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1. Introduction

A natural problem in several complex variables is that of classifying the deforma-
tions of an isolated singularity in a complex analytic variety. The problemis solved
by constructing a “versal family” of deformations of the singularity, which is,
roughly speaking, a minimal family of deformations that includes biholomorphic
representatives of all other deformations. (See Section 8 for a precise definition.)

Versal families for isolated singularities were first constructed from an algebraic
point of view in the late 1960s and early 1970s by Tjurina, Grauert, and Donin
[T]; Gr; D]. Shortly thereafter, Kuranishi [K] outlined a program for relating de-
formations of an isolated singularity to deformations of the CR structure on a real
hypersurface obtained by intersecting the variety with a small sphere surrounding
the singular point (the “link” of the singularity). His idea was to construct a versal
family of deformations of the CR structure on the link (versal modulo “wiggles”
of the link within the ambient complex space, not just modulo changes in the CR
structure). Kuranishi’s construction was extended and simplified by subsequent
work of the first author and others [A3; A4; A5; M1; M2; BM].

A fundamental limitation of all of these results has been a dimensional restric-
tion: Because the deformation complex that was introduced in [A3; A4; A5] failed
to be subelliptic in low dimensions, these results applied only to CR manifolds
of dimension 7 or more (and therefore to singularities of varieties whose complex
dimension is at least 4).

The purpose of this paper is to extend the Kuranishi construction of versal fam-
ilies of CR structures to the case of 5-dimensional CR manifolds. The new idea
here is a subelliptic estimate and consequent Hodge theory for a certain subcom-
plex of the standard deformation complex inspired by recent work of M. Rumin
on contact manifolds.

Miyajima [M3], following an idea introduced in [Be], has introduced an al-
ternative approach to constructing versal families in all dimensions that is based
on analyzing deformations not only of the CR structure but also of the CR struc-
ture together with its embedding in®". The present approach is of independent
interest, however, because it represents a completion of the original Kuranishi
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program of constructing an intrinsically defined versal family of deformations of
the CR structure itself. There appears to be little hope for extending this intrinsic
approach to the case of 3-dimensional CR manifolds, because the relevant coho-
mology groups in that case are infinite-dimensional.

Let (M, °T") be a compact strictly pseudoconvex CR manifold of real dimen-
sion 5. Deformations of the CR structure Mf can be represented &s-valued
(0, 1)-forms, whereT’ = (C ® TM)/°T" (which we identify, in a non-CR-
invariant way, with a 3-dimensional complex subbundleCo® TM transverse
to the antiholomorphic tangent bundI”; see Section 2 for precise definitions).
The space of such forms fits into a compl@XM, T'® AJ/(°T")*, 3Y))), thestan-
dard deformation complepA3; BM]. In earlier work on higher-dimensional CR
deformation theory, the first author defined a subcomplex\/, E;), 5]») of the
standard deformation complex corresponding to deformations of the CR structure
that leave the contact structure fixed. When dif= 2n — 1 > 7, there is a sub-
elliptic estimate o’ (M, E) that leads to the construction of a versal family [A3;
A4]. Butif dim M = 5, there is no such estimate.

In this paper, inspired by the differential-form complex introduced by Rumin
[R] for studying de Rham theory on contact manifolds, we extend:itreomplex
by defining a new second-order operakur

0— I'(M, F) 2 1M, E)) 2 T(M, E),

whereF is a 1-dimensional subbundle 6f® TM transverse t87” @07 . Thisis
closely related to Rumin’s complex, as explained in Section 4. A similar complex
has also been used in [BM].

Once we have proved an a priori estimatelt, E;), it follows that there
is a Kodaira—Hodge decomposition theoremiwM, E;). Using techniques sim-
ilar to those in [A3; A4], this leads to a construction of the versal family in the
5-dimensional case. We remark that, since this paper was accepted for publication,
the second author (following a suggestion of Rumin) has proved a subellipticity
result [G] that can be used to extend the results of this paper to all dimensibns
thus giving an alternative approach to the results of [A3; A4].

2. Background and Notation

Let (M, °T") be a CR manifold. By this we mean th&t is a smooth manifold
of dimension 2 — 1 and®7” is a complex subbundle of the complexified tangent
bundleC ® TM satisfying

07" NOT" =0, dimc°T” =n—1,
[X,Y]eT(M,°T") forall X,Y e'(M,°T"),

where byl'(M, E) we mean the space af* sections of the bundI&. For con-
venience we will write"T’ for °T” and H for the real bundle RET” @ °T").
We assume that there is a global nonvanishing real 1-fothrat annihilatesd,
that is, such thai(X) = 9(X) = O for all X e I'(M, °T"). SinceH is oriented
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by its complex structure, the existence of such a form is equivalemt teing
orientable.
We define the_evi form L, by

Lo(X,Y) = —i0([X,Y]) for X,Y €°T". (2.1)

If this Levi form L, is positive definite or negative definite, them, °T") is
calledstrictly (or strongly) pseudoconvexAfter this section, we will always as-
sume that our CR structure is strictly pseudoconvex.) In this case, we call a choice
of nonvanishing 1-forn® annihilating H a pseudohermitian structurd_et & be
the unique real vector field satisfyingé) = 1 anddd (¢, X) = Oforall X € H.
Notice that this implies, for every poiptof M, thaté, ¢ H,. The Leviform gives
us a metric orH that extends to a Riemannian metric on allf@dff by declaring
that¢ is of unit length and orthogonal td. We will call this metric theNebster
metric(see [W]).

Let F denote the complex line bund®%, and defing’’ := °T’ + C&. Itis easy
to check that the projectio@ ® TM — (C ® TM)/°T" restricts to an isomor-
phism7T’ = (C ® TM)/°T". The latter quotient bundle (often denoted also by
T), though invariantly defined, is less convenient for computations, so through-
out this paper we consid@t’ as the subbundle @ ® TM just defined.

We then obtain vector bundle decompositions

CTM =T +°T" (2.2)
and
CTM =°T' +°T" + F. (2.3)

Note that these decompositions depend on the choiédafd thust), and hence
they are not CR-invariant. We will often take advantage of these decompositions
to project onto various components. For a vectoret us writerrr(X) for the
F-component o, 7/(X) for theT’-component9r’(X) for the®T’-component,
and®z”(X) for the°T”-component, according to these decompositions. More-
over, since we will often be dealing with vector-valued forms, let us use the same
notation for the projection of, saf ® TM ® A/(°T”)* into component parts
F® A-i(OT//)*, T'® A-j(OT//)*, O ® A'j(OT//)*, andOT// ® Aj(OT”)* via equa-
tions (2.2) and (2.3).

Itis often useful to identifflC ® A*M with C® AKH*@® 6 AC ® A*~1H*. Notice
that this identification depends on the choic®.0fhe CR structure defines a nat-
ural bigrading orC ® A*H*, so we may make the further identification

CRAM= " APH*+0A Y AIH". (2.4)
p+q=k p+q=k-1

This allows us to identify, for example\?(°T”)* = A%?H* with honest forms
onM.

Finally, we note that we will use the Einstein summation convention whenever
possible. We will use Roman indicég, k, for example) to indicate sums from 1
to 2n — 1 and will use Greek indice®, 8, and so on) for sums from 1 to— 1.
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3. Review of CR Deformation Theory

In this section we survey previous work on the deformation theory of CR struc-
tures. This work was initiated by Kuranishi [K] as a CR analogue of his work on
complex manifolds. Most of the work reviewed here was done by the first author
[AL; A2; A3; Ad]. B

Following [A2], we introduce afirst-order differential operatgr: T'(M, T') —
T(M, T'® (°T")*) by

drY(X)=n'[X,Y] for YeI'(M,T') and X e (M, °T"). (3.1)

(This definition reflects the fact th@t' has a natural structure as a CR vector bun-
dle; if M is a real hypersurface in a complex maniféldthenT’ is naturally iso-
morphic toT1°U|,,.) As in the case of scalar-valued differential forms, this gen-
eralizes to the operatods” : I'(M, T' @ A?(°T")*) — I'(M, T’ ® APT1(°T")*)
(p=12,...)qgiven by

5(p)¢()21a ceey Xerl)
p+1 ~ _ N _
= Z(-l)/*ln’[xj, ¢(X1, .o Xjy ooy Xpi1)]
j=1
+ Y DO (X K] Xa o X X X)) (B.2)
j<k

forgp e (M, T’ ® AP(°T")*) andX; € T'(M, °T"). We then have a differential
complex

s 3() 5(2
0= I'(M. T 25 T(M. T’ ® (°T")*) 2> T(M., T' @ A2°T")*) 2
’ O /ry% a(r / +1, 077\ %
S T, T @ AT 25 T(M, T @ AXOT")) — .- (3.3)

with 3793 = 0 (see [A2]). This complex is called ttandard deformation
complex.

A complex subbundl&Z ¢ C ® TM is analmost CR structur¢and the pair
(M, E) is analmost CR manifolylif ENE =0 and dint E = n — 1 An al-
most CR structuré is at finite distance froT” if °z”|z: E — °T” is abundle
isomorphism. These almost CR structures are characterized by the fact that they
are graphs ovelT”: there is a bijective correspondence between elemgrts
(M, Hom(°T”, T")) = I'(M, T’ ® (°T")*) and almost CR structures

T = (X 4+ ¢(X): Xe°T"}

at finite distance froiT” (see e.g. [Al, Prof.1, p. 618]). Thelmost CR struc-
ture?T” is a CR structure exactly when it satisfies the integrability condition,
which can be written as the nonlinear partial differential equation

P(¢) = 3P¢ + Ra(¢) + Ra(¢) =0,
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whereR(¢) e (M, T' ® A>(°T")*) (k = 2, 3) are the parts oP(¢) that are of
degreek in ¢. They are given by

Ro@)(X,Y) = 7'[¢p(X), (V)] — p(°n"[X, ¢(1)] +°7"[¢p(X),Y]) (3.4)

and o B B
R3(9)(X,YV) = - (°7"[p(X), p(¥)]). (3.5)

See [AL, Thm. 2.1, p. 619] and the proof given therein for details.

If we consider only deformationg that preserve the contact structure (i.e.,
for which ¢T” @ ¢T” = °T” @ 0T "), then we are simply restricting tp €
(M, °T’® (°T")*). For suchp, we notice thaiRs(¢) = 0 and thatry Ro(¢) =
0 (s0°7'R2(¢) = Ro(¢)). HenceP(¢) = mpdP¢ + °'dDp + Ra(¢). Our in-
tegrability conditionP(¢) = 0 is thus equivalent in this casetpdP¢ = 0 and
O7'9M¢ + Ro(¢p) = O (cf. [A2, Prop. 1.7.3, p. 797]). This, in part, motivates the
definition of the following subspaces 61 M, °T’ ® AP(°T")*):

T, ={uel(M°T' @ AP(°T")*) : 7pdPu = 0}. (3.6)

Forg € Iy ¢ IT'(M,°T’ ® (°T”)*), then, the integrability condition becomes
P(¢) =°1'8D¢ + Ro(¢) = 0.

We remark that, contrary to appearances, the definitioli,ds an algebraic
condition onu, not a differential one. To see this, apply the 1-farito both sides
of equation (3.2). By the definition df,, the left-hand side is zero and so

p+1 N _
0= Z(-l)l’“@([xj, u(Xt, .oy Xjy ooy Xp10)])
j=1
+ Y EDIHFO@AX), X X X X X)),
Jj<k

Because: maps inta®T’, which is annihilated by, the second sum is a sum of
zeros. Usind([X,Y]) = —dO(X,Y) for X,Y e C® H =T’ @ °T”, the first
sum becomes

p+1

0= (-1 d0(Xj u(Xp. ... Xjv ... Kpy)- (3.7)
j=1

This is an algebraic condition an

In fact, the spaceB, are smooth sections of vector bundles. There exist [A3,
Prop. 2.1, p. 313] subbundlgg, c T’ ® A?(°T”)* such thatl, = I'(M, E,,).
Restrictingd " to E,, yields a sequence of mags,

0 — I'(M, Eg) 2% T'(M, E1) 2 T(M, E2) 22 T(M, E3) 2 ..., (3.8)

and?T” is integrable fokp € I'y if and only if P(¢) = d1¢ + R2(¢) = 0.
It turns out thatEy = 0 and that the resulting complex

0— 0— (M, E1) 2 T(M, Ez) 22 T(M, Ez) 2 ... (3.9)
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is a differential subcomplex of the standard deformation complex (see [A3, Thm.
2.2, p. 314]). This subcomplex still contains enough information to be useful; for
example, the inclusion map I'(M, E,) — T'(M,°T’ ® A?(°T")*) induces a
map
kerd, kerg(”

—

imd,—1  ima»-D

[

that is an isomorphism if > 2 and surjective ifp = 1 [A3, Thm. 2.4, p. 315].
Furthermore, there exist both a subelliptic estimate for this complex [A3, Thm.
4.1, p. 319] and a Kodaira—Hodge decomposition theorentTfat, E,) [A3,
Thm. 4.1, p. 328], provided dit¥ = 2n — 1 > 7. That is, if we define the La-
placian] = 359, + 319%, then there is a harmonic projectairsuch thatl1Hu =
0 for allu € T'(M, E;) and a Neumann operatdf such thatVHu = HNu = 0
andu = ONu + Hu for all u e I'(M, E5). This construction fails if dindf = 5,
since there is no subelliptic estimate for this complex.

4. The New Complex

In this section, we introduce a new complex as a replacement for the differential
subcomplex (3.9) of the standard differential complex. Set

Ho={vel'(M,T'): mpdrv =0}. 4.

We then obtain a new differential subcomplex of the standard differential com-
plex (3.3):

0— Ho 2 (M, Ep) 2 T(M, Ey) 2 ... . 4.2)

This complex is a generalization of ideas of the first author. Versions of it have
been used by Bland and Epstein [BE, pp. 353-355] (in the 3-dimensional case)
and by Buchweitz and Millson [BM, p. 82] (based in part on ideas of the third
author). It is straightforward to see that this is a complex: the definitioA ©f
ensures thabou € I'(M,°T’ ® (°T")*), and that (4.2) is a subcomplex of the
standard differential complex (3.3) means that, in fagt, € I'(M, Ex).

We would like to make a few remarks abaip. It is not the space of smooth
sections of a vector bundle ovéf; rather, it is the image of a first-order differ-
ential operator. We define this operatoeM, F) — I'(M, T’) as follows. For
Z e (M, F), we may writeZ = u - £ for some smooth function (namely,u =
6(Z)). We then get an elemeixt, € I'(M, °T") by requiring thaué + X, € Ho;
thus, 7797/ (X, + u€) = 0. This is equivalent t& ([Y, X, + u&]) = OforallY €
(M, °T"). Another way to write this is

dey, X,) = Yu, (4.3)

becaus®(Y) = 6(X,) = 0 anddd (&, -) = 0. Since our CR structure is strictly
pseudoconvex, equation (4.3) uniquely determikigs Thus Hy is the image of
the first-order differential operatar: I'(M, F) — I'(M, T') defined byp (u&) =
X, + uék.
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Define a second-order operator. I'(M, F) — I'(M, E1) as the composition
D = 37/ o p. We then clearly have a complex

0— I'(M.F) 2 T(M. Ep) 25 (M. Ep) 22 ... . (4.4)

Itis this complex that we will use to derive our subelliptic estimate and thence our
decomposition theorems.

Notice thatX, includes a first derivative of. Using a local moving frame
{e1, ..., e,_1) for OT satisfying

Lg(ea, é/g) = 80,5, (45)

we setX, = X“%e, (note the implicit sum). Expanding([es, X*e, +u&]) =0
yields
0((epX“)eq + X[ep, €a] + (egu)é + uleg, £]) = 0. (4.6)

This simplifies toX *(—idgy) + ésu = 0, S0 X = i8*Pesu. Thusp is indeed a
first-order operator, and our composititn= ;- o p is a second-order operator.
Finally, we would like to relate our operatér to that of Rumin [R]. Define, for

p+q=n,

FPr9={uehA N H" : do Au =0}, 4.7)
and setF¥ = @p+q=k FP 1 for k > n. Although definition (4.7) seems to depend
on the noninvariant decomposition (2.4), we may actually expFéssvariantly

as
Fr={ueCQANM:vAau=0forallve (0 do)},

where(6, d6) is the ideal generated yanddé. Since this ideal is CR-invariant,
the definition of F* is as well. Below the middle dimension, we define a slightly
different space. Fop + ¢ =k <n — 1, set

EP4 = APUH*/(d6)

andEf = P EP+4, so that

p+q=k
E* = C @ A*M/(6, db)

is CR-invariant as well. Rumin’® operator is a ma@: E"~! — F" given by

D[u] = dii, where the representativieof [u] € E"~1is chosen so thatii will be

in F". There is then a complex

A N LN (4.8)

which decomposes into subcomplexes

d// o D// _ d// _ d//
gpn—pr-1 s ppn—p & ppn—p+l € (4.9)

We hope to provide more details on these complexes in another paper.
The relation between our complex (4.4) and Rumin’s complex (4.9) occurs when
p = n —1in Rumin’s complex, in which case (4.9) is

0 — E"-10 D_”) Fr-11 d_”> FrL2 d_”) R (4.10)
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and we note thag"~*0 = A""10H* = A"~1(OT")*. Let K,, denote a nonvan-
ishing closed(n, 0)-form (i.e., an element of A A"~L°H*), if one exists. For
any positivek, we obtain a magP, : I'(M, E;) — F" 1% by interior multiplying

the vector part of € '(M, E}) into Kj; and then wedging the remainder with the
form part ofu. Let Py: T'(M, F) — E"10 be given byPy(u&) = u - K. The
claim is that eactP, is an isomorphism and that the following diagram commutes:

0 — (M. F) 25 (M. Ey) 25 T(M,Ep) 2> ...

PQJ( P1l le
0 5 En—l,O D" Fn—ll d” Fn—l,2 d” .
BecauseK,, always exists locally, the two complexes are locally isomorphic. If
the canonical line bundle is trivial, then this complex version (4.9) of the Rumin
complex is isomorphic to our new complex (4.4).

5. A Subelliptic Estimate and Decomposition Theorem

In this section, we state two of our main results. First, we produce a subelliptic
estimate af’(M, E1) for our complex (4.4) in the 5-dimensional case. Using this,
we get a Hodge—Kodaira decomposition theorem for elemenig M E;). As
remarked in Section 1, these results can be extended to higher dimensions using
the subellipticity results of [G]. We concentrate here on the 5-dimensional case
because it is new.

We begin with some preliminaries. Our choice of pseudohermitian strugture
determines thpseudohermitian connection(see [W; T]): this is the unique con-
nection that is compatible withl and its complex structure, for whi¢handdé
are parallel, and that satisfies an additional torsion condition. For any tensor field
u on M, the total covariant derivativ€u can be decomposed as

Vu=Vu+V'u+Viu®6,

whereV'u (resp.V"u) involves derivatives only with respect to vector fields in
0T’ (resp.°T"). Writing Vyu = V'u + V'"u, the Folland—Stein normg - ||, are
defined by

k
2 Jo2
Il = 1V5ull?,
j=0

where| - || denotes the.? norm defined with respect to the Webster metric. (Note
that, in [A3], the|| - ||. and]| - ][> norms were called - ||" and|| - ||”, respectively.)
We will write (-, -) for the hermitian inner product that corresponds to the norm
| -1I, and for any bundlé& we will let I',(M, E) denote the completion &f(M, E)
with respect to thé.2 norm.

Define a second-order operafoe= 1+ V'*V'+V”*V”. We then define our La-
placiand: T'(M, E1) — T'(M, E1) by Ou = DD*u + 3;Ld1u, where the adjoints
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are defined with respect to the complex (4.4). We use this operator and the norms
defined previously to express our subelliptic estimate in the following theorem.

THEOREM 5.1 (Main Estimate). Let (M, °T") be a compact, strictly pseudo-
convex CR manifold of dimensiénThen there exists a constant- 0 such that

(¢, O¢) = ID*¢1 + 1919113 > cllgllz — o112 (5.1)
forall ¢ eI'(M, E;).

The details of the proof of this estimate will be confined to the next section.
We define new norms that are Sobolev extensions of the Folland—Stein norms

|- Ilx as follows. Set
m k
2 Iwj 2
= D DIV Vjjul®.
1=0 j=0

The first parameterk, specifies the number of derivatives in thedirections,
whereas the second parameter, is the number of unconstrained derivatives.
(We remark that, in [A3], these norms were written slightly differently; for exam-
ple, |- llz,m was|l-If,,,.) Then our Main Estimate (Theorem 5.1), together with
standard integration-by-parts techniques, gives us the following Sobolev estimate.

CoroLLARY 5.2. Let (M,°T") be a compact, strictly pseudoconvex CR mani-
fold of dimensiorb. For each positive integer, there exists a constant, > 0
such that

ID*$NE, + 1919115 ,, = culldl3,, — I81Z,, (5.2)
forall ¢ e '(M, Ey).

Let us write for the harmonic elements of( M, E;) with respect to the Laplac-
ian. In order to find a useful expression féf, we use the following lemma to
express the adjoint dp in simpler terms.

LEMMa 5.3. Let Hy be the completion offq under theL? norm, wherenH
I'>2(M, T') — Hyis orthogonal projection. Then we have the following relattons
(@) 35 = T, © 8’;,, wherea’;, is the formal adjoint 0fd7;

(b) kerD* = kerd;.

Proof. The first conclusion follows from the relation between the standard
deformation complex (3.3) and the complex (4.2) involviHg. Since Ho C
(M, Ty andT'(M, E1) C T(M, T’ ® (°T")*), we may writedy = 97+ o Tiigs
from which it follows thatd} = T, © a’;, onI'(M, Ey). That kerD* = kerdg is
due to two simple facts: first, thm* = p* 0 8%; second, thap: I'(M, F) — Hy
is an isomorphism. O

This lemma then implies that we may writtas
H =kerOd={peT (M, Ey):d5¢p =0 anddp = 0}.
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The subelliptic estimate in Theorem 5.1 gives us the following Hodge—Kodaira
decomposition theorem.

THEOREM 5.4. Let (M, °T") be a compact, strictly pseudoconvex CR manifold
of dimensiorb. Then B

kero,

imD "’
Moreover, there exist both a Neumann operator I'>(M, E;) — T'2(M, Eq)
and a harmonic projectoi : T,(M, E;) — H satisfyingNH = HN = 0,
[N, DD*] = 0 = [N, 3;Ld1], andu = Hu + ONu = Hu + NOu for all u €
I'y(M, Ey).

~

We will construct the Neumann operat@rand the harmonic projectd@f by con-
sidering the differential equation

Ou = f. (5.3)

Let us writeH{* for elements of™»(M, E;) that are orthogonal té{ with respect
to the L2 norm. We begin with a fairly standard lemma.

LemMA 5.5. There is a constant > 0 for which
I D*ull® + |ull3 > cllull?
forall u e H+ C To(M, Ey).

Proof. We assume the conclusion is false. That is, for each intéger O,
we assume that there is an elemepte H* satisfying || D*ug ||? + [|d1ux |12 <
%||uk||§. Rescaling thesa, if necessary, we may assume that |, = 1 and
hencel| D*u;||? + |91, 12 < . By our estimate (5.1) (extended by continuity to
I'>(M, Eq)), we have

2 2 WA 2 2
clluglly < IID*uell® + 0aure I3 + luwlly

1
<|-4+1)<2
<(24a) -

The sequencgy, } is thus bounded with respectfo| ., the Folland—Stein 2-norm.
Any such set is precompact with respecj tdj1; this means there is a subsequence
{uy, } that converges weakly i (M, E7) and strongly inthe Folland—Stein 1-norm.
Let u be its limit. On the one hand, € 7+ because each elemany is. On the
other hand, the closedness of the differential opef@tamplies thatu € Dom[]
andu = 0. Thusu € H and sou = 0. But |ju||; = 1, so this is a contradic-
tion. O

Proof of Theorem 5.4By Lemma 5.5 and Theorem 5.1, the quadratic form
Q(u, u) = || D*ull? + [|dull3

defines a norm that is equivalent to|,. We endow#+ with this norm and let
Q(u, v) denote the associated symmetric bilinear form. Note thatahdv are
smooth, ther (u, v) = (Ou, v).
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By Lemma 5.5, the linear functional— (f, v) is bounded oriH{* for any f €
I'2(M, E1). The Riesz representation theorem then implies that there is a unique
u € H* such thatQ (u, v) = (£, v) for all v e H*. Thus we have solved (5.3) for
feH* .

The Neumann operator is given byf = u, the solutionu € H* to Ou = f
in the sense just described. This makes sensg fer{*, so under the orthog-
onal decompositioly (M, E1) = H @ H* we can extendV to all of I'>(M, E;)
by declaring that it is identically zero ok. We define the harmonic projectéf
as orthogonal projection ontd under this decomposition. The operatéfsand
N project onto orthogonal spaces, BV = 0 = NH. On the other hand, the
decompositions = Hu + ONu = Hu + NOu follow immediately from the
construction ofV andH.

Toseethatd;Ld;, N] = 0 = [DD*, N]takes a bit more work. Froni], N] =
0 it follows directly that p;Ld:, N] + [DD*, N] = 0, so we need only show
that, say, pD* N] = 0. This follows easily by considering separatelye H
(on which DD* and N are separately zero) and= v € #H*, in which case
[DD* N]Ov = Ois a straightforward computation based on the formMak =
v — Hv, [DD* 0] =0, andHDD* = DD*H = 0.

Finally, the isomorphisn{ = kerd;/im D follows as usual from the exis-
tence of the Neumann operator, since the harmonic projéti@stricts to a map
H:kerd, — H whose kernel is exactly i by the preceding arguments. [J

6. Proof of the Subelliptic Estimate

In this section we prove Theorem 5.1, our subelliptic estimate. Since our manifold
M is assumed to be compact, it will suffice to show that (5.1) holdg farpported
in a neighborhood of each point; assuming this, we can choose a locally finite col-
lection{a; } of smooth nonnegative functions satisfyipg, «? = 1, apply (5.1) to
a;¢ and then sum over yielding (5.1) plus some lower-order terms that can be
absorbed into the right-hand side.

Let {e1, e2} be a local moving frame fdi7’ satisfying (4.5), from which it fol-
lows that

7'[F[ecu éﬁ] = _iaaﬁSa (61)

and let{#*, 62} be the dual sections ¢P7")*, viewed as 1-forms according to the
decomposition (2.3). We may then wriee I'(M, °T’ ® A/(°T")*) in coordi-
nates as

¢ =0f,  pea @A NG (6.2)

(Notice the implicit sums ovar andg, throughg;.) Throughout this section, we
will assume that is supported in the neighborhood on which our moving frame
is defined, so that
g2 =" g, 4% (6-3)
a,B1, ..., B
We will often find it useful to look only at the top-order derivatives. In light of
the commutation relation (6.1), this unfortunately is not possible. Instead, we will
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look at only the topweight derivatives, where we allocate a weight of 1 to vec-
tor fields in H and a weight of 2 t&¢. We will then write ~ for “equal modulo
lower-weight terms”. This generalizes ¥pand<, meaning greater than or less
than modulo negligible terms. Our main estimate (5.1) can thus be written

(u, Ou) = [D*I* + 1310115 Z cllpll3

for all € I'(M, E;). To prove this estimate, we will need a local expression for
¢ 13 rather tharj|¢||2. Modulo lower-weight terms, this expression is

2 2
g1~ Y lleveds, 4%

wherej, kef{l,....,.n—11 ...,n —1}. )
We begin the actual proof of Theorem 5.1 by describing1¢, and D*¢ in
terms of our local moving frame (cf. [A3, Lemmas 3.2 and 3.3, p. 317]).

Lemma 6.1. Supposep € ['(M, E1). Theng} = ¢Z, (019)], ~ 10§ — 20,
and
D*¢ ~ —i(ere1¢1 + e1e293 + e2e197 + e2e2$3)E. (6.4)

Proof. In our local frame, we may write = Ppea ® 0P, (SinceI'(M, E;) C
I'(M,°T'® (°T")*), there are ng ® 67 terms.) In this caséM¢ (e, &,) is (see
equation (3.2))
0P (e1, 22)
= ni'[e1, ¢ (e2)] — n'[e2, p(e1)] — b ([en, €2])
= (e103)eq + ¢57'[e1, 4] — (€207) e — P17 [e2, €a] — P([E1, €2])
~ (e193)en — (€207) ey, (6.5)
where we have discarded all the terms without a derivative of a component of
This proves the second claim; the first claim follows from applying the 1-form
to both sides of (6.5):
0= ¢56([e1, €a]) — B50([22, €0]) = iB3810 — iS00 = iP5 — $3),
where we have simplified usirf[eq, eg]) = —idup.
Finally, we prove equation (6.4). To compute this adjoint, we take the inner
product of D*¢ with an elementé of I'(M, F) and then integrate by parts:
u&, D*¢) = (D), ) ~ (do(ué + i(ew)er + i(eau)ez), ).
If we write ¢ = wgea ® 6 for D(u&) = do(ué + i(ew)er + i(eou)e7) (again,
there is no&¢ ® 6f term asD(u&) € I'(M, E1)), then we can ComputtylgY =
0“(y(eg)). The inside term is not difficult to compute, and we obtdi(es) ~

w'[eg, ué + i(ewu)er + i(eau)es], so wg ~ iege,u. Undoing the integration by
parts (just displayed) yields equation (6.4). O

The primary tool in our proof of Theorem 5.1 is the following lemma. This fol-
lows at least in part from the local expressions computed in Lemma 6.1.
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LemmMma 6.2 (Key Estimate). For all ¢ € I'(M, E1),
ID*1I? + 210185 2 llererdill® + llezead3ll” + 4llesead3ll®
+4lle2e13|® + |ere1g31? + 1222247117 (6.6)
Proof. We begin by computingf D*¢||2. From (6.4), we have
ID*II? ~ lere1d1 + ere2¢3 + e2e105 + eae295]1%.
We expand this to get
ID*11? ~ llererdill® + llere2dp3ll® + lleaerdfll® + lleze2gpsl?
+ 2 Relere19], e1e203) + 2 Relere1d1, e2e1¢?)
+ 2Relere1¢71, e2e293) + 2 Relere2¢3, e20142)
+ 2Rele1e293, e2e203) + 2Releze10?, e2e293).  (6.7)

Sinceg} = ¢? (by Lemma 6.1) andd,, eg] ~ O for all @ andB, one of the cross
terms simplifies: 2 R@1e2¢3, e2e16?) = 2 Re(ereads, eread) = 2|lererp3|2.
Four of the other cross terms combine, and (6.7) simplifies to

ID*¢ 11 ~ llererdill® + llere2d3 )l + lleaerd3l|” + lezeagpsl®
+ 4Re(ere1¢1, e1e2¢3) + 2 Relere1dy, e2e2¢3)
+ 2llerea¢3l|” + 4 Relerer¢3. e2e203). (6.8)
We will deal with the remaining cross terms by addim@ﬁpni. By Lemma®6.1,
2001813 ~ 212193 — 2201112 + 2]6163 — e20313
~ 2llex(@1¢3 — 22071 + 2lle2(e193 — 226711
+ 2|ew@1ds — 2201 + 2lle2(e193 — e207) 12
+ 2||lex(@195 — e205)1I” + 2llea(e195 — e2003) 11
+ 2|eu(e193 — E203) 117 + 2| e2(6103 — e203) 112
> 2llex@1¢3 — 220 11% + 2lle2(2193 — 22003) 12
+ 2|122(2103 — 220D 12 + 2l|e1(e1003 — 22003) 1%
Since by, eg] ~ —idup&, we have
1193 — E27) ~ —iEp; + Ere19; — €12267,
ex(e105 — e2003) ~ €28105 — E20205 + ik
Moreover,
2e2(@193 — 220D 117 + 2|en(@1ds — e203)112
> |le2(2193 — 2207) + 1(E195 — 22631

I ST
~ |lere1ps — eze2¢1]|
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as ey, eg] ~ 0. Hence

21019113 Z 2Il — isp3 + 210105 — ere20pil?
+ 2|leze10p5 — Zre2h + iEP3|I
+ ||le161005 — @222

~ 2|E¢p311% + 2llerergp3l1* + 2llerg2pill?

— AReiEPS, E1e103) + AREiEPS, 18267)
— 4ReE1e193, e12207) + 2]l e22195]
+ 222620311 + 215¢3]1° — 4 Re(e2er195. e20203)
+ 4Relese193, iEp}) — AREEze2$5. iEPT)
+ lle1610311° + lle222971° — 2 Re(@18193, 828201).  (6.9)

To cancel the cross terms in (6.8), we make use of the fackthedmmutes
with e; ande; modulo lower-weight terms; therefore, integrating by parts yields

—4Rele28103. 220203) ~ —4ReE1e203, 220263)
~ ARe(exé1e203, €203)
~4 Re(51€2€2¢§» e2¢3)
~ —4Relezer3, e1e203)
~ —4Rele1e2¢3, €2e205).

A similar argument shows that three of the cross terms on the right-hand side of
(6.9) cancel all the cross terms of (6.8):

ID*11? + 21018115 = llererdill” + leread3l|” + lezerd3ll” + llezead3ll?
+ 2lleread3l|” + 2166311 + 2l ere19311” + 2]l ereapil®
— ARd(i£¢}, e10193) + 4 ReiEDS, e18207)
+ 22819312 + 2l|e2e203]1° + 2[1E¢31?
+ 4Re(e2e195, i43) — 4 ReEze203, iEd3)
+ llereag3lI” + lleaeapill®.

We now have more cross terms, this time involving

We will deal with some of these cross terms using integration by parts. The ad-
joint of e,, is —e,, and so (usingds, e2] ~ —i&é and other commutation relations)
we have
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—AReiED), ere103) ~ +AReeze203, E1e1¢05) — 4Re(E2e205, e10143)
~ —ARe@203, E2¢101¢3) — 4 Re(E20203, €16163)
~ —ARe@203, e1e182¢3) — 4 ReE2e2¢3, E10143)

~ +4|le1e203]1> — 4ReEze203, e1e103).
Similarly,

—4ReiEQS, E2e2¢3) ~ +ARE(e12103, e2¢2¢5) — 4 Re(€1e103, e2¢203)

~ +4|leze19311? — dllezerd3ll?.
Thus

ID*$11% + 2[1310112

2 llererill” + llereadzll” + llezerd3ll” + llezead3ll®
+ 2llesead3ll” + 2160311 + 2l ere19311” + 2llereail®
+ 4lle1e203]1° — 4 Re@2e203, 21re103) + 4 Re(iEd), e12247)
+ 2l|e2e19511” + 2l|ezea3ll” + 211E¢311°
+ 4Reles2105. iE¢3) + llesergsll> — Alleserds?
+ 21219511% + lle22291112

~ llese1ill® + leze293]1* + 4lleré2311?
+ Alleserg3ll + llererg3ll + 1222031
+ (2lle2e203)1* — 4Ree2e203, 1e103) + 2l|e1e13]1°)
+ (21603117 + 4 Re(i&ps, er¢2¢1) + 2]le1e29111%)

+ (2le22102)12 + 4 Re(er192, isd3) + 2[E¢312). (6.10)

Now the three parts grouped in parentheses can be removed by the Schwarz in-
equality. This gives us

ID*1I? + 2101815 2 llererill® + llezeap3ll” + 4leread3ll®
+ 4lezer1931l” + llerergsll® + llea21l%,
which is equation (6.6). This concludes the proof of the Key Estimate. [J
Now, to prove Theorem 5.1 we need an estimate:
ID*$1% + 1810112 2 cllpll3. (6.12)

In our local frame, the right-hand side of this equation can be written as

2 2
clplz~c Y llejecdgll.

o,pB,j.k
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wherea andg run from 1 to 2 and wherg, k € {1, 2, 1, 2}. We construct each of
these estimates individually and then organize them in the following lemma.

LemMma 6.3. There exists a positive constafitsuch that
ID*¢ 11 + 11019113 = Cllejedg|I? (6.12)
forall j,ke{1,2,1,2}, all «, {1, 2}, and allp € (M, E>).

Proof. What we will show, in fact, is that for each k and eachr > 0 there exists
a constanC > 0 such that

ID*1I” + 1318115 + el 113 = Cliejex s 1. (6.13)

The constant can be chosen to be dominated by all the different cons@anse
that the sum of the various individual estimates (6.12) and (6.13) yields the sub-
elliptic estimate (6.11).

We prove this lemma in stages: we produce the estimate (6.12) for each of the
componentgl, ¢2, ¢1, andg3 in turn.

The ¢3 Case.We begin by noting that we already have the estimate (6.12)
for leze1931l” ~ lleae203)1? and lere2¢311> ~ lle2e1¢3]|* by the Key Estimate,
Lemma 6.2.

Now consider the part of inequality (6.10) that we discarded in the last step of
the proof of the Key Estimate:

ID*$11% + 2(1310112
2 (216051% + 4 Re(iEp3, e1¢2¢7) + 2l|e1e2pi]?)
+ (2le2210311% + 4 Relese193. iEd3) + 2|E¢3]1%).  (6.14)
Notice that, sinced, ¢;] ~ 0 and(i§)* ~ i,
|+4 Re(iEp3, e12207)| ~ |+4 Rele22103, iEpD)]

1 .

< 2(;ne2e1¢%||2 + enzsdﬁnz)
1 _

< 2(g||eze1¢>§||2 + s||¢||§)

for anye > 0. Since we have already estimatehe1¢3]|2, this allows us to ob-
tain an estimate

cRe(i£DS, e122¢]) S 1D711° + 191015 + el 113
for somec > 0. Similarly, we can obtain an estimate
cRe(i§3, e22193) S IID*GII” + 1010117 + el

for somec > 0. From these estimates and inequality (6.14), we obtain estimates
for [|iE311%, llese2ill” ~ lleze1dill?, andllezerp3ll® ~ llere2p311%.
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We again return to a term that was discarded at the end of the proof of the Key
Estimate: we have

ID*p|1% + 2[1016 15 2 2lle2e203]” — 4 Re(@2e2¢3, e1e13) + 2||ererd|.
We may rewrite part of this as
|—4Re(@2e203, e10103)| ~ |—4 Reli&p3, ere193) — 4 Re(e2e2¢3, e1e193)|
~ |- 4Rei£p3, Gre103) — 4llere2¢3]]
< [4ReiEgy, G1e103)| + dlerea3 1.

In the same way as before, we can control the inner product on the right. Be-
cause we already have an estimatelfag,¢3||?, we proceed to get estimates for
122¢2¢311? and | e1e1¢3 2.

We can integrate by parts to write

1,2 _ 1,2 1= 1
llere2sll” ~ llee2¢5]1” — Re(iés, e1e103)

S 102 resdln2 4 s a2

S lleweagsll” + liEdo 11« + llewerdsll”.

The previous estimates for the terms on the the right-hand side of this inequality
then establish estimates fi1e43(12 ~ |le2e1¢3]12.
We use that,e, ~ e e, — i€ t0 obtain

lealad3l? < 2(180ead3l? + liEp312),

which gives us estimates fgjee1¢3(1? and||e2é2¢3|2.
Using integration by parts, we derive the equality

S 12 12 102 4 (15 0e 112
lleie2¢5” + lle2e2gsl|” ~ llereadsll” + lleze2d3|”.

We thus obtain an estimate diazez¢3|1? from the estimates ofiere2¢3|1? and
llé2e2¢3]12. Using this same trick, we have

1,2 = 142 = 1,2 142
||91€1¢2|| + ||‘32€1¢2|| ~ ||61€1¢2|| + ||€2€1¢2|| ,

and we obtain an estimate ¢eye1¢3]|%.
Using Lemma 6.1 for the local expressionaaty, we have

131612 2 llew@1¢3 — 2201117
~ |lere1931l”> — 2 Re(ere1¢3, e12297) + l|ere29111°.
On the other hand,
|—2 Re(@121¢3. 218207)| ~ | -2 Re(é1e2¢3. e12147)|

1
2 S 12
S ellglls + g||€1€2¢2|| .

Since we've already estimatq_él_eménz, this gives us an estimate ¢jée1¢3|?
and||eie291)|% ~ lle2e143]1%. Similarly, we may use

1016112 = lle2(e193 — 29312
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and 1

|—2Re(222103, 222201 S llll3 + ~llesea3l|”
to obtain estimates ofe1e,¢35|1? ~ |le2é143]|2. This completes the proof of the
¢3 case of Lemma 6.3.

Theg? Case.Recall thaip? = ¢3 by Lemma 6.1, so this case follows from the
¢3 case.

The ¢} Case.We begin by recalling that we have our estimate [fefe; 1|
and||é2e2¢3(1? by the Key Estimate, Lemma 6.2. We also remark that we have
estimated|éie,¢1(1% ~ |le2e1¢1]|2 in our proof of thep} case of Lemma 6.3.

In our proof of the Key Estimate (Lemma 6.2), we did not use the fact that

1010112 2 llea(@193 — e20DII” + llea(e195 — 2207117,
from which it follows that
ID*p|1 + 101015 2 llere193]1”* — 2 Re(ere10h3, e122¢7)
+ llere2¢1]1* + llezergsll?
— 2Rele28193. e26201) + lle2é20111°.

Using the same method as in the proof of #iecase—and noting that we have es-
timates for all of thep3 terms—we obtain estimates fi12,41]|? and||e2é241]12.
Using our integration-by-parts trick, we see that
le1ergil® + llezergil® = llerergill® + llezergill®.

We have estimates for both terms on the right-hand side, so this gives us estimates
for |leie11)l? and|leze1¢p3l|? ~ [lere2¢p1]|%.

Now we produce an estimate fpics||2. We can writei& ~ [é,, e,] for @ =
1, 2, so integration by parts yields

liEp1? ~ (Gre101 — €1810], E2e2] — €2E267)
~ (210107, 82¢2¢1) — (18147, €22267)
— (1191, @2¢207) + (€181971, €22267)
~ lleieagill? — llere2gpill? — llere2pill® + llere2ill?
< lleeadpill® + llereagl.
This gives us an estimate dFE41]|2.

Sincee21p1 ~ ere1p1 — is¢1, we havelleierpill® < 2(lleresdill® + li6hill?)
and an estimate ofee1¢1l|2. Similarly, [|62e2031? < 2(|le2é201112 + ||iEd]?)
and we may estimatgg,e2 1|2

Finally, integration by parts gives us the equalities

21219711 + le2erdpill® ~ llererdill + llezergill?
and
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1,2 = 1,2 = 1,2 1,2
lleze2pill” + llere2dill” ~ lleze2p1ll” + llere2ill”,

which allow us to estimatgeie1¢3]2, |leze1011? ~ llere2¢1)?, and [eze¢3|2.
This is the last of the requiregl estimates and so completes the proof ofghe
case of Lemma 6.3.

The g3 Case.It is simplest to notice the symmetry between thecase and
the ¢} case. For example, the Key Estimate gives us an estimafe;enp?||?
and |leze2¢3]|1? as well as orf|é2é2¢31? and ||e1é143]12. Making the appropriate
changes in the proof of the] case will then give us a proof in this case as well.
As this is the final case, we have now completed the proof of Lemma 6.30J

7. A Family of CR Structures

In this section, we introduce an explicit family of CR structures parameterized by
a finite-dimensional analytic set and show that it gives a local family of solutions
to the deformation problem

P(¢) =0, }

dgp = 0.

We begin by saying precisely what we mean by a family of CR structures.
Let (M, °T") be a compact strictly pseudoconvex CR manifold of real dimension
2n — 1. By afamily of deformationsf a given CR structur®7” we mean a triple
(M, *OT" T), whereT C C¥is a complex analytic subset containing the origin
o and wherep: T — I'(M, T' ® (°T")*) is a complex analytic map such that,
for eachr € T, ¢(t) determines an integrable CR structéfé7” on M. Recall
that this means(¢ (1)) = 0 for all 7 € T, since P is the integrability condition
for CR structures at finite distance frdii”. Finally, we require thad (o) = 0;
in other words, thai (o) corresponds to the original CR structd@®”. Then our
main result of this section is the following theorem.

(7.1)

THEOREM 7.1. Let (M,°T") be a compact, strictly pseudoconvex CR manifold
of real dimensiorb, and writeH = ker[J for the set of harmonic elements of
['(M, E1). Then there is a complex analytic map I'(M, E;) — I'(M, E;) de-
fined in a neighborhood of zero such that, if

T ={teH: Ra¢p(1)) = 3NI;LR2(p(1))}, (7.2)
then(M, *®OT”, T) is a family of deformations dt7”.

We will prove this theorem by constructing a locally complex analytic family of
solutions to the deformation problem.1). We begin byproducing some useful
Sobolev estimates.

Our Laplaciaridis a fourth-order differential operator, so we can expect that the
Neumann operator gains four derivatives in the directior@®fH = °T' ¢ °T".
This is the content of the following lemma.

LEmMA 7.2. Let (M, °T") be a compact, strictly pseudoconvex CR manifold of
dimensiorb. For each integerm > 0, there exists a constant, > 0 such that
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”Nlp”4,m < Cm“w”O,m
forall e I'(M, E;).

Proof. We will show that
”M”4,m =< cm”Du”O,m (73)

whenever: € H* N T (M, E;). Becausel is subelliptic, Nu is smooth when-
everu is smooth, so the required estimate follows by approximating with smooth
sections.

The proof of (7.3) is by induction om. By using a partition of unity we may
assume that is supported in the domain of a frame satisfying (6.1). Observe
that Lemma 5.5 and the Cauchy—Schwartz inequality imply|thgt< ||Ou||. As
usual, we will let~ and < denote equality and inequality modulo lower-weight
terms, which can be absorbed by using standard interpolation inequalities.

We begin by considering derivatives in theirection. By Lemma 5.5 and The-
orem 5.1,

lEull3 < (Eu, O&u)
~ (§u, E0u + [0, &]u).

Because& commutes withe, andeg modulo terms of weight 1, it follows that
[0, €] is an operator of weight at most 4. Therefore, after integrating by parts, the
second term just displayed can be absorbed to yield

1
lEull3 < lullalOull < ellulls + ;nmunz. (7.4)

Now we can prove (7.3) for the cage= 0. Observe that the commutation rela-
tions fore, andeg imply that [e,, L] is equal to a constant multiple ef £ modulo
lower-weight terms. Therefore, using Lemma 5.5 and Theorem 5.1 again, we have

llull ~ || Lull3
< (Lu,OLu)
< (Lu, LOu) + (Lu, Ps&u),

where P, is some operator of weight 4. Integrating by parts and using (7.4), we
find

el < NuallalDull + llullall€ull2,
S0

lulla S NI8ull + lI§ull2
1
S ellulla + gIIDuH.

Choosinge small enough, we can absorb th&| 4 term and obtain (7.3) when
m = 0.
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Now assume that (7.3) holds for some> 0. By induction, we have

I§ullam < 10&ullom
S 1EDullom + I, lullo,m
S I0ullom+a + llullam
< 10ullo,m+1-
If e denotes any of the vector fields or eg, then [, e] = P3& + Pa, wherePs
and P, are operators of weight 3 and 4, respectively. Thus
lewllam < I80eullo.m
< leDullo,n + 0, elullo,m
S 18ullom+1 + Eullzm + lullam
< I8ullo,m+1.

Since||u||4,m+1 1S @ sum of terms of the form€ul|4,, and||eu||s,,, this completes
the induction. O

Recall that, fo_rzp e I'(M, E,), the almost CR structur&T” is integrable exactly
whenP(¢) = 919 + Ra2(¢p) = 0. With this in mind, we state the following propo-
sition (cf. [A2, Prop. 3.12, p. 813]).

ProposiTION 7.3. Let (M, °T”) be a compact, strictly pseudoconvex CR mani-
fold of dimensiorb. Then, for each positive integer > n, there exists a positive
constant,, such that

10 LR2B) lom < Enll$lI3
forall ¢ eI"(M, E;).

Proof. The proof of this proposition is simply the fact th@t L, and R, take
derivatives only in the ® H directions; thu$:LR(¢) can be written in a local
frame for°7T’ as a homogeneous quadratic polynomial (in the coefficiengs of
and their derivatives) in which each monomial has a total of no more than four
C ® H derivatives. The assumption that> n and the Sobolev embedding the-
orem then yield the result. O

Thus Proposition 7.3 combined with Lemma 7.2 in the aase éfLRz(qb) yields
the following theorem.

THEOREM 7.4. Let (M,°T”) be a compact, strictly pseudoconvex CR manifold
of dimensiorb. For each integem > n, there exists a constagt, > 0 such that

INO;LR2(D)lam < EnllpllZ
forall ¢ e I'(M, E;).

We now use Theorem 7.4 to prove the main theorem of this section, Th&dtem
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Proof of TheorenY.1. We will solve this problem first in a Banach space. Com-
pletel'(M, E1) with respect to the norr- ||, for some integem > n to obtain

a Banach space, which we denotelby,, (M, E1). Consider the Banach analytic
map fromI',,,(M, E1) to itself given by

¢ > ¢ + NO}LR2(9).

Theorem 7.4 implies thag € I', ,,(M, E1) is actually mapped to another element

of I'; (M, E1). This is clearly an analytic local isomorphism. The Banach in-
verse mapping theorem then gives us an analytic inverse map, that is, an analytic
functions — ¢ (s) from I',,(M, E1) to itself such that

P (s) + NéILRz(qb(s)) =s, selz,(M, Ey). (7.5)

Our family (7.5) is locally (near the origin) parameterized by the analytic set
T defined in (7.2). To see this precisely, notice that equation (7.5) implies that, for
teH,
019 (1) + 01NOTLR2(¢ (1)) = 0 (7.6)

(becaus®; = 0 on?{). Combining this with the definition of, we see that
T={teH:P(p@t) =0}

Since¢ () depends complex analytically ane T, our T is a complex analytic
subset ofH. O

8. Proof of Versality

In this section we prove that the family of CR structures constructed in Theorem 7.1
is versal—at least with respect to deformations of the complex structure parame-
terized by smooth complex manifolds. In order to define the notion of versality,
we first make clear our definition of deformations of a complex manitaldin
practice, U will be a complex neighborhood of our CR manifall which is em-
bedded as a hypersurface in a complex manifaldA family of deformationsf
the complex manifoldJ is a triple (U, 7, S)—with § ¢ C* a complex analytic
subset containing the origin &/ a complex analytic space, and &/ — S acom-
plex analytic mapping—such that there exists a diffeomorplaisiy x § — U
satisfyingm o g = 2: U x S — §, wheremn, is the projection onto the second
factor.

Such a family of deformations gives rise to a family of smooth embeddings
g, U — U defined by, (x) = g(x, s) for eachs € S. The image ot, is the fiber
7 ~(s), which is a complex analytic submanifold &f Therefore, each such em-
bedding in turn induces an integrable complex structur&,amhich we denote by
*® T and (provided is sufficiently neap) a correspondin@’U-valued 1-form
w(s) e (U, T'U ® (T"U)*) that depends complex analytically rand is de-
fined by

COT" — (X +w(s)(X): XeT"U).



Deformation Theory of 5-Dimensional CR Structures 539

Conversely, by the Newlander—Nirenberg theorem, if suclv &) is given (at
least in the case in whichi is nonsingular) then we can construct a family of de-
formations(i, x, §) of the complex manifold/.

Now supposéM, °T") is a strictly pseudoconvex CR manifold. A family of de-
formations(M,*® T”, T) of CR structures ove¥ is said to beversalif, whenever
(M, °T") is embedded as a real hypersurface imatimensional complex mani-
fold N and(U, =, S) is any deformation of the complex structure on a neighbor-
hoodU of M in N, we have the following two conditions. First, there exists a neigh-
borhood of the origin§” c § for which there is a holomorphic map S” — T
and smooth embeddinggs): M — 7 ~(s) for all s € S’ such that: (o) = 0 and
f (o) is the identity map. Second, we note thgts) induces a CR structure over
M when we consided embedded it/ via f(s). Let us denote this CR structure
by ®@-f&) 1" |f 5 is sufficiently close to the origin, this defines a unique defor-
mation tensot (s) - f(s) e (M, T' ® (°T")*) by

OO SOT" — (X + (w(s) - F(s)(X) : X €OT"). 8.1)

Our requirement is that this CR structure be the same as the one indugeat by
the pointh(s) e T

w(s) - f(s) = ¢(h(s)) forall ses’.

We will deal only with smooth deformations—that is, deformations in which
the analytic space is actually a complex manifold rather than a variety with
singularities.

We now state our main theorem of this section.

TueoreM 8.1. SupposeM, °T") is a compact strictly pseudoconvex CR man-
ifold of real dimensior2n — 1 = 5 that is embedded as a real hypersurface in
a complex manifoldV of complex dimension = 3. If the family of CR defor-
mations(M, *©T"”, T) is a smooth family of deformations, then it is versal with
respect to smooth deformatiothat is, with respect to deformation&, =, S) of

a neighborhood’ of M in N, where the analytic spacgis a complex manifold

Our proof can be modified to work for wheshhas a singularity, in which case the
claim would be that the family of CR deformations is versal. We leave this claim
to another paper.

Proof. We must construck(s) and f(s). Suppose we are given a family of de-
formations of a neighborhoad of M, (U, , S). Let{U;} be a covering o/ by
coordinate domains, indexed by some finite set.{kgtz?, z?} be local holomor-

phic coordinates ow;, and letr}, (z}, z{, z}) be transition functions:
2 =15z 25.2p), =123 onU;NU.
For brevity, we will write this as

zj = Ti(zk) on U; N Uy.
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We can extend thisto a Iocal coordinate covefitigx S} for (U, 7, §) with tran-
sition futhlonSrk(Zk, 22,73, 5) defined onU; x S N Uy x S, holomorphic inz}
and smooth in. We then use a similar abbreviation as before:

Zj =Ti(zk,s) on Uy x SNU; x S,

with the requirement thaty (zx, 0) = tjx(zx). For simplicity, we use local com-
plex coordinates(;zl(s) zz(s) z3(s)} depending complex analytically on the pa-
rameters. That is, each functlo"(s) is a smooth function od/; and complex
analytic onS, and the correspondlng complex structuremor(s) (as an element
of (U, T'U ® (T"U)*)) is determined by

(X + 0(s)(X))zj(s) =0 forall XeT"U.

Similarly, the induced CR structure defined in equation (8.1) is also determined
locally by

(X +o(s) - f[i()(X)) f/(s) =0 forall Xe°T", (8.2)

Wheref (s) = z o f(s). This equality also means that the mAg) is a CR em-
beddlng from(M @©-FOT") t0 77(s), with the complex structure(s)

We must now construcf(s), locally expressed byf;(s) = (f (s), f (s),
f3(s)) onU;, which depends complex analytically §nas well as a holomorphlc
maph from S to T C H satisfying

fi(s) = 1 (fr(s), s),
w(s) - fi(s) = ¢ (h(s)),

for all s € S (where, if necessary, we may shrifkko a smaller neighborhood of
0). The proof of the existence of such functions is a standard formal power series
argument. Consider the power series expansions

o0 o
£i() =" fius® and h(s)= Y hjas”
|e|=0 l|=0
We are using multi-index notation, sait= (s1, ..., s,) ande = (g, ..., a,) then
lo| = a1+ -+, ands® = s7*---s2. In general, ifF is any vector-bundle-
valued function ofs, then we will use the notation,, F to mean the part of the
power series foF (s) abouts = 0 that is homogeneous of orderin s. For such
homogeneous polynomials, we will use a subsdiipto indicate the degree in
Similarly, a superscriptk) will indicate a (not usually homogeneous) polynomial
of degreék in s.
First we formally construct these power series; then we prove convergence. Let
fj('”) andh'™ be themth partial sums in the preceding power series expansions:

£7() =" fias® and h"(s) =Y hjas”

lee|=0 la|=0

We constructf,"(s) andh"(s) formally by induction onm.
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At any stepn, we wish to have;‘j(”’) andh™ satisfy

£75) = i £"5). ) + O(ls™H),
(m) 1 (8.3)
w(s) - £"(s) = (H™(s)) + O(ls|"™D),

for s € S nearo.

At our initial step (i.e., atn = 0), we definef”(s) = z;(s) andr®(s) = 0.
These obviously satisfy our criterion (8.3).

Now we assume that we have already construgfédands™ satisfying (8.3).
To begin our construction of " anda+Y, we define a polynomia;j-1
on U;, homogeneous of degree+ 1in s, such that

£705) + gm0 (9) = Tu(£"(5) + guomin(s), ) + O(s|"T?). (8.4)

(In this way, gji(m+y is a rough first approximation af,.1(f,"*%), the homo-
geneous part ofjm’“” in degreen + 1.) To do this, we construct vector-valued
polynomialsojim+1 0N U; N Ug, again homogeneous of degreet+ 1 in s, by
the relation

it min(s) = T(f"(5), ) = () + O(|s|"F2). (8.5)

This definition ofoj .41 Makes sense because the induction hypothesis (8.3) im-
plies that the right-hand side of equation (8.5) has only terms of atderl and
higher ins. We use these;y.,+1 and a partition of unity p;} subordinate to the
covering{U;} to define

gjlm+1(s) = Zpkajkl(m+l)(s)' (8.6)
X

We will show that sucly; .41 satisfy (8.4). To do this, we need to know how
gjlm+1 (Or ojk m+1) transforms over different coordinate charts. We have the fol-
lowing lemma (cf. [AM1, Lemma 3.2, p. 828]).

Lemma 8.2. OnU; NU N U,
Tl () + %(f,fm)(s), )0k m+3(8) = 0j1mrn(s) + Os|"*?). (8.7)
Proof. By the definition ofojm+1),
Oikim+(8) = T(£"(5), ) = £ () + O(|s|" ).
We replacef, "™ (s) with 74, (f,"(s), ) — oxj(m+2(s) to obtain

0k m+2(5) = T (Tt (£"(5). 8) = ojmsn(5), ) = £"(5) + O(s|"*2).

We expand the first term on the right-hand side in a power series about the point
(2> 8) = (T (f,"(s), 5), 5); this implies
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Ok (8) = T (T (£(s), 5),5) — ( T (,"(5), 5), $) Ot man (8)

— ") + 0(|s|'”+2)
= (f;"(s), 5) — (f,J" (5), )0kt m11(5)

— ") + 0<|s|'"+2>. (8.8)

(In the last line we have used the inductive hypothesis (8.3) and Taylor’s theorem
applied todt;,/dzx; any error term involving on-+1(s) multiplied either by it-

self or by O(|s|”*?) can be absorbed int0(|s|”*2).) The first and third terms
simplify to o7 4m+1(s) moduloO(|s|™*2) and so equation (8.8) reduces to equa-
tion (8.7). This proves the lemma. O

LEMMA 8.3, Withgj|(u+1 defined b3(8.6),fj('") +&j|(m+1 transforms as in equa-
tion (8.4).

Proof. From the definition ogj| .+ and (8.7),

&jlm+1(s) = Z P10j1|(m+1($)

= Tjk|m+1(8) + sz - EA(8). )0 man(s) + O(ls]"F2)

T; m m
= Ojk(m+1(s) + yj:(fk ’(5), ) g mn(s) + O(Is|™?).  (8.9)
Thus
£7$) + 811+ (s)

" aT; m .
= £"(8) + G man(5) + I’:(f,f '(5), $)gum+2(s) + O(s|"2)

s (f"(9),5) + %(f,f'”)(s), )& mi(s) + O(ls|" ).
By Taylor’s theorem, this is equivalent to (8.4). O
To define the next term in our formal power series, we will write locally
£ = F70) + gm0 (9) + Gamrn(9),
R0 (s) = h"(s) + hinsn (5),

where ;41 is the local expression for a homogeneous polynomyigly of
degreem + 1in s with values inI'(M, T’) and wheréh,,.1, is @ homogeneous
polynomial of degreen + 1 with values in?. Since the transformation law for
sections ofl"’ is

(8.10)

0Tjx

Cilm+1 = 8—§k|(m+1),

it follows that our prospectivg "*+3(s) transforms the correct way:
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£ + gm0 (8) + Lt ()
= T (f"(9) + 8um+3(9) + Luimrn (), 5) + O(ls|" ).

We still must construct, +1, andh,.y so thatf,"*¥(s) andh®+3(s), de-
fined as in equation (8.10), satisfy the inductive hypothesis (8.3). Note first that,
by equation (8.2), the CR structure defined i +2(s) must satisfy

(X +(@(s) (fj(m)(s) + gjim+1(s) + le(m+1)(s))()?))(fj(m)(s)
+ &jlm+2(8) + jjm+1(s)) = 0.
From this it follows that
o(s) - (") + &j1mr0(9) + &jimr(5))
= w(5) - (") + &1msn(8)) + 078 men(s) + O(Is|"F2).

On the other hand, from the definition it is clear (see equation (7.5)) that the map
¢ linearizes to the identity, so

$h"($) + hinsay () = G (h"(5)) + hins(s) + O(ls" ).

Finding solutions to the second equation in (8.3) is thus reduced to the following
theorem.

THEOREM 8.4. There are vector-valued polynomidis,+1 andx 1, homoge-
neous ins of degreen + 1, solving

o (8) - (F"(8) + gj1m+(8)) + 1 Eman(5)
= ¢ (h"(9)) + himin(s) + O(Is|™?), (8.11)

whereg,+1 takes values il (M, T') and wheréi 41 takes values in the finite-
dimensional harmonic spadé c I'(M, E1).

The proof of this theorem will follow from several lemmas and propositions.

ProposiTION 8.5. There is a homogeneous polynontig|. 1 of degreen + 1in
s, With values inC(M, °T"), such that

o(s) - (f"(5) + gj1m+1(5) + O msn(5)) € T(M, Ey),
where we have writteéy| 11 for 0,11, -

Proof. Because our CR structure is strictly pseudoconvex, the map
I'(M,°T'y - (M, F ® (°T")"),
U > Tpdru,
is an isomorphism. Hence there igaM,° T')-valued polynomiab such that
Kmyr(w(s) - (fj(””(s) + &jim+1(s)) + d7/0(s)) is a polynomial that takes values

inT(M,°T’ ® (°T")*). By the inductive hypothesis, for eaéh< m the polyno-
mial k(o (s) - (f"(8) + gj1msn(5))) = ki((s) - £"(s)) already takes values
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in T(M, °T’ ® (°T")*); thus we may assunte= O(|s|"™*+). Writing 6,1 for
K16 and9j|(m+1) for 9(,,14_1) |U,- , we thus have
kmia(@(s) - (f"(5) + j1m0(8) + Oj1m42(5))) € TM, °T' @ (°T")").

To prove the proposition, it suffices to show

kms1(7rd P (0(5) - (F"() + gjiomsn(9) + Ojimsn(s))) = 0. (8.12)
In order to show this, we first prove the next lemma.

LEMMA 8.6.

Ro(¢(h™(s))) = Ra(w(s) - (f™(s) + O(Is|"*?) (8.13)
and
R3(p(h™(s))) = Ra(w(s) - (£ (s) + O(|s|"*?) (8.14)

hold. In particular, Rg(w(s) - (f"(5))) = O(|s|"*?) as¢ (t) € (M. Ey).

Proof. Fory e (M, T’ ® (°T”)*), we have thaR, (y) (k = 2, 3) are the parts
of the deformation equation that are of ordem . (Of course, eaclR;(v)
includes first derivatives ofr.) The expressions foR, are given in equations
(3.4) and (3.5). SinceR, is quadratic, we may replace eaglih™(s)) with
o(s) - (f"(s)) in tun. On the one handy(h"(s)) = w(s) - (f"(s)) +
O(|s|™*+1) by the induction hypothesis (8.3). On the other hath")(s)) itself
satisfiesp (h™(s)) = O(|s|). Together, these facts imply th&b(¢ (h""(s))) =
Ra(w(s) - (fj(’”)(s))) + O(|s|"™*+?). The proof forRs is similar. O

Continuing our proof of Proposition 8.5, we remark thdt) is, for eachs, an
integrable complex structure. Sin¢g"™(s) + g+ + 0jm+1) is a CR em-
bedding for eackh modulo terms of order: 4+ 2 and higher, it follows that the CR
structure induced by (s) is also integrable:

@ + Ra+ Re) () - (f"(5) + gj1im+2(8) + O1msn(8)) = O(s]" ).
Obviously, we may remove the terms of order+ 2 and higher to see that
Ra(@(s) - (f{"(9) + &j1oms2(5) + 61 m12(5)))

= Ry(w(s) - (f"()) + O(ls|"*?).

From the previous lemmaR,(w(s) - (f"(5))) = Ra(¢(h™(s))) + O(|s|"+?)
and so

Rao((s) - (f"(8) + gj1m+2(8) + 01ms2())) = Ra(¢(h"(5))) + O(|s|"+2).
A similar computation shows that

Rg(a)(s) . (f}(m)(s) + gj\(m-i—l)(s) + 9j|(m+1)(s))) = O(|S|'n+2)
(and the zero follows from Lemma 8.6). The integrability condition is thus

dPw(s) - (") + g1mr1(5) + Oj1ms1() + Ra(p (A" (s))) = O(ls|"+?).
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Becausep (1) takes its values if'(M, E1), we havery(Rz(¢(h™(s)))) = O.
Hence

7r (0P (@(9) - (F™(9) + gj1m2(5) + 6j1m12(5)))) = O(Is"+2).

This is equivalent to equation (8.12) and so proves Proposition 8.5. O

LEMMA 8.7.
(L= BNFTLIRa(@(s) - (" () + &j1m1(8) + 6j1mr () = Ols|"*?).
Proof. We recall that
P(w(s) - (f"(5) + &1m+1(5) + O1mr3(5))) = O(Is|" ).

(The map defined on eadl by £, (s) + gjjum+1(s) + 6)m+1(s) Makes sense
globally moduloO(|s|"™+?).) Thus

510)(8) . (f}(m)(S) + gj‘(m+1)(s) + 9j\(m+1)(S)))
+ Ro(w(s) - (fj<m)(s) + gj1m+1(8) + 01 m+2(5)))) = O(Is|"*2).

We apply the operator 4 3;No;L to this equality. By Proposition 8.5, the left-
hand side is the image of an elementigi/, E1) underd, + R», so this makes
sense. The decomposition of Theorem 5.4 implies that3;N9;L)d; = 0, and
from this Lemma 8.7 follows easily. O

ProrosITION 8.8.
0[@(s) - (" () + &ilm+3(9) + Gm1()) = (A" ()] = O(ls|"*?).
Proof. The first term on the left-hand side satisfies
010(8) - (F"(8) + &j1m+2(5) + Oj1m+2(5))
+ Ra(@(s) - (f{" () + gj1me1(s)) = Ols|"*?),

as we have seen in the proof of Proposition 8.5. By the constructigtrpfequa-
tion (7.6)), we have

916 (h"(5)) 4 91NOTLR2 (¢ (K" (s))) = 0.
Taking the difference of the last two equations implies
() - (£"() + gjim+n(8) + Ojm2(8)) — d(h"(5))]
+ 0NOTL[Ra(w(s) - (£"(5) + gjiom+1(8) + Oim11(5)))
— Ra(¢ (R (5)))]
+ (L= 0NITL) (Ra( () - (£"(5) + &j1im+2(8) + 01 ms1(5))))
= 0(ls|"*?).

The proposition then follows from Lemmas 8.6 and 8.7. O
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Proof of Theorem 8.4We wish to solve equation (8.11), which can be written as

o(s) - (f"(5) + gjm+n(5) — $(h™(5))
= =97 %m10(5) + hrn(s) + O(s|"*?). (8.15)
We begin by solving
o (s) - (F"(8) + gj1m+(8) + 0 m1(8)) — p(h"(5))
= _éT’n(m+l)(s) + h(ln+1)(s) + 0(|S|m+2) (816)
for ngm+1 andh.+y. By Proposition 8.8, the left-hand side of this equation is in
the kernel ofd; modulo O(|s|™*+2?). The decomposition of Theorem 5.4 implies
thatdr ng,+1 andh,1), defined as follows, satisfy equation (8.16):
I Mms3(8) = —kmia[DD*N(w(s) - (f"™(8) + &j1ms2(s)
+0j1m+(8) = d (R (s))];
hnsn = kmia[H(0(s) - (f™(5) + gjim+1(s)
+0j1m+1(8)) = d (R (5)))]-
Since DD* = dopp*d and sincedr = do for elements ofly C I'(M, T'), we
may definey,,+1) locally by
Njtm+3(8) = —Kkmsa[ 00" TGN (@ () - (f"(5) + gjim+2(5)
+0j1m4(8) = B (h"(5)))]-

To solve equation (8.15) and thus equation (8.11), we simplycgety =
Om+1 + Nm+n- This ¢ and k41 Solve equation (8.11), so we have proved
Theorem 8.4. O

Continuing our proof of Theorem 8.1, we turn to the proof of convergence of the
formal series. This part of the proof uses the standard method of Kodaira and
Spencer (see [A2; AM1]). We define a Sobol@y/)-norm on a power series by
setting

oo [e.¢]
LGS lor =Y I fialos® and (A lor= Y lhallos™.

|a|=0 |a|=0

Consider the power series

ol
As) = 10 Z(Mz) ; (8.17)

le|=1

this series converges for any positiveVloreover, for positivé» we haveA(s)? <
(b/c)A(s), where <« means every coefficient of the left-hand side is less than
the corresponding coefficient of the right-hand side. This impliesAliat* «
(b/c)**A(s) for all integersk > 2. By choosing suitablé andc (see [A2, pp.
842-846] or [AM1, Sec.@1), p. 832]) we wish to show, for any integep- 3, that
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I1£i(s) = zj($)llo; < A(s) and [h(s)llos < A(s). (8.18)

(The reason for subtracting(s) in (8.18) is becausg(s) has nos® term.) By the
Sobolev embedding theorem, this would give us all the convergence and regularity
claimed in Theorem 8.1.

Proof of the convergence (8.18) is done by induction on the partial sums. That
is, we assume that

1" (s) = 2j(9)llos < A(s) and [R"(s)llos < A(s): (8.19)

we then establish the same inequality fioH 1. The special properties f(s)
are used here: we bound tte + 1)th-degree terms with lower-degree terms that
we have previously bounded. #fandc¢ are chosen properly then we can bound
sums of powers ofi(s) by A(s) itself.

The h,11 term is well behaved: for anythere is a constan; such that the
harmonic projectoH satisfies the estimate

IHf o = Cill f1I

for any f € I'(M, E1). However, we may have to corregto ensure convergence
because our construction 6f, 1 involved first derivatives offj(’")(s). Recall

from Theorem 8.4 that,,,+1 is a solution to equation (8.11), which can be viewed
as a linead;: equation for the standard deformation complex (3.3). Becdlse

is a holomorphic vector bundle, by the results of [T] there is a Neumann operator
Nz To(M, T'®(°T")*) — I'n(M, T'®(°T")*) satisfyingu = Hyu+O7 Nyou

for all u, whereO7/ = d7/3%, + 8%,d7 and Hy- is the projection onto keflz.
Arguing as in [A2], we let

¢ = =07 Nro(@(5) - (F0) + gjions + O1men) — d(B"(5)))]

and L
fj(m+ (s) = f,-(m)(s) + 8jim+d + Ejiom+-

It is true that there is a first derivative 9‘;(’”) in w(s) - (fj(’")(s) + gimeD +
6j1m+1) — ¢ (h'"™(s)), but only in theC ® H direction. In fact, we recall that
o(s) - f"(s) is defined orU; by

(X + @) X)) () =0, Xe°T".

(The CR structure defined di} by w(s) - fj(’")(s) makes sense globally, modulo
O(s|™*Y.) Thus

o(s) - £"($)zj(5) + 0 (s) - [ F () — 2j(5)) + X" (s) = O(s1"F?).
By the inductive hypothesis we have
o(s) - [{"()z;(s) + o (R () (F™M(s) — 2j(5)) + Xf"(5) = O(s|"*2),

as¢(h™(s)) takes its values iT’. Since the compositioa%, N7+ of the ad-

joint operator and the standard Neumann operator gains 1 in this direction, there
is no problem in the convergence of our formal solution. This finishes the proof
of Theorem 8.1. O
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