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Fixed-Point Indices, Homoclinic Contacts,
and Dynamics of Injective Planar Maps

Morris W. Hirsch

1. Introduction

Let f : R2 → R2 be aC1 diffeomorphism. Letp ∈ Fix(f ) be a fixed point that
is adirect saddle; that is, the derivative off atp has eigenvaluesλ,µ such that
0 < λ < 1 < µ. The Hartman–Grobman theorem implies that there is a topo-
logical coordinate system centered atp representingf as a linear map with these
eigenvalues (see [13; 20]).

Our main results assert that, when the closures of the stable and unstable curves
atp intersect in certain ways, there exists a fixed-point free Jordan curveJ ⊂ S
whose index underf (defined below) is1. Such a curve surrounds ablockB of fixed
points (i.e.,B is open and closed in Fix(f )) that is disjoint fromp and has fixed
point index 1. In particular,there exists a fixed point different fromp. When fixed
points are isolated with negative indices, the dynamics is shown to be rather simple.

For nonplanar surfaces, even a homoclinic point does not guarantee a second
fixed point, as shown by the diffeomorphism of the torusR2/Z2 induced by the

matrix
[

2 1
1 1

]
.

Section 3 contains background material and proofs of the main results. Section
4 shows that many results on planar homeomorphisms generalize to homologi-
cally nilpotent injective maps in planar surfaces. In particular, the theorems of
Brouwer and Brown, as well as the new results, hold for such maps.

Terminology. All maps are assumed to be continuous; diffeomorphisms areC1

(continuously differentiable). A setX is forward invariant for a mapg if gX ⊂
X, overflowingif gX ⊃ X, and invariant if gX = X. Homeomorphism is indi-
cated by≈. The set of fixed points ofg is denoted by Fix(g). The omega limit
setω(x) is the limit set of the sequence{gnx}n∈N. The set of natural numbers is
N = {0,1, . . . } and the set of integers isZ. The Euclidean norm ofx ∈ R2 is de-
noted‖x‖.

2. Background

Brouwer’s1912plane translation theorem [1] can be stated as follows.

Received March 16, 1999. Revision received July 26, 1999.
This research was partially supported by National Science Foundation grant DMS-9404261.

101



102 Morris W. Hirsch

Theorem 2.1 (Plane Translation Theorem).Letf be an orientation preserving
homeomorphism of the planeR2 having no fixed point. Then every point has an
open neighborhoodW with the following properties: The boundary ofW consists
of two disjoint closed setsA,B, each homeomorphic to the line, such thatf(A) =
B andf nW ∩W = ∅ for all n 6= 0.

For an elegant recent proof, see Franks [10].
This theorem is usually used contrapositively to obtain fixed points, as follows.

Recall that a pointp is wanderingfor a mapg if it has a neighborhood disjoint
from its images under iterates ofg; otherwise,p is nonwandering.The closed in-
variant set NW(g) of nonwandering points contains all periodic points and omega
limit points. An immediate consequence of the plane translation theorem is the
following.

Theorem 2.2 (Wandering Theorem).If an orientation preserving homeomor-
phism of the plane has no fixed point, then every point is wandering.

We will use the following two theorems, which embody further developments of
Brouwer’s ideas.

A surface mapf is free (see [3]) provided that, for every closed 2-cellD, if
D ∩ f(D) = ∅ thenf m(D)∩ f n(D) = ∅ for allm 6= n. This implies that every
nonwandering point is fixed but is a strictly stronger condition. Brown [3] proves
the following result, crediting it to Brouwer [1].

Theorem 2.3 (Index Theorem). If an orientation preserving homeomorphism of
R2 is not free, then there exists a Jordan curve with index1.

A translation linefor a mapf is a set having the form
⋃
−∞<k<∞ f

kC, whereC
is a closed 1-cell meetingf(C) only at a common, nonfixed endpoint. Ifβ is a
branch of a stable or unstable curve at a direct saddlep (see below), thenβ \ {p}
is a translation line. Here we restate [4, Thm. 4.7].

Theorem 2.4 (Translation Line Theorem).For any free, orientation preserving
homeomorphism ofR2, every translation line is homeomorphic toR.

The main results for plane diffeomorphisms are developed in the next section. The
chief dynamical application is Theorem 3.3. In the last section, results are ex-
tended to injective, homologically nilpotent diffeomorphisms in open subsets of
the plane.

All the results are valid for homeomorphisms that are local diffeomorphisms at
saddle fixed points. And the full strength of saddles is not needed; the proofs can
be adapted to negative index fixed points having finitely many stable and unstable
branches and having a suitable canonical form. It is sufficient that there be a local
branched covering space for which the fixed point is covered by a saddle.

Fixed-Point Indices. Fixed-point indices are briefly reviewed here; for the gen-
eral theory see [5; 9].
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Let V ⊂ R2 be an open set,J ⊂ V a Jordan curve, andf : V → R2 a map.
We say thatf hasindexd ∈ Z on J, denoted by Ind(f, J ) = d, providedf has
no fixed point onJ andd is the degree of the map

J → S1, x 7→ x − f(x)
‖x − f(x)‖ ,

whereS1⊂ R2 denotes the unit circle and the orientations ofS andJ are induced
from that ofR2.

When the boundary∂D of a closed 2-cellD ⊂ V contains no fixed points,
we calculate Ind(f, ∂D) as follows. WhenD contains a unique fixed pointp,
then Ind(f, ∂D) depends only onp; it is denoted by Ind(f, p) and can be com-
puted from any convenient small disk aroundp. In general, letg : V → R2 be an
ε-approximation tof with only finitely many fixed points inD. If ε > 0 is small
enough then

Ind(f, ∂D) = Ind(g, ∂D) =
∑

p∈Fix(g)∩D
Ind(g, p).

It is known that Fix(f ) ∩D 6= ∅ if Ind(f, ∂D) 6= 0.
It is easy to see that a direct saddle has fixed point index−1. This yields the

useful fact:

If D is a closed2-cell such thatInd(f, ∂D) > 0, thenD contains a fixed
point that is not a direct saddle.

3. Fixed-Point Indices and Homoclinic Contacts

Hypothesis. In this section,S ⊂ R2 is an open set andp ∈ S is a direct saddle
for an orientation preserving diffeomorphismf : S → S.

Thestable curveatp is

Ws = Ws(p) = Ws(p, f ) =
{
x ∈R2 : lim

n→∞ f
n(x) = p

}
.

This curve is the image of aC1 immersionγ : R → R2 [16]. Assumingγ (0) =
p, we define the images of(−∞,0] and [0,−∞) to be the twostable branches
atp. Theunstable curveis defined asWu = Ws(p, f

−1); unstable branches are
defined analogously.

The limit setof a branchβ is the closed invariant set

L(β) =
⋂
t≥0

clos(ζ([t,∞))),

whereζ : [0,∞) → β is any bijective map; it is a closed invariant set indepen-
dent ofζ. The limit setL(Wu) is defined to be the union of the limit sets of the
two branches ofWu, and similarly forL(Ws).

Points inWu ∩ Ws \ {p} arehomoclinic pointsfor p. We introduce the more
general notion of ahomoclinic contact,meaning a point of the closed invariant set

(Wu ∩Ws \ {p}) ∪ L(Wu) ∩ W̄s ∪ L(Ws) ∩ W̄u.



104 Morris W. Hirsch

The horseshoe theorem of Smale [22] shows that whenWu andWs cross trans-
versely at a homoclinic point,L(Wu) ∩ L(Ws) contains a compact invariant set
in which there are periodic orbits of arbitrarily high cardinality. I do not know
whether this holds for homoclinic contacts. For related results see [6; 7; 8; 12; 18;
19; 21].

Lemma 3.1. Every homoclinic contactz for p is nonwandering.

Proof. We must show that an arbitrary neighborhoodU of z meets somef kU
(k 6= 0). We may assumez 6= f(z). Then there is a smooth open arcA ⊂ U

throughz such thatA meetsWu andWs transversely at pointsa andb, respec-
tively. By a basic result known as the “λ-lemma” [20] or the “inclination lemma”
[17], there is a sequence of diffeomorphismsjn : [0,1] ≈ Jn ⊂ A onto nested
neighborhoodsJn ⊃ Jn+1 ⊃ · · · (n ≥ 1) of a in A such that theC1 embeddings
f n B jn : [0,1] → R2 (n > 0) converge to aC1 embedding whose image arcJ ′

is a neighborhood ofp in Wu. Likewise, there is a sequence of diffeomorphisms
km : [0,1] ≈ Km ⊂ A onto nested neighborhoodsKm ⊃ Km+1 ⊃ · · · (m ≥ 1)
of b in A such that theC1 embeddingsf −m B jm : [0,1]→ R2 (n > 0) converge
to aC1 embedding whose image arcK ′ is a neighborhood ofp in Ws. SinceK ′

andJ ′ cross atp, their respective approximationsf nJ andf −mK meet for suffi-
ciently largen,m > 0; therefore,U ∩ f n+mU 6= ∅.
Theorem 3.2. There exists a Jordan curveJ such thatInd(f, J ) = 1 in each of
the following cases:

(a) L(Ws ∪Wu) ∩ (Ws ∪Wu) 6= ∅;
(b) p admits a homoclinic contactz such that eitherz = p or z 6= f(z);
(c) there is a branchγ at p with γ̄ compact andγ̄ ∩ Fix(f ) = {p};
(d) there exists a branchβ at p that is not homeomorphic to[0,∞).
Proof. We will prove in each case thatf is not free; the index theorem will then
complete the proof.

If p ∈ L(Wu) then aλ-lemma argument (see the proof of Lemma 3.1) shows
NW(f ) contains a stable branch atp, and analogously ifp ∈ L(Ws); whence
f is not free. Therefore we assumep /∈ L(Ws ∪Wu). This precludes (a) by in-
variance ofWu ∪Ws, and with (c) it impliesL(γ ) ∩ Fix(f ) = ∅. So under (c),
NW(f ) \ Fix(f ) is not empty, as it containsω(x) for everyx ∈ γ \ {p}. Lemma
3.1 implies the theorem when (b) holds. Under assumption (d),β \ {p} is a trans-
lation line that is not homeomorphic toR, whencef is not free by the translation
line theorem.

Theorem 3.3. Assume that every fixed point is isolated and has index≤ 0. Then
the following statements hold.

(i) For everyx, asn goes to±∞, eitherf nx goes to a fixed point or‖f nx‖ →
∞.

(ii) For each direct saddlep, every homoclinic contact is a fixed point6= p and
each branch atp is homeomorphic to[0,∞).
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(iii) If the only fixed point is a direct saddlep, then there are no homoclinic con-
tacts and every branch is unbounded.

Proof. As there cannot be a Jordan curve of positive index, the wandering theo-
rem implies (i). Conclusion (ii) follows from Theorem 3.2(d). For (iii), suppose
there is a homoclinic contactz. Thenz is nonwandering (Lemma 3.1). If either
z = p, or z 6= p (whencez 6= f(z)), there is an index-1 curve by Theorem 3.2(b),
contradicting the hypothesis. Letβ be a bounded branch, assumed unstable to fix
ideas. Letx ∈ L(β) \ {p}. If p ∈ ω(x) thenx is a homoclinic point, contradict-
ing (ii), but any point ofω(x)\ {p} is a nonfixed nonwandering point, yielding an
index-1 curve by the translation line theorem. Thus, every branch is bounded.

Notice that Theorem 3.3 does not say every branch is closed and unbounded. Lit-
tle is known about limit sets of branches.

The following result is an analog of Theorem 3.2 for a heteroclinic cycle.

Theorem 3.4. For somem ≥ 1, let p0, . . . , pm = p0 be direct saddles for an
orientation preserving diffeomorphismf of R2. Suppose that an unstable branch
αi−1 at pi−1 meets a stable branchβi at pi at a pointzi /∈ {pi−1, pi} for i =
1, . . . , m. Then there exists a Jordan curve of index1 and hence there is a fixed
point different from all thepi.

Proof. Eachzi is nonwandering, by a well-known argument similar to the proof
of Lemma 3.1; now apply the index theorem.

4. Homologically Nilpotent Maps

LetM denote a surface. The first rational singular homology group ofM, denoted
byH = H1(M; q), is a vector space over the rational fieldq. A mapg : M → M

induces a linear mapg∗ : H → H.

Call g : M → M homologically nilpotentif eachc ∈H is annihilated by some
iterategk∗ , k = k(c). This holds whengn∗ = 0 for somen ≥ 1, for example, when
gM lies in a simply connected subset ofM. For a more interesting example, take
M to be the complement inR2 of the positive integer points on the horizontal axis;
thenH1(M; q) has the countably infinite basis{ek}k∈N+ , whereek is represented
by a small oriented circle centered at(k,0). Let g : M → M be the restriction of
a mapR2 → R2 taking (k,0) to (k − 1,0). Theng is homologically nilpotent
becausegk∗ek = 0 for all k.

Lemma 4.1. If M admits an injective homologically nilpotent mapg, thenM
embeds in the sphere.

Proof. We argue by contradiction. IfM is not embeddable in the sphere, then there
exist Jordan curvesC,C ′ crossing each other atq ∈ M and otherwise disjoint,
with mod 2 intersection numberC #C ′ 6= 0. By injectivity, gnC ∩ gnC ′ = {gnq}
for all n ≥ 1; andgnC crossesgnC ′ atgnq becausegn, being injective, mapsM
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homeomorphically onto an open set by Brouwer’s invariance of domain. There-
fore,gnC#gnC ′ 6= 0. This impliesgn∗ c 6= 0,wherec ∈H1(M; q) is the homology
class defined by an orientation ofC. Thusg is not homologically nilpotent.

In contrast, every orientable, connected noncompact surfaceM admits a homo-
logically nilpotent mapM → M that islocally injective. For there exists an im-
mersion ofM in the plane (see e.g. [14, Thm. 4.7]) and hence there is a locally
injective mapf : M → M whose image lies in an open 2-cell.

Hypothesis. From now on,S ⊂ R2 is an open set andf : S → S is injective
(thus a homeomorphism onto an open set), homologically nilpotent, and orienta-
tion preserving.

The construction in the following proof gives a canonical embedding ofS in a
surfaceE ≈ R2 together with a canonical extension off to a bijective homeo-
morphismh : E→ E.

Proposition 4.2. There exists a surfaceE≈R2,a homeomorphismj : S≈ jS ⊂
E onto an open set, and an orientation preserving homeomorphismh : E ≈ E
such that the following hold.

(a) h B j = j B f.
(b) For everyx ∈ E, there exists a natural numbern = n(x) such thathn(x) ∈

j(S).

(c) If f : S → fS is a diffeomorphism, thenE has a natural differential structure
diffeomorphic toR2, andj andh are diffeomorphisms.

Proof. We obtainh : E→ E as the direct limit of the infinite sequence

S
f−→ S

f−→ · · · .
An element ofE is an equivalence class [x, k] (where(x, k) ∈ S × N) under the
equivalence relation [x, k] = [y, l] if there existsn ≥ k, l with f n−kx = f n−ly.
GiveE the largest topology making continuous the natural projectionS × N →
E, (x, k) 7→ [x, k]. Definej : S → E by j(x) = [x,0], and set

h : E→ E, [x, k] 7→ [x, k −1] = [fx, k].

It is easy to see that, for eachn ∈ N, the mapjn : S → E, x 7→ [x, n] maps
S homeomorphically onto an open subsetEn ⊂ E, andE = ⋃

En. HenceE
is a two-dimensional manifold, and it is not hard to show thatE is metrizable,
connected, and noncompact. We haveH1(E; q) = 0 becausef is homologically
nilpotent and the singular homology functor commutes with direct limits. The
classification of surfaces therefore implies thatE is homeomorphic to the plane.
The homeomorphismh is surjective because, for any [x, k],

h([x, k +1]) = [fx, k +1] = [x, k];
h is injective because ifh([x, j ]) = h([y, k]) then [f(x), j ] = [fy, k] and
there existsn ≥ j, k such thatf n−j+1x = f n−k+1y, implying [x, j ] = [y, k].
Conclusions (a) and (b) follow from the construction. Whenf is a diffeomor-
phism, the mapsjn define a differential structure onE; the resulting manifold is
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diffeomorphic toR2 by the classification of smooth surfaces, and the rest of (c) is
easy to verify.

Corollary 4.3. Letf, S, h,E, j be as in Proposition 4.2. Then:

(a) each compact subset ofE has a neighborhoodU such thathnU ⊂ jS for
somen ≥ 0;

(b) y ∈E is nonwandering forh if and only ify = j(x), wherex ∈ S is nonwan-
dering forf ;

(c) hny = y ∈E if and only ify = j(x) andf nx = x;
(d) if a diskD ⊂ E has no fixed points on its boundary, there existsn ≥ 0 such

thathnD ⊂ S and Ind(f, j(hnJ )) = Ind(h, J ).

These results enable us to extend the earlier theorems on planar homeomorphisms
to surface mapsf : S → S that are injective and homologically nilpotent. For
example, the plane translation theorem extends as follows.

Theorem 4.4. If f has no fixed point, then every point is wandering. More pre-
cisely, every point lies in an open setV with the following properties:

(a) f nV ∩ V = ∅ for all n 6= 0;
(b) V̄ is surface whose boundary∂V is the union of disjoint nonempty setsA,B

that are closed in∂V, and each component ofA andB is homeomorphic toR;
(c) f(V̄ ) ∩ V̄ = f(A) ⊂ B;
(d) f k(V̄ ) ∩ V̄ = ∅ for all k ≥ 2.

Proof. By Theorem 4.2 and Corollary 4.3(c), we assumejS ⊂ R2 is the inclu-
sion of an open subset,h : R2 ≈ R2 is orientation preserving and fixed-point free,
hS ⊂ S, andf = h|S. Givenx ∈ S, there is open setW ⊂ E containingx and
satisfying the plane translation theorem applied toh. Now defineV = W ∩S.
The index theorem may be generalized as follows.

Theorem 4.5. If f is not free, thenf has index1on the boundary of some diskD.

Proof. Make the same identifications as in the preceding proof. By the index the-
orem,h has index 1 on the boundary of a diskD ′ ⊂ R2. For somen > 0, the disk
D = hnD ′ lies inS and satisfies the theorem, by Corollary 4.3(a) and (d).

The other results can be similarly extended. Thus, the theorems in Section 3 ex-
tend to orientation preserving diffeomorphismsf : R2 ≈ X ⊂ R2.
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