Michigan Math. J. 47 (2000)

Normal Embeddings of Semialgebraic Sets

LEV BIRBRAIR & TADEUSZ MOSTOWSKI

1. Introduction

This paper is devoted to some metric properties of semialgebraic sets with singu-
larities. The metric theory of singularities considers sets as metric spaces. There
are several classification problems in this theory; here we consider the problem of
bi-Lipschitz classification.

Two metric space$Xs, d1) and (X», d») are calledbi-Lipschitz equivalenif
there exist a homeomorphisft X; — X, and two positive constant§; and K
such that

Kidi(x, y) < da(F(x), F(y)) < Kada(x, y)

for everyx, y € X;. The homeomorphisn# is calleda bi-Lipschitz map The
bi-Lipschitz classification is stronger than topological and weaker than analytical
classifications.

We can define two natural metrics on the same semialgebraic subBét of
induced and length. The definition of the length metric came from differential
geometry (see, for example, [G]). Itis defined as the infimum of lengths of piece-
wise smooth curves connecting two given points. The Lipschitz classification in
terms of the induced metric is more rigid: the equivalence in the induced met-
ric implies the equivalence in the length metric, but not inversely. There exists
a special type of sets—so-called normally embedded sets—such that these two
classifications are equivalent. A setisrmally embedded the induced metric
is equivalent to the length metric in the usual sense of metric spaces (see Defini-
tion 2.1). Every nonsingular compact semialgebraic subset is normally embedded,
but the converse is not true.

The main result of the paper is the following normal embedding theoEarery
compact semialgebraic set is bi-Lipschitz equivalent to some normally embedded
semialgebraic set with respect to the length metitds a metric analog of the
normalization theorem [L] or of the desingularization theorem [H]. The proof is
based on the so-called pancake decomposition (Section 2) created by Parusinski
[P] and Kurdyka [K] (see also [KM] for details). Using a pancake decomposition
we can define the pancake metric (Section 3), a semialgebraic metric equivalent
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to the length metric. Then by the tent-procedure (Section 4), which is some sort
of blow-up, we obtain the result.

To relate this theorem to the problem of bi-Lipschitz classification, we formu-
late the following corollary:Let X be a compact semialgebraic set. gt be a
set of all semialgebraic sets bi-Lipschitz equivalenXtwith respect to the length
metric. We define a semiorder relation @ in the following way X, < X if
there exists a map: X1 — X3 bi-Lipschitz with respect to the length metric and
Lipschitz with respect to the induced metric. Thep contains a uniquéup to
a bi-Lipschitz equivalence with respect to the induced metniaximal element.
This element is normally embeddethe local two-dimensional version of this
proposition is actually stated in [BS].

All theorems and propositions hold true for subanalytic sets. The proofs are the
same.

2. Normal Embedding of Semialgebraic Subsets

Let X be a semialgebraic connected subsék’bf Since every connected semial-
gebraic set is arcwise connected, we can define the two following metri&s on
The first is theinduced metridrom R”, which we denote by/i,q. The second is
thelength metriqor internal metrig, defined as follows. Let;, xo € X, and letl’

be the set of all piecewise smooth curgesonnectingr; andx; (i.e.,y:[0, 1] —

X such thaty (0) = x1, y (1) = x2); defined;(x1, x2) = inf,cr I(y), wherel(y)
means the length of.

DerFiNiTION 2.1.  The sek is callednormally embedded iR” if the metricsding
andd,; are equivalent. It means that there exists a congfasnt 0 such that, for
eachxy, xo € X, we hav&i,(xl, x2) < Cding(x1, x2).

ReEMARK 2.1. In the same way, we can define the normal embedding in every
stratified arcwise connected sub¥et: R". Observe that i is normally embed-
ded inY andY is normally embedded i, thenX is normally embedded .

DerFINITION 2.2.  The seX is callediocally normally embedded at the poirg €
X ifthere exists a balB,, , centered ato and of radius such thatthe s&,, ,NX
is normally embedded. In other words, we say that the gerkhatfx is normally
embedded or the paiX, x¢) is normally embedded.

DErFINITION 2.3. LetX be a semialgebraic set, and letc X. We say that’ is
relatively normally embedded i if there exists a constadt > 0 such that, for
all x € X andy € Y, we haved,(x, y) < Cding(x, y).

REMARK 2.2. LetX = Uik:l Y;, and let eacly; be relatively normally embedded
in X. ThenX is normally embedded.

ProrosiTioN 2.1. Let X be a compact set locally normally embedded at each
pointx € X. ThenX is normally embedded.
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ExampLE 2.1. Every compact smooth submanifotdof R” is normally em-
bedded.

ExampLE 2.2. The standard cusp = {(x1, x2) € R? | x} = x2} is not nor-

mally embedded at 0. To see this, consider a sequeneel/i and the points
xi =, t?/z) andy’ = (1;, _tia/z). Then we havel;(x, y') = 2t; + o(t;), but

ding(x', y) = 2[?/2. This means thaf;(x’, y') cannot be estimated from above
by Cding(x', y').

ExampLE 2.3. A standarg@-horn (8 > 1) (see [B])

Hp = {(x1, %2, ) €R® | (xf + x5 = y*; y = 0; B = p/q; p,q €N
is normally embedded.

ExampLE 2.4. A standargB-Holder triangle(8 > 1) (see [B])
Ty ={(x,)eR?|y<xf;y>0,0<x <1

is normally embedded. (The proof of this fact is straightforward.) A dogble
Holder triangle

DTy = {(x,y) eR?| |y <xf, 0<x <1}

is also normally embedded.

ExaMPLE 2.5. Consider a subsat of R® defined in the following way. Letls

be a standarg-horn and letP,,: Hg — R? be a projection: P,,(x1, X2, y) =
(x2,y). Clearly, P,,(Hg) = DTg. Let By > B; thenDTy, C DTg. DefineX =

Hg — Int(R;ll(DT,gl)). By the same arguments as in Example 2.2, we obtain that
X is not normally embedded.

ProrosiTION 2.2 (Pancake Decomposition) [K; KM; P].LetX c R" be aclosed
semialgebraic set. Then there exists a finite set of supXetsuch that

(1) all X; are semialgebraic closed subsetsXof

(2) X = Ui Xi;

(3) dim(X; N X;) < min(dim X;, dim X;) for everyi # j; and
(4) X; are normally embedded iR".

We shall call these set¥; pancakesand a decomposition satisfying conditions
(1)—(4) will be calleda pancake decomposition.

REMARK 2.3. Thisresultis due to A. Parusinski. Another proof was given in [K];
this proof is presented (for opée¥i being the essential case) in [KM]. In general,
L-regular sets from [P] have some additional properties. Namely, aelyular

setis normally embedded but not vice versa. Here we shall use only the properties
(1)—(4) just described.

Our main result is the following.
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THEOREM 2.1. LetX be a compact connected semialgebraic subs&ofThen,

for everye > 0, there exists a semialgebraic €t ¢ R” such that

(1) X¢is semialgebraically bi-Lipschitz equivalentXowith respect to the length
metric

(2) X¢is normally embedded iR™; and

(3) the Hausdorff distance betweé&hand X° is less thare.

3. Pancake Metric

Let X C R" be a closed connected semialgebraic set. {Xe}) be a pancake
decomposition ofX. Considerxy, x, € X, and let{ys, ..., y;} be a sequence of
points satisfying the following conditions:
(1) y1=x1andy; = xz;
(2) every coupley;, y; 41 lies in one pancakg;; and
(3) if Vi, Yi+1 € X]', thenys ¢ X]' for s # i, s # i+1

Denote byy,, ., the set of all finite sequences satisfying conditions (1)—(3). For

every sequence = {y1, ..., i} € Yy r,, We setl(y) = Zfzz dind(yi, yi—1) and
(finally) we put

dp(x1, x2) = inf 1(y).

yeyxl.xz

Note thatX, being semialgebraic and connected, is actually arcwise connected,;
henced, (x1, x») is well-defined for any coupléx,, x,) (see the proof of Theo-
rem 3.2 to follow). We calll, the pancake metric.

THeorEM 3.1. The function/,: X x X — R is semialgebraic and defines a met-
ricin X.

This was actually proved in [KO]; we recall the argument for convenience. We
shall need the following lemmas.

LemMma 3.1. There exist¥ > 0 such that, for any, x> € X, we have

dy(x1, x2) = Kd(x1, X2).

Proof. Let K = min K;, whereKk is a constant corresponding to the pancdke
(see Section 2). Thus, for evepy= {y, ..., vy} we have

dind(yi, yi-1) = Kd;(yi, yi-1).

Hence
k

dy(x1, x2) = Y Kdi(yi, yi-1) = Kdi(x1, x2),
i=2

and the lemma is proved. O

LemMa 3.2. For everyxy, xz € X, there existy € Yy, , such thaid, (x1, x2) =
L(y).
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Proof. A subsequence of pancakigs;} C {X;}{ is calledadmissiblgfor x1, x7)

if there existsy = {y1, ..., ¢} € Y4, x, SUch thaty; € X;. It is enough to prove
that, for any admissible subsequence of pancéXgs there exists € Y., ., such
thaty; € X; andi/(y) = min{l(y) | y € Yu,.x,, ¥i € X;}. Consider a closed ball
B,,.24,(x.x = B centered at the point; and of radius 2,(x, x»). Let X; =
X;NX;xaN B (herei =2,...,k—1 {X;}is the fixed admissible subsequence of
pancakes). We define the functiirX x --- x X;_1 — Rbyl(y1, ..., ye_1) =
I(y), wherey = {x1, ya, ..., yx_1, x2}. The function/ is continuous and defined
on a compact seX x --- x X;_1. Thus, there exist§ € Y,, ,, such thaty; € X;
andl(§) = min{l(y) | y € Yoo Vi €Xi} (=2, ...,k = 1). O

The sequencee Y,, ., suchthatl, (x1, x2) = I(y) we calla minimizing sequence
corresponding tory, xo.

CoroLLArY 3.1. The pancake metric is a semialgebraic function defined on
X x X.

This follows from the quantifier elimination theorem of Tarski and Seidenberg and
the fact that the graph éfis semialgebraic.

Proof of Theorem 3.1Let us prove now thad, is a metric. The first two axioms
of a metric follow immediately from the definition af, and Lemma 3.1.

To prove the triangle inequality, consider three pontsco, x3 € X. Let y! =
{3 v3, ..., yi1} € Yoy, bE @ minimizing sequence correspondingiox,, y? =
{y2,y2,...,v%} € Yy, ., @ minimizing sequence correspondingxg x, and
v3 = {y3 3, ..., y%) € Y,,., @ minimizing sequence correspondinguo xs.
Thus the sequence = {y3, y3, ..., y%, v2, v3, ..., y3) = {z1, 22, -+, Zuzsi2)
satisfies the conditions of the definition of a pancake melyia1, x2), except
possibly condition (3). To improve it we use the following simplification proce-
dure. If two nonconsecutive points in the sequentbelong to the same pancake
X;, then we skip all points lying in between. Repeating this simplification pro-
cedure a finite number of times, we obtain a sequereé’,, .,. By the triangle
inequality, for the induced distance we have

dy(x1,x3) <1(2) < 1(y%) = 1(y") +1(y?) = d(x1, x2) + dp(x2, x3).
Theorem 3.1 is proved. O

THEOREM 3.2. The pancake metric is bi-Lipschitz equivalent to the length metric.

Proof. Lety € Y,, x, be a minimizing sequence correspondingiox, € X. Let
{Xi}’i_l be an admissible sequence of pancakes correspondingSmce each
X; is a pancake, there exists a piecewise smooth pafb, 1] — X; such that
n:(0) = yi, mi(D) = yir1, andl(n;) < K(X;)dind(yi, yi+1), wherel(n;) denotes
the length ofy;. Letn = nin2 - - - nx_1 (the usual product of paths); théy) =
S ¥ (). Let K = max K(X;). We thus have

k-1

di(x1. x2) <1(n) < K Y ding(yi. yip1) = Kdp(x1, x2).
i=1
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Let y:[0,1] — X be any piecewise smooth path connectingand x,, and
define the following sequence of pointse Y,, .,. Puty; = x1. The pointy; be-
longs to some pancaké;. Definer, = sup{r | y(¢) € X;1}. If x2 ¢ X1 thent, #

1 Lety, = y(t2), and suppose that, € X;; N X;,. Definers = supt | y(¢) €

Xi2} andys = y(#3). The number of pancakes is finite, so this process will stop
for somey, = xp. Clearly,y = {y1, y2, ..., Y&} € Ys,.x, @andi(y) > I(y). Since

y is an arbitrarily chosen curve, we are led to the inequality

di(x1, x2) > dp(x1, X2).

Theorem 3.2 is proved. O

4. Tents and Tent Procedure

Let X be a compact connected semialgebraic set, anfiigf’ ; be a pancake
decomposition ofX. Consider the functiorp;: X — R defined byp;(x) =
d,(x, X;), whered, is the pancake distance. LEt C R"+1 denote the graph
of p;, and put

wi(x) = (x, pi(x)).

ProrosiTioN 4.1.  The mapping:;: X — I has the following properties.

(1) w; is a bi-Lipschitz map with respect to the length metricsXoand onI;.

(2) ni(X;) is a pancake inu;(X); in other words,{M,-(Xj)}_l}’:l is a pancake de-
composition ofu;(X).

(3) w;(X;) is relatively normally embedded jo; (X).

Proof. (1) Recall that, in any metric space, the distance to a fixed set is a Lipschitz
function. Sop; is Lipschitz with respect to the pancake metric and, by Theo-
rem 3.2, also with respect to the length metric. Thusis Lipschitz with respect

to the length metric. Note that;* = (|, ), wherex is a projection on the first

n coordinates. Henc<;u,,fl is Lipschitz with respect to the length metric.
(2) There exists a constaBt depending only om, such that

max{dind(x1, x2), |pi(x1) — pi(x2)|} < Bdina(pi(x1), ni(x2))
for anyxs, x2 € X;. SinceX; is a pancake, we obtain
di(x1, x2) < Ldind(pi(x1), pi(x2))
for someL > 0. By (1), the mappingq; is bi-Lipschitz; hence,
di(pi(x1), ni(x2)) < Kding(pi(x1), pi(x2))

for someK > 0 and anyxy, x; € X;.
(3) We shall prove that there exists a const&nt 0 such that

di(pi(x), wi(y)) < Kdind(pi(x), pi(y))
for anyx € X; andy € X. Indeed, by (1), it is enough to find&; > 0 such that

di(x,y) < Kiding(pi(x), 1i(y)).
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Suppose thap;(y) < ding(x,y), and consider € X; such thatp;(y) =
d, (X, y). By the definition of a pancake metric, we have

dp(xs y) < ding(x, X) + dp(y» X).
Sinced, (y, X) = pi(y) < dinda(x, y) we obtain, by the triangle inequality,
dind(x, X) < 2dind(x, y)

and thus
dy(x,y) < 3dina(x, y).

Hence, by Theorem 3.2,

di(x,y) = 3Cding(pi(x), wi(y)),

whereC > 0 is a constant satisfyingg < Cd,,.
Suppose now that;(y) > ding(x, y). As before, forx € X; such thatp;(y) =
d, (X, y) we have
dy(x,y) <d,(y,X) + dind(x, y) +dina(X, y) < 3d,(X, y).

On the other hand,

pi(y) = maxX{dind(x, y), pi(¥)} < Bdind(pi(x), pni(y))
for someB > 0 depending only on. Hence,

dy(x,y) < 3Bding(i(x), i (y)).
By the equivalence of length and pancake metrics we obtain, as before,

di(x,y) < Kding(pi(x), ni(y))
for somekK; = 3C max{1, B}. O

The setu;(X) we call ani-tent overX, and the map; we calli-tent procedure.
The following proposition is easy; the proof is the same as that of (2) in Propo-
sition 4.1.

ProrosiTiON 4.2. LetY C X be relatively normally embedded} Thenu,(Y)
is relatively normally embedded jo; (X).

Proof of the Main Theorem 2.1et us define the set c R"** as follows.

(1) Fix some pancake decompositi{m,} _, of X.
(2) Apply 1-tent procedure t&, and putX® = X andX® = u1(X).
() DefmeX]1 = ni(X)); then{le}j=1 is a pancake decompositionXf!
(by Proposition 4.1).
(i +1) DefineX’ = p:(X'™Y).
((i +1)) DefineX! = p;(X;™).
PutX = X*.
In the final step we obtain a decompositi&n= U X" By Proposition 4.2,
all X" are relatively normally embedded. Hence, by RemarkX & normally
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embedded iR"**. It follows from Proposition 4.1 thakX is semialgebraically
bi-Lipschitz equivalent t&X with respect to the length metric.

To prove thatX can be chosen close 0 (in the sense of Hausdorff distance),
itis enough to replacg; (in the tent construction) by- o;, with § small. For ex-
ample,§ = ¢/(k - diam,, X), wherek is the number of pancakes and dignX is
the diameter o with respect to the pancake metric. O
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