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A Quasi-Paucity Problem

ScoTT T. PARSELL & TREVOR D. WOOLEY

1. Introduction

A cartographer of the diophantine landscape is compelled to acknowledge the dis-
tinguished position occupied by the investigation of diophantine systems in which
there are believed to be few other than the obvious solutions. When these sys-
tems are symmetric, the task of verifying such a belief has come to be called a
paucity problem Although the literature surrounding this topic is by now exten-
sive when the underlying summands are perfect powers (see, for example, the
sources recorded in the bibliography), little is known for more general situations.
The object of this note is to establish that the number of solutions of certain sys-
tems of additive equations is dominated, in essence, by the diagonal contribution
alone.

In order to state our main conclusion precisely, we require some notation. Sup-
pose that is a positive integer, and let(x), ..., f;(x) be polynomials with ra-
tional coefficients of respective degreags.. ., k;. When P is a positive number,
denote bys, (P; f) the number of integral solutions of the simultaneous equations

Y )= =0 A<j<), @)

i=1
withl<x;,y; <P (1<i<ys).
THEOREM 1. Suppose that the polynomialgx) € Q[x] (1 < i < t) satisfy the
condition thatl, f1, ..., f; are linearly independent ove®). Suppose also that

A is a positive number sufficiently large in termstok, and the coefficients of
f1, ..., fi. Then, whenevemax(ks, ..., k,} > 2and P > 3, one has

Si11(P; fi, ..., f,) < P Ylog P)A.

Plainly, those solutions of the system (1) in whigh. . ., x, are simply a permuta-
tionofy,, ..., y; provide a contribution ts,,1(P; f) that ensures the lower bound
Sipa(Pif) = ¢t + D! P+ 0(PY). @)

Thus we may assert that the conclusion of the theorem is somewhat close to a
paucity result. We remark that the bound recorded in the theorem was already
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available from work of Wooley [28] in the special case whergiix) = x* (1 <
i <t)and1l< k; < ky < --- < k;. Moreover, when = 1 and f1(x) is a cubic
polynomial, it follows from Theorem 2 of Wooley [32] that

S2(P; f1) = 2P% + O.(PY3).

Aside from the inherent interest of paucity problems, estimates of the type pre-
sented in Theorem 1 have potential for application in the sharpest versions, due to
Parsell [19], of the new iterative methods of Vaughan and Wooley (see especially
[23; 24; 27; 31]) involving exponential sums over smooth numbers.

2. Preliminary Skirmishing

Before advancing to the argument described in the next section, we prepare an
eliminant polynomial and discuss some associated properties. We refer to an or-
dereds-tuple(f1, ..., f;) of polynomials with rational coefficients as beingll-
conditionedwhen

(1) fitry eZlx] =i =<1),
(2 £(0)=0(1<i<1t),and
(3) the degrees; of the polynomialsf;(x) satisfy 1< k; < kp < -+ < k.

By substituting the polynomiaf;(x) — f;(0) in place of f;(x) 1 <i < t) inthe
system (1), one may plainly suppose tifab) = 0 (1 < i < t). Thus, on replac-
ing the equations (1) by suitable linear combinations thereof, it is apparent that
wheneverf;(x) € Q[x] (1 < i < 1) satisfy the condition that Iy, ..., f; are lin-
early independent ovép, then there is no loss of generality in supposing instead
thatf is a well-conditioned-tuple. Moreover, the coefficients of the polynomials
in the new system plainly depend at most on those in the original system.

It is convenient in what follows to refer to a polynomi&{x) € Z[xa, ..., x/]
as beingasymptotically definitd there exists a numbet with the property that,
whenever; > C (1<i <rt), one has

|F(x1,...,x)| =1

Finally, we write f'(x) for the derivative of the polynomiaf(x). As a prerequi-
site to a discussion of eliminant polynomials, we introduce a generalisation of the
Vandermonde determinant

Voo = ] (5 —x)=detx] Dz j=r.

1<i<j<t

LemMma 1. Suppose thatf, ..., f;) is a well-conditioned-tuple of polynomi-
als with respective degrees, ..., k,. Then there exists an asymptotically definite
polynomial® = ®(x; f) with the property that

det(f/ (x)1<i, j<r = V() O(X; f). 3)
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Moreover, the total degree @ is

t
tt+1
d=> ki— (;r ).
i=1

Proof. We apply the theory of symmetric functions, specifically Schur functions
(see Macdonald [17]). Wheth, ..., d, are integers with

1<di<dy<---<d,;,
we define the polynomiak (x; d) by means of the relation
det(x 1 < = K(x; d)Vi(X). (4)

For the sake of concision, we make use of the notation used in Macdonald [17].
Thus, by equation (3.1) dfL7, Chap. 1], one hak(x; d) = s;, wherea is the
partition

d —t,di1—(@—-1,...,dv—1).

Yet equation (5.12) of17, Chap. I] shows that, = Y, x”, where the summation
is over all semi-standard tablealxof shapex, and here, if the weight of is
o = (o, ..., @), thenx is the monomiak;™ - - - x;*. Note thatifA = (0, ..., 0)
then one adopts the convention that= 1.
Observe next that, by elementary properties of determinants, the polynomial

det(f;'/(xj))lsi,jft (5)
is a linear combination of polynomials of the shape
dEt(xjdﬁl)lﬁi,jSI (6)

withl<d; <k; A<i <1t). Amoment’s reflection here reveals that this linear
combination contains the polynomial

ki—1
det(xj ! )1§i,j§t

with a nonvanishing coefficient. By permuting rows within the determinants (6),
there is no loss of generality in supposing that #; < d, < --- < d,. Then each

such determinant contributes either O, or else a polynomial of the shape (4), to the
expansion of (5). We may therefore conclude that

det(f/(x))1<i, j<r = K(x; K)V, (%),

whereK (x; k) is a polynomial of total degree

d=Y (k== (i—D,
i=1 i=1

in which the homogeneous part of highest degree is a nonzero multiplg of
whereA = (k, —t,k,_1— ( —1), ..., k1 —1). Butin view of the discussion con-
cluding the previous paragraph, whenever- B > 1 (1 <i <) it follows that
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sa > B?, and thus we conclude that(x; k) is asymptotically definite. This com-
pletes the proof of the lemma. O

Next define the polynomialg; , = ¢; ,(x; f) by taking

Gis(X) = filx) +--+ filxy) A =i,s <1).

Our next lemma establishes the existence of an eliminant polynomial suitable for
subsequent deliberations.

LEMMA 2. Suppose that > 2 and that(fi, ..., f;) is a well-conditioned-tuple
of polynomials. Then there exists a polynomiigk) € Z[z1, ..., z,], with total de-
gree and coefficients depending at most gk, and the coefficients ofy, ..., f;,
such that
V(p1,-1(X), ..y @rr-2(X)) =0 (7)
and yet
W(g1,:(X), ..., ¢1,:(X)) # 0. (8)

Proof. The existence of a nontrivial polynomidl(z) € Z[z, ..., z,] for which
W(p1,-1, ..., ¢9s,—1) iS identically zero will follow by considering transcendence
degrees. LeK = Q(¢1,-1,...,¢1,,—1). ThenK < Q(xy, ..., x,_1), SO that
K has transcendence degree at mostl overQ. But then ther polynomials
¢i—1(X) € K (1 < i <) cannot be algebraically independent, whence the exis-
tence of the above polynomidl follows immediately.

In order to verify the condition (8), consider any nontrivial polynomiabf
smallest total degree for which the polynomial equation (7) holds and suppose, if
possible, that (¢ ,(X), ..., ¢, (X)) is identically zero. Then the polynomials

(0/0x)W(P1,(X)s ..., (X)) (A <i <1)
are also identically zero. On applying the chain rule, we therefore find that

D FGEDW (b0, . b () =0 (L<i <), ©)

j=1

where we have writtel;(z) for (9/9z;)W(z). But as a consequence of Lemma 1,
the polynomial

det(fj/(xi))lgi,jgt

is not identically zero, and thus it follows from (9) that each of the polynomials
Wi (¢1,:(X), ..., 9.,(X)) (L < j < t) must be identically zero. However, since
¥ (z) is a nonconstant polynomial, at least one of the derivativgg) (1 < j <

1) must be nonzero. Hence there exists a nontrivial polynowjéat) € Z[Z] for
which, in particular, one has

Vi(¢1,-12), ..., ¢1,-1(2)) = 0.

Since the latter conclusion contradicts the minimality of the total degrée afe
are forced to conclude that the inequality (8) does indeed hold. O
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3. Application of the Eliminant Polynomial

We are now equipped to prosecute our proof of Theorem 1. We begin by noting
that the conclusion of the theorem is classical whenl. For on writinge(z) for
exp(2riz) and setting

Fla)= ) e(@fi(x)),

1<x<P

it follows from Hua’s lemma (see e.g. [16, Thm. 4]) that, wheneéyer 2 and
P > 3, one has

1
So(P; f1) = / |F(a)|*da < P%(log P)*,
0

whereA is a positive number depending at mostigrand the coefficients of;.
We may therefore suppose in what follows that 2, and moreover the discus-
sion of Section 2 permits the assumption thét ..., f;) is well-conditioned. We
thus infer from Lemma 1 that there exists an asymptotically definite polynomial
O (x; f) with the property that the relation (3) holds. We wiitdor the parameter
associated witl® (x; f) from our definition of asymptotic definiteness.

We next dispose of small solutions of (1) countedShy; (P; ). Write

Gl)= Y elrfitx) +-- +afi(x)
1<x<C
and
H(@) = ) e(@fi(x)+-- +afi(x).

C<x<P
Then by orthogonality one finds that

Sita(P;f) = / |G (e0) + H(e)|* " dat
[0,1)!

< / 1G (o) 2 da +/ |H(at)| 2 da.
[0, [0,y
Thus, on writingS;*(P; f) for the number of integral solutions of (1) withh <
x;,yi < P (1<i<y),atrivial estimate foiG («) yields the upper bound
Sita(P; f) <1+ Sk ,(P;f).

Let S2,(P; f) denote the number of integral solutions of the system

A6 = [ =) [0 — [y A<j<n,  (10)

i=1 i=1
with C < x;,y; < P (1 <i <), satisfying the condition that; = x; for some
1<i<j <t Also, Iet§,+1(P; f) denote the complementary number of solu-
tions of (10) in whichx; # x; forl <i < j <t. Then plainly

SEa(Pif)y = SO, (Pif) 4 8,4a(P; ). (11)
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But it follows from a consideration of the underlying diophantine equations that

S24(P;f) < HQa)H(o) *H(—a) " da
[0,

< / |H(2a)H(¢)%| de,
[0,

and thus, by Holder’s inequality, we find that

t/(t+1) 1/(2t+2)
S2uP ) < < f |H(a)|2’+2da> < f |H(2a)|2f+2da> .
[0,1)! [0,1)!

Then, on considering the underlying diophantine equations, we deduce that

Sz0+1(P; f) < (S 4(P; f))@+D/@+2)

whence by (2) and (11) we have
Sra(Pi) < Sa(Pif). (12)

We now analyse the solutions of (10) countedsby: (P; f ). By Lemma 2, there
exists a polynomial(z) € Z[z1, ..., z], with total degree and coefficients de-
pending at most om, k, and the coefficients ofy, ..., f;, such that whenever
u; =u, 1 forsomel<i <t,

W(p1,(U) — fruis1), ..., ¢ (W) — fi(u42)) =0
and yet
\Ij((f)l,[(u), ey ¢z,t(u)) ;é 0.

It follows that, for some nontrivial polynomiab (u) € Z[uy, ..., u 1],

W(@,:(U) — fr(i41), s @ (W) — fi(ur2)) = (L) H(ui —ur).  (13)

i=1
For the sake of concision, we write
t
Y@ =@ [ ]G — 240
i=1

Let 71 denote the number of solutions of (10) countedShyy(P; f) having the
property thafY(y) is nonzero, and Ief, denote the corresponding number of so-
lutions withY(y) = 0. Then

Sia(Pif) =Ty + To. 14)

Consider first a solutiofix, y) counted byT;. In view of (10) and (13), one has

o) [ J(xi = x40 = @ [ [i = yiv0)- (15)
i=1 i=1

Fix a choice ofy with Y(y) £ 0. Then, ifr(n) denotes the divisor function, we
find from (15) that there are at mo&r (| Y(y)|))" possible choices for; — x,,1
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(1 < i <1). Fixing any one such choice of the lattequantities, we writer; =
x.41+d; A <i <rt). Then, on substituting these fixed choicesyaindd into
(10), we find thatv,,, satisfies the evidently nontrivial equation

t t
At d) = fixe) =Y ) = AGHD.
i=1 i=1
One therefore ha® (1) possibilities forx, 1, whence the total number of solutions
of this type is

i< Y @Ty),
y

where the summation is ovgrwith1 < y; < P (1 <i <t +1) andY(y) # 0.
We thus conclude from [16, Thm. 3] that

T1 < P (log P)4, (16)

where the positive numbet depends at most on k, and the coefficients of
LT

Next consider a solutiotx, y) counted byr,. The number of values of with
1<y, <P@A<i <t+1)forwhichY(y) = 0is O(P") (see e.g. the proof
of [28, Lemma 2]). Fix any one such choicefand fix any one of the&(P)
possible choices far,. ;. Then, on writing

Ny = fi(xip) = ;D + ) fi) A< <),

i=1
we find from (10) that

Y iy =N, A=j=0. (17)
i=1

Suppose first that is a singular solution of (17). Then one has

det(f,'/(xj))lgi,jgt =0,
whence from (3) it follows that

ox:f) [[ w-xn=0. (18)
I<i<j<t

But by hypothesis, one has # x; forl <i < j < t; moreover, Lemma 1 en-
sures that, since; > C (L <i < t), one hasd(x; f) # 0. Then the equation
(18) is impossible, whence there are no singular solutiorsunted byr.

We complete our treatment @ by considering the nonsingular pointsatis-
fying (17). According to Theorem 7.7 of Hartshorne [5, Chap. 1], the number of
irreducible components contained in the intersection (17) is at kabst - - k,. If
such a component has positive dimension, then it arises from an improper intersec-
tion and is consequently singular. Thus it follows that all the points that concern us
here arise from components of the intersection having dimension 0, whence their
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number is also at mosgik» - - - k,. We may thus conclude that, for the fixed choice
of (x,4+1, ¥) under consideration, there afg1) permissible choices of;, ..., x,.
Finally, therefore, we deduce that

T, < P (19)
On combining (12), (14), (16), and (19), we at last arrive at the upper bound
Si+a(P; F) < P (log P)*,

and this completes the proof of our theorem. O
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