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A Quasi-Paucity Problem

Scott T. Parsell & Trevor D. Wooley

1. Introduction

A cartographer of the diophantine landscape is compelled to acknowledge the dis-
tinguished position occupied by the investigation of diophantine systems in which
there are believed to be few other than the obvious solutions. When these sys-
tems are symmetric, the task of verifying such a belief has come to be called a
paucity problem.Although the literature surrounding this topic is by now exten-
sive when the underlying summands are perfect powers (see, for example, the
sources recorded in the bibliography), little is known for more general situations.
The object of this note is to establish that the number of solutions of certain sys-
tems of additive equations is dominated, in essence, by the diagonal contribution
alone.

In order to state our main conclusion precisely, we require some notation. Sup-
pose thatt is a positive integer, and letf1(x), . . . , ft(x) be polynomials with ra-
tional coefficients of respective degreesk1, . . . , kt . WhenP is a positive number,
denote bySs(P ; f ) the number of integral solutions of the simultaneous equations

s∑
i=1

(fj(xi)− fj(yi)) = 0 (1≤ j ≤ t), (1)

with 1≤ xi, yi ≤ P (1≤ i ≤ s).
Theorem 1. Suppose that the polynomialsfi(x) ∈Q[x] (1≤ i ≤ t) satisfy the
condition that1, f1, . . . , ft are linearly independent overQ. Suppose also that
A is a positive number sufficiently large in terms oft, k, and the coefficients of
f1, . . . , ft . Then, whenevermax{k1, . . . , kt } ≥ 2 andP ≥ 3, one has

St+1(P ; f1, . . . , ft )� P t+1(logP)A.

Plainly, those solutions of the system (1) in whichx1, . . . , xs are simply a permuta-
tion ofy1, . . . , ys provide a contribution toSt+1(P ; f ) that ensures the lower bound

St+1(P ; f ) ≥ (t +1)! P t+1+Ot(P t ). (2)

Thus we may assert that the conclusion of the theorem is somewhat close to a
paucity result. We remark that the bound recorded in the theorem was already
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available from work of Wooley [28] in the special case whereinfi(x) = xki (1≤
i ≤ t) and 1≤ k1 < k2 < · · · < kt . Moreover, whent = 1 andf1(x) is a cubic
polynomial, it follows from Theorem 2 of Wooley [32] that

S2(P ; f1) = 2P 2 +Oε(P 5/3+ε).

Aside from the inherent interest of paucity problems, estimates of the type pre-
sented in Theorem 1 have potential for application in the sharpest versions, due to
Parsell [19], of the new iterative methods of Vaughan and Wooley (see especially
[23; 24; 27; 31]) involving exponential sums over smooth numbers.

2. Preliminary Skirmishing

Before advancing to the argument described in the next section, we prepare an
eliminant polynomial and discuss some associated properties. We refer to an or-
deredt-tuple(f1, . . . , ft ) of polynomials with rational coefficients as beingwell-
conditionedwhen

(1) fi(x)∈Z[x] (1≤ i ≤ t),
(2) fi(0) = 0 (1≤ i ≤ t), and
(3) the degreeski of the polynomialsfi(x) satisfy 1≤ k1 < k2 < · · · < kt .

By substituting the polynomialfi(x)− fi(0) in place offi(x) (1≤ i ≤ t) in the
system (1), one may plainly suppose thatfi(0) = 0 (1≤ i ≤ t). Thus, on replac-
ing the equations (1) by suitable linear combinations thereof, it is apparent that
wheneverfi(x)∈Q[x] (1≤ i ≤ t) satisfy the condition that 1, f1, . . . , ft are lin-
early independent overQ, then there is no loss of generality in supposing instead
thatf is a well-conditionedt-tuple. Moreover, the coefficients of the polynomials
in the new system plainly depend at most on those in the original system.

It is convenient in what follows to refer to a polynomialF(x) ∈ Z[x1, . . . , xt ]
as beingasymptotically definiteif there exists a numberC with the property that,
wheneverxi > C (1≤ i ≤ t), one has

|F(x1, . . . , xt )| ≥ 1.

Finally, we writef ′(x) for the derivative of the polynomialf(x). As a prerequi-
site to a discussion of eliminant polynomials, we introduce a generalisation of the
Vandermonde determinant

Vt(x) =
∏

1≤i<j≤t
(xj − xi) = det(x i−1

j )1≤i,j≤t .

Lemma 1. Suppose that(f1, . . . , ft ) is a well-conditionedt-tuple of polynomi-
als with respective degreesk1, . . . , kt . Then there exists an asymptotically definite
polynomial2 = 2(x; f ) with the property that

det(f ′i (xj ))1≤i,j≤t = Vt(x)2(x; f ). (3)
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Moreover, the total degree of2 is

d =
t∑
i=1

ki − t(t + 1)

2
.

Proof. We apply the theory of symmetric functions, specifically Schur functions
(see Macdonald [17]). Whend1, . . . , dt are integers with

1≤ d1 < d2 < · · · < dt ,

we define the polynomialK(x;d) by means of the relation

det(xdi−1
j )1≤i,j≤t = K(x;d)Vt(x). (4)

For the sake of concision, we make use of the notation used in Macdonald [17].
Thus, by equation (3.1) of[17, Chap. I], one hasK(x;d) = sλ, whereλ is the
partition

(dt − t, dt−1− (t −1), . . . , d1−1).

Yet equation (5.12) of[17,Chap. I] shows thatsλ =∑T x
T ,where the summation

is over all semi-standard tableauxT of shapeλ, and here, if the weight ofT is
α = (α1, . . . , αt ), thenxT is the monomialxα1

1 · · · xαtt . Note that ifλ = (0, . . . ,0)
then one adopts the convention thatsλ = 1.

Observe next that, by elementary properties of determinants, the polynomial

det(f ′i (xj ))1≤i,j≤t (5)

is a linear combination of polynomials of the shape

det(xdi−1
j )1≤i,j≤t (6)

with 1≤ di ≤ ki (1≤ i ≤ t). A moment’s reflection here reveals that this linear
combination contains the polynomial

det(xki−1
j )1≤i,j≤t

with a nonvanishing coefficient. By permuting rows within the determinants (6),
there is no loss of generality in supposing that 1≤ d1 ≤ d2 ≤ · · · ≤ dt . Then each
such determinant contributes either 0, or else a polynomial of the shape (4), to the
expansion of (5). We may therefore conclude that

det(f ′i (xj ))1≤i,j≤t = K̂(x; k)Vt(x),
whereK̂(x; k) is a polynomial of total degree

d =
t∑
i=1

(ki −1)−
t∑
i=1

(i −1),

in which the homogeneous part of highest degree is a nonzero multiple ofs3,

where3 = (kt − t, kt−1− (t −1), . . . , k1−1). But in view of the discussion con-
cluding the previous paragraph, wheneverxi > B > 1 (1≤ i ≤ t) it follows that
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s3 ≥ Bd, and thus we conclude that̂K(x; k) is asymptotically definite. This com-
pletes the proof of the lemma.

Next define the polynomialsφi,s = φi,s(x; f ) by taking

φi,s(x) = fi(x1)+ · · · + fi(xs) (1≤ i, s ≤ t).
Our next lemma establishes the existence of an eliminant polynomial suitable for
subsequent deliberations.

Lemma 2. Suppose thatt ≥ 2 and that(f1, . . . , ft ) is a well-conditionedt-tuple
of polynomials. Then there exists a polynomial9(z)∈Z[z1, . . . , zt ],with total de-
gree and coefficients depending at most ont, k, and the coefficients off1, . . . , ft ,

such that
9(φ1,t−1(x), . . . , φt,t−1(x)) = 0 (7)

and yet
9(φ1,t(x), . . . , φt,t(x)) 6= 0. (8)

Proof. The existence of a nontrivial polynomial9(z) ∈ Z[z1, . . . , zt ] for which
9(φ1,t−1, . . . , φt,t−1) is identically zero will follow by considering transcendence
degrees. LetK = Q(φ1,t−1, . . . , φt,t−1). ThenK ⊆ Q(x1, . . . , xt−1), so that
K has transcendence degree at mostt − 1 overQ. But then thet polynomials
φi,t−1(x)∈K (1≤ i ≤ t) cannot be algebraically independent, whence the exis-
tence of the above polynomial9 follows immediately.

In order to verify the condition (8), consider any nontrivial polynomial9 of
smallest total degree for which the polynomial equation (7) holds and suppose, if
possible, that9(φ1,t(x), . . . , φt,t(x)) is identically zero. Then the polynomials

(∂/∂xi)9(φ1,t(x), . . . , φt,t(x)) (1≤ i ≤ t)
are also identically zero. On applying the chain rule, we therefore find that

t∑
j=1

f ′j (xi)9j(φ1,t(x), . . . , φt,t(x)) = 0 (1≤ i ≤ t), (9)

where we have written9j(z) for (∂/∂zj )9(z). But as a consequence of Lemma 1,
the polynomial

det(f ′j (xi))1≤i,j≤t

is not identically zero, and thus it follows from (9) that each of the polynomials
9j(φ1,t(x), . . . , φt,t(x)) (1 ≤ j ≤ t) must be identically zero. However, since
9(z) is a nonconstant polynomial, at least one of the derivatives9j(z) (1≤ j ≤
t) must be nonzero. Hence there exists a nontrivial polynomial9j(z) ∈ Z[z] for
which, in particular, one has

9j(φ1,t−1(z), . . . , φt,t−1(z)) = 0.

Since the latter conclusion contradicts the minimality of the total degree of9, we
are forced to conclude that the inequality (8) does indeed hold.
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3. Application of the Eliminant Polynomial

We are now equipped to prosecute our proof of Theorem 1. We begin by noting
that the conclusion of the theorem is classical whent = 1. For on writinge(z) for
exp(2πiz) and setting

F(α) =
∑

1≤x≤P
e(αf1(x)),

it follows from Hua’s lemma (see e.g. [16, Thm. 4]) that, wheneverk1 ≥ 2 and
P ≥ 3, one has

S2(P ; f1) =
∫ 1

0
|F(α)|4 dα � P 2(logP)A,

whereA is a positive number depending at most onk1 and the coefficients off1.

We may therefore suppose in what follows thatt ≥ 2, and moreover the discus-
sion of Section 2 permits the assumption that(f1, . . . , ft ) is well-conditioned. We
thus infer from Lemma 1 that there exists an asymptotically definite polynomial
2(x; f )with the property that the relation (3) holds. We writeC for the parameter
associated with2(x; f ) from our definition of asymptotic definiteness.

We next dispose of small solutions of (1) counted bySt+1(P ; f ). Write

G(α) =
∑

1≤x≤C
e(α1f1(x)+ · · · + αtft(x))

and
H(α) =

∑
C<x≤P

e(α1f1(x)+ · · · + αtft(x)).

Then by orthogonality one finds that

St+1(P ; f ) =
∫

[0,1)t
|G(α)+H(α)|2t+2 dα

�
∫

[0,1)t
|G(α)|2t+2 dα +

∫
[0,1)t
|H(α)|2t+2 dα.

Thus, on writingS ∗s (P ; f ) for the number of integral solutions of (1) withC <

xi, yi ≤ P (1≤ i ≤ s), a trivial estimate forG(α) yields the upper bound

St+1(P ; f )� 1+ S ∗t+1(P ; f ).
Let S 0

t+1(P ; f ) denote the number of integral solutions of the system

t∑
i=1

fj(xi)− fj(xt+1) =
t∑
i=1

fj(yi)− fj(yt+1) (1≤ j ≤ t), (10)

with C < xi, yi ≤ P (1≤ i ≤ t), satisfying the condition thatxi = xj for some
1 ≤ i < j ≤ t. Also, let Ŝt+1(P ; f ) denote the complementary number of solu-
tions of (10) in whichxi 6= xj for 1≤ i < j ≤ t. Then plainly

S ∗t+1(P ; f ) = S 0
t+1(P ; f )+ Ŝt+1(P ; f ). (11)
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But it follows from a consideration of the underlying diophantine equations that

S 0
t+1(P ; f )�

∫
[0,1)t

H(2α)H(α)t−1H(−α)t+1dα

�
∫

[0,1)t
|H(2α)H(α)2t| dα,

and thus, by Hölder’s inequality, we find that

S 0
t+1(P ; f )�

(∫
[0,1)t
|H(α)|2t+2 dα

)t/(t+1)(∫
[0,1)t
|H(2α)|2t+2 dα

)1/(2t+2)

.

Then, on considering the underlying diophantine equations, we deduce that

S 0
t+1(P ; f )� (S ∗t+1(P ; f ))(2t+1)/(2t+2),

whence by (2) and (11) we have

S ∗t+1(P ; f )� Ŝt+1(P ; f ). (12)

We now analyse the solutions of (10) counted byŜt+1(P ; f ). By Lemma 2, there
exists a polynomial9(z) ∈ Z[z1, . . . , zt ], with total degree and coefficients de-
pending at most ont, k, and the coefficients off1, . . . , ft , such that whenever
ui = ut+1 for some 1≤ i ≤ t,

9(φ1,t(u)− f1(ut+1), . . . , φt,t(u)− ft(ut+1)) = 0

and yet
9(φ1,t(u), . . . , φt,t(u)) 6= 0.

It follows that, for some nontrivial polynomial8(u)∈Z[u1, . . . , ut+1],

9(φ1,t(u)− f1(ut+1), . . . , φt,t(u)− ft(ut+1)) = 8(u)
t∏
i=1

(ui − ut+1). (13)

For the sake of concision, we write

ϒ(z) = 8(z)
t∏
i=1

(zi − zt+1).

Let T1 denote the number of solutions of (10) counted byŜt+1(P ; f ) having the
property thatϒ(y) is nonzero, and letT2 denote the corresponding number of so-
lutions withϒ(y) = 0. Then

Ŝt+1(P ; f ) = T1+ T2. (14)

Consider first a solution(x, y) counted byT1. In view of (10) and (13), one has

8(x)
t∏
i=1

(xi − xt+1) = 8(y)
t∏
i=1

(yi − yt+1). (15)

Fix a choice ofy with ϒ(y) 6= 0. Then, if τ(n) denotes the divisor function, we
find from (15) that there are at most(2τ(|ϒ(y)|))t possible choices forxi − xt+1
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(1≤ i ≤ t). Fixing any one such choice of the lattert quantities, we writexi =
xt+1+ di (1 ≤ i ≤ t). Then, on substituting these fixed choices ofy andd into
(10), we find thatxt+1 satisfies the evidently nontrivial equation

t∑
i=1

f1(xt+1+ di)− f1(xt+1) =
t∑
i=1

f1(yi)− f1(yt+1).

One therefore hasO(1) possibilities forxt+1,whence the total number of solutions
of this type is

T1�
∑

y

(τ (|ϒ(y)|))t ,

where the summation is overy with 1≤ yi ≤ P (1≤ i ≤ t + 1) andϒ(y) 6= 0.
We thus conclude from [16, Thm. 3] that

T1� P t+1(logP)A, (16)

where the positive numberA depends at most ont, k, and the coefficients of
f1, . . . , ft .

Next consider a solution(x, y) counted byT2. The number of values ofy with
1 ≤ yi ≤ P (1 ≤ i ≤ t + 1) for whichϒ(y) = 0 isO(P t) (see e.g. the proof
of [28, Lemma 2]). Fix any one such choice ofy, and fix any one of theO(P )
possible choices forxt+1. Then, on writing

Nj = fj(xt+1)− fj(yt+1)+
t∑
i=1

fj(yi) (1≤ j ≤ t),

we find from (10) that
t∑
i=1

fj(xi) = Nj (1≤ j ≤ t). (17)

Suppose first thatx is a singular solution of (17). Then one has

det(f ′i (xj ))1≤i,j≤t = 0,

whence from (3) it follows that

2(x; f )
∏

1≤i<j≤t
(xj − xi) = 0. (18)

But by hypothesis, one hasxi 6= xj for 1 ≤ i < j ≤ t; moreover, Lemma 1 en-
sures that, sincexi > C (1 ≤ i ≤ t), one has2(x; f ) 6= 0. Then the equation
(18) is impossible, whence there are no singular solutionsx counted byT2.

We complete our treatment ofT2 by considering the nonsingular pointsx satis-
fying (17). According to Theorem 7.7 of Hartshorne [5, Chap. 1], the number of
irreducible components contained in the intersection (17) is at mostk1k2 · · · kt . If
such a component has positive dimension, then it arises from an improper intersec-
tion and is consequently singular. Thus it follows that all the points that concern us
here arise from components of the intersection having dimension 0, whence their
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number is also at mostk1k2 · · · kt . We may thus conclude that, for the fixed choice
of (xt+1, y) under consideration, there areO(1) permissible choices ofx1, . . . , xt .

Finally, therefore, we deduce that

T2� P t+1. (19)

On combining (12), (14), (16), and (19), we at last arrive at the upper bound

St+1(P ; f )� P t+1(logP)A,

and this completes the proof of our theorem.
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