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The Hirzebruch—-Riemann—Roch Theorem

MAaDHAV V. NORI

Dedicated to Professor William Fulton on his sixtieth birthday

It is indeed an honor to dedicate this essentially self-contained proof of HRR to
William Fulton, whose contributions to the study of Chow groups, intersection
theory, and the Riemann—Roch theorems have led to a deeper understanding of
these topics.

As is well known, Grothendieck formulated a relative version GRR of the
Riemann—Roch for proper morphisnfs X — Y, and HRR turned out to be
the special case whenis a point. To prove GRR, Grothendieck showed that it
sufficed to prove GRR for the projectidghx P — Y and for a closed immersion.
The former is easy, but the latter is much more subtle; in parallel, Grothendieck
also proved the Chern character induces an isomorphism

ch:Q® K(X) — Q ® A(X).

Accounts of Grothendieck’s method are found in [SGA; BS; M]. Fulton proved
GRR without denominator$or closed immersions quite directly by the famous
“degeneration to the normal cone”. This method has since been used in several
related contexts (see e.g. [Fa] and [GS]).

The aim of this note is to give a direct proof of HRR that does not rely of Grothen-
dieck’s method of factoring a morphism. What is crucially used here, however,
is the formalism introduced by Grothendieck, and in particular the isomorphism
K(X) — G(X) of the K-groups of vector bundles and coherent sheaves, respec-
tively, when X is regular (the hypothesis of quasi-projectivity was removed by
Kleiman; sedF]). Ourmethod can be extended to deduce GRR itself directly, but
this has not been carried out here.

The HRR for compact complex manifolds was deduced by Atiyah and Singer
from their index theorem; it was also proved by methods of differential geometry
by Patodi [P] and Toledo—Tong [TT1]. What is more relevant to this paper is the
Atiyah—Bott version of the Lefschetz fixed-point formula (see [AB]) adapted to
cover the case where the set of fixed points is a submanifold. Such a version is due
to Toledo and Tong (see [TT2]). The fixed-point formula we obtain in Section 2
for periodic self-maps is a little stronger than the classical formula when the char-
acteristic of the ground field is positive: we get an identity in the Witt ring, which
reduced modulo the characteristic yields the classical formula.

The Adams—Riemann—Roch is deduced from the fixed-point formula in Sec-
tion 3. The Hirzebruch—-Riemann—Roch is deduced from this in Section 4. The
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reductions in Section 4 involve use of the Adams operations and are, for the most
part, quite standard (see e.g. [GS]); thus, our exposition is brief.

If we taken = 2 in Sections 2 and 3 then the paper would be about one-third
in length, and this is enough to cover the Hirzebruch—Riemann—Roch whenever
chark) # 2. Indeed, the paper rests on the following observatior¥ i a co-
herent sheaf on a varie®, then the Lefschetz number of the natural involution
on the cohomologies oF X F on X x X is simply x(X, F). The Riemann—Roch
formalism is introduced in Section 1. The book by Fulton and Lang [FL] is a good
reference for this section.

The author would like to thank Dipendra Prasad and S. Ramanan for useful dis-
cussions, and also Kaj Gartz for doing an excellent job of putting the manuscript
into TEX.

1. The Riemann—Roch Formalism

We recall briefly the Adams power operatiofi$ and the Bott classeg'(X), the
Adams—Riemann—Roch, the Todd class, and the Hirzebruch—-Riemann—Roch.

We use K(X) to denote the Grothendieck group of locally free coherent
sheaves of a schen®, separated, and of finite type over Splec For such a
sheafF, its representative iIK (X) is denoted by @lF). We often puts(F) =
>, (DA (N F).

The formalism of Hirzebruch (see [FL]) associates to a power seties
A[[r — 1]] a homomorphismA%: K(X) — A ® K(X) of Abelian groups, for
every such schemk as just described, so that:

(@) f*oAY = A% o f* for every morphismy: X — Y; and
(b) A§(c|(£)) = P(cl(L)) for every sheaf locally free of rank I, on X.
Furthermore, thet¥ are uniquely determined by these properties.

If P e A[[r —1]]* then there is a unique system of homomorphisms of Abelian

groups,M¥: K(X) — (A ® K(X))*, so that (a) and (b) hold.

DEFINITION 1.1, A =Z,n€Z,andP(t) = t". ThenA% = ¢ is thenth power
operation of Adams.

For example: ift = —1, theny ¢ (cl(F)) = cl(F*); if n = 2, theny { (cl(F)) =
cl(Syn? F) — cl( N F).

DEFINITION 1.2. A = Z[2], n is a nonzero integer, ane(r) = (¢" — 1)/(r — 1).
Theno"(X) = M%(cl(Q2x)) are Bott's cannibalistic classes, whefds smooth.

With n = —1, for examplep™(X) = (=14 cl(Q4) whered = dim(X); forn =
2, we have

0"(X) =Y _cl@p).
p

THEOREM (ARR). Assume tha is smooth and complete. Then, for alle
K(X), we have
X(X.a) = x(X,0"(X) ™ Y3 (@)
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DerFiNITION 1.3. R = QandP(¢) = log(?)/(t —1). ThentEI(X) = M (cl(Qx)).

LemMa 1.4. If X is smooth of dimensia, then
0"(X) - Y (td(X)) = "X td(X).
Proof. Because/ is a ring homomorphism, we can see thigt o MY = MY

whereQ(t) = P(t") andP € Q[[t — 1]]*. Thus, the lemma is a consequence of
the identity

O

t"—1 log(t")  (log(r)
—1 -1 "\7=1)

In view of Lemma 1.4, ARR is equivalent to ARR

THEOREM (ARR’). If X is smooth and complete of dimensi@dnand ifa €
K(X), then . _ _
X(X,a) = n=9"O x(td(X) - Y (a - td(X)).

DEFINITION-NOTATION 1.5. A(X) = @p AP(X) denotes the Chow ring, and
ch:Q ® K(X) - Q ® A(X) denotes the Chern character. This is a ring ho-
momorphism, and ¢ho ¢y = n” - ¢y, where clia) = ZP ch’(a) and where
ch?(a) € Q ® AP(X). Note that the Todd class df, denoted by tdX), equals
ch(td(X)). Forne Q® A(X), writen = 3°, #” with n” € Q® A’(X). Letd =
dim X. The degree of the zero cyat¢, denoted by de@?), is written asfy 1.

THeoreM (HRR). Forall £ e Q ® K(X), whereX is smooth and complete, we
have

x(X, &) =/Ch(’§)-td(X)-
X

That HRR implies ARR is obvious, simply because HRR gives a formula for
x(X, &) and fory (X, 0"(X)™ - y£(&).

2. The Atiyah—Bott—Lefschetz Formula

We fix a perfect fieldk and a natural number so thatk containsn distinctnth
roots of unity. The only schemes considered in this section are schémois-
nite type over Spe), equipped with an action of a cyclic groupof ordern. A
generator of G will be fixed once and for all.

We will consider sheaves @y-modules onY equipped withG-action. The
Grothendieck group of such sheaves that are locally free and finite rank (resp., co-
herent) will be denote& s (Y) (resp..Gg(Y)). Every subgrou of G also acts
onY and thuskKy (Y) andGy (Y) are also defined. For any-sheafF onY we
have the induced representatiqﬁ(]-"), which is aG-sheaf onY. This defines
Ig: Ky(Y) — Kg(Y) andlg: Gy(Y) > Gg(Y). If H is generated by“ with
a |n, and if F is an H-sheaf onY, note that/$(F) = @ _5(c)*F. If Aisan
H-sheaf ony andB is aG-sheaf ont, thenB ® I5(A) = I15(B® A). Thus we
see thaﬂ,?(KH(Y)) C Kg(Y) is an ideal. We defin&,,(Y) to be the quotient of
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K (Y) by the sum of thdg(KH(Y)) taken over alpropersubgroupd? of G; we
defineG,(Y) in a like manner. Thuk,(Y) is a ring,G,(Y) is a K,(Y)-module,
and the natural arro,(Y) — G,(Y) is a module homomorphism.

Lemma 2.1. If Y is aregular scheme, then
(@ Kg(Y) — Gg(Y) and

(b) Ko(Y) — Go(Y)

are both isomorphisms.

Proof. The standard method of proof (see e.g. [F, Apx. B.8.3]) shows that
Ks(Y) — Gg(Y) is an isomorphism, once it is checked that every coherent
G-sheafF onY is a quotient of a locally fre€-sheaf ony of finite rank. An epi-
morphismA — F of ordinary sheaves inducesepimorphism/§(A) — F
whereH = {e}. Taking.4 to be locally free of finite rank, the result follows.

Part (b) is a consequence of part (a) becawsmn be replaced by any proper
subgroupH in part (a). O

LEmMMA 2.2. Let F be aG-stable closed subset df and letU be its comple-
ment. Let: F — Y andj: U — Y denote the inclusions. Theénand j* induce
the exact sequences

(@ G6(F) = Gg(Y) = Gg(U) — Oand

(b) Go(F) — Go(Y) — Go(U) — 0.

Proof. For part (a), again the standard proof applies. Exactne§g @t) is the
issue, and for this we neefl: G;(U) — T = cokelli,: Gg(F) — Gg(Y)).
For a coherenG-sheafF on U, choose a cohereiit-subsheafr’ of j, F so that
F'IU = F. We definep (cl(F)) =cl(F)inT.

For part (b), one need only note that (a) is valid for all proper subgrélup$
G as well. O

LEmMA 2.3. If o acts without fixed points oF (i.e., if {y e Y(k) | oy = y} =
?), then

ZH ®G,(Y) = 0.
n

Proof. We may choose &-stable, nonempty Zariski-open affine subsebf Y
such that the5-action ofU comes from a fixed-point—free action 6§ H where
H is aproper subgroup. We attempt to prove the lemma &offirst. If Fis a
G-sheaforU, thenl§(F) = F®15(Oy). Thus, if1$(Oy) = Of as aG-sheaf,
wherea = #(G/H), it would follow thata - Go(U) = 0. Letn: U — V be
the quotient by théG/H )-action. By descent, th@G/H)-sheaflg(OU) =n*A
for some locally free rank-sheafA on V; actually A = 7,0y, but this does
not concern us. Replacirig by a suitable nonempty opénl and replacind/ by
77XV’), we may assume that = Oy. Induction on dimension and Lemma 2.2
now show thatj,(Y) is annihilated by:¢, wheree = 1+ dimY. O

ProrosiTiON 2.4. Let FY denote the closed subscheme of fixed poingsiofY.
Leti: FY — Y denote the inclusion. Thép: Z[2]® G,(FY) — Z[2]®G,(Y)
is surjective.
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Proof. This is an immediate consequence of Lemmas 2.3 and 2.2. O

REMARK 2.5. In Proposition 2.4i, is an isomorphism, as we can see from
Quillen’s exact sequence (see [Q, Thm. 5.4131] adapted toG). We prove
this here only wherY is smooth (see Theorem 2.8).

NoTtaTION 2.6. LetR(k) be the subring generated l%yand all thenth roots on
unity in k (resp., the Witt ring (k) of k) if char(k) = 0 (resp.,> 0). We have a
ring homomorphisnR(k) — k, and every:th root of unityx in k lifts uniquely
to annth root of unity (1) in R(k).

Let G = Hom(G, k*). Let Y be a scheme on whio& acts trivially (this will
be applied to Sp&é¢) and FY in the sequel). Everg-sheafF onY is the direct
sum of its eigensheave’, for g € G. ThusGg(Y) = Z[G] ® G(Y). Fort € G
we define

tr(r| F) =) (g(r)) cl(Fy).

Pe;
This extends to a® (k)-module homomorphism

tr(z|): R(k) ® Go(Y) — R(k),

which is anR(k)-algebra homomorphism ¥ is smooth.
Put gen= {r € G | T generates;}. Taking allt € G and then alk € gen we
obtain the isomorphisms

tr: R(k) ® Gg(Y) — G(Y)°,
tr: R(k) ® Go(Y) — G(Y)9".
These arrows arg(k)-algebra homomorphismsf is smooth.

NotaTioN 2.7. We pus(F) =Y~ ,(=1)” cl( /\’ F) for a locally free sheaf .

THEOREM 2.8. If Y is smooth, then so iBY. Let I be the sheaf of ideals &y
that vanish on'Y. Then

() 8(/1%) isaunitinZ[%] ® G,(FY);

(b) iv: Z[2] ® Go(FY) — Z[2] ® G,(Y) is an isomorphismand

() i*iva = as(1/1?) forall a e Z[ ] ® G,(FY).

Proof. If F is locally free onFY, then tof”" (F, Ory) = F ® A\'(1/1?), so this
proves part (c). From Proposition 2.4, we see that (a) implies (b).

Becausd/I* = @, . (I/17), we see thai(I/1?) = [],.s 8(1/1%),. Because
R(k) is a nonzero fre@[ :]-module, it suffices to check thatz/1?), is a unit in
R(k) ® G,(FY); in view of 2.6, this is the same as checking th&t ur8(1/12)g)
isaunitinR(k) ® G(FY) for everyt € gen and every € G. Letr(g) be the rank
of (I/Iz)g. Becausda € K(FY) | rank(a) = 0} is a nilpotent ideal, it suffices to
check that rank (r | §(1/12),) = (1— (g(x)))"® is a unitinR (k).

BecauseFY is also the fixed points af, no eigenvalue of on /17 can equal 1.
Thus, ifr(g) is positive at some point df, theng(z) # 1. Thus(g(r)) # 1, and
that 1— (g(t)) isaunitinR(k) is standard. O
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NotaTtion 2.9. We will assume thaYt is complete. Then we havgs (Y, -):
Go(Y) — Kg(Speck)) given by x (Y, clF) = > ,(—DP cl(HP(Y, F)). Be-
causel SHP(Y, F) = HP(Y, I§(F)) for an H-sheafF onY, the x5 (Y, -) factors
through as
Xo (Y, )1 Go(Y) — K,(Speck)).

We put Lef(o, Y, a) =tr(o | xo(Y, a)) with tr(c | -) asin 2.6. Clearly, it5 acts

trivially on Y then
Lef(o, Y, a) = x(¥,tr(o | a)).

THEOREM 2.10. LetY be smooth and complete. Let Z[2] ® G,(Y) and put

b = 8(1/I»7' - i*a, with the notation of 2.7thusb € Z[2] ® G,(FY). Then
Lef(o, Y, a) = x(FY, tr(o | b)).

Proof. From Theorem 2.8, we see thigb = a. Because, (Y, i.b) = x,(FY, b),
the result follows from the setup in 2.9. O

3. The Adams—Riemann—Roch Theorem

We now apply the results of the previous section to the following special situation.
Let X be a smooth variety defined ovierand letY = X" be equipped with the
natural action of the permutation group. We choose-aycles once and for all

and denote by; the subgroup generated byWe denote by: X — Y the diag-

onal embedding; in the notation of the previous section thi&isthe fixed points
ofoinY.

Lemma 3.1. For a coherent sheafr on X, we putSF = FRFKX...- K FonY.
ThusSF is a G-sheaf. There is an additive homomorphiSmG(X) — G,(Y),
so thatS(cl(F)) = cl(SF) for all coherentF on X.

Proof. Let0 - F' — F — F” — 0 be a short exact sequence of coherent
sheaves oiX. We put
F=FF>F'F=F >F¥=0.
The decreasing filtratiof " F on F induces a decreasing filtratidfi SF of SF
for which we see thaF°SF = SF, F"*1SF = 0, and:
(1) FOSF/FSF = SF" andF"SF/F"SF = SF';
(2) for0 < p < n, FPSF/FPYISF is a direct sum of sheaves induced from
proper subgroups df.

Thus, c(SF) = cl(SF’) +cl(SF") in G,(Y), and the lemma follows. O
Naturally, we also hav8: K(X) — K,(Y).

LEmMA 3.2. Forall a in K(X), we have

i*Sa = ya in Z|:li| QR Ks(X).

n
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Lemma 3.3. If X is smooth, then

I 1
=) =06"X) inzZ|=|® K.(X).
12 n
The right-hand sides of the equations in Lemmas 3.2 and 3.3 beloKgXo,
and we have a natural arrofi(X) — K,(X) becausés acts trivially onX. The

Adams operationg y and the Bott classe®'(X) have been definedin1.1and 1.2,
respectively, and(I/1?) occurs in 2.7 and 2.8.

Proof of Lemma 3.2For every generator of G, the operatioru +— tr(z |i*Sa)
is additive ina by Lemma 3.1, and it is obviously functorial K. If a =
cl(£) where L is locally free of rank 1, then th&-action onS. is trivial and
cl@*SL) = a". Since these properties characterize the Adams operations, we see
that tr(z | i*Sa) = Yya in R(k) ® K(X). From 2.6, it follows thai*Sa = ' }a
in R(k) ® K,(X), and this implies the result. O

Proof of Lemma 3.3We set/\(4) = Y ,(=T)”cl( \” A) in Z[T] ® K,(X)
for every locally freeG-sheafA on X. For every locally free sheaF with trivial
G-action, we have an exact sequencé&esheaves o :
00— sF—->F"—>F—0

where F" = IS(F) andH = {e}. If F = Qx, thensF = I/I? and thus
8(I/1%) is the value, al = 1, of A\(sQyx). Let t be a generator of; and put
L(F) = tr(z | A\(sF)). We first compute tfr | A(L")) whereL is locally
free of rank 1 onX. Because the action afon{S C {1, 2,...,n} | #S = p},
where 0< p < n, is fixed-point-free, it follows that ¢|A\” £") = 0 in this
range. Puttingt = cl(£), we see that (rr | /\(E")) =1+ (e(x))a"(—-T)" =
1— (aT)", wheree denotes the sign of the permutation. Alsqti A (L)) =
1—aT andti(z | A(L)) - tr(z | A(sL)) = tr(z | A(L™)). Furthermore, % aT is
not a zero divisor iNRR(k)[T] ® K(X) because its rank,Z T, is not a zero di-
visor in R(k)[T]. SettingP(1) = (1" — 1/t — 1), we see that {r | \(sL)) =
P(aT) and, evaluating a' = 1, we have tft | §(s£)) = P(a). It follows that
tr(t |8(sF)) = M (cl(F)) with M¥ as in Section 1; this holds for all generators
T of G, S08(sF) = ME(cl(F)) in R(k) ® K,(X). PuttingF = Qy then yields
the result.

O

THEOREM 3.4. Assume thak is smooth. For every € K(X),
Sa =i,0"(X)™" ¥i(a)
holds inZ[2] ® K,(X).

As in 3.2 and 3.3, the right-hand side belongZ{d:] ® K(X). Theorem 3.4 is
immediate from 2.8, 3.2, and 3.3.

ProrosiTION 3.5. Assume thak is complete. For alh € G(X),

xo(Y, Sa) = ¥"x(X, a)
holds inK,(Speck)).
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Once againy(X, a) € K(Spec¢k)) = Z and soy" x(X, a) = x(X, a).

Proof. It suffices to check this fon = cl(F) whereF is a coherent sheaf on

X. The cohomologies of F on Y are computed by the Kunneth formula, and

the off-diagonal terms can be dropped because they are induced from proper sub-
groups. TheG-representation o#dl?(X, F) @ H'(X, F)® ---® HP(X, F) C

H" (Y, SF) is the permutation representation tensored withwheree: G —

{£1} is the sign of the permutation. By Lemma 3.2 applied to $pecthe

image of the former irK,(Speck)) is v"(cl H?(X, F)) =tk H (X, F) e Z C
K,(Speck)). Because the image ofc K (Speck)) — K,(Speck))is(—1)"+1,

it follows that

Xo(Y. Sa) =D (=) - (=P Ik HP (X, F)
P

= Z(—l)" rk H* (X, F)
P
= x(X, F). O

THEOREM 3.6 (ARR). If X is complete and smooth anddf € K(X), then
X(X,a) = x(X,6"(X)™- yg(a)).

Proof. By Theorem 3.4,
Xo(Y, Sa) = xo(X, 0"(X) ™ Y} (@) = x(X,0"(X) ™" ¥} ().
But x, (Y, Sa) = x(X, F) from Proposition 3.5. This completes the proof of ARR.
O
4. The Hirzebruch—-Riemann—Roch Theorem

The notation is as in Section 3; in addition, we assume &hiatalgebraically
closed. For HRR, we may assume this without any loss of generality.

Noration4.1. X issmooth of dimensiod. For every coherent she&fon X, we
have cl[F) e G(X) = K(X). We usejG”(X) to denote the subgroup 6{X) gen-
erated by olF) with dimsupgF) <d — p. We putk?(X) = {a € Q® K(X) :
Yy (a) =nPa}.

Proposition 4.2 is proved in [GS]; a proof is included here for completeness.

ProposITION 4.2. Q®GP(X) =P,., KU(X).

qzp

NotatioN 4.3. Letr: Q ® K(X) — K%(X) denote the projection obtained
from p = 0 andg = d in Proposition 4.2.

REMARK 4.4.  Assume, in addition, tha& is complete. Thema — [, ch(a) is

a homomorphism frong(X) to (n!)~1Z. Restrict this homomorphism ©7(X).
The kernel ofx(X,-): G4 X) — Z is a divisible group because Jacobians of
curves are divisible. It follows that theredsX ) e (n!)~*Z so that
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/ ch(a) = e(X)x(X, a)
X

foralla e G4X). If f: X; — X, is a surjective morphism (both smooth and
complete of dimensiod) then, by considering *a for a € G¥(X5), we see that
e(X1) = e(X3). Checking that(P¢) = 1, by Chow’s lemma we see thatX) =

1 for all smooth complet&.

Proof of HRR.We proved ARR in Section 3; thus we may assume ARdee
Section 1). Fou € Q ® K(X), we puty’(a) = x(X, td(X)a). By ARR/, we
have

(@ =n""" x'(Yra) foral acQ® K(X).

It follows that x'(a) = O for alla € K?(X) and for allp # d. In other words,
x'(a) = x'(ra) with 7 as in 4.3. Also, fow € Q ® G4(X), a = td(X) ' be-
causeP(l) = 1, whereP(t) = logt/(t —1). Thusx'(a) = x(X,a) = fX ch(a)

from 4.4 ifa € Q @ G4(X). Finally, because afk”(X)) C Q ® AP(X), we see
that [, ch(a) = [ ch(ra) foralla e Q ® K(X). It follows that

x(X, td(X)a) = x'(a) = x'(na) = / ch(ra) = / ch(a),
X X

and replacing: by td(X)a yields the statement of HRR. O

Proof of Proposition 4.2For any closed subschenie of X, we have f] =
cl(0z) e G(X) = K(X). Itis standard thaG?(X)/G*1(X) is generated byZ]
for Z closed and irreducible of codimensiprin X. To prove 4.2 (by decreasing
induction onp), it suffices to prove tha [ Z] — n?[Z] is in GPT1(X) for such
Z CX.

Let F be a finite locally free resolution @,. We putD = F®"; thus,D is a
complex ofG-sheaves oiX. We see that

Mzl =y (Z(—l)q cl(Fq))
q
= Z(—l)q cl(F®") in z[ﬂ ®G,(X) (byLemma3.2)
q

= Z(—l)” cl(D,) (ignoring the off-diagonal terms as with 3.5)
q

=D (DI cl(HYD)).
q

Thisis an equality iZ.[ 2] ® G,(X). LetZ be the sheaf ofideals ity that anni-
hilatesO . ThenZ annihilates the&5-sheafH, (D) and ti(z | H,(D)) foranyz
gen If m = Zq(—l)ql(tr(r | H,(D)), where! denotes the length of the sheaf at
the generic point of, theny 3[Z] — m[Z] € GP*}(X), so we have to prove =
n?. For this, we may replac& by any Zariski-open subset whose intersection
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with Z is nonempty. Thus we may assume tlais a local complete intersec-
tionin X. Let j: Z — X denote the inclusion and defidée K(Z) by j,N* =
Z/Z?. With s as in the proof of Lemma 3.3, we see that( D) = j. NI(sN*) as

a G-sheaf, just by checking the action of transpositions in the permutation group.
It follows, as in the proof of 3.3, th@q(—l)q cl(H,(D)) = j«(MLZ(N*)) where

P(t) = (t" —1)/(t — 1), and the equality holds ii[ 1] ® G,(X). BecauseP(1) =

n and rkN* = p, it follows thatm = n? as desired; this completes the proof of
the proposition. We remark that this method of proof also yields ARR for closed
immersions directly. O
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