Michigan Math. J. 48 (2000)

Height Formulas for Homogeneous Varieties

HARRY TAMVAKIS

Dedicated to my teacher, William Fulton

In this paper we use classical Schubert calculus to evaluate the integral formula of
Kaiser and Kohler [KK] for the Faltings height of certain homogeneous varieties
in terms of combinatorial data, and we verify their conjecture for the size of the
denominators.

1. Introduction

Consider a system of diophantine equations with integral coefficients which de-
fines an arithmetic variety in projective spac®; . The Faltings height(X) of X
is a measure of the arithmetic complexity of the system; itis an arithmetic analog of
the geometric notion of the degree of a projective variety. The hgight general-
izes the classical height of a rational point of projective space, used by Siegel [S],
Northcott [N] and Weil [W] to study questions of diophantine approximation.
Faltings [F] defined:(X) using the arithmetic intersection theory of Gillet and
Soulé [GS2]; ifO(1) denotes the canonical hermitian line bundlePdn then the
height
’ h(X) = haw(X) = degéy(O(1)™X | X)

is the arithmetic degree &f c P” with respect ta)(1). More generally, one has
a notion of height of algebraic cycles with respect to hermitian line bundles; see
[BGS, Sec. 3]. Our interest here is in explicit computations for these heights when
X = G/P is a homogeneous space of a Chevalley gréup

There are several alternative ways to identify the Faltings h&ighi. Although
not as intrinsic as the above definition, they involve a more direct use of the equa-
tions in the system defining. The approach by Philippon [Ph] uses an “alterna-
tive Mahler measure” of the Chow form &f. WhenX is a hypersurface defined
by a homogeneous polynomigle Z[zo, ..., z,], this gives

h(X) =deg(f)h(P”)+/ 10al /()] do. @

§2n+
wheredo denotes thé/(n + 1)-invariant probability measure on the unit sphere
§2m+1in C"+1; the Faltings height of projective space is given by

1 n
h(P") =5 Ha (2)
k=1

(see also [BGS, Sec. 3.3.1]). He¥g =1+ % 4+ 4 % is aharmonic number.
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Cassaigne and Maillot [CM] used (1) to compute the height of certain toric
hypersurfaces and even-dimensional quadrics. Maillot [Ma] later computed arith-
metic intersections in the Arakelov Chow ring of generalySGrassmannians
G (m, n) and arrived at an algorithm for calculating the Faltings heigltt 6f, n)
under its Pliicker embedding. In [T1]-[T4] the author useithmetic Schubert
calculusto obtain simple formulas for the heights of $Land Lagrangian Grass-
mannians as well as an algorithm to compute the height of flag varietigsPSL
with respect to their natural geometric embeddings in projective space.

A third general approach to computing the heigfX) is via an arithmetic ana-
log of the classical Hilbert—Samuel formula. The latter identifies the degree of
X (C) with respect to an ample line bundig€C) in the leading term of the Hilbert
polynomial of L. Thearithmetic Hilbert—Samuel formulstates that

. pd+l
deg(H(X, L="), || - ll2) = @i X+ o logn). 3

HereL = O(1) ]  Isthe very ample line bundle inducing the projective embedding

of X, andd = dim¢ X(C) is the dimension oX relative to Spe&. The left-hand

side of (3) is defined as follows: for eagh> 0 the latticeV = HO(X, L®") is a

torsion-free abelian group. Choose a Kahler metri&¢@) with volume formdx,

and equipL (C) with its standard hermitian metric and the real vector space-

V ®z RwiththeL, norm||s|? = Jxo |s(x)|?dx. If we provideVy with the Haar

measure that gives volume 1 to the unit ball, thefeg H(X, L"), || - |1) is the

logarithm of the covolume (that is, the measure of a fundamental domain) of the

lattice V in Vg. The asymptotic formula (3) was first shown by Gillet and Soulé

[GS1] using, among other things, a weak form of their arithmetic Riemann—Roch

theorem; Abbés and Bouche [AB] later gave a simpler direct proof.

Recently, Kaiser and Kéhler [KK] used (3) to produce a formula for the height of
generalized flag varieties with respect to natural very ample hermitian line bun-
dles. They compute the covolume on the left-hand side of (3) by using the Jantzen
sum formula [J, Sec. 8.16] for integral representations of Chevalley schemes over
Z, which is identified in [KK] with an analog of the Weyl character formula in
Arakelov geometry. The asymptoticsias> +oo are evaluated by applying the
Riemann—Roch theorem, and the result is a fascinating integral formula for the
heighth(X).

To describe their formula, le¥ be a semisimple Chevalley group over Sfiec
let T C G be a maximal split torus with set of roois and fix an orderingR =
R* U R~ with basisA. Parabolic subgroups @ correspond to subsefsc A;
for each suchl let X = G/P denote the smooth projective scheme déeghat
represents the fpgc- or étale-sheafification of the fun€tes G(S)/P(S) for any
parabolicP C G of type! (see [DG, XXVI, Sec. 3.3] and [KK, Sec. 2]).

Let g andt be the Lie algebras aff and7, respectively, and consider a stan-
dard parabolic subgroup containingT whose Lie algebrga decomposes into

root spaces of;:
p=t+ Z Ja

OtERp
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for someRp with R~ C Rp C R. Following Snow [Sn], we define the setrobts

of X by Ry = R\ Rp. For any weight andux € R, set(A, o) = 2(, @)/(«, o),
where (-, -) is the pairing induced by the Killing form op. The very ample
line bundlesL; on G/P are given byP-representations with weightssuch that
(A,a) =0ifae RT\ Ry and(A, a) > Ofora € Rx. The bundleL, comes with

an equivariant hermitian metric, which is normalized by setting the length of the
generator of the correspondiymodule equal to 1.

TueoreM 1 [KK].  The height ofX = G/P with respect to the hermitian line
bundleL, is given by

_ — 1¢ (=D* (d+1 k+1 d—k
hL,M(X)_E;)k—H(Hl);] [ mErawntt @

Here E; is the homogeneous vector bundle owelassociated to the virtuat-
representation with character

Xj= Z le{io{7 (5)

o (A a)y=j

andpy (E) is thekth power sunof E, that is, the characteristic class associated to
the symmetric functiopy (x) = Y, x¥.

One of the merits of (4) is that it is a purely cohomological formula, whereas
general arithmetic intersections on flag varieties involve nonclosed currents (see
[T2]). One may readily evaluate (4) using standard localization techniques, as in
[KK, Sec. 8]; the resulting explicit but rather complicated expressions give ratio-
nal numbers for the height. An interesting feature of the formulas in [KK] is that
the size of the denominators seems larger than expected. More precisely; et
be the largest exponent 6f; note thatc(G) = m(G) + 1is the Coxeter number
of G (see e.g. [OV, p. 289]). It is shown in [KK] that the largest prime power
occurring in the denominator of:2, (G/P) is no greater than/Z(G). Based on
computer calculations and the results of [T3; T4], Kaiser and Koéhler formulate
the following.

CoNsEcTURE 1. The heightiz, (G/P) is a number in; Z'"(G)(lz)

This paper grew out of the author’s attempts to understand (4) and compare it
with the formulas in [T3] and [T4]. We use Schubert calculus to evaluate the in-
tegrals in (4) directly in several examples that include some of those studied in
[T2]-[T4]. Specifically, we consider the complete flag variety (Section 2) and
Grassmannian (Section 3) for $Las well as the Grassmannians parametrizing
maximal isotropic subspaces in the symplectic and even orthogonal cases (Sec-
tion 4). This leads to formulas for the height similar to the ones in [T3] and [T4]
but which are qualitatively quite different, as they come from classical rather than
arithmetic Schubert calculus. Itturns out that the formulas derived from (4) giving
the heights of the Lagrangian and even orthogonal Grassmannians are very simi-
lar. We combine them with the height calculation in [T4] and arrive at an analog
of [T4, Thm. 3] in the orthogonal case (Theorem 6 of the present paper).
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We are able to prove that Conjecture 1 holds in all these examples. In the SL
case we do this directly, without using the results of [T2; T3]. Our explanation
for the cancellation of the denominators is surprisingly subtle; we could not show
this without using techniques from classical Schubert calculus and combinatorics
of symmetric functions.

| wish to thank Kai Kéhler and Damian Roessler for discussing their results
with me. A special thank-you goes to Bill Fulton for many years of encourage-
ment and enlightenment—in conversations and through his exemplary teaching
and research.

2. Height of the Complete SL,-Flag Variety

The homogeneous spac&s = G/P considered in this paper are all smooth
over Spe and have cellular decompositions in the sense of [Fu, Ex. 1.9.1].
It follows that the Chow rings CKHX) may be defined witlZ-coefficients (fol-
lowing [Fu, Secs. 1-8 and 20]) and are isomorphic to the integral cohomology
rings H*(X(C), Z). Throughout this paper we will identify the two and use
[ : CH(X) — Z to denote the classical degree map.

In this sectionF = SL,, /B will denote the complete Sj)-flag variety, which
parametrizes, over any base fidldthe complete flags in &-vector space of
dimensiom. There is a tautological filtration

O=EqCEi,CE,C---CE,=E

of the trivial rankn vector bundleE over F. The dimension!/ = dim¢ F(C) =

n

2Let t = {diag(x1, ..., x,) | Y_x; = 0} be the Cartan subalgebra of diagonal
matrices ins[,,. The set of positive rootR ™ can be identified with the linear func-
tionalsx; —x; forl<i < j <nandRr = R™. Eachx; maps to—ci(E;/E;_1)
under the Borel characteristic map

Sym(CharB)) — CH(F)

and will be identified with its image in the Gysin computations that follow.

ProprosiTION 1. For anyoa = («, ..., a,) € (Z,)" we have

/ o a { sgn(w) if ¢ = (wn—-12),...,w@, w()) forwes,,
X e X n —
Pt " 0 otherwise.

Proof. Recall from [BGG] and [D] that the degree map

/:CH(F)—>Z
F

can be identified with the divided difference operaigg, wherewg denotes the
element of longest length in the symmetric grdip Moreover, the operator

D= dug: Z[x1, ..., x5] = Z[x1, ..., x,]%
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coincides with the Jacobi symmetrizer, whose value at a polynofriil

1
) =5 D sgwuw(f),
weS,
whereV =[], _;.,(x; — x;) is the Vandermonde determinant.
Becausef,. = 9, the result is implied by the following three facts: (i) = 0
in CH(F) for eachi; (ii) the image of the antisymmetrizing operaorsgn(w)w
consists of the skew-symmetric polynomials; and (iii) we have

n—=1_n-2
/xl X5 S xpm1= 1,
F
n—1_n—-2

asx; “xy “---x,_1is dual to the class of a point in Q). O

The very ample line bundlds; on F correspond to weights of the forma(a) =

Yo' jaix; with a = (a;) integers such that; > -+ > a, > 0. If a = p ==
(n—1...,10) thenr = A(p) is the half sum of the positive roots and the cor-
responding embedding df in projective space is the pluri-Pliicker embedding,
considered in [T2, Sec. 9].

In the statement of the next result we use multiindex notatdn.denotes the
nonnegative integers and, fertuplesa,v € (Z,)", a” := aj*---a)r with the
convention that ® = 1. Moreover,|v| = 3" v;, (""') is a multinomial coefficient,
andey, ..., e, are the standard basis elements for the laffite

TueEOREM 2. (a)For the very ample metrized line bundlg,, — F, we have

_ _ 1 (Disgnw) (K (d+1\(d—k\
" =3 2 (i)(k~|—1)< v >(a’ we ©

18,0,V

thesumoveralt, s,ieZ andve (Z)"withl<r <s <nandk =d—|v| >
0 and such thav + ie, + (k —i)e; = w(p) for a (uniqué permutationw € S,,.
(b) Conjecture 1is true for.

Proof. (a) A direct application of Theorem 1 gives
1 (“)hfa+1 d—k
Mo (F) =5 g 1 <k +1> ;(ar — as)k”/F(xr - xs)k(zaixi> :
)

Now (6) follows from (7) by expanding the factors in the integrand and applying
Proposition 1.

(b) Note that the conditiom + ie, + (k —i)e;, = w(p) With0 < i < k =
d — |v| is quite restrictive orv; in particular,k < 2n — 3. Suppose that +1 =
p'" is a prime power greater tham(SL,) = n — 1. The key humber theoretic re-
sult that is used to simplify the denominators in the examples we consider is the
following.

Lemma 1. Ifk +1= p’ is a prime power, theify) = (1) modp for all i.
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<k>:1 and (_k ):k—_l<k)z—<k> modp. O
0 i+1 i+1\i i

Observe now that any fixed s, andv with |v| = d — k contribute either zero or
two terms to the sum (6). The latter case is determined by the relations

W, +i,vs+k—i)=(b,c) and (v, +i',vy+k—i)=(c,b)

for somei, i’ > 0O; the corresponding permutations w’ differ by a transposition

and hence have opposite signs. Lemma 1 now implies that the numerator of the
sum of the two terms is divisible byy. Sincek +1 < 2m(SL,), it follows that the
highest power of in the denominator of 2(F') is at mostn(SL,,). O

Proof.

3. Height of the SLy-Grassmannian

In this section we will adopt the notational conventions of [T3, Secs. 2, 4, 5]. Let
N =m+nandG = G(m, n) = SLy/P,,., denote the Grassmannian over Spec
that parametrizes-planes ink" for any fieldk. The universal exact sequence of
vector bundles ovef is

0—S—E—Q—0. (8)

These become hermitian vector bundles by giving the trivial rdrdandle E(C)
the trivial hermitian metric and the tautological ramksubbundleS(C) and quo-
tient bundleQ (C) the induced metrics.

We have a geometric basis of Schubert classes for the Chow ring £ these
coincide with the characteristic clas4eg Q)},. Here the indexing set consists of
partitionsi whose Young diagrams are contained inithem rectanglgm”)—in
this section we consider only such diagrams—sgni@ the Schur polynomial cor-
responding ta.. If we rotate the complement afin (m") by 180 then we obtain
thedual diagrami (see Figure 1); this corresponds to the Poincaré dugk ¢f)
in geometry. For each boxin X, thehook length:, equals the number of boxes
directly to the right and below, includingx itself. Define

Al
o =[]h and f*= |h—|
XEA A
A

>)

Figure 1 Dual Young diagrams ii8°%)
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[ |

Figure 2 A hook and a double hook

and recall thatf* counts the number aftandard Young tableauvon A, that is,
the number of fillings of the boxes afwith the integers 1..., |A| such that the
entries are strictly increasing along each row and column.

A partition A is ahookif A = (a, 1°) for somea > 0 andbh > 0. We define a
double hooko be a pair(x C A) of partitions such that is a hook and the skew
diagrama /u is a rim hook. Figure 2 shows a hopkand a double hook C A
(with A /u shaded). We assume that0| 1| < |A| and call the pait| |, |A| —|1])
theweightof the double hook. Define the sign of a hook and double hook by

sgn(t) = (=DM and sgrip C 4) = (=Dt

respectively, where as usual the heighty) of a rim hooky is one less than the
number of rows it occupies.

THEOREM 3. (@) The Faltings height of the Grassmannié@n= G (m, n) under
its Pliicker embedding in projective space is given by

[ P ~
HG) = (’"" +1> £+ 5 ngnmw(m” +1)f* ©)

M+1 Unl+1
(- 1)*+ﬂ<|x|)<mn+1> N

- = A 10

E;sgf‘“c "t G +n)? 1o

where the first sum is over all hooksand the second over all double hogks—
A (with A contained in(m™)).
(b) Conjecture 1 is true fo.

ReEMARKs. (1) Note that the sums in Theorem 3 may be indexed by simple inte-
gral parameters. For instance, the hook partitioss (a, 1°) in (9) havea andb
in the ranges ¥ a < m and 0< b < n — 1, and the sum may be written as

}Z (=1)*m — (—1)bn mn +1 f(a’lb)/\-
2 — a+b+1 a+b+1

However, the second sum (10) requires four integral parameters (cf. [T3, Thm. 2]).
(2) All the diagrams that occur in Theorem 3 are contained imthem rec-

tangle(m"), in contrast to the corresponding formula of [T3, Thm. 2], where the

diagrams have weightn 4+ 1. This stems from the fact that the former comes
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from classical intersection theory and Schubert calculus whereas the latter from
their arithmetic analogs.

(3) Part (b) follows immediately from the formula fa(G) in [T3, Thm. 2]
coming from arithmetic Schubert calculus. The point here is to check the con-
jecture directly using part (a). Note that, a priori, the denominators in (10) are as
large as 21(SLy) — 1.

Proof of Theorem 3(a) For the homogeneous spadésuch thatX(C) is a her-
mitian symmetric space, there is a unique positive primitive hermitian line bundle
L, on X (given by a fundamental weighy. One can check (see [KK, p. 28]) that
(v, x) € {1, 2} for anyux € Ry.

In our caseX = G(m, n), the line bundle is d&i) and the corresponding
embedding is the Plicker embedding. Moreover, only one homogeneous vector
bundleE; occurs in (4), and the sum (5) is over all the rootXofthusE; = TG.

Since dim: G(C) = mn, formula (4) becomes

1 (=D (mn+1 mn—k
hG) = 5; k+1( Hl)[(}pk(TG)cl(Q) (1)

(see also [KR, Sec. 1]). To evaluate the integrals in (11), recall that the tangent
bundleTG = §* ® Q and
Pe(S) +p(Q) =pe(S® Q) =0

for positivek, askE is trivial in (8). It follows that

k
p(TG) =" (l.)p,-w*)pk_,-(Q) (12)

l

1k
=(m—(D*mp( Q)+ Y (—1)’+1<l.> Pi(@pi-i(Q)  (13)
O<i<k
for positivek, while po(TG) = rk(TG) = mn.
Let pr = pr(Q) ands; = s,(Q) for the remainder of this section. The power
sums and their products are related to the Schur functioas follows:

Pe=_ SANM)ss, (14)
A
prpr = Z sgn(p C A)s;, (15)
HCA

with (14) summed over all hooks of weightk and (15) summed over all double
hooksu C A of weight (k, /) (see [M, Ex. 1.3.11]). Moreover, the degree map
satisfies

f sxsfmfw = fx (16)
G

foranyir c (m"). Indeed, by iterating the Pieri rule for a produgt;, we see that

—[A
S)\Sfm 1Al = N)‘S(mn)
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in CH(G), whereN,_is the number of ways of filling in the boxes @f") \ A with

the numbers,12, ..., mn — |A| so that the entries are strictly increasing along rows
and columns. By rotating this picture I8Mne sees thaV, equals the number
f* of standard tableaux on Equation (16) now follows, as,,» is dual to the
class of a point in CKG).

The proof of part (a) is completed by using (14) and (15) in (13), substituting the
result in (11), and applying (16). Note that the initial term in (9) comes from the
k = 0termin (11), which is treated separately.

(b) Observe that it suffices to verify this statement for the unique primitive line
bundle, thatis, foh(G) as given in part (a). This follows from the basic properties
of heights [BGS, Sec. 3.2.1].

Suppose that + 1 = p* is a prime power which is at least(SLy) + 1 =
m + n; we must check that the numerator of the sum of terms in (9) and (10) with
|| = k is divisible by p. For this it is convenient to visualize the partitions that
occur in these sums usifysequences, as in [T3, pp. 430—431]. Theequence
of a partitionr C (m") is then-tuple

B =Mi+n—-1L ra+n—2, ..., A, +n—n)

of distinct integers between 0 and+ n — 1. We picture each such sequence as a
collection ofn checkers on the Young diagram@f + m) (that is,n + m squares

in a row). The checker positions correspond to the numbgrsrdered as on the
real line. Let us agree to identify a Young diagram withdtsequence; for exam-
ple, the empty diagram corresponds to the picture in Figure 3.

Figure 3 The g-sequence of the empty diagram

The g-sequences are convenient when working with the power sym#\
checkerC makes amoveof lengthk when it moves to an empty square located
squares to the right of its initial position. Tlseggn of the move is+1 (resp.—1)
if the number of checker§ “jumped over” is even (resp. odd). We then have the
following multiplication rule:

Prspor = Y (EDspin,

the sum over alB(u) obtained fromg (1) by a move of lengttk, with the sign
equal to the sign of the move. In other words (recalling (14) and (15)), each move
of lengthk starting fromg () corresponds to adding a rikahooky to A, and the
parity mod 2 ofat(y) determines the sign of the move.

Let 8(A) — B(w) denote a single move fro(i) to B(n). Observe that the
sum (9) is over all moveg(?) — B(1), while (10) is summed over paify¥) —
B(u) — B(1) of consecutive moves, starting from tesequence of the empty
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diagram. We are now ready to study the numerators in (9) and (10)pnaod
distinguish two cases.

Case 1.Summing the terms witth| = k > m + n — 1. Observe that there
are no such terms coming from (9), since the longest possible (aak'~1) has
weightm +n — 1 Let us consider those summangi®)) — B(u) — B(1) with
afixed final positior3(1). Note that each of these is a sequence of two moves in-
volving distinct checkers (i.e., the same checker cannot have moved twice). It is
easy to see that there are exactly four such sequences, corresponding to the two
choices for the first checker and the two possible destination squares (all deter-
mined byg(1)). By counting the total number of checkers jumped over for each
move, one sees that two of the four sequences havetsigmd the other two sign
—1. Figure 4 illustrates the smallest example, the four pairs of movesg@n=
(1,0) to B(2, 2) = (3, 2) whenm = n = 2. The first move in each pair is shown
by the arrowabovethe diagram, and the corresponding double hqoks A are
illustrated above these.

A = = ol

.
oje] | | o] | | [e[e] | | |o]o] | |
N~ N~ N ~__~

Figure 4 Four move pairs with signs1, +1, -1, —1

Now Lemma 1 shows that the numerator of the sum of these four terms has res-
idue, modp, of

1 -~
(—D*'“("’;’fi 1)}“ > sgnB@) — B(u) — () =0,
HCA

and we are done with this case.

Case 2.Summing the terms witf| = m+n—1= p” —1 The sum of all such
terms that come from pairs of movgsf)) — B(u) — B(A) using two distinct
checkersand with A not a hookis handled exactly as in Case 1. The remaining
extra terms have equal to the hookm, 1"~1), and are analyzed as follows.

(i) Thereis a single such term in the sum (9); the residue of the numeratgp mod
for this term is

)" (=)™ 'm —n)- F = (=)"m + (=1)"n) - F, a7)

whereF is the fixed factor = (") Flm 2
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(if) There arem — 1 terms of (10) of the form

T
ejejeje] | | [ | | |

—n —

contributing total numerator residue
=" H=)"m =1 - F = (=D"(m =1 - F, (18)

andn — 1terms of (10) of the form

contributing total numerator residue
D)™ =D)" 2= - F=(-D" Yn—1)-F. (19)
The total contribution of the extra terms to the numerator is therefore
17 — 18 — (19) = [(=D)™ + (=1)"] - nF modp.

Recall thatn +n = p” is a prime power. Ifp is odd, therm andn have differ-
ent parity mod 2 and hende-1)" + (—1)" = 0. Otherwisep = 2 while clearly
(=D™ + (—1D" is even. The proof is complete. O

ExampLE 1. When applied to projective spaé = G(n, 1), Theorem 3 gives

n+1\ 1~ (-Dfn—-1/n+1\ 1 (=D [k (n+1
h(P") = -y — - = .
(&™) < 2 >+2; k11 <k+1> 2; r+1 Ui)lket1
B 0<i<k
We leave it as an exercise for the reader to check that this agrees with the Stoll

number from (2). Another method of evaluating (4) for= P" is given in [KK,
Sec. 8].

4. Heights of Isotropic Grassmannians

In this section we adopt the notational conventions from [T4] unless otherwise
indicated. All constructions and results will be tygeand typed analogs of
those of the previous section. Our aim is to study the height formula (4) for the
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Lagrangian and even orthogonal Grassmannians, whose complex points are her-
mitian symmetric spaces. We begin with the former in order to draw from the
analysis in [T4], although the final formulas are simpler in the orthogonal case
(this is to be expected, as the same is true for the degrees in geometry).

Let LG = LG(n, 2n) = Sp,/P, denote the Lagrangian Grassmannian over
SpecZ which parametrizes maximal isotropic subspacek?h with respect to
the standard symplectic form, for any fidldWe have a universal exact sequence
of vector bundles over LG

0—S—E—Q—0, (20)

with E the trivial bundle of rank 2. We can use the symplectic form to identify the
quotient bundleQ with S*. The complex points of these bundles can be metrized
as in the previous section (see [T4]). Wedet dimc(LG(C)) = (";1).

We have a geometric basis of Schubert classes for the Chow riig@H given
by the characteristic classgs,(Q)},. Here the indexing set consists of strict par-
titions A whose Young diagrams are contained in the triangular partitian =
(n,n —1,...,1). Furthermoreg;, denotes the-polynomial indexed by.; these
symmetric polynomials were defined and studied by Pragacz and Ratajski and are
type-C analogs of Schur polynomials (see [PR, Thm. 2.1]).

The Poincaré dual;(Q) of 0;(Q) is indexed by thelual diagram;\\, whose
parts complement the partsofn the sef{l, ..., n}. The relation between the two
diagrams can be visualized as follows: the shifted diagsam) is obtained by
rotating the complement & (1) in S(p(n)) by 90¢° and then reflecting it about
the vertical axis (see [P, Cor. 6.9] and Figure 5).

|
7 L

Figure 5 Shifted diagrams fox = (5, 3) C p(5) and). = 4,2,

Let ¢g* denote the number of standard tableaux on the shifted diagiam
Then one hag* = |A|!/h$, whereh; is the product of the hook lengths at boxes
of S(1) (these hook lengths are taken with respect to the double diagranseé
[M, Ex. 111.8.12] for details). In [T4, Sec. 3] we extended the definition of the
numbersg” to arbitrary Young diagramswith 1, < n. Theg” count the number
of proper standard tableaugn A (as defined in [T4]). It would be interesting to
find an analog of the hook length formula for these more gergenaimbers. The
(geometric) degree of L&) is given by

degLG(C)) = rg”™, wherer := 247" = 2n(n=b/2,
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Following [T4, Sec. 4.2]and [M, Exll.8.11] we define, in the context of shifted
diagrams, alouble rimto be the skew diagram formed by the union of two rim
hooks that both end on the main diago®ak= {(i, i) | i > 0}. Each double rim
8§ = a U B is a union of two non-empty connected piecesonsists of the diag-
onals of length 2 i (which are parallel td@) andg = § \ « is a rim hook (two
double rims appear in Figure 6). For any such doublesraind for any rim hook
y, let

() = (=Dl*/#h B2 and e(y) = (=DM,

We define ashapeto be the Young diagram of a partition= (i1, A») with
A1+ A2 odd. Note that ifs is a shape then the shifted diagra.) is a (rim)
hook or a double rim. Define double shapé¢o be a pair(u C A) of strict parti-
tions, with|1| even andu| odd, such that: is a shape and(1/u) is a rim hook
or a double rim; thaveightof . C A is the pair(ju|, |A| — |1]). An example in
S(p(7)) is illustrated in Figure 6. Finally, to any shapeand double shape C
A we associate the integers

e(l)=¢e(EM) and e(u C i) =e(S(w)e(SH/m).

Figure 6 The (shifted) double shagé,1) c (7,4,2,1)

THEOREM 4. (@) The Faltings height:(LG) of the Lagrangian Grassmannian
LG = LG(n, 2n) under its fundamental embedding in projective space satisfies

rn? 2n+1-2M 7 d+1\ »
h(LG) = —(d +1g"™ —r e(x)—( )g* (21)
2 ; A +1 A +1
e(uw CA) (Il d+1>;
+2 , 22
Z A +1 <|m><m+1 8 (22)

where the first sum is over all shapesnd the second is over all double shapes
w C A (with A contained ino(n)), andr = 2¢7".
(b) Conjecture 1is true foL.G.

Proof. (a) The line bundle giving the embedding in this case is(@et Let
X1, ..., x, be the Chern roots of. One may check, using for instance [BH],
that in this case two vector bundles occur in formula (4): a bufgleith roots
{2x;} and anothelE, = A2(Q) with roots {x; + x; | i < j}. Hence Theo-
rem 1 gives
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1 (=D fd+1
h(LG) = }j( )(+> (pe(Er) + 2 pi(E) (@) 5. (23)
k=0

2 k+1
Observe that )
Zexfﬂj = %[—Zezﬂ + <Zex"> i|;
i<j i i
hence
ch(r?(Q)) = ( sz ch(Q) +ch(Q) ) (24)

where ch is thekth homogeneous component of the Chern character. Now sub-
stitute p, = k! chy in (24) and equate the degréecomponents to obtain

1 k
PeA(Q) = =27p(Q) + 5 Z(l.)p,(Q)pk,-(Q). (25)

i

It follows that

Pe(ED)+2 i (Eg) = 2¢ [(2n+1 2p(@+ ) ( )p,(Q)pk ,(Q)}
O<i<k
(26)
for positivek, while po(E1) + 2po(E2) = n?.
For the remainder of this proof lgt. ando; denotep,(Q) anda;(Q), respec-
tively. Thelengthof a partitiona (i.e., the number of nonzero parts) is denoted by
£(A). In[T4, eq. (19)] we showed that, farodd,

o = Y 8(S(/u)2" W~ Mgy, (27)
A

the sum over all strict O u with |A| = || + k such thatS(1/u) is a rim hook
or a double rim. Equation (27) implies the relations

Pe=2 Z e(W)2" Moy (28)
A
and
Pkpr = 428(11« C M2 Mgy, (29)
HCh

where (28) is summed over all shapesf weightk and (29) is summed over all
double shapes c 2 of weight(k, /). Moreover, the degree map satisfies

/ a,\ad A ot)=2] gI (30)
LG

for anyx C p(n). Equation (30) is justified in the same way as (16), by iterating
the Pieri rule of [BoH] for a produet; o1, and recalling the picture of the dual dia-
grama from Figure 5. We complete the argument by using the ingredients (26),
(28), (29), and (30) in (23), noting that for any shapee have(-1)* = —1
whereas, for a double shapec , (-)* =1,

(b) This follows immediately from the formula fén(LG) in [T4] (reproduced
here in equation (34)), which comes from arithmetic Schubert calculus. Itis likely
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that one can show the cancellation of the denominators directly (as in Theorem
3(b)) using the analogs @-sequences in this setting. O

ExampLE 2. We compute the height of the quadric (234) using Theorem 4.
The constants are = 2, d = 3, r = 2, and theg-numbers

gw _ gl _ gz _ g(2,1) -1
The shapes contained p(2) = (2,1) are(1) and (2, 1), while there is a single
double shapél) C (2). Moreover, their associated integers are

e(@)=1 e(@ZD)=-2 «@Dc@)=1
Substituting these into (21) yields

3/4\ 3/4 4/2\(4\ 17
wsean--(30)-3(0)+$() -5

in agreement with [CM] and [T4].

We turn now to the even orthogonal Grassmannian96GG(n + 1, 2n + 2) =
SOy,42/Py41, Where P, is the maximal parabolic subgroup corresponding to
a “right end root” in the Dynkin diagram. Here we can immediately state our
theorem.

THEOREM 5. (@) The Faltings height:(OG) of the even orthogonal Grassman-
nian OG = OG(n + 1, 2n + 2) under its fundamental embedding in projective
space satisfies

_(d+ ™ n+1-—2*- 1<d+1> =
h<OG>—< )p Z W=t per)s 6D

e (I d+1\ =
S IR (m)(mu)g ’ (32)

HCA

where the first sum is over all shapesnd the second is over all double shapes
i C A (with A contained ino(n)).
(b) Conjecture 1is true foOG.

Proof. (a) The argument is similar (and in fact simpler) than that for Theorem 4.
We will confine ourselves to pointing out the differences in the orthogonal case.
Note that the space of maximal isotropic subspace§3h? (with respect to
a nondegenerate symmetric form) has two connected components, a@) OG
parametrizes one of them. We have a universal subbuhdled quotient bundle
Q that fit into an exact sequence (20) as before.

The dimension! = dim¢(OG(C)) = n(n + 1)/2 and the Chow ring CKDG)
has a basis of Schubert clas$eg Q)} for strict partitionsh with A C p(n). Here
7, is a P-polynomial, related to th€@-polynomialo; by

T) = Z_Z(MO’)L

(we refer again to [PR, Thm. 2.1] for details).
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The generatoL, of Pic(OG) giving the fundamental embedding hasL,) =
71(Q). Moreover, we havév, «) = 1for alla € Rog, and the vector bundlg; =
T(0G) = A?%(Q). We can thus use (25) in the computation of the integrals, noting
that (28) and (29) have the simpler form

pe=2) e,
A

pipl = 428(/1 C M1y

nCA

in this case. In addition, the degree map for OG satisfies

d—|3| x
/ nT o =8
oG

(b) We argue indirectly by comparing the formulain part (a) with thatfdG),
for which we know the result is true. Sineg(SO,,.2) = 2rn + 1 and the largest
denominators in the first sum (31) have order @e are left with checking the de-
nominators in the second sum (32). Itis clear by comparing (32) with (22) that we
need only check what happens wh&h+ 1 = 2* is a large power of 2. But this
never occurs, because for each double shagea the weight|A| iseven. [

ExampLE 3. The case = 2 is similar to Example 2, since all the constants are
the same. Substituting into (31) gives

L (2[4 1/4\\ , 1/2\(4\ 13
H(OG(3.6)) — 6 (5(2>+5<4))+§<1>(3> = o =hEd,

as expected.

Combining the two preceding theorems with [T4, Thm. 3] leads to an analog of
the latter result for OGlt is clear from the formulas in Theorems 4 and 5 that

. nd+1 ., 1 e (d+1 -
1OG) = @) h(LG) + —,—¢ 2;|M+1 A1) (33)

the sum over all shapes (with 11 < n). We now recall the situation in [T4,
Sec. 5]: for each shapeC p(n) there is a unique Young diagrari] [of weight

d + 1 such that (i) there is a shifted hook operation (as defined in [T4]) fogdm [
to p(n) and (ii) the diagram., which is obtained fromJ] by deleting two equal
parts, is the dual diagram af Observe that all shapesc p(n) are of the form

A = (a+ 2b+1, a) foruniquea, b € Z, with a + 2b < n, and we have)]] =
[a, b], in the notation of [T4, Sec. 5]. Note also the equality

eV =¢e((a+2b+1 a)) = (1921 b0,

wheres, g is the Kronecker delta. It follows that Theorem 3 of [T4] may be stated
in the following form:

h(LG) = g 3D 2 (R g, (34)
A
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the sum over all shapaswith 11 < n. We see thathe parameter spacg&(n) for

the sum i T4, Thm. 3]is in bijection with the set of shapeswith A; < n. This

is a pleasant surprise, as the formula in [T4] and (21) were shown using different
methods (arithmetic and classical Schubert calculus, respectively). Putting (33)
and (34) together produces the following theorem.

THEOREM 6. The Faltings height of0G = OG(n + 1, 2n + 2) under its funda-
mental embedding in projective space is given by

n(d+1) o(n)
—4 8

1 _ 2¢(A) (d+1Y\ 5

h(0G) =

A +1\ A +1

the sum over all shapeswith A; < n. This may be written using the parameters
a,beZ, as follows
nd+D o, 1 b o—3a [a.b],
h(0OG) = Tgp "4 > Z (D" 2% H 2442418

0<a+2b<n

— 1' Z (_1)“2—5110 ( d+1 )(g(<1-§—2b-HLu)A

0<a+2b<n a+b+1\2a+2b+42
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