ON A BOUNDARY PROPERTY OF CONTINUOUS FUNCTIONS
T. J. Kaczynski

Let D be the open unit disk in the plane, and let C be its boundary, the unit
circle. ¥ x is a point of C, then an arc at x is a simple arc y with one endpoint at
x such that vy - {x} € D. If f is a function defined in D and taking values in a
metric space K, then the set of curvilinear convergence of f is

{x € C| there exists an arc y at x and there exists

a point p € K such that lim f(z)=p}.
Z— X
S ZAEY

J. E. McMillan proved that if f is a continuous function mapping D into the Riemann
sphere, then the set of curvilinear convergence of f is of type Fg 5 [2, Theorem 5].
In this paper we shall provide a simpler proof of this theorem than McMillan’s, and

we shall give a generalization and point out some of its corollaries.

Notation. I S is a subset of a topological space, S denotes the closure and S*
denotes the interior of S. Of course, when we speak of the interior of a subset of
the unit circle, we mean the interior relative to the circle, not relative to the whole
plane. Let K be a metric space with metric p. If xy5 € K and r > 0, then

S(r, xg) = {x € K| p(x, x)) <r}.
An arc of C will be called nondegenevate if and only if it contains more than one
point.
LEMMA 1. Let & be a family of nondegenevate closed avcs of C. Then
UIeJ I- Uleg T* is countable.

Proof. Since U{eﬂ I'* is open, we can write UIGJ I = UI1 J,, where {J_}
is a countable family of disjoint open arcs of C. If

Xq € U I- U r*,

Ied 1ed

then for some Iy € &, X is an endpoint of I. For some n, I’B C J,, so that

Xp € -jn . But x5 ¢ J,,, so that X is an endpoint of J,,. Thus Uleg/f I- Uléy I*
is contained in the set of all endpoints of the various J ; this proves the lemma. B

In what follows we shall repeatedly use Theorem 11.8 on page 119 in [3] without
making explicit reference to it. By a cross-cut we shall always mean a cross-cut of
D. Suppose y is a cross-cut that does not pass through the point 0. If V is the
component of D - y that does not contain 0, let L(y) = VN C. Then L(y) is a non-
degenerate closed arc of C.
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Suppose 2 is a domain contained in D - {O} Let I'" denote the family of all
cross-cuts ¥ with y N D C ., Let

1) = U 1wy, 1,0 = U vox.
yeT ye T

Let acc(f2) denote the set of all points on C that are accessible by arcs in .

The following lemma is weaker than it could be, but there is no point in proving
more than we need.

LEMMA 2. The set acc(Q) - 15(R) is countable.

Proof. By Lemma 1, I(Q) - Io(R2) is countable; therefore it will suffice to show
that acc (Q) - I(R) is countable. If acc(2) has fewer than two points, we are done.
Suppose, on the other hand, that acc(f2) has two or more points. If a € acc(f2), then
there exists a' € acc(2) with a' #a. Let y, y' be arcs at a, a', respectively, with

yNDcCQ, 9y NDCY.

Let p be the endpoint of ¥ that lies in Q, p' the endpoint of ' that lies in ©. Let
Y" C Q be an arc joining p to p'. The union of vy, y', and y" is an arc 6 joining a
to a'. By [4], there exists a simple arc &' C 6 that joins a to a'. Clearly, &' isa
cross-cut with 8 N DCQ and a, a' € L(6'). Thus a € I(R), and so

acc(Q)CI(). =

LEMMA 3. Suppose 911 and Q, ave domains contained in D - {0} If

(1) I,(2,) Nacc(Q,) and I3(R;) Nace(R,)

are not disjoint, then Q1 and Q, ave not disjoint.

Proof, We assume 2; and ©, are disjoint, and we derive a contradiction. Let
a be a point in both of the two sets (1). Let y; be a cross-cut with y; N D C Q;
such that a € L(y;)* (i=1, 2). Let U; and V; be the components of D - y;, and (to
be specific), let U; be the component containing 0. Note that y; N D and y, N D
are disjoint.

Suppose y; ND C V, and y, N D C V;. Then, since y; N DC U, U} hasa
point in common with V, . But 0 € U; N U,, so that U, has a point in common with
U, also. Since Uj is connected, this implies that U; has a common point with
Y2 N D, which contradicts the assumption that y, N DCV,. Therefore y; ND¢ v,
or v, ND ¢ V;. We conclude that either yy "D C U, or y, ND CU;. By sym-
metry, we may assume that y, "D C U, .

It is possible to choose a point b € L(y;)* that is accessible by an arc in 5,
because a is in the closure of acc (SZZ). Let ¥ be a simple arc joining b to a point
of v, N D, such that v - {b} € Q,. Then y - {b} and y; are disjoint. Also,

v - b} contains a point of U, (namely, the point where y meets y, N D); there-
fore y - {b} c U; . Hence b € U, . Since b € L(y;)*, this is a contradiction. W

THEOREM 1 (J. E. McMillan). Let K be a complete separable metric space,
and let  be a continuous function mapping D into K. Let

X ={xe¢ Cl theve exists an arc v at X for which lim £(z) exists} .
z —X

ZEY
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Then X is of lype Fy5 .

Proof. Let {p,}}.; be a countable dense subset of K. Let {Q(n, m)}” _; be
a counting of all sets of the form

where 6 is a rational number. Let {U(n, m, k, Q)}OE:I be a counting (with repeti-
tions allowed) of the components of

n

1-1<r <1 and 9<t<e+2”},

-1 (S(—zl;l, pk) ) N Q(n, m).

(We consider @ to be a component of §.) Let
A(n, m, k, £) = acc[U(n, m, k, £)].

Set
0

[>e] o0 [>e]
v= U U U1 wnmx 0)nEmmx 0.
n=1 m=1 k=1 £-1

Since I4(U(n, m, k, £)) is open, it is of type F, . It follows that Y is of type F 4 .
I claim that Y € X. Take any y € Y. For each n, choose m[n], k[n], ¢[n] with

(2) y € I)(U(n, m[n], k[n], ¢[n])) N A(n, m[n], k[n], £[n]) (=1,2,3, ).

For convenience, set U, = U(n, m[n], k[n], ¢[n]). By (2) and Lemma 3, U, and
U,+; have some point z, in common. For each n, we can choose an arc y, C Upy)
with one endpoint at z, and the other at z ,; . Then y, € Q(n+ 1, m[n+ 1]). Also,

ye An+1, mn+ 1], k[n+1], £[n+1]) € U,y € QM+ 1, m[n+1]),

27+ 1
n+1

and therefore each point of v, has distance less than from y. Now

27 +1
n+1
one endpoint at y.

o0
— 0 as n — «; hence, if we set y = {y} U Un=1 Y, then y is an arc with

Since U, and U, ;; have a point in common,

s(Fng) O (s(F egn)

have a common point, and hence

1 . 1
S (F’ Pk [n] ) and S ( gnt1? Px[n+1] )
have a common point. Therefore, if p is the metric on K, then

1 1 1,
APy [n]s Pi[nr1]) S SnF gnrT < a1
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and therefore

r

4 1 1
p(pk [n]’ pk[n+r]) S i‘zzi p(pk[n+i-l]’ pk[n+i]) < i=21 2n+i~2 < 2n-2'

Thus { pk[n]} is a Cauchy sequence and must converge to some point p € K. Be-
cause

-1 1
ynCUn+1Cf (S(2n+l’pk[n+l])) and pk[n]?p,

lim f(z) =p. It is possible that y is not a simple arc, but by [4] we can replace y
z Yy

z€ Y

by a simple arc y'Cy. Thus y € X, and we have shown that Y C X.

Suppose x € X. Let y, be an arc at x such that f approaches a limit p' along
Yo- Take any n. Choose k with p' € S (5171’ pk) . Choose m so that x is in the

interior of Q(n, m) N C. Then 7o has a subarc y;, with one endpoint at x, such that
- 1
7(')—{X}CQ(n;m)nf 1(S(§1;pk))'

Hence, for some ¢, x € ace[U(n, m, k, £)] = A(n, m, k, ¢). This shows that

xc U U am m,x 0.

n=1 m=1 k=1 g=1

o0

By Lemma 2, the set

A(n, m, k, £) - Io(U(n, m, k, £)) = A(n, m, k, ¢) - [IO(U(n, m, k, ¢)) N A(n, m, k, ¢)]

is countable. It follows by a routine argument that

N U somro-N U roem ks 0)0am 5 o]

n m,k,{ n m,k,f{

is countable. Because

ﬂ U [IO(U(n, m, k, ¢)) N A(n, m, k, )] = Y C X cC n U A(n, m, k, ¢),

n m,k,( n m,k,{

the set X - Y is countable, and therefore X is of type F;5 . ®

Before stating our generalization of the foregoing theorem, we must say a few
words about spaces of closed sets. If K is a bounded metric space with metric p,
let ¥(K) denote the set of all nonempty closed subsets of K. Hausdorff [1, page 146]

defined a metric p on #(K) by setting

p(A, B) = max { sup dist (a, B), sup dist(b, A)} ,
a€cA beB
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where dist(x, E) denotes inf p(x, e). If K is compact, then #(K) is a compact

e €E
metric space with p as metric [1, page 150].

If f maps D into K and if v is an arc at a point x € C, we let C(f, y) denote
the cluster set of f along y; that is, we write

C(#, v) = {p € K| there exists a sequence {z,} cy 0D
such that z_ — x and f(z ) — pt.

THEOREM 2. Let K be a compact metric space, and let € be a closed subset
of €(K). Let f: D — K be a continuous function. Then

{x € C| there exists an arc y at x and there exists

E € & such that C(f,y) C E}

is a set of type Fs5 .
Proof. I ¢>0 and E € ¢(K), let

#(g, E) = {a € K| there exists b € E with p(a, b) < €} .
Note that & (e, E) is open and that
Fe ¢(K), p(E, F) < ¢ = FcC (g, E).

Let {P(k) } L=] be a countable dense subset of € (such a subset exists, because
every compact metric space is separable). Let

= {x ¢ Cl there exist an arc y at x andan E € §
such that C(f, y) c E}.

[>]
Let {Q(n, m)}m=1 be defined as in the proof of the preceding theorem. Let
{U(n, m, k, £)}7-; be a counting (with repetitions allowed) of the components of

f'l(f/(%, P(k)) ) N Q(n, m).

Let A(n, m, k, ¢) = acc[U(n, m, k, £)], and set

n U U U I,(U(n, m, k, 2)) N Af(n, m, k, ).
n=1 k=1 £=1

m=1

Since I,(U(n, m, k, £)) is open, it is of type Fy . It follows that Y is of type F; 5 .

I claim that Y C X. Take any y € Y. For each n, choose m[n], k[n], £[n] so
that

(3) y € 1,(U(n, m[n], k[n], ¢[n])) N A(w, m[a], K[a], £[a])

Set U, = U(n, m[n], k[n], £[n]). Since € is compact, there exista P € & and some
strictly ascending sequence {nj}gozl of natural numbers such that
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P(k[nJ]) T P.

in common. For each j,
Then

By (3) and Lemma 3, U,  and Un_+1 have some point z;
J )
nj4) with one endpoint at z j and the other at z 541

7j € Q041 , m[n;4;]). Also,

choose an arc 75 C U

y € Alnjyy, mngy ], k[0 ], £n5]) © Uniy © Qlnjyy, mngy,]),

1 from y. Now

and therefore each point of Y has distance less than 23 .1_1
J
21+ 1

N+l
one endpoint at y.

cO
— 0 as j — «; therefore, if we set y = {y} U Uj=1 vj, then y is an arc with

I claim that C(f, y) € P. Take any p € C(f, y). There exists a sequence
{w 12, in v - {y} such that w, -y and f(w, ) 7 p. Let & be an arbitrary posi-

tive number. Choose j; so that p(P(k[n 1), P) < 8/3 for all j > jo. Choose j; so
that j > j; implies 1/n. 1 <€/3. We can choose an s such that w_ € y; for some
i>]jg, J; and such that

(4) plE(wy), p) < 5.

Then

1
i+l

tw,) € ;) C£(U, ) C 72, Pking,1))

and therefore we can choose a point q € P(k[ni +l]) with

(5) pf(w,), q) < —— <

£
i+l 3’

Moreover, because p(P(k[n,,,]), P) <&/3, there exists some q' € P with
(6) plg, @) < 5.

Together, (4), (5), and (6) show that p(p, q') < &. Since P is closed and ¢ is arbi-
trary, this proves that p € P. Hence C(f, y) C P € £. By [4], we can if necessary
replace y by a simple arc ' C y; it follows that y € X. Thus Y C X.

Now suppose x € X. Choose an arc yg at x such that C(f, yy) C P, for some
P, € €. Take any n. Choose k with p(P,, P(k)) < 1/n. Then
1 1
Py c 7 (2, p() hence C(t, 7o) < # (=, P() ) .

Choose m so that x is in the interior of Q(n, m) n C.

H'Ip-.m

If for each natural number t there exists a point z} € 5 N S( X ) N D with

zég?’f'l(g(—ﬁ, P(k)) ) , then




ON A BOUNDARY PROPERTY OF CONTINUOUS FUNCTIONS 319

@) € K - & (?11 P(k) )

and since K - & (%, P(k)) is compact, there exist some a € K - ¥ ( %, P(k)) and

a subsequence {f(zi':i)};i1 such that f(z,'ci) +a. But then a € C(f, v,), contrary to
the relation C(f, yy) C & (1_11’ P(k)) . We conclude that there exists a natural number
t for which

v 0 s(tl x) AD C f'l(y(%, P(k)) ) .
It follows that y, has a subarc y(, with one endpoint at x such that

'y(') -{x} c f'l(g’(-rlz, P(k)) ) N Q(n, m).

Hence there exists an £ such that
x € acc[U(m, m, k, ¢)] = A(n, m, k, £).

This shows that

o0

ch U U A(n, m, k, 2).

n=1 m=1 k=1 {=1
By Lemma 2, the set

A(n, m, k, ¢) - I,(U(n, m, k, ¢)) = A(n, m, k, £) - [IO(U(n, m, k, £)) N A(n, m, k, £)]

is countable. It follows easily that

N U anmx -0 U [pyum m,x 0) nAm, m, & 0]

n m,k,f n m,k,{

is countable. Since

N U 1,00k 00&n s ol=vcxcl U ammx 0,

n m,k,{ n m,k,?

X - Y must be countable. Thus X is the union of an F5-set and a countable set, .
and hence it is of type F;5. W

In each of the following four corollaries, let f denote a continuous function map-
ping D into the Riemann sphere.

COROLLARY 1 (J. E. McMillan). Let E be a closed subset of the Riemann
spheve. Then the set

{x € C| there exist an arc v at x and a point p € E
such that lim f(z)=p}

zZ—X
z €y
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is of type Fy 5.
COROLLARY 2. Suppose d > 0. Then the set

{x € C| there exists an arc v at x such that
[diameter C(f, y)] < d}

is of type Fy 5 .
COROLLARY 3. Let E be a closed subset of the Riemann spheve. Then the set

{x € C| there exists an arc v at x with C(f, y) CE}

is of type Fy g .
COROLLARY 4. The set

{x € C| there exists an avc y at x such that C(f, )

is an arc of a great circle }

is of type Fys-

We can obtain all these corollaries by taking & to be a suitable family of closed
sets and applying Theorem 2, To prove Corollary 4, we need the fact that C({, y) is
always connected. One could go on listing such corollaries ad infinitum, but we
refrain.

It is interesting to note that in Corollary 1 it is not necessary to assume that E
is closed. By combining Corollary 1 with Theorem 6 of [2], one can prove that the
conclusion of Corollary 1 holds even if E is merely assumed to be of type Gg.
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