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Height Formulas for Homogeneous Varieties
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Dedicated to my teacher, William Fulton

In this paper we use classical Schubert calculus to evaluate the integral formula of
Kaiser and Köhler [KK] for the Faltings height of certain homogeneous varieties
in terms of combinatorial data, and we verify their conjecture for the size of the
denominators.

1. Introduction

Consider a system of diophantine equations with integral coefficients which de-
fines an arithmetic varietyX in projective spaceP nZ . The Faltings heighth(X) ofX
is a measure of the arithmetic complexity of the system; it is an arithmetic analog of
the geometric notion of the degree of a projective variety. The heighth(X)general-
izes the classical height of a rational point of projective space, used by Siegel [S],
Northcott [N] and Weil [W] to study questions of diophantine approximation.
Faltings [F] definedh(X) using the arithmetic intersection theory of Gillet and
Soulé [GS2]; ifSO(1) denotes the canonical hermitian line bundle onP n, then the
height

h(X) = h SO(1)(X) = d̂eg(ĉ1(SO(1))dim(X) | X)
is the arithmetic degree ofX ⊂ P n with respect toSO(1). More generally, one has
a notion of height of algebraic cycles with respect to hermitian line bundles; see
[BGS, Sec. 3]. Our interest here is in explicit computations for these heights when
X = G/P is a homogeneous space of a Chevalley groupG.

There are several alternative ways to identify the Faltings heighth(X).Although
not as intrinsic as the above definition, they involve a more direct use of the equa-
tions in the system definingX. The approach by Philippon [Ph] uses an “alterna-
tive Mahler measure” of the Chow form ofX. WhenX is a hypersurface defined
by a homogeneous polynomialf ∈Z[z0, . . . , zn], this gives

h(X) = deg(f )h(P n)+
∫
S2n+1

log|f(z)| dσ, (1)

wheredσ denotes theU(n + 1)-invariant probability measure on the unit sphere
S2n+1 in Cn+1; the Faltings height of projective space is given by

h(P n) = 1

2

n∑
k=1

Hk (2)

(see also [BGS, Sec. 3.3.1]). HereHk = 1+ 1
2 + · · · + 1

k
is aharmonic number.
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Cassaigne and Maillot [CM] used (1) to compute the height of certain toric
hypersurfaces and even-dimensional quadrics. Maillot [Ma] later computed arith-
metic intersections in the Arakelov Chow ring of general SLN -Grassmannians
G(m, n) and arrived at an algorithm for calculating the Faltings height ofG(m, n)

under its Plücker embedding. In [T1]–[T4] the author usedarithmetic Schubert
calculusto obtain simple formulas for the heights of SLN - and Lagrangian Grass-
mannians as well as an algorithm to compute the height of flag varieties SLN/P

with respect to their natural geometric embeddings in projective space.
A third general approach to computing the heighth(X) is via an arithmetic ana-

log of the classical Hilbert–Samuel formula. The latter identifies the degree of
X(C) with respect to an ample line bundleL(C) in the leading term of the Hilbert
polynomial ofL. Thearithmetic Hilbert–Samuel formulastates that

d̂eg(H 0(X,L⊗n), ‖ · ‖2) = nd+1

(d +1)!
h(X)+O(nd logn). (3)

HereL = O(1)∣∣
X

is the very ample line bundle inducing the projective embedding
ofX, andd = dimCX(C) is the dimension ofX relative to SpecZ. The left-hand
side of (3) is defined as follows: for eachn ≥ 0 the latticeV = H 0(X,L⊗n) is a
torsion-free abelian group. Choose a Kähler metric onX(C)with volume formdx,
and equipL(C) with its standard hermitian metric and the real vector spaceVR =
V ⊗Z Rwith theL2 norm‖s‖2 = ∫

X(C)|s(x)|2 dx. If we provideVR with the Haar

measure that gives volume 1 to the unit ball, then−d̂eg(H 0(X,L⊗n), ‖ · ‖2) is the
logarithm of the covolume (that is, the measure of a fundamental domain) of the
latticeV in VR. The asymptotic formula (3) was first shown by Gillet and Soulé
[GS1] using, among other things, a weak form of their arithmetic Riemann–Roch
theorem; Abbès and Bouche [AB] later gave a simpler direct proof.

Recently, Kaiser and Köhler [KK] used (3) to produce a formula for the height of
generalized flag varietiesX with respect to natural very ample hermitian line bun-
dles. They compute the covolume on the left-hand side of (3) by using the Jantzen
sum formula [J, Sec. 8.16] for integral representations of Chevalley schemes over
Z, which is identified in [KK] with an analog of the Weyl character formula in
Arakelov geometry. The asymptotics asn→ +∞ are evaluated by applying the
Riemann–Roch theorem, and the result is a fascinating integral formula for the
heighth(X).

To describe their formula, letG be a semisimple Chevalley group over SpecZ,
let T ⊂ G be a maximal split torus with set of rootsR, and fix an orderingR =
R+ ∪ R− with basis1. Parabolic subgroups ofG correspond to subsetsI ⊂ 1;
for each suchI let X = G/P denote the smooth projective scheme overZ that
represents the fpqc- or étale-sheafification of the functorS 7→ G(S)/P(S) for any
parabolicP ⊂ G of typeI (see [DG, XXVI, Sec. 3.3] and [KK, Sec. 2]).

Let g andt be the Lie algebras ofG andT, respectively, and consider a stan-
dard parabolic subgroupP containingT whose Lie algebrap decomposes into
root spaces ofG:

p = t+
∑
α∈RP

gα
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for someRP withR− ⊂ RP ⊂ R. Following Snow [Sn], we define the set ofroots
ofX byRX = R \ RP . For any weightλ andα ∈R, set〈λ, α〉 = 2(λ, α)/(α, α),
where (·, ·) is the pairing induced by the Killing form ong. The very ample
line bundlesLλ onG/P are given byP -representations with weightsλ such that
〈λ, α〉 = 0 if α ∈R+ \RX and〈λ, α〉 > 0 for α ∈RX. The bundleLλ comes with
an equivariant hermitian metric, which is normalized by setting the length of the
generator of the correspondingP -module equal to 1.

Theorem 1 [KK]. The height ofX = G/P with respect to the hermitian line
bundleSLλ is given by

hSLλ(X) =
1

2

d∑
k=0

(−1)k

k + 1

(
d + 1

k + 1

)∑
j>0

jk+1
∫
X

pk(Ej )c1(Lλ)
d−k. (4)

HereEj is the homogeneous vector bundle overX associated to the virtualP -
representation with character

χj =
∑

α :〈λ,α〉=j
e2πiα, (5)

andpk(E) is thekth power sumof E, that is, the characteristic class associated to
the symmetric functionpk(x) =

∑
i x

k
i .

One of the merits of (4) is that it is a purely cohomological formula, whereas
general arithmetic intersections on flag varieties involve nonclosed currents (see
[T2]). One may readily evaluate (4) using standard localization techniques, as in
[KK, Sec. 8]; the resulting explicit but rather complicated expressions give ratio-
nal numbers for the height. An interesting feature of the formulas in [KK] is that
the size of the denominators seems larger than expected. More precisely, letm(G)

be the largest exponent ofG; note thatc(G) = m(G) + 1 is the Coxeter number
of G (see e.g. [OV, p. 289]). It is shown in [KK] that the largest prime power
occurring in the denominator of 2hSLλ(G/P ) is no greater than 2m(G). Based on
computer calculations and the results of [T3; T4], Kaiser and Köhler formulate
the following.

Conjecture 1. The heighthSLλ(G/P ) is a number in1
2

∑m(G)
k=1

(
1
k
Z
)
.

This paper grew out of the author’s attempts to understand (4) and compare it
with the formulas in [T3] and [T4]. We use Schubert calculus to evaluate the in-
tegrals in (4) directly in several examples that include some of those studied in
[T2]–[T4]. Specifically, we consider the complete flag variety (Section 2) and
Grassmannian (Section 3) for SLN, as well as the Grassmannians parametrizing
maximal isotropic subspaces in the symplectic and even orthogonal cases (Sec-
tion 4). This leads to formulas for the height similar to the ones in [T3] and [T4]
but which are qualitatively quite different, as they come from classical rather than
arithmetic Schubert calculus. It turns out that the formulas derived from (4) giving
the heights of the Lagrangian and even orthogonal Grassmannians are very simi-
lar. We combine them with the height calculation in [T4] and arrive at an analog
of [T4, Thm. 3] in the orthogonal case (Theorem 6 of the present paper).
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We are able to prove that Conjecture 1 holds in all these examples. In the SLN

case we do this directly, without using the results of [T2; T3]. Our explanation
for the cancellation of the denominators is surprisingly subtle; we could not show
this without using techniques from classical Schubert calculus and combinatorics
of symmetric functions.

I wish to thank Kai Köhler and Damian Roessler for discussing their results
with me. A special thank-you goes to Bill Fulton for many years of encourage-
ment and enlightenment—in conversations and through his exemplary teaching
and research.

2. Height of the Complete SLn-Flag Variety

The homogeneous spacesX = G/P considered in this paper are all smooth
over SpecZ and have cellular decompositions in the sense of [Fu, Ex. 1.9.1].
It follows that the Chow rings CH(X) may be defined withZ-coefficients (fol-
lowing [Fu, Secs. 1–8 and 20]) and are isomorphic to the integral cohomology
rings H ∗(X(C),Z). Throughout this paper we will identify the two and use∫
X

: CH(X)→ Z to denote the classical degree map.
In this sectionF = SLn/B will denote the complete SLn-flag variety, which

parametrizes, over any base fieldk, the complete flags in ak-vector space of
dimensionn. There is a tautological filtration

0= E0 ⊂ E1⊂ E2 ⊂ · · · ⊂ En = E
of the trivial rank-n vector bundleE overF. The dimensiond = dimC F(C) =(
n

2

)
.

Let t = {diag(x1, . . . , xn) |
∑
xi = 0} be the Cartan subalgebra of diagonal

matrices insln. The set of positive rootsR+ can be identified with the linear func-
tionalsxi − xj for 1≤ i < j ≤ n andRF = R+. Eachxi maps to−c1(Ei/Ei−1)

under the Borel characteristic map

Sym(Char(B)) −→ CH(F )

and will be identified with its image in the Gysin computations that follow.

Proposition 1. For anyα = (α1, . . . , αn)∈ (Z+)n we have∫
F

x
α1
1 · · · xαnn =

{
sgn(w) if α = (w(n− 1), . . . , w(1), w(0)) for w ∈ Sn,
0 otherwise.

Proof. Recall from [BGG] and [D] that the degree map∫
F

: CH(F )→ Z

can be identified with the divided difference operator∂w0, wherew0 denotes the
element of longest length in the symmetric groupSn. Moreover, the operator

∂ = ∂w0 : Z[x1, . . . , xn] → Z[x1, . . . , xn]
Sn
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coincides with the Jacobi symmetrizer, whose value at a polynomialf is

∂(f ) = 1

V

∑
w∈Sn

sgn(w)w(f ),

whereV =∏1≤i<j≤n(xi − xj ) is the Vandermonde determinant.
Because

∫
F
≡ ∂, the result is implied by the following three facts: (i)xni = 0

in CH(F ) for eachi; (ii) the image of the antisymmetrizing operator
∑

sgn(w)w
consists of the skew-symmetric polynomials; and (iii) we have∫

F

xn−1
1 xn−2

2 · · · xn−1= 1,

asxn−1
1 xn−2

2 · · · xn−1 is dual to the class of a point in CH(F ).

The very ample line bundlesLλ onF correspond to weightsλ of the formλ(a) =∑n
i=1ai xi with a = (ai) integers such thata1 > · · · > an ≥ 0. If a = ρ :=

(n − 1, . . . ,1,0) thenλ = λ(ρ) is the half sum of the positive roots and the cor-
responding embedding ofF in projective space is the pluri-Plücker embedding,
considered in [T2, Sec. 9].

In the statement of the next result we use multiindex notation:Z+ denotes the
nonnegative integers and, forn-tuplesa,ν ∈ (Z+)n, aν := a

ν1
1 · · · aνnn with the

convention that 00 = 1. Moreover,|ν| =∑ νi,
(|ν|
ν

)
is a multinomial coefficient,

ande1, . . . , en are the standard basis elements for the latticeZn.

Theorem 2. (a)For the very ample metrized line bundleSLλ(a)→ F, we have

hSLλ(a)(F ) =
1

2

∑
r,s,i,ν

(−1)isgn(w)

k + 1

(
k

i

)(
d + 1

k + 1

)(
d − k
ν

)
(ar − as)k+1aν, (6)

the sum over allr, s, i ∈Z+ andν ∈ (Z+)n with1≤ r < s ≤ n andk = d−|ν| ≥
0 and such thatν + ier + (k − i)es = w(ρ) for a (unique) permutationw ∈ Sn.

(b) Conjecture 1 is true forF.

Proof. (a) A direct application of Theorem 1 gives

hSLλ(a)(F ) =
1

2

d∑
k=0

(−1)k

k +1

(
d +1

k +1

)∑
r<s

(ar − as)k+1
∫
F

(xr − xs)k
(∑

ai xi

)d−k
.

(7)

Now (6) follows from (7) by expanding the factors in the integrand and applying
Proposition 1.

(b) Note that the conditionν + ier + (k − i)es = w(ρ) with 0 ≤ i ≤ k =
d − |ν| is quite restrictive onν; in particular,k ≤ 2n− 3. Suppose thatk + 1=
pr is a prime power greater thanm(SLn) = n− 1. The key number theoretic re-
sult that is used to simplify the denominators in the examples we consider is the
following.

Lemma 1. If k + 1= pr is a prime power, then
(
k

i

) ≡ (−1)i modp for all i.
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Proof. (
k

0

)
= 1 and

(
k

i +1

)
= k − i
i +1

(
k

i

)
≡ −

(
k

i

)
modp.

Observe now that any fixedr, s, andν with |ν| = d − k contribute either zero or
two terms to the sum (6). The latter case is determined by the relations

(νr + i,νs + k − i) = (b, c) and (νr + i ′,νs + k − i ′) = (c, b)
for somei, i ′ ≥ 0; the corresponding permutationsw,w ′ differ by a transposition
and hence have opposite signs. Lemma 1 now implies that the numerator of the
sum of the two terms is divisible byp. Sincek+1≤ 2m(SLn), it follows that the
highest power ofp in the denominator of 2h(F ) is at mostm(SLn).

3. Height of the SLN-Grassmannian

In this section we will adopt the notational conventions of [T3, Secs. 2, 4, 5]. Let
N = m+n andG = G(m, n) = SLN/Pm,n denote the Grassmannian over SpecZ
that parametrizesm-planes inkN for any fieldk. The universal exact sequence of
vector bundles overG is

0−→ S −→ E −→ Q −→ 0. (8)

These become hermitian vector bundles by giving the trivial rank-N bundleE(C)
the trivial hermitian metric and the tautological rank-m subbundleS(C) and quo-
tient bundleQ(C) the induced metrics.

We have a geometric basis of Schubert classes for the Chow ring CH(G); these
coincide with the characteristic classes{sλ(Q)}λ. Here the indexing set consists of
partitionsλwhoseYoung diagrams are contained in then×m rectangle(mn)—in
this section we consider only such diagrams—andsλ is the Schur polynomial cor-
responding toλ. If we rotate the complement ofλ in (mn) by 180◦ then we obtain
thedual diagram̂λ (see Figure 1); this corresponds to the Poincaré dual ofsλ(Q)

in geometry. For each boxx in λ, thehook lengthhx equals the number of boxes
directly to the right and belowx, includingx itself. Define

hλ =
∏
x∈λ

hx and f λ = |λ|!
hλ
,

λ

λ

Figure 1 Dual Young diagrams in(86)
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Figure 2 A hook and a double hook

and recall thatf λ counts the number ofstandard Young tableauxon λ, that is,
the number of fillings of the boxes ofλ with the integers 1, . . . , |λ| such that the
entries are strictly increasing along each row and column.

A partition λ is ahook if λ = (a,1b) for somea > 0 andb ≥ 0. We define a
double hookto be a pair(µ ⊂ λ) of partitions such thatµ is a hook and the skew
diagramλ/µ is a rim hook. Figure 2 shows a hookµ and a double hookµ ⊂ λ
(with λ/µ shaded). We assume that 0< |µ| < |λ| and call the pair(|µ|, |λ|−|µ|)
theweightof the double hook. Define the sign of a hook and double hook by

sgn(λ) = (−1)ht(λ) and sgn(µ ⊂ λ) = (−1)ht(µ)+ht(λ/µ)

respectively, where as usual the heightht(γ ) of a rim hookγ is one less than the
number of rows it occupies.

Theorem 3. (a)The Faltings height of the GrassmannianG = G(m, n) under
its Plücker embedding in projective space is given by

h(G) =
(
mn+ 1

2

)
f (m

n) + 1

2

∑
λ

sgn(λ)
(−1)|λ|m− n
|λ| + 1

(
mn+ 1

|λ| + 1

)
f λ̂ (9)

− 1

2

∑
µ⊂λ

sgn(µ ⊂ λ)(−1)|λ|+|µ|

|λ| + 1

( |λ|
|µ|
)(
mn+ 1

|λ| + 1

)
f λ̂ (10)

where the first sum is over all hooksλ and the second over all double hooksµ ⊂
λ (with λ contained in(mn)).

(b) Conjecture 1 is true forG.

Remarks. (1) Note that the sums in Theorem 3 may be indexed by simple inte-
gral parameters. For instance, the hook partitionsλ = (a,1b) in (9) havea andb
in the ranges 1≤ a ≤ m and 0≤ b ≤ n−1, and the sum may be written as

1

2

∑
a,b

(−1)am− (−1)bn

a + b +1

(
mn+1

a + b +1

)
f (a,1

b)∧ .

However, the second sum (10) requires four integral parameters (cf. [T3, Thm. 2]).
(2) All the diagrams that occur in Theorem 3 are contained in then × m rec-

tangle(mn), in contrast to the corresponding formula of [T3, Thm. 2], where the
diagrams have weightmn + 1. This stems from the fact that the former comes



600 Har ry Tamvak is

from classical intersection theory and Schubert calculus whereas the latter from
their arithmetic analogs.

(3) Part (b) follows immediately from the formula forh(G) in [T3, Thm. 2]
coming from arithmetic Schubert calculus. The point here is to check the con-
jecture directly using part (a). Note that, a priori, the denominators in (10) are as
large as 2m(SLN)−1.

Proof of Theorem 3.(a) For the homogeneous spacesX such thatX(C) is a her-
mitian symmetric space, there is a unique positive primitive hermitian line bundle
SLν onX (given by a fundamental weightν). One can check (see [KK, p. 28]) that
〈ν, α〉 ∈ {1,2} for anyα ∈RX.

In our caseX = G(m, n), the line bundle is det(SQ) and the corresponding
embedding is the Plücker embedding. Moreover, only one homogeneous vector
bundleE1 occurs in (4), and the sum (5) is over all the roots ofX; thusE1= TG.
Since dimCG(C) = mn, formula (4) becomes

h(G) = 1

2

mn∑
k=0

(−1)k

k +1

(
mn+1

k +1

)∫
G

pk(TG)c1(Q)
mn−k (11)

(see also [KR, Sec. 1]). To evaluate the integrals in (11), recall that the tangent
bundleTG ∼= S ∗ ⊗Q and

pk(S)+ pk(Q) = pk(S ⊕Q) = 0

for positivek, asE is trivial in (8). It follows that

pk(TG) =
∑
i

(
k

i

)
pi(S

∗)pk−i(Q) (12)

= (m− (−1)kn)pk(Q)+
∑

0<i<k

(−1)i+1

(
k

i

)
pi(Q)pk−i(Q) (13)

for positivek, while p0(TG) = rk(TG) = mn.
Let pk = pk(Q) andsλ = sλ(Q) for the remainder of this section. The power

sums and their products are related to the Schur functionssλ as follows:

pk =
∑
λ

sgn(λ)sλ, (14)

pkpl =
∑
µ⊂λ

sgn(µ ⊂ λ)sλ (15)

with (14) summed over all hooksλ of weightk and (15) summed over all double
hooksµ ⊂ λ of weight (k, l ) (see [M, Ex. I.3.11]). Moreover, the degree map
satisfies ∫

G

sλs
mn−|λ|
1 = f λ̂ (16)

for anyλ ⊂ (mn). Indeed, by iterating the Pieri rule for a productsλs1,we see that

sλs
mn−|λ|
1 = Nλs(mn)
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in CH(G),whereNλ is the number of ways of filling in the boxes of(mn)\λwith
the numbers 1,2, . . . , mn−|λ| so that the entries are strictly increasing along rows
and columns. By rotating this picture 180◦, one sees thatNλ equals the number
f λ̂ of standard tableaux on̂λ. Equation (16) now follows, ass(mn) is dual to the
class of a point in CH(G).

The proof of part (a) is completed by using (14) and (15) in (13), substituting the
result in (11), and applying (16). Note that the initial term in (9) comes from the
k = 0 term in (11), which is treated separately.

(b) Observe that it suffices to verify this statement for the unique primitive line
bundle, that is, forh(G) as given in part (a). This follows from the basic properties
of heights [BGS, Sec. 3.2.1].

Suppose thatk + 1 = pk is a prime power which is at leastm(SLN) + 1 =
m+ n; we must check that the numerator of the sum of terms in (9) and (10) with
|λ| = k is divisible byp. For this it is convenient to visualize the partitions that
occur in these sums usingβ-sequences, as in [T3, pp. 430–431]. Theβ-sequence
of a partitionλ ⊂ (mn) is then-tuple

β(λ) = (λ1+ n−1, λ2 + n− 2, . . . , λn + n− n)
of distinct integers between 0 andm+ n−1. We picture each such sequence as a
collection ofn checkers on the Young diagram of(n+m) (that is,n+m squares
in a row). The checker positions correspond to the numbersβi, ordered as on the
real line. Let us agree to identify a Young diagram with itsβ-sequence; for exam-
ple, the empty diagram corresponds to the picture in Figure 3.

n m

Figure 3 Theβ-sequence of the empty diagram

The β-sequences are convenient when working with the power sumspk. A
checkerC makes amoveof lengthk when it moves to an empty square locatedk
squares to the right of its initial position. Thesignof the move is+1 (resp.−1)
if the number of checkersC “jumped over” is even (resp. odd). We then have the
following multiplication rule:

pk sβ(λ) =
∑

(±1)sβ(µ),

the sum over allβ(µ) obtained fromβ(λ) by a move of lengthk, with the sign
equal to the sign of the move. In other words (recalling (14) and (15)), each move
of lengthk starting fromβ(λ) corresponds to adding a rimk-hookγ to λ, and the
parity mod 2 ofht(γ ) determines the sign of the move.

Let β(λ) → β(µ) denote a single move fromβ(λ) to β(µ). Observe that the
sum (9) is over all movesβ(∅)→ β(λ), while (10) is summed over pairsβ(∅)→
β(µ) → β(λ) of consecutive moves, starting from theβ-sequence of the empty
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diagram. We are now ready to study the numerators in (9) and (10) modp and
distinguish two cases.

Case 1.Summing the terms with|λ| = k > m + n − 1. Observe that there
are no such terms coming from (9), since the longest possible hook(m,1n−1) has
weightm+ n− 1. Let us consider those summandsβ(∅)→ β(µ)→ β(λ) with
a fixed final positionβ(λ). Note that each of these is a sequence of two moves in-
volving distinct checkers (i.e., the same checker cannot have moved twice). It is
easy to see that there are exactly four such sequences, corresponding to the two
choices for the first checker and the two possible destination squares (all deter-
mined byβ(λ)). By counting the total number of checkers jumped over for each
move, one sees that two of the four sequences have sign+1 and the other two sign
−1. Figure 4 illustrates the smallest example, the four pairs of moves fromβ(∅) =
(1,0) to β(2,2) = (3,2) whenm = n = 2. The first move in each pair is shown
by the arrowabovethe diagram, and the corresponding double hooksµ ⊂ λ are
illustrated above these.

Figure 4 Four move pairs with signs+1, +1, −1, −1

Now Lemma 1 shows that the numerator of the sum of these four terms has res-
idue, modp, of

(−1)|λ|+1

(
mn+1

|λ| +1

)
f λ̂
∑
µ⊂λ

sgn(β(∅)→ β(µ)→ β(λ)) = 0,

and we are done with this case.

Case 2.Summing the terms with|λ| = m+n−1= pr−1. The sum of all such
terms that come from pairs of movesβ(∅) → β(µ) → β(λ) using two distinct
checkersand withλ not a hookis handled exactly as in Case 1. The remaining
extra terms haveλ equal to the hook(m,1n−1), and are analyzed as follows.

(i) There is a single such term in the sum (9); the residue of the numerator modp

for this term is

(−1)n−1((−1)m+n−1m− n) · F = ((−1)mm+ (−1)nn) · F, (17)

whereF is the fixed factorF = (mn+1
m+n

)
f (m,1

n−1)∧ .
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(ii) There arem− 1 terms of (10) of the form

n

contributing total numerator residue

(−1)m+n−1(−1)n−1(m−1) · F = (−1)m(m−1) · F, (18)

andn−1 terms of (10) of the form

m

contributing total numerator residue

(−1)m+n−1(−1)n−2(n−1) · F = (−1)m−1(n−1) · F. (19)

The total contribution of the extra terms to the numerator is therefore

(17)− (18)− (19) = [(−1)m + (−1)n] · nF modp.

Recall thatm + n = pr is a prime power. Ifp is odd, thenm andn have differ-
ent parity mod 2 and hence(−1)m + (−1)n = 0. Otherwisep = 2 while clearly
(−1)m + (−1)n is even. The proof is complete.

Example 1. When applied to projective spaceP n = G(n,1), Theorem 3 gives

h(P n) =
(
n+1

2

)
+ 1

2

n∑
k=1

(−1)kn−1

k +1

(
n+1

k +1

)
− 1

2

∑
i,k

0<i<k

(−1)i+k

k +1

(
k

i

)(
n+1

k +1

)
.

We leave it as an exercise for the reader to check that this agrees with the Stoll
number from (2). Another method of evaluating (4) forX = P n is given in [KK,
Sec. 8].

4. Heights of Isotropic Grassmannians

In this section we adopt the notational conventions from [T4] unless otherwise
indicated. All constructions and results will be type-C and type-D analogs of
those of the previous section. Our aim is to study the height formula (4) for the
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Lagrangian and even orthogonal Grassmannians, whose complex points are her-
mitian symmetric spaces. We begin with the former in order to draw from the
analysis in [T4], although the final formulas are simpler in the orthogonal case
(this is to be expected, as the same is true for the degrees in geometry).

Let LG = LG(n,2n) = Spn/Pn denote the Lagrangian Grassmannian over
SpecZ which parametrizes maximal isotropic subspaces ink2n, with respect to
the standard symplectic form, for any fieldk. We have a universal exact sequence
of vector bundles over LG,

0−→ S −→ E −→ Q −→ 0, (20)

withE the trivial bundle of rank 2n.We can use the symplectic form to identify the
quotient bundleQ with S ∗. The complex points of these bundles can be metrized
as in the previous section (see [T4]). We letd = dimC(LG(C)) = (n+1

2

)
.

We have a geometric basis of Schubert classes for the Chow ring CH(LG), given
by the characteristic classes{σλ(Q)}λ. Here the indexing set consists of strict par-
titions λ whose Young diagrams are contained in the triangular partitionρ(n) =
(n, n−1, . . . ,1). Furthermore,σλ denotes theQ̃-polynomial indexed byλ; these
symmetric polynomials were defined and studied by Pragacz and Ratajski and are
type-C analogs of Schur polynomials (see [PR, Thm. 2.1]).

The Poincaré dualσλ̂(Q) of σλ(Q) is indexed by thedual diagramλ̂, whose
parts complement the parts ofλ in the set{1, . . . , n}. The relation between the two
diagrams can be visualized as follows: the shifted diagramS(λ̂) is obtained by
rotating the complement ofS(λ) in S(ρ(n)) by 90◦ and then reflecting it about
the vertical axis (see [P, Cor. 6.9] and Figure 5).

Figure 5 Shifted diagrams forλ = (5,3) ⊂ ρ(5) and̂λ = (4,2,1)

Let gλ denote the number of standard tableaux on the shifted diagramS(λ).
Then one hasgλ = |λ|!/hsλ, wherehsλ is the product of the hook lengths at boxes
of S(λ) (these hook lengths are taken with respect to the double diagram ofλ; see
[M, Ex. III.8.12] for details). In [T4, Sec. 3] we extended the definition of the
numbersgλ to arbitrary Young diagramsλ with λ1 ≤ n. Thegλ count the number
of proper standard tableauxonλ (as defined in [T4]). It would be interesting to
find an analog of the hook length formula for these more generalg-numbers. The
(geometric) degree of LG(C) is given by

deg(LG(C)) = rgρ(n), where r := 2d−n = 2n(n−1)/2.
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Following [T4, Sec. 4.2] and [M, Ex.III.8.11] we define, in the context of shifted
diagrams, adouble rimto be the skew diagram formed by the union of two rim
hooks that both end on the main diagonalD = {(i, i) | i > 0}. Each double rim
δ = α ∪ β is a union of two non-empty connected pieces;α consists of the diag-
onals of length 2 inδ (which are parallel toD) andβ = δ \ α is a rim hook (two
double rims appear in Figure 6). For any such double rimδ and for any rim hook
γ, let

ε(δ) = (−1)|α|/2+ht(β)2 and ε(γ ) = (−1)ht(γ ).

We define ashapeto be the Young diagram of a partitionλ = (λ1, λ2) with
λ1+ λ2 odd. Note that ifλ is a shape then the shifted diagramS(λ) is a (rim)
hook or a double rim. Define adouble shapeto be a pair(µ ⊂ λ) of strict parti-
tions, with|λ| even and|µ| odd, such thatµ is a shape andS(λ/µ) is a rim hook
or a double rim; theweightof µ ⊂ λ is the pair(|µ|, |λ| − |µ|). An example in
S(ρ(7)) is illustrated in Figure 6. Finally, to any shapeλ and double shapeµ ⊂
λ we associate the integers

ε(λ) = ε(S(λ)) and ε(µ ⊂ λ) = ε(S(µ))ε(S(λ/µ)).

Figure 6 The (shifted) double shape(4,1) ⊂ (7,4,2,1)

Theorem 4. (a)The Faltings heighth(LG) of the Lagrangian Grassmannian
LG = LG(n,2n) under its fundamental embedding in projective space satisfies

h(LG) = rn2

2
(d + 1)gρ(n) − r

∑
λ

ε(λ)
2n+ 1− 2|λ|

|λ| + 1

(
d + 1

|λ| + 1

)
g λ̂ (21)

+ 2r
∑
µ⊂λ

ε(µ ⊂ λ)
|λ| + 1

( |λ|
|µ|
)(

d + 1

|λ| + 1

)
g λ̂, (22)

where the first sum is over all shapesλ and the second is over all double shapes
µ ⊂ λ (with λ contained inρ(n)), andr = 2d−n.

(b) Conjecture 1 is true forLG.

Proof. (a) The line bundle giving the embedding in this case is det(SQ). Let
x1, . . . , xn be the Chern roots ofQ. One may check, using for instance [BH],
that in this case two vector bundles occur in formula (4): a bundleE1 with roots
{2xi} and anotherE2 = ∧2(Q) with roots {xi + xj | i < j}. Hence Theo-
rem 1 gives
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h(LG) = 1

2

d∑
k=0

(−1)k

k +1

(
d +1

k +1

)∫
LG
(pk(E1)+ 2k+1pk(E2))c1(Q)

d−k. (23)

Observe that ∑
i<j

exi+xj = 1

2

[
−
∑
i

e2xi +
(∑

i

exi
)2]
;

hence

ch(∧2(Q)) = 1

2

(
−
∑
k

2k chk(Q)+ ch(Q)2
)
, (24)

where chk is thekth homogeneous component of the Chern character. Now sub-
stitutepk = k! chk in (24) and equate the degree-k components to obtain

pk(∧2(Q)) = −2k−1pk(Q)+ 1

2

∑
i

(
k

i

)
pi(Q)pk−i(Q). (25)

It follows that

pk(E1)+2k+1pk(E2) = 2k
[
(2n+1−2k)pk(Q)+

∑
0<i<k

(
k

i

)
pi(Q)pk−i(Q)

]
(26)

for positivek, while p0(E1)+ 2p0(E2) = n2.

For the remainder of this proof letpk andσλ denotepk(Q) andσλ(Q), respec-
tively. Thelengthof a partitionλ (i.e., the number of nonzero parts) is denoted by
`(λ). In [T4, eq. (19)] we showed that, fork odd,

pkσµ =
∑
λ

ε(S(λ/µ))2`(µ)−`(λ)+1σλ, (27)

the sum over all strictλ ⊃ µ with |λ| = |µ| + k such thatS(λ/µ) is a rim hook
or a double rim. Equation (27) implies the relations

pk = 2
∑
λ

ε(λ)2−`(λ)σλ (28)

and
pkpl = 4

∑
µ⊂λ

ε(µ ⊂ λ)2−`(λ)σλ, (29)

where (28) is summed over all shapesλ of weightk and (29) is summed over all
double shapesµ ⊂ λ of weight(k, l ). Moreover, the degree map satisfies∫

LG
σλσ

d−|λ|
1 = 2`(λ)−|λ|rg λ̂ (30)

for anyλ ⊂ ρ(n). Equation (30) is justified in the same way as (16), by iterating
the Pieri rule of [BoH] for a productσλσ1, and recalling the picture of the dual dia-
gramλ̂ from Figure 5. We complete the argument by using the ingredients (26),
(28), (29), and (30) in (23), noting that for any shapeλ we have(−1)|λ| = −1
whereas, for a double shapeµ ⊂ λ, (−1)|λ| = 1.

(b) This follows immediately from the formula forh(LG) in [T4] (reproduced
here in equation (34)), which comes from arithmetic Schubert calculus. It is likely
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that one can show the cancellation of the denominators directly (as in Theorem
3(b)) using the analogs ofβ-sequences in this setting.

Example 2. We compute the height of the quadric LG(2,4) using Theorem 4.
The constants aren = 2, d = 3, r = 2, and theg-numbers

g∅ = g1= g2 = g(2,1) = 1.

The shapes contained inρ(2) = (2,1) are(1) and(2,1), while there is a single
double shape(1) ⊂ (2). Moreover, their associated integers are

ε((1)) = 1, ε((2,1)) = −2, ε((1) ⊂ (2)) = 1.

Substituting these into (21) yields

h(LG(2,4)) = 16− 2

(
3

2

(
4

2

)
+ 3

2

(
4

4

))
+ 4

3

(
2

1

)(
4

3

)
= 17

3
,

in agreement with [CM] and [T4].

We turn now to the even orthogonal Grassmannian OG= OG(n + 1,2n + 2) =
SO2n+2/Pn+1, wherePn+1 is the maximal parabolic subgroup corresponding to
a “right end root” in the Dynkin diagram. Here we can immediately state our
theorem.

Theorem 5. (a)The Faltings heighth(OG) of the even orthogonal Grassman-
nian OG = OG(n + 1,2n + 2) under its fundamental embedding in projective
space satisfies

h(OG) =
(
d + 1

2

)
gρ(n) −

∑
λ

ε(λ)
n+ 1− 2|λ|−1

|λ| + 1

(
d + 1

|λ| + 1

)
g λ̂ (31)

+
∑
µ⊂λ

ε(µ ⊂ λ)
|λ| + 1

( |λ|
|µ|
)(

d + 1

|λ| + 1

)
g λ̂, (32)

where the first sum is over all shapesλ and the second is over all double shapes
µ ⊂ λ (with λ contained inρ(n)).

(b) Conjecture 1 is true forOG.

Proof. (a) The argument is similar (and in fact simpler) than that for Theorem 4.
We will confine ourselves to pointing out the differences in the orthogonal case.
Note that the space of maximal isotropic subspaces inC2n+2 (with respect to
a nondegenerate symmetric form) has two connected components, and OG(C)
parametrizes one of them. We have a universal subbundleS and quotient bundle
Q that fit into an exact sequence (20) as before.

The dimensiond = dimC(OG(C)) = n(n+ 1)/2 and the Chow ring CH(OG)
has a basis of Schubert classes{τλ(Q)} for strict partitionsλ with λ ⊂ ρ(n). Here
τλ is aP̃ -polynomial, related to thẽQ-polynomialσλ by

τλ = 2−`(λ)σλ

(we refer again to [PR, Thm. 2.1] for details).
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The generatorLν of Pic(OG) giving the fundamental embedding hasc1(Lν) =
τ1(Q). Moreover, we have〈ν, α〉 = 1 for allα ∈ROG, and the vector bundleE1=
T(OG) = ∧2(Q). We can thus use (25) in the computation of the integrals, noting
that (28) and (29) have the simpler form

pk = 2
∑
λ

ε(λ)τλ,

pkpl = 4
∑
µ⊂λ

ε(µ ⊂ λ)τλ

in this case. In addition, the degree map for OG satisfies∫
OG
τλτ

d−|λ|
1 = g λ̂.

(b)We argue indirectly by comparing the formula in part (a) with that forh(LG),
for which we know the result is true. Sincem(SO2n+2) = 2n+ 1 and the largest
denominators in the first sum (31) have order 2n,we are left with checking the de-
nominators in the second sum (32). It is clear by comparing (32) with (22) that we
need only check what happens when|λ| + 1= 2k is a large power of 2. But this
never occurs, because for each double shapeµ ⊂ λ the weight|λ| is even.

Example 3. The casen = 2 is similar to Example 2, since all the constants are
the same. Substituting into (31) gives

h(OG(3,6)) = 6−
(

2

2

(
4

2

)
+ 1

2

(
4

4

))
+ 1

3

(
2

1

)(
4

3

)
= 13

6
= h(P3),

as expected.

Combining the two preceding theorems with [T4, Thm. 3] leads to an analog of
the latter result for OG. It is clear from the formulas in Theorems 4 and 5 that

h(OG) = (2r)−1h(LG)+ n(d +1)

4
gρ(n) − 1

2

∑
λ

ε(λ)

|λ| +1

(
d +1

|λ| +1

)
g λ̂, (33)

the sum over all shapesλ (with λ1 ≤ n). We now recall the situation in [T4,
Sec. 5]: for each shapeλ ⊂ ρ(n) there is a unique Young diagram [λ] of weight
d + 1 such that (i) there is a shifted hook operation (as defined in [T4]) from [λ]
to ρ(n) and (ii) the diagram̄λ, which is obtained from [λ] by deleting two equal
parts, is the dual diagram ofλ. Observe that all shapesλ ⊂ ρ(n) are of the form
λ = (a + 2b + 1, a) for uniquea, b ∈ Z+ with a + 2b < n, and we have [λ] =
[a, b]n in the notation of [T4, Sec. 5]. Note also the equality

ε(λ) = ε((a + 2b +1, a)) = (−1)a21−δa0,

whereδa0 is the Kronecker delta. It follows that Theorem 3 of [T4] may be stated
in the following form:

h(LG) = r

2

∑
λ

(−1)(|λ|−1)/2ε(λ)H|λ|g [λ], (34)
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the sum over all shapesλ with λ1 ≤ n. We see thatthe parameter spaceE(n) for
the sum in[T4, Thm. 3] is in bijection with the set of shapesλ with λ1 ≤ n. This
is a pleasant surprise, as the formula in [T4] and (21) were shown using different
methods (arithmetic and classical Schubert calculus, respectively). Putting (33)
and (34) together produces the following theorem.

Theorem 6. The Faltings height ofOG= OG(n+ 1,2n+ 2) under its funda-
mental embedding in projective space is given by

h(OG) = n(d + 1)

4
gρ(n)

+ 1

4

∑
λ

(
(−1)(|λ|−1)/2ε(λ)H|λ|g [λ] − 2ε(λ)

|λ| + 1

(
d + 1

|λ| + 1

)
g λ̂
)
,

the sum over all shapesλ with λ1 ≤ n. This may be written using the parameters
a, b ∈Z+ as follows:

h(OG) = n(d + 1)

4
gρ(n) + 1

2

∑
0≤a+2b<n

(−1)b2−δa0H2a+2b+1g
[a,b]n

− 1

2

∑
0≤a+2b<n

(−1)a2−δa0

a + b + 1

(
d + 1

2a + 2b + 2

)
g(a+2b+1,a)∧ .
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