ON A BOUNDARY PROPERTY OF CONTINUOUS FUNCTIONS

T. J. Kaczynski

Let D be the open unit disk in the plane, and let C be its boundary, the unit circle. If x is a point of C, then an *arc* at x is a simple arc γ with one endpoint at x such that $\gamma - \{x\} \subset D$. If f is a function defined in D and taking values in a metric space K, then the *set of curvilinear convergence* of f is

$$\{x \in C \mid \text{ there exists an arc } \gamma \text{ at } x \text{ and there exists}$$

$$\text{a point } p \in K \text{ such that } \lim_{z \to x} f(z) = p \}.$$

J. E. McMillan proved that if f is a continuous function mapping D into the Riemann sphere, then the set of curvilinear convergence of f is of type $F_{\sigma\delta}$ [2, Theorem 5]. In this paper we shall provide a simpler proof of this theorem than McMillan's, and we shall give a generalization and point out some of its corollaries.

Notation. If S is a subset of a topological space, \overline{S} denotes the closure and S* denotes the interior of S. Of course, when we speak of the interior of a subset of the unit circle, we mean the interior relative to the circle, not relative to the whole plane. Let K be a metric space with metric ρ . If $x_0 \in K$ and r > 0, then

$$S(r, x_0) = \{x \in K | \rho(x, x_0) < r\}.$$

An arc of C will be called *nondegenerate* if and only if it contains more than one point.

LEMMA 1. Let $\mathcal G$ be a family of nondegenerate closed arcs of C. Then $\bigcup_{I\in\mathcal G}I-\bigcup_{I\in\mathcal G}I^*$ is countable.

Proof. Since $\bigcup_{I \in \mathscr{J}} I^*$ is open, we can write $\bigcup_{I \in \mathscr{J}} I^* = \bigcup_n J_n$, where $\{J_n\}$ is a countable family of disjoint open arcs of C. If

$$x_0 \in \bigcup_{I \in \mathcal{I}} I - \bigcup_{I \in \mathcal{I}} I^*,$$

then for some $I_0 \in \mathscr{I}$, x_0 is an endpoint of I_0 . For some n, $I_0^* \subset J_n$, so that $x_0 \in \overline{J}_n$. But $x_0 \notin J_n$, so that x_0 is an endpoint of J_n . Thus $\bigcup_{I \in \mathscr{J}} I - \bigcup_{I \in \mathscr{J}} I^*$ is contained in the set of all endpoints of the various J_n ; this proves the lemma.

In what follows we shall repeatedly use Theorem 11.8 on page 119 in [3] without making explicit reference to it. By a cross-cut we shall always mean a cross-cut of D. Suppose γ is a cross-cut that does not pass through the point 0. If V is the component of D - γ that does not contain 0, let $L(\gamma) = \overline{V} \cap C$. Then $L(\gamma)$ is a non-degenerate closed arc of C.

Received February 8, 1966.

Suppose Ω is a domain contained in $D-\{0\}$. Let Γ denote the family of all cross-cuts γ with $\gamma \cap D \subseteq \Omega$. Let

$$I(\Omega) = \bigcup_{\gamma \in \Gamma} L(\gamma), \quad I_0(\Omega) = \bigcup_{\gamma \in \Gamma} L(\gamma)^*.$$

Let $acc(\Omega)$ denote the set of all points on C that are accessible by arcs in Ω .

The following lemma is weaker than it could be, but there is no point in proving more than we need.

LEMMA 2. The set $acc(\Omega) - I_0(\Omega)$ is countable.

Proof. By Lemma 1, $I(\Omega) - I_0(\Omega)$ is countable; therefore it will suffice to show that $acc(\Omega) - I(\Omega)$ is countable. If $acc(\Omega)$ has fewer than two points, we are done. Suppose, on the other hand, that $acc(\Omega)$ has two or more points. If $a \in acc(\Omega)$, then there exists $a' \in acc(\Omega)$ with $a' \neq a$. Let γ, γ' be arcs at a, a', respectively, with

$$\gamma \cap D \subset \Omega$$
, $\gamma' \cap D \subset \Omega$.

Let p be the endpoint of γ that lies in Ω , p' the endpoint of γ' that lies in Ω . Let $\gamma'' \subset \Omega$ be an arc joining p to p'. The union of γ , γ' , and γ'' is an arc δ joining a to a'. By [4], there exists a simple arc $\delta' \subset \delta$ that joins a to a'. Clearly, δ' is a cross-cut with $\delta' \cap D \subset \Omega$ and a, a' ϵ L(δ '). Thus a ϵ I(Ω), and so acc (Ω) \subset I(Ω).

LEMMA 3. Suppose $\Omega_{\underline{1}}$ and $\Omega_{\underline{2}}$ are domains contained in D - $\{0\}.$ If

(1)
$$I_0(\Omega_1) \cap \overline{acc(\Omega_1)}$$
 and $I_0(\Omega_2) \cap \overline{acc(\Omega_2)}$

are not disjoint, then Ω_1 and Ω_2 are not disjoint.

Proof. We assume Ω_1 and Ω_2 are disjoint, and we derive a contradiction. Let a be a point in both of the two sets (1). Let γ_i be a cross-cut with $\gamma_i \cap D \subset \Omega_i$ such that a \in L(γ_i)* (i = 1, 2). Let U_i and V_i be the components of D - γ_i , and (to be specific), let U_i be the component containing 0. Note that $\gamma_1 \cap D$ and $\gamma_2 \cap D$ are disjoint.

Suppose $\gamma_1 \cap D \subset V_2$ and $\gamma_2 \cap D \subset V_1$. Then, since $\gamma_1 \cap D \subset \overline{U}_1$, U_1 has a point in common with V_2 . But $0 \in U_1 \cap U_2$, so that U_1 has a point in common with U_2 also. Since U_1 is connected, this implies that U_1 has a common point with $\gamma_2 \cap D$, which contradicts the assumption that $\gamma_2 \cap D \subset V_1$. Therefore $\gamma_1 \cap D \not\subset V_2$ or $\gamma_2 \cap D \not\subset V_1$. We conclude that either $\gamma_1 \cap D \subset U_2$ or $\gamma_2 \cap D \subset U_1$. By symmetry, we may assume that $\gamma_2 \cap D \subset U_1$.

It is possible to choose a point b \in L(γ_1)* that is accessible by an arc in Ω_2 , because a is in the closure of acc(Ω_2). Let γ be a simple arc joining b to a point of $\gamma_2 \cap D$, such that γ - {b} $\subset \Omega_2$. Then γ - {b} and γ_1 are disjoint. Also, γ - {b} contains a point of U_1 (namely, the point where γ meets $\gamma_2 \cap D$); therefore γ - {b} $\subset U_1$. Hence b $\in \overline{U}_1$. Since b $\in L(\gamma_1)^*$, this is a contradiction.

THEOREM 1 (J. E. McMillan). Let K be a complete separable metric space, and let f be a continuous function mapping D into K. Let

 $X = \{x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ for which } \lim_{z \to \infty} f(z) \text{ exists} \}.$

Then X is of type $F_{\sigma\delta}$.

Proof. Let $\{p_k\}_{k=1}^{\infty}$ be a countable dense subset of K. Let $\{Q(n, m)\}_{m=1}^{\infty}$ be a counting of all sets of the form

$$\left\{\mathbf{re^{it}} \middle| \ 1 - \frac{1}{n} < \mathbf{r} < 1 \ \text{ and } \ \theta < t < \theta + \frac{2\pi}{n} \right\},$$

where θ is a rational number. Let $\{U(n, m, k, \ell)\}_{\ell=1}^{\infty}$ be a counting (with repetitions allowed) of the components of

$$f^{-1}\left(S\left(\frac{1}{2^n}, p_k\right)\right) \cap Q(n, m).$$

(We consider \emptyset to be a component of \emptyset .) Let

$$A(n, m, k, \ell) = acc[U(n, m, k, \ell)].$$

Set

$$Y = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}.$$

Since $I_0(U(n, m, k, \ell))$ is open, it is of type F_σ . It follows that Y is of type $F_{\sigma\delta}$. I claim that $Y \subset X$. Take any $y \in Y$. For each n, choose $m[n], k[n], \ell[n]$ with

(2)
$$y \in I_0(U(n, m[n], k[n], \ell[n])) \cap \overline{A(n, m[n], k[n], \ell[n])}$$
 $(n = 1, 2, 3, \dots).$

For convenience, set U_n = U(n, m[n], k[n], ℓ [n]). By (2) and Lemma 3, U_n and U_{n+1} have some point z_n in common. For each n, we can choose an arc $\gamma_n \subset U_{n+1}$ with one endpoint at z_n and the other at z_{n+1} . Then $\gamma_n \subset Q(n+1, m[n+1])$. Also,

$$y \in \overline{A(n+1, m[n+1], k[n+1], \ell[n+1])} \subset \overline{U}_{n+1} \subset \overline{Q(n+1, m[n+1])},$$

and therefore each point of γ_n has distance less than $\frac{2\pi+1}{n+1}$ from y. Now $\frac{2\pi+1}{n+1}\to 0$ as $n\to\infty$; hence, if we set $\gamma=\{y\}\cup \bigcup_{n=1}^\infty \gamma_n$, then γ is an arc with one endpoint at y.

Since U_n and U_{n+1} have a point in common,

$$f^{-1}\left(S\left(\frac{1}{2^n}, p_{k[n]}\right)\right)$$
 and $f^{-1}\left(S\left(\frac{1}{2^{n+1}}, p_{k[n+1]}\right)\right)$

have a common point, and hence

$$S\left(\frac{1}{2^n}, p_{k[n]}\right)$$
 and $S\left(\frac{1}{2^{n+1}}, p_{k[n+1]}\right)$

have a common point. Therefore, if ρ is the metric on K, then

$$\rho(p_{k[n]}, p_{k[n+1]}) \le \frac{1}{2^n} + \frac{1}{2^{n+1}} < \frac{1}{2^{n-1}},$$

and therefore

$$\rho(p_{k[n]}, p_{k[n+r]}) \leq \sum_{i=1}^{r} \rho(p_{k[n+i-1]}, p_{k[n+i]}) < \sum_{i=1}^{r} \frac{1}{2^{n+i-2}} < \frac{1}{2^{n-2}}.$$

Thus $\left\{p_{k[n]}\right\}$ is a Cauchy sequence and must converge to some point p ε K. Because

$$\gamma_n \subset U_{n+1} \subset f^{-1}\left(S\left(\frac{1}{2^{n+1}}, p_{k[n+1]}\right)\right)$$
 and $p_{k[n]} \xrightarrow{n} p$,

lim f(z) = p. It is possible that γ is not a simple arc, but by [4] we can replace γ $z \rightarrow y$ $z \in \gamma$

by a simple arc $\gamma' \subset \gamma$. Thus $y \in X$, and we have shown that $Y \subset X$.

Suppose $x \in X$. Let γ_0 be an arc at x such that f approaches a limit p along γ_0 . Take any n. Choose k with p $\in S\left(\frac{1}{2^n}, p_k\right)$. Choose m so that x is in the interior of $\overline{Q(n,m)} \cap C$. Then γ_0 has a subarc γ_0 , with one endpoint at x, such that

$$\gamma_0^r \ - \ \left\{ x \right\} \ \subset \ Q(n, \ m) \ \cap \ f^{-1} \Big(\ S\Big(\frac{1}{2^n}, \ p_k\Big) \, \Big) \ .$$

Hence, for some ℓ , $x \in acc[U(n, m, k, \ell)] = A(n, m, k, \ell)$. This shows that

$$X \subset \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} A(n, m, k, \ell).$$

By Lemma 2, the set

A(n, m, k, ℓ) - I₀(U(n, m, k, ℓ)) = A(n, m, k, ℓ) - [I₀(U(n, m, k, ℓ)) \cap $\overline{A(n, m, k, \ell)}$] is countable. It follows by a routine argument that

$$\bigcap_{n}\bigcup_{m,k,\ell}A(n, m, k, \ell)-\bigcap_{n}\bigcup_{m,k,\ell}\left[I_{0}(U(n, m, k, \ell))\cap\overline{A(n, m, k, \ell)}\right]$$

is countable. Because

$$\bigcap_{n}\bigcup_{m,k,\ell}\left[I_{0}(U(n,\,m,\,k,\,\ell))\,\cap\,\overline{A(n,\,m,\,k,\,\ell)}\right]=\,Y\,\subset\,X\,\subset\,\bigcap_{n}\bigcup_{m,k,\ell}A(n,\,m,\,k,\,\ell)\,,$$

the set X - Y is countable, and therefore X is of type $\,{\bf F}_{\sigma\,\delta}\,.\,\,\blacksquare$

Before stating our generalization of the foregoing theorem, we must say a few words about spaces of closed sets. If K is a bounded metric space with metric ρ , let $\mathscr{C}(K)$ denote the set of all nonempty closed subsets of K. Hausdorff [1, page 146] defined a metric $\bar{\rho}$ on $\mathscr{C}(K)$ by setting

$$\bar{\rho}(A, B) = \max \{ \sup_{a \in A} \text{dist(a, B), sup dist(b, A)} \},$$

where dist(x, E) denotes inf $\rho(x, e)$. If K is compact, then $\mathscr{C}(K)$ is a compact $e \in E$ metric space with $\bar{\rho}$ as metric [1, page 150].

If f maps D into K and if γ is an arc at a point $x \in C$, we let $C(f, \gamma)$ denote the cluster set of f along γ ; that is, we write

$$\begin{split} C(f,\,\gamma) \,=\, \big\{p \,\in\, K \,\big| \ \ \text{there exists a sequence} \ \big\{z_n\big\} \,\subset\, \gamma \,\cap\, D \\ \text{such that} \ \ z_n \,\to\, x \ \ \text{and} \ \ f(z_n) \,\to\, p\big\} \;. \end{split}$$

THEOREM 2. Let K be a compact metric space, and let \mathcal{E} be a closed subset of $\mathscr{C}(K)$. Let $f: D \to K$ be a continuous function. Then

$$\{x \in C \mid \text{ there exists an arc } \gamma \text{ at } x \text{ and there exists}$$

 $E \in \mathcal{E} \text{ such that } C(f, \gamma) \subset E\}$

is a set of type $F_{\sigma\delta}$.

Proof. If $\varepsilon > 0$ and $E \in \mathscr{C}(K)$, let

$$\mathscr{G}(\varepsilon, E) = \{a \in K \mid \text{ there exists } b \in E \text{ with } \rho(a, b) < \varepsilon \}.$$

Note that $\mathcal{G}(\varepsilon, E)$ is open and that

$$F \in \mathscr{C}(K), \ \overline{\rho}(E, F) < \varepsilon \implies F \subset \mathscr{S}(\varepsilon, E).$$

Let $\{P(k)\}_{k=1}^{\infty}$ be a countable dense subset of E (such a subset exists, because every compact metric space is separable). Let

$$X = \{x \in C \mid \text{ there exist an arc } \gamma \text{ at } x \text{ and an } E \in E$$

such that $C(f, \gamma) \subset E\}$.

Let $\{Q(n, m)\}_{m=1}^{\infty}$ be defined as in the proof of the preceding theorem. Let $\{U(n, m, k, \ell)\}_{\ell=1}^{\infty}$ be a counting (with repetitions allowed) of the components of

$$f^{-1}\left(\mathscr{S}\left(\frac{1}{n},\ P(k)\ \right)\ \right)\ \cap\ Q(n,\ m)$$
.

Let $A(n, m, k, \ell) = acc[U(n, m, k, \ell)]$, and set

$$Y = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}.$$

Since $I_0(U(n,\,m,\,k,\,\ell))$ is open, it is of type F_σ . It follows that Y is of type $F_{\sigma\,\delta}$. I claim that $Y\subset X$. Take any $y\in Y$. For each n, choose $m\,[n],\,k\,[n],\,\ell\,[n]$ so that

(3)
$$y \in I_0(U(n, m[n], k[n], \ell[n])) \cap \overline{A(n, m[n], k[n], \ell[n])}$$

Set $U_n = U(n, m[n], k[n], \ell[n])$. Since E is compact, there exist a $P \in E$ and some strictly ascending sequence $\{n_j\}_{j=1}^{\infty}$ of natural numbers such that

$$P(k[n_j]) \rightarrow P$$
.

By (3) and Lemma 3, U_{n_j} and $U_{n_{j+1}}$ have some point z_j in common. For each j, choose an arc $\gamma_j \subset U_{n_{j+1}}$ with one endpoint at z_j and the other at z_{j+1} . Then $\gamma_j \subset Q(n_{j+1}, m[n_{j+1}])$. Also,

$$y \in \overline{A(n_{j+1}, \, m[n_{j+1}], \, k[n_{j+1}], \, \ell[n_{j+1}])} \subset \overline{U}_{n_{j+1}} \subset \overline{Q(n_{j+1}, \, m[n_{j+1}])},$$

and therefore each point of γ_j has distance less than $\frac{2\pi+1}{n_{j+1}}$ from y. Now $\frac{2\pi+1}{n_{j+1}}\to 0$ as $j\to\infty$; therefore, if we set $\gamma=\{y\}\cup\bigcup_{j=1}^\infty\gamma_j$, then γ is an arc with one endpoint at y.

I claim that $C(f,\gamma)\subset P$. Take any $p\in C(f,\gamma)$. There exists a sequence $\{w_s\}_{s=1}^\infty$ in γ - $\{y\}$ such that $w_s\underset{s}{\to} y$ and $f(w_s)\underset{s}{\to} p$. Let ϵ be an arbitrary positive number. Choose j_0 so that $\bar{\rho}(P(k[n_j]), P)<\epsilon/3$ for all $j\geq j_0$. Choose j_1 so that $j\geq j_1$ implies $1/n_{j+1}<\epsilon/3$. We can choose an s such that $w_s\in\gamma_i$ for some $i\geq j_0$, j_1 and such that

$$\rho(f(w_s), p) < \frac{\varepsilon}{3}.$$

Then

$$f(w_s) \in f(\gamma_i) \subset f(U_{n_{i+1}}) \subset \mathscr{S}\left(\frac{1}{n_{i+1}}, P(k[n_{i+1}])\right)$$

and therefore we can choose a point $q \in P(k[n_{i+1}])$ with

$$\rho(f(w_s), q) < \frac{1}{n_{i+1}} < \frac{\varepsilon}{3}.$$

Moreover, because $\bar{\rho}(P(k[n_{i+1}]), P) < \epsilon/3$, there exists some $q' \in P$ with

$$\rho(\mathbf{q},\,\mathbf{q}^{\mathbf{i}}) < \frac{\varepsilon}{3}.$$

Together, (4), (5), and (6) show that $\rho(p,q') < \epsilon$. Since P is closed and ϵ is arbitrary, this proves that $p \in P$. Hence $C(f,\gamma) \subset P \in \mathcal{E}$. By [4], we can if necessary replace γ by a simple arc $\gamma' \subset \gamma$; it follows that $y \in X$. Thus $Y \subset X$.

Now suppose $x \in X$. Choose an arc γ_0 at x such that $C(f, \gamma_0) \subset P_0$ for some $P_0 \in \mathcal{E}$. Take any n. Choose k with $\bar{\rho}(P_0, P(k)) < 1/n$. Then

$$P_0 \subset \mathscr{S}\left(\frac{1}{n}, P(k)\right)$$
, hence $C(f, \gamma_0) \subset \mathscr{S}\left(\frac{1}{n}, P(k)\right)$.

Choose m so that x is in the interior of $\overline{Q(n, m)} \cap C$.

If for each natural number t there exists a point $z_t' \in \gamma_0 \cap S\left(\frac{1}{t}, x\right) \cap D$ with $z_t' \not\in f^{-1}\left(\mathscr{G}\left(\frac{1}{n}, P(k)\right)\right)$, then

$$f(z_t^{\prime}) \in K - \mathcal{G}\left(\frac{1}{n}, P(k)\right)$$

and since $K-\mathscr{G}\left(\frac{1}{n},\,P(k)\right)$ is compact, there exist some $a\in K-\mathscr{G}\left(\frac{1}{n},\,P(k)\right)$ and a subsequence $\left\{f(z_{t_i}^!)\right\}_{i=1}^\infty$ such that $f(z_{t_i}^!)_{i}$ a. But then $a\in C(f,\,\gamma_0)$, contrary to the relation $C(f,\,\gamma_0)\subset\mathscr{G}\left(\frac{1}{n},\,P(k)\right)$. We conclude that there exists a natural number t for which

$$\gamma_0 \cap S\left(\frac{1}{t}, x\right) \cap D \subset f^{-1}\left(\mathscr{S}\left(\frac{1}{n}, P(k)\right)\right).$$

It follows that γ_0 has a subarc γ_0^1 with one endpoint at x such that

$$\gamma_0^1 - \{x\} \subset f^{-1}\left(\mathscr{G}\left(\frac{1}{n}, P(k)\right)\right) \cap Q(n, m).$$

Hence there exists an ℓ such that

$$x \in acc[U(n, m, k, \ell)] = A(n, m, k, \ell).$$

This shows that

$$X \subset \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} A(n, m, k, \ell).$$

By Lemma 2, the set

A(n, m, k, ℓ) - I₀(U(n, m, k, ℓ)) = A(n, m, k, ℓ) - [I₀(U(n, m, k, ℓ)) \cap $\overline{A(n, m, k, \ell)}$] is countable. It follows easily that

$$\bigcap_{\substack{n \\ m,k,\ell}} \mathsf{A}(n,\,m,\,k,\,\ell) - \bigcap_{\substack{n \\ m,k,\ell}} \mathsf{U}_{0}(\mathsf{U}(n,\,m,\,k,\,\ell)) \cap \overline{\mathsf{A}(n,\,m,\,k,\,\ell)}]$$

is countable. Since

$$\bigcap_{n=m,k,\ell} \left[I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)} \right] = Y \subset X \subset \bigcap_{n=m,k,\ell} A(n, m, k, \ell),$$

X - Y must be countable. Thus X is the union of an $F_{\sigma\delta}$ -set and a countable set, and hence it is of type $F_{\sigma\delta}$.

In each of the following four corollaries, let f denote a continuous function mapping D into the Riemann sphere.

COROLLARY 1 (J. E. McMillan). Let E be a closed subset of the Riemann sphere. Then the set

$$\{x \in C \mid \text{ there exist an arc } \gamma \text{ at } x \text{ and a point } p \in E$$

$$\text{such that } \lim_{z \to x} f(z) = p\}$$

$$z \to x$$

$$z \in \gamma$$

is of type $F_{\sigma\delta}$.

COROLLARY 2. Suppose $d \ge 0$. Then the set

 $\{x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ such that}$ [diameter $C(f, \gamma)$] $< d\}$

is of type $F_{\sigma\delta}$.

COROLLARY 3. Let E be a closed subset of the Riemann sphere. Then the set

 $\{x \in C \mid \text{ there exists an arc } \gamma \text{ at } x \text{ with } C(f, \gamma) \subset E\}$

is of type $\mathbf{F}_{\sigma\delta}$.

COROLLARY 4. The set

 $\{x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ such that } C(f, \gamma)$ is an arc of a great circle $\}$

is of type $F_{\sigma\delta}$.

We can obtain all these corollaries by taking $\mathcal E$ to be a suitable family of closed sets and applying Theorem 2. To prove Corollary 4, we need the fact that $C(f,\gamma)$ is always connected. One could go on listing such corollaries ad infinitum, but we refrain.

It is interesting to note that in Corollary 1 it is not necessary to assume that E is closed. By combining Corollary 1 with Theorem 6 of [2], one can prove that the conclusion of Corollary 1 holds even if E is merely assumed to be of type G_{δ} .

REFERENCES

- 1. F. Hausdorff, *Mengenlehre*, Zweite Auflage, Walter de Gruyter & Co., Berlin und Leipzig, 1927.
- 2. J. E. McMillan, Boundary properties of functions continuous in a disc, Michigan Math. J. 13 (1966), 299-312.
- 3. M. H. A. Newman, *Elements of the topology of plane sets of points*, Cambridge University Press, 1961.
- 4. H. Tietze, Über stetige Kurven, Jordansche Kurvenbögen und geschlossene Jordansche Kurven, Math. Z. 5 (1919), 284-291.

The University of Michigan