A THEOREM OF FRIEDRICHS
R. C. Lyndon

§1. Friedrichs [2] has given a characterization of the Lie elements among the
set of noncommutative polynomials. A proof of the characterization theorem was
also given by Magnus [3], who refers to other proofs by P. M. Cohn and D. Finkel-
stein. It is the purpose of the present paper to give a short proof of the theorem.

Let @ be the free associative ring, over a field K of characteristic zero, of
polynomials F(x) = F(x,, X,, +*-) in the noncommuting indeterminates x,, x,, ---. Let
A be the K-submodule of ¢ generated by the x,, x,, :-- under the operation of form-
ing commutators [G, H] = GH - HG. A Lie element of & is a member of A.

THEOREM (Friedrichs). F(x) is a Lie polynomial if and only if the relations
xixJ!' = )%' xi
imply
(1) Fx'+x")=F(x')+ Fix").

§2. Induction from Lie elements G, H to [G, H], together with linearity, estab-
lishes that (1) holds for every Lie element F.

For the converse, begin by introducing the left, right, and adjoint representa-
tions L, R, and A =R - L of ¢@. These are defined, on the free generators x;, and
for each element u of ¢, by the relations

uR(x;) = ux,
uLi(x;) = x;u,
uA(x;) = ux; - x;u =[u, x].
Since the R(x;) commute with the L(x;), condition (1) on F(x) implies that
uF(AX)) =uFRx)) + uF(-L(x)).

Clearly uF(R(x)) = uF(x), while uF(-L(x)) = F(x)*u, where F(x)* is defined by the
equation

(xilxiz vee xin)* = (_l)n'xin --.xizxil

and the condition of linearity. Thus (1) gives
2) uF(A(x)) =uFX) + F(x)*u.
Induction from G, H to [G, H] establishes that

(3) F* = -F, for each Lie element F.

Received February 22, 1955,

27



28 R. C. LYNDON

This, with (2), yields the familiar property of the adjoint representation:
4) uF(A()) = [u, F(x)], _for each Lie element F.

§3. The operator of Dynkin, Specht, and Wever [1], [4], [5] is defined by
equation

{Xioxil.xiz xin} = xioA(xil)A(xiz) A(xin)

= [l % Lo ) g

and the condition of linearity. Henceforth, let u be a new indeterminate. 1
a polynomial F(x) without constant term, we have

(5) {uFx)} = uF(A(x)).

If F(x) satisfies (1), then F(0) = 2F(0), so that F(x) is without constant ter
(5), with (2), gives

(6) {uF)} = uFX) + F(x)*u.

LEMMA (Dynkin, Specht, Wever). If F is a Lie element, homogeneous
n>1, then

(7) {F} =nF.
The assertion is trivial for n = 1, We argue by induction from G, H, of d
q, to [G, H]. From the definition and (4) we have {GH} = {G} HAK)) = [{G

By the induction hypothesis, this gives {GH} = [pG, H] = p[G, H]. Similarl
-{HG} = -q[H, G] = q[G, H]. Addition gives {[G, H]} = (p + q)[G, H].

It is evident from the definition that {F} is always a Lie element, wher
COROLLARY. If F is a polynomial, homogeneous of degrvee n> 1, the

(8) {{F}} =n{F}.

§4. To conclude the proof of Friedrichs’ theorem, we may assume that
homogeneous of degree n> 1. Applying (8) to (6) gives

(n + 1){uF} = {uF} + {F*u},
n{uF} = {F*u},
) n{uF} = {F*}u - u{F*};

the last by virtue of the definition of { F*u}. From (6) directly we have
(10) n{uF} = nF*u + unF.

Since u is a new indeterminate, not occurring in F or F*, comparison of {
terms of (9) and (10) gives

nF = -{F*} .
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Since {F*} is a Lie element, it follows that nF is a Lie element. Using the assump-
tion that the coefficient field is of characteristic zero, we conclude that F is a Lie
element, as was to be shown.
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