(R2)

)
estimate ∫

{y|φ ′(s)−φ ′(t)|≤g(t)}
|φ ′(s)− φ ′(t)| ds dt ≤

∫ 1

0

(
g(t)

y

)2+η
1+η
dt

for nonnegativeg andy. By integration int, that will follow from∫
{|φ ′(s)−φ ′(t)|≤B}

|φ ′(s)− φ ′(t)| ds ≤ B
2+η
1+η

for B > 0. And this is a consequence of the inequality, noted in the proof of
Proposition 3,(s − t)1+η ≤ C(φ ′(s)− φ ′(t)).
The only properties ofφ that were used in the proofs of Propositions 3 and 4 were
the convexity ofφ and the inequality(s− t)1+η ≤ C(φ ′(s)−φ ′(t)) if t < s. Here
are two consequences of this observation.

(i) If µ in (14) is replaced by

∞∑
n=1

1

n22n
∑
x∈Dn

δx

then, for 0≤ t < s ≤ 1, the inequality

(s − t)1+η ≤ Cη(φ ′(s)− φ ′(t))
holds for eachη ∈ (0,1). It follows that dima(0) = 2

3 even thoughµ is
discrete.

(ii) If we extendµ by 1-periodicity to all of [0,∞), extendφ to [0,∞) by (14),
let 0 = {(x, φ(x)) : 0 ≤ x < ∞}, and setdλ = dx on 0, then Proposi-
tions 3 and 4 are still valid. For the remainder of the paper we consider these
extensions ofµ, φ, and0.

In conclusion we point out a certain homogeneity property enjoyed by the curves
0. As motivation, observe that fort, ε ∈R we have the equation
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t

t 2

)
+
(

1 0
2t 1

)
·
(
ε

ε2

)
=
(

t + ε
(t + ε)2

)
,

which we interpret as the statement that the curve(t, t 2) is equiaffinely homoge-
neous.The curves0 of this section are locally equiaffinely homogeneous at dyadic
t in the following sense: ift = j/2N for nonnegative integersj andN, then there
is c(t)∈R such that, if 0≤ ε < 2−N,(

t

φ(t)

)
+
(

1 0
c(t) 1

)
·
(

ε

φ(ε)

)
=
(

t + ε
φ(t + ε)

)
.

This is only the statement that

φ(t + ε)− φ(t) = εc(t)+ φ(ε)− φ(0)
or, equivalently, ∫ t+ε

t

φ ′(s) ds = εc(t)+
∫ ε

0
φ ′(s) ds.

But ∫ t+ε

t

φ ′(s) ds =
∫ t+ε

t

(φ ′(s)− φ ′(t)) ds + εφ ′(t)

= εφ ′(t)+
∫ t+ε

t

µ([t, s)) ds

= ε(φ ′(t)+ µ({t})− µ({0}))+
∫ ε

0
µ([0, s)) ds

= ε(φ ′(t)+ µ({t})− µ({0}))+
∫ ε

0
φ ′(s) ds

sinceµ((t, t + u)) = µ((0, u)) if t = j/2N and 0< u < 2−N.
ForC(2)-curves, such local equiaffine homogeneity is a very restrictive condi-

tion: If ψ ∈C(2) and

ψ(t + ε)− ψ(t) = εc(t)+ ψ(ε)− ψ(0)
holds for a dense collection oft and (for each sucht) for 0 < ε < ε(t), then
ψ ′′(t + ε) = ψ ′′(ε) leads toψ ′′(t) = ψ ′′(0) for all t and hence toψ(t) =
at 2 + bt + c for constantsa, b, c.
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