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0. Introduction and Plan of the Paper

One of the remarkable basic results in the theory of the associativity equations (or
Frobenius manifolds) is that their formal solutions are the same as cyclic algebras
over the homology operad(H∗(M̄0,n+1)) of the moduli spaces ofn-pointed stable
curves of genus 0. This connection was discovered by physicists, who observed
that the data of both types come from models of topological string theories. Pre-
cise mathematical treatment was given in [KM1; KM2; KM3].

In this paper we establish a similar relationship between the pencils of formal
flat connections (or solutions to the commutativity equations; see 3.1 and 3.2) and
homology of a new series̄Ln of pointed stable curves of genus 0. WhereasM̄0,n+1

parameterizes trees ofP1s with pairwise distinct nonsingular marked points,L̄n
parameterizes strings ofP1s and all marked points except for two are allowed to
coincide (see the precise definitions in 1.1 and 2.1). Moreover, the union of all the
L̄n forms a semigroup rather than an operad, and the role of operadic algebras is
taken over by the representations of the appropriately twisted homology algebra
of this union (see precise definitions in 3.3).

This relationship was discovered on a physical level in [L1; L2]. Here we give
a mathematical treatment of some of the main issues raised there.

This paper is structured as follows. In Section 1 we introduce the notion of
(A,B)-pointed curves, whose combinatorial structure generalizes that of strings
of projective lines as just described. We then describe a construction of “adjoin-
ing a generic black point”, which allows us to produce families of such curves and
their moduli stacks inductively. This is a simple variation of one of the arguments
due to Knudsen [Kn1].

In Section 2 we define and study the spacesL̄n, for which we give two comple-
mentary constructions. The first one identifiesL̄n with one of the moduli spaces of
pointed curves; the second one exhibitsL̄n as a well-known toric manifold asso-
ciated with the polytope called “permutohedron” in [K2]. These constructions
put L̄n into two quite different contexts and suggest generalizations in different
directions.

As moduli spaces,̄Ln become components of the extended modular operad,
which we define and briefly discuss in Section 4. We expect that there exists an
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appropriate extension of the Gromov–Witten invariants producing algebras over
extended operads involving gravitational descendants.

As toric varieties,(L̄n) form one of the several series related to the generalized
flag spaces of classical groups (see [GS]). It would be interesting to generalize to
other series our constructions.

In this paper we use the toric description in order to prove, for theL̄n, an ana-
log of Keel’s theorem (Theorem 2.7.1) and its extension (Theorem 2.9) that are
crucial for studying representations of the twisted homology algebra. This twisted
homology algebraH∗T and its relationship with pencils of formal flat connections
are discussed in Section 3, which contains the main result of this paper: Theorem
3.3.1.

Acknowledgment. Y. Manin is grateful to M. Kapranov, who suggested (after
seeing the formulaχ(L̄n) = n!) thatL̄n must be the toric variety associated with
the permutohedron.

1. (A,B)-Pointed Curves

1.1. Definition. Let A,B be two finite disjoint sets,S a scheme, andg ≥ 0.
An (A,B)-pointed curve of genusg overS consists of the data

(π : C → S; xi : S → C, i ∈A; xj : S → C, j ∈B), (1.1)
where

(i) π is a flat proper morphism whose geometric fibersCs are reduced and con-
nected curves, with at most ordinary double points as singularities, andg =
H 1(Cs,OCs ).

(ii) xi (i ∈A ∪ B) are sections ofπ not containing singular points of geometric
fibers.

(iii) xi ∩ xj = ∅ if i ∈A, j ∈A ∪ B, andi 6= j.
Such a curve(1.1) iscalledstableif the normalization of any irreducible compo-
nentC ′ of a geometric fiber carries at least three pairwise different special points
(if C ′ is of genus 0) and at least one special point ifC ′ is of genus 1. “Special
points” are inverse images of singular points and of the structure sectionsxi.

1.2. Remarks. (a) If we put in this definitionB = ∅, we will get the usual no-
tion of anA-pointed (pre)stable curve whose structure sections are not allowed to
intersect pairwise. Now we divide the sections into two groups: “white” sections
xi (i ∈A) are not allowed to intersect any other section, whereas “black” sections
xj (j ∈B) cannot intersect white ones but are otherwise free and can even pairwise
coincide. (However, neither type of section is allowed to intersect singularities of
fibers.)

If we take in this definition a one-element setB = {∗}, we will get a natu-
ral bijection between(A, {∗})-pointed curves and(A ∪ {∗},∅)-pointed curves. If
cardB ≥ 2, the two notions become essentially different.

(b) The dual modular graph of a geometric fiber is defined in the same way as
in the usual case (for the conventions we use see [M,III.2]). Tails can now be of
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two types, and we may refer to them and their marks as “black” and “white” ones
as well. Combinatorial type of a geometric fiber is, by definition, the isomorphism
class of the respective modular graph with(A,B)-marking of its tails.

(c) Let T → S be an arbitrary base change. It produces from any(A,B)-
pointed (stable) curve (1.2) overS another(A,B)-pointed (stable) curve overT :
(CT ; xi,T ).
1.3. A Construction. In this section, we start with an(A,B)-pointed curve
(1.1) andproduce from it another(A,B ′)-pointed curve:

(π ′ : C ′ → S ′; x ′i, i ∈A ∪ B ′). (1.2)

The base of the new curve will beS ′ := C. There will be one extra black mark,
say,∗, so thatB ′ = B ∪ {∗}. The new curve and sections will be produced in two
steps. At the first step we make the base changeC → S as in 1.2(c), obtaining
an(A,B)-pointed curveX := C ×S C with sectionsxi,C. We then add the extra
section1 : C → C ×S C, which is the relative diagonal, and mark it by∗. We
have not yet produced an(A,B ′)-pointed curve overS ′ = C, because the extra
black section can (and generally will) intersect both singular points of the fibers
and white sections as well.

At the second step of the construction, we remedy this by birationally modifying
C ×S C → C as in [Kn1, Def. 2.3]. More precisely, we defineC ′ := Proj SymK
as the relative projective spectrum of the symmetric algebra of the sheafK onX =
C ×S C defined as the cokernel of the map

δ : OX → J1̌ ⊕ OX
(∑
i∈A

xi,C

)
, δ(t) = (t, t). (1.3)

HereJ1 is theOX-ideal of1 andJ1̌ is its dual sheaf considered as a subsheaf
of meromorphic functions, as in [Kn1, Lemma 2.2 and Appendix].

We claim now that we have an(A,B ′)-pointed curve, because Knudsen’s treat-
ment of his modification can be directly extended to our case. In fact, the modifi-
cation we described is nontrivial only in a neighborhood of those points where1

intersects either singular points of the fibers orA-sections. TheB-sections do not
intersect these neighborhoods, if they are small enough, and do not influence the
local analysis due to Knudsen [Kn1, pp. 176–178].

1.3.1. Remark. We can try to modify this construction so that we may add an
extra white point instead of a black one. However, for cardB ≥ 2, we will not
then be able to avoid the local analysis of the situation by referring to [Kn1]. In
fact, points where1 intersects at least twoB-sections simultaneously will have
to be treated anew.

2. Spaces̄L n

2.1. Spaces L̄n. In this section we will inductively define, for anyn ≥ 1, the
({0,∞}, {1, . . . , n})-pointed stable curve of genus 0:
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(πn : Cn→ L̄n; x(n)0 , x
(n)
∞ ; x(n)1 , . . . , x(n)n ). (2.1)

Namely, put
C1 := P1, L̄1= a point,

and choose forx(1)0 , x
(1)
∞ , x

(1)
1 arbitrary pairwise distinct points.

If (2.1) is already constructed forn, then we define the next family(Cn+1 →
L̄n+1, . . . ) as the result of the application of the construction 1.3 toCn/L̄n. In par-
ticular, we have a canonical isomorphismCn = L̄n+1.

2.2. Theorem. (a) L̄n is a smooth separated irreducible proper manifold of di-
mensionn−1. It represents the functor that associates with every schemeT the set
of the isomorphism classes of({0,∞}, {1, . . . , n})-pointed stable curves of genus
0 overT whose geometric fibers have combinatorial types described in(b).

The symmetric groupSn renumbering the structure sections acts naturally and
compatibly onL̄n and the universal curve. In particular, we can define the spaces
L̄B, CB for any finite setB, functorial with respect to the bijections of the sets.

(b) Combinatorial types of geometric fibers ofCn→ L̄n are in a natural bijec-
tion with ordered partitions

{1, . . . , n} = σ1∪ · · · ∪ σl, σi 6= ∅. (2.2)

Partition (2.2)corresponds to the linear graph with vertices(v1, . . . , vl) of genus
0, edges joining(vi, vi+1), 1 ≤ i ≤ l − 1, A-tail 0 at the vertexv1, A-tail ∞ at
the vertexvl, andB-tails marked by the elements ofσi at the vertexvi.

We will call l = l(σ) the lengthof the partitionσ as in(2.2).
(c) Denote byLσ the set of all points of̄Ln corresponding to the curves of the

combinatorial typeσ, and byL̄σ its Zariski closure. Then theLσ are locally closed
subsets, and we have

L̄σ =
∐
τ≤σ

Lτ , (2.3)

whereτ ≤ σ means thatτ is obtained fromσ by replacing eachσi by an ordered
partition of σi into non-empty subsets.

(d) For everyσ, there exists a natural isomorphism

L|σ1| × · · · × L|σl | → Lσ (2.4)

such that the pointed curve induced by this isomorphism overL|σ1| × · · · × L|σl |
can be obtained by clutching the curvesC|σi |/L|σi | in an obvious linear order(∞-
section of theith curve is identified with the0-section of the(i + 1)th curve; see
[Kn1, Thm. 3.4])and subsequent re-marking of theB-sections. In particular,Lσ
is a smooth irreducible submanifold of codimensionl(σ)− 1.

Similar statements hold for the closed strataL̄σ .

Proof. Properness and smoothness follow by induction and Knudsen’s local analy-
sis, which we already invoked.

The statement about the combinatorial types is proved by induction as well. In
fact, if everything is already proved forCn, then we must look at a geometric fiber
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Cn,s ofCn and see what happens to it after the blow-up described in 1.3. If1 inter-
sects a smooth point ofCn,s not coinciding withx0,s , x∞,s , then nothing happens
except that we get a new black point on this fiber and a new tail at the respective
vertex of the dual graph. If1 intersects an intersection point of two neighboring
components ofCn,s, then (after blowing up) these two components become dis-
joint and we get a new component intersecting both of them, with a new black
point on it. The linear structure of the graph is preserved. Finally, if1 intersects
Cn,s atx0,s (resp.x∞,s) then, after blowing up, we will get a new end component
with x0,s (resp.x∞,s) and the new black point on it. Thus the new combinatorial
types will be linear and indexed by partitions of(n + 1). To check that all parti-
tions are obtained in this way, it suffices to remark that1, as the relative diagonal,
can intersect the fiber of a given type at any point.

In order to check the statement about the functor represented byL̄n, we apply
the following inductive reasoning. Forn = 1 the statement is almost obvious. In
fact, letπ : C → T be a({0,∞}, {1})-pointed stable curve of genus 0 overT .
From the stability it follows that all geometric fibers are projective lines. Since
the three structure sections pairwise do not intersect, the family can be identified
with P1× T endowed with three constant sections. This means that it is induced
by the trivial morphismT → L̄1.

Assume that the statement is true forn. In order to prove it forn+ 1, consider
a ({0,∞}, {1, . . . , n + 1})-pointed stable curve of genus 0,π : C → T . First of
all, one can produce from it a({0,∞}, {1, . . . , n})-pointed stable curve of genus 0,
π : C ′ → T, obtained by forgettingxn+1 and subsequent stabilization. The re-
spective mapC ′ → C is given by the relative projective spectrum of the algebra∑∞

k=0 π∗(K⊗k), whereK := ωC/T (x0 + x1+ · · · + xn + x∞). By induction,C ′

is induced by a morphismp : T → L̄n. Addition of an extra black section toC ′

and subsequent stabilization boils down exactly to the construction 1.3 applied to
C ′/T which allows us to liftp to a unique morphismq : T → L̄n+1.

Separatedness is checked by the standard deformation arguments. The state-
ment about renumbering follows from the description of the functor. A similar
adaptation of Knudsen’s arguments allows us to prove the remaining statements,
and we leave them to the reader.

Notice that we will give another direct description of the spacesL̄B and all the
structure morphisms connecting them in terms of toric geometry. This will pro-
vide easy alternate proofs of their properties. Except for Section 4, we can restrict
ourselves to this alternate description.

2.2.1. Remark. Dual graphs of the degenerate fibers ofCn over L̄n come with
a natural orientation fromx0 to x∞. We could have allowed ourselves not to dis-
tinguish between the two white points, interchanging them by isomorphisms, but
this would produce several unpleasant consequences. First, our manifolds would
become actual stacks, starting already withL̄1. Second, we would have lost the
toric interpretation of these spaces. Third, and most important, we would meet
an ambiguity in the definition of the multiplication between the homology spaces;
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see (3.5). With our choice, we can simply introduce the involution permutingx0

andx∞ as a part of the structure and look how it interacts with other parts.

2.3. Theorem. L̄n has no odd cohomology. Let

pn(q) :=
n−1∑
i=0

dimH 2i(L̄n)q
i (2.5)

be the Poincaré polynomial of̄Ln. Then we have

1+
∞∑
n=1

pn(q)

n!
y n = q − 1

q − e(q−1)y
∈Q[q][[ y]] . (2.6)

Letting hereq → 1, we get1/(1− y) so thatχ(L̄) = n!.
Proof. Since theL̄n are defined overQ, we can apply Weil’s classic technique of
counting points overFq (thus treatingq not as a formal variable but as a power
of prime). After the counting is done, we will see that cardL̄n(Fq) is a polyno-
mial in q with positive integer coefficients, so that we can immediately identify it
with pn:

pn(q) = cardL̄n(Fq). (2.7)

The latter number can be calculated by directly applying (2.3) to the one-element
partitionσ, yielding

pn(q)

n!
=

n∑
l=1

∑
(s1, ...,sl )
s1+···+sl=n

si≥1

(q −1)s1−1

s1!
· · · (q −1)sl−1

sl !

=
n∑
l=1

[
coefficient ofxn−l in

(
ex −1

x

)l]
· (q −1)n−l .

Inserting this in the left-hand side of (2.6) and summing overn first, we obtain
∞∑
n=1

pn(q)

n!
y n =

∞∑
l=1

∞∑
n=l

[coefficient ofxn in (ex −1)l ] · (q −1)ny n

=
∞∑
l=1

1

(q −1)l
(e(q−1)y −1)l,

which gives (2.6).

2.3.1. Special Cases. Here is a list of the Poincaré polynomials for small values
of n:

p1= 1, p2 = q +1, p3 = q2 + 4q +1, p4 = q3+11q2 +11q +1,

p5 = q4 + 26q3+ 66q2 + 26q +1,

p6 = q6+ 57q5+ 302q4 + 302q2 + 57q +1.
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The rank ofH 2(Ln) is 2n−n−1. Individual coefficients ofpn(q) are well known
in combinatorics; they are called Euler numbers:

an,i = dimH 2i(L̄n).

2.4. L̄n and Toric Actions. Let ε be the trivial partition ofB of length 1. The
“big cell” Lε of L̄B (see 2.2(c)) has a canonical structure of the torsor (principal
homogeneous space) over the torusTB := GB

m/Gm (where the subgroupGm is
embedded diagonally). In fact,P1 \ {x0, x∞} is aGm-torsor, and the respective
action ofGB

m onLε,movingxi (i ∈B) via theith factor, produces an isomorphic
marked curve exactly via the action of the diagonal.

Similarly, every stratumLσ is a torsor overTσ :=∏i Tσi (see (2.4)), and there
is a canonical surjective morphismTB → Tσ such thatLB is a union ofTB-orbits.
In order to show thatLB is a toric variety, we must now show that these actions
are compatible. Again, this can be done using the explicit construction ofL̄n and
induction. For a change, we will provide a direct toric construction. We start with
a more systematic treatment of the combinatorics involved.

2.4.1. Partitions of Finite Sets. For any finite setB, we call a partitionσ of
B a totally ordered set of non-empty subsets ofB whose union isB and whose
pairwise intersections are empty.A partition consisting ofN subsets is called an
N -partition. If its components are denotedσ1, . . . , σN (or otherwise listed), this
means that they are listed in their structure order. Another partition can be denoted
τ, σ (1), etc. Notice that no particular ordering ofB is a part of the structure. This
is why we replaced{1, . . . , n} here by an unstructured setB.

Let σ be a partition ofB (i, j ∈B). We say thatσ separatesi andj if they be-
long to different components ofσ. We then writeiσj in order to indicate that the
component containingi comes earlier than the one containingj in the structure
order.

Let τ be an(N +1)-partition ofB. If N ≥ 1, it determines a well-ordered fam-
ily of N 2-partitionsσ (a):

σ
(a)
1 := τ1∪ · · · ∪ τa, σ

(a)
2 := τa+1∪ · · · ∪ τN, a = 1, . . . , N. (2.8)

In the opposite direction, call a family of 2-partitions(σ (i)) goodif, for any i 6= j,
we haveσ (i) 6= σ (j) and eitherσ (i)1 ⊂ σ (j)1 orσ (j)1 ⊂ σ (i)1 . Any good family is nat-
urally well-ordered by the relationσ (i)1 ⊂ σ (j)1 , and we will consider this ordering
as a part of the structure. If a good family of 2-partitions consists ofN members,
then we will usually choose superscripts 1, . . . , N to number these partitions in
such a way thatσ (i)1 ⊂ σ (j)1 for i < j.

Such a good family produces one(N +1)-partitionτ :

τ1 := σ (1)1 , τ2 := σ (2)1 \ σ (1)1 , . . . , τN := σ (N )1 \ σ (N−1)
1 , τN+1= σ (N )2 . (2.9)

This correspondence between goodN -element families of 2-partitions and
(N+1)-partitions is one-to-one, because clearlyσ

(i)
1 = τ1∪· · ·∪τi for1≤ i ≤ N.



450 A. Losev & Y. Manin

Consider the case whenτ (1) = σ is a 2-partition, andτ (2) = τ is anN -partition,
N ≥ 2. Their union is good if and only if there exists ana ≤ N and a 2-partition
α = (τa1, τa2) of τa such that

σ = (τ1∪ · · · ∪ τa−1∪ τa1, τa2 ∪ τa+1∪ · · · ∪ τN). (2.10)

In this case we denote

σ ∗ τ = τ(α) := (τ1, . . . , τa−1, τa1, τa2, τa+1, . . . , τN). (2.11)

2.4.2. Lemma. Letτ be a partition ofB of length≥ 1, and letσ be a2-partition.
Then one of the following three mutually exclusive cases occurs.

(i) σ coincides with one of the partitionsσ (a) in (2.8); in this case we will say
that σ breaksτ betweenτa and τa+1.

(ii) σ coincides with one of the partitions(2.10);in this case we will say thatσ
breaksτ at τa.

(iii) None of the above; in this case, we will say thatσ does not breakτ. This
happens exactly when there is a neighboring pair(τb, τb+1) of elements ofτ with
the following property:

τb \ σ1 6= ∅, τb+1∩ σ1 6= ∅. (2.12)

We will call (τb, τb+1) a bad pair (for σ).

Proof. Consider the sequence of sets

σ1∩ τ1, σ1∩ τ2, . . . , σ1∩ τN .
Produce from it a sequence of numbers 0,1,2 by the following rule: replaceσ1∩τb
by 2 if it coincides withτb, by 0 if it is empty, and by 1 otherwise. Cases (i) and
(ii) together will furnish all sequences of the form(2 . . . 20. . . 0), (2 . . . 210. . . 0),
(10. . . 0). Each remaining admissible sequence will contain at least one pair of
neighbors from the list 01, 02, 11, 12. For the respective pair of sets, (2.12) will
hold.

2.5. The Fan FB. In this section we will describe a fanFB in the spaceNB⊗R,
whereNB := Hom(Gm, TB) andTB := GB

m/Gm as in the beginning of 2.4. For
notation, we use [F] as the basic reference on fans and toric varieties.

Clearly,NB can be canonically identified withZB/Z, the latter subgroup being
embedded diagonally. Similarly,NB ⊗ R = RB/R. We will write the vectors of
this space (resp. lattice) as functionsB → R (resp.B → Z) considered modulo
constant functions. For a subsetβ ⊂ B, let χβ be the function equal 1 onβ and 0
elsewhere.

2.5.1. Definition. The fan FB consists of the followingl-dimensional cones
C(τ), labeled by(l +1)-partitionsτ of B.

(a) If τ is the trivial 1-partition, thenC(τ) = {0}.
(b) If σ is a 2-partition, thenC(σ) is generated byχσ1 (or, equivalently,−χσ2)

modulo constants.
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Generally, letτ be an(l +1)-partition and letσ (i) (i = 1, . . . , l ) be the respective
good family of 2-partitions (2.9). ThenC(τ) as a cone is generated by allC(σ (i)).

It is not quite obvious thatFB is well-defined. We sketch the relevant arguments.
First, all conesC(τ) are strongly convex. In fact, according to [F, p. 14], it suf-

fices to check thatC(τ) ∩ (−C(τ)) = 0. But C(τ) consists of classes of linear
combinations with nonnegative coefficients of functions

χτ1, χτ1 + χτ2, . . . , χτ1 + · · · + χτl
if τ has lengthl +1. Nonvanishing functions of this type cannot be constant.

Second, the same argument shows thatC(τ) is actuallyl-dimensional.
Third, since the coneC(τ) is simplicial, one sees that the(l −1)-faces ofC(τ)

are exactlyC(τ (i)), whereτ (i) is obtained fromτ by joiningτi with τi+1, which is
equivalent to omittingC(σ (i)) from the list of generators. More generally,C(τ ′)
is a face ofC(τ) if and only if τ ≤ τ ′ as in (2.3), that is, ifτ is a refinement ofτ ′.

Fourth, letC(τ (i)) (i = 1,2) be two cones. We have to check that their inter-
section is a cone of the same type. An obvious candidate isC(τ), whereτ is the
crudest common refinement ofτ (1) andτ (2). This is the correct answer.

In order to see this, let us a give a different description ofFB which will simulta-
neously show that the support ofFB is the whole space. Letχ : B→ R represent
an element̄χ ∈NB ⊗R; it defines a unique partitionτ of B consisting of the level
sets ofχ ordered in such a way that the values ofχ decrease. Clearly,τ depends
only on χ̄, andχ modulo constants can be expressed as a linear combination of
χτ1+· · ·+χτi (1≤ i ≤ l )with positive coefficients. In other words,χ belongs to
the interior part ofC(τ). On the boundary, some of the strict inequalities between
the consecutive values ofχ become equalities. This proves the last assertion.

We see now thatFB satisfies the definition of [F, p. 20] and hence is a fan.

2.6. Toric Varieties L̄B. We now defineL̄B (later to be identified with̄LB) as
the toric variety associated with the fanFB.

To check that it is smooth, it suffices to show that eachC(τ) is generated by a
part of a basis ofNB (see [F, p. 29]). In fact, let us choose a total ordering ofB

such that, ifi ∈ τk, j ∈ τl, andk < l, theni < j. LetBk ⊂ B consist of the first
k elements ofB in this ordering. Then the classes of the characteristic functions
of B1, B2, . . . , Bn−1 (n = cardB) form a basis ofNB, and{χσ(i)} is a part of it.

To check thatL̄B is proper, we must show that the support ofFB is the total
space. We have already proved this.

Like any toric variety,L̄B carries a family of subvarieties that are the closures
of the orbits ofTB and which are in a natural bijection with the conesC(τ) in FB.
We denote these subvarietiesL̄τ , and they are smooth. The respective orbit that
is an open subset of̄Lτ is denotedLτ .
2.6.1. Forgetful Morphisms and a Family of Pointed Curves over L̄B.
Assume thatB ⊂ B ′. Then we have the projection morphismZB

′ → ZB, which
induces the morphismf B

′,B : NB ′ → NB. It satisfies the property stated in the last
lines of [F, p. 22]: for each coneC(τ ′)∈FB ′ , there exists a coneC(τ)∈FB such
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thatf B
′,B(C(τ ′)) ⊂ C(τ). In fact, τ is obtained fromτ ′ by deleting elements of

B ′ \ B and then deleting the empty subsets of the resulting partition ofB.

Therefore, we have a morphismf B
′,B
∗ : L̄B ′ → L̄B [F, p. 23], which we will

call theforgetful one(it forgets elements ofB ′ \ B).
2.6.2. Proposition. If B ′ \ B consists of one element, then the forgetful mor-
phismL̄B ′ → L̄B has a natural structure of a stable({0,∞}, B)-pointed curve of
genus0.

Proof. Let us first study the fibers of the forgetful morphism. Letτ be a partition
of B of lengthl + 1 and letLτ be the respective orbit in̄LB. Its inverse image in
L̄B ′ is contained in the union

⋃ L̄τ ′ whereτ ′ runs over partitions ofB ′ obtained
by adding the forgotten point to one of the partsτi, or inserting it betweenτi and
τi+1, or putting it at the very beginning or at the very end as a separate part.

The inverse image of any pointx ∈Lτ is acted upon by the multiplicative group
Gm = Ker(TB ′ → TB). This action breaks the fiber into a finite number of orbits
that coincide with the intersections of this fiber with variousLτ ′ described previ-
ously. Whenτ ′ is obtained by adding the forgotten point to one of the parts, this
intersection is a torsor over the kernel; otherwise, it is a point. As a result, we get
that the fiber is a chain ofP1s whose components are labeled by the components of
τ and whose singular points are labeled by the neighboring pairs of components.

The forgetful morphism is flat, because locally in toric coordinates it is de-
scribed as adjoining a variable and a localization.

In order to describe the two white sections of the forgetful morphism, consider
two partitions(B ′ \B,B) and(B, B ′ \B) ofB ′ and the respective closed strata. It
is easily seen that the forgetful morphism restricted to these strata identifies them
with L̄B. We will call themx0 andx∞, respectively.

Finally, to define thej th black section,j ∈ B, consider the morphism of lat-
ticessj : NB → NB ′ that extends a functionχ onB to the functionsj(χ) onB ′

taking the valueχ(j) at the forgotten point. This morphism satisfies the condition
of [F, p. 22]: each coneC(τ) from FB lands in an appropriate coneC(τ ′) from
FB ′ . This must be quite clear from the description at the end of 2.5.1:τ ′ is ob-
tained fromτ by adding the forgotten point to the same part to whichj belongs.
Hence we have the induced morphismssj∗ : L̄B → L̄B ′ , which obviously are sec-
tions. Moreover, they do not intersectx0 andx∞, and they are distributed among
the components of the reducible fibers exactly as expected.

2.6.3. Theorem. The morphismL̄B → L̄B inducing the family described in
Proposition 2.6.2 is an isomorphism.

This can be proved by induction on cardB with the help of the more detailed analy-
sis of the forgetful morphism, as before. We omit the details because they are not
instructive.

An important corollary of this theorem is the existence of a surjective birational
morphismM̄0,n+2→ L̄n corresponding to any choice of two different labelsi, j
in (1, . . . , n+ 2). In terms of the of the respective functors, this morphism blows
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down all the components of a stable(n + 2)-labeled curve, except for those that
belong to the single path from the component containing theith point to the one
containing thej th point.

In fact, Kapranov [K2, p. 102] has shown the existence of such a morphism for
L̄n in place ofL̄n. He used a different description of̄Ln in terms of the defin-
ing polyhedron, which he identified with the so-called permutohedron, the convex
hull of theSn-orbit of (1,2, . . . , n). He also proved that̄Ln can be identified with
the closure of the generic orbit of the torus in the space of complete flags in an
n-dimensional vector space.

2.7. Combinatorial Model ofH ∗(L̄B). We will denote by [L̄σ ]∗ (resp. [L̄σ ]∗)
the homology (resp. the dual cohomology) class ofL̄σ .

The remaining parts of this section (and theAppendix) are dedicated to the study
of linear and nonlinear relations between these classes, in the spirit of [KM1; KM2;
KM3] but with the help of the standard toric techniques.

Consider a family of pairwise commuting independent variableslσ numbered
by 2-partitions ofB, and introduce the ring

H ∗B := RB/IB (2.13)

whereRB is freely generated bylσ (over an arbitrary coefficient ringk), and the
idealIB is generated by the following elements indexed by pairsi, j ∈B:

r
(1)
ij :=

∑
σ : iσj

lσ −
∑
τ : jτ i

lτ , (2.14)

r(2)(σ, τ ) := lσ lτ if iσj andjτ i for somei, j. (2.15)

2.7.1. Theorem. (a) There is a well-defined ring isomorphismRB/IB →
A∗(L̄B, k) such thatlσ modIB 7→ [L̄σ ]∗. The Chow ringA∗(L̄B, k) and the coho-
mology ringH ∗(L̄B, k) are canonically isomorphic.

(b)The boundary divisors(strata corresponding to2-partitions) intersect trans-
versally.

Proof. We must check that the ideal of relations between 2n − 2 dual classes of
the boundary divisors [̄Lσ ]∗ contains and is generated by the following relations:

R
(1)
ij :

∑
σ : iσj

[L̄σ ]∗ −
∑
τ : jτ i

[L̄τ ]∗ = 0. (2.16)

If iσj andjτ i, then
R(2)(σ, τ ): [L̄σ ]∗ · [L̄τ ]∗ = 0. (2.17)

We refer to the proposition on page 106 of [F], which gives a system of genera-
tors for this ideal for any smooth proper toric variety (Fulton additionally assumes
projectivity, which we did not check; see [Da, Thm. 10.8] for the general proper
case).

In our notation, these generators look as follows.
To get the complete system of linear relations, we must choose some ele-

mentsm in the dual lattice ofNB spanning this lattice and then form the sums
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σ m(χσ1)[L̄σ ]∗, whereσ runs over all 2-partitions. In our case, the dual lattice

is spanned by the linear functionalsmij : χ 7→ χ(i)− χ(j) for all pairsi, j ∈ B.
Writing the respective relation, we get (2.16).

The complete system of nonlinear relations is given by the monomialslσ (1) . . .

lσ (k) such that(C(σ (1)), . . . , C(σ (k))) do not span a cone inFB. This means that
some pair(C(σ (a)), C(σ (b))) already does not span a cone, because otherwise the
respective 2-partitions would form a good family (cf. 2.4.1). In view of Lemma
2.4.2(iii), we can findi, j ∈B such thatiσ (a)j andjσ (b)i. Hence (2.16) and (2.17)
together constitute a generating system of relations.

The remaining statements are true for all smooth complete toric varieties de-
fined by simplicial fans.

2.8. Combinatorial Structure of the Cohomology Ring. In the remain-
ing part of this section we fix a finite setB and studyH ∗B as an abstract ring.

For an(N + 1)-partitionτ, define the respectivegood monomialm(τ) by the
formula

m(τ) = lσ (1) . . . lσ (N ) ∈RB.
If τ is the trivial 1-partition, we putm(τ) := 1. In view of Theorem 2.7.1,m(τ)
represents the cohomology class ofL̄τ .

Notice that if we have two good families of 2-partitions whose union is also
good, then the product of the respective good monomials is a good monomial.
This defines a partial operation∗ on pairs of partitions

m(τ (1))m(τ (2)) = m(τ (1) ∗ τ (2)).

2.8.1. Proposition. Good monomials andIB spanRB. Therefore, images of
good monomials spanH ∗B .

Proof. We make an induction on the degree. In degrees 0 and 1 the statement is
clear because all thelσ are good. If it is proved in degreeN then it suffices to
check that, for any 2-partitionσ and any nontrivial partitionτ, lσm(τ) is a linear
combination of good monomials moduloIB. We will consider the three cases of
Lemma 2.4.2 in turn.

(i) σ breaksτ betweenτa and τa+1. This means thatlσ dividesm(τ).
Choosei ∈ τa andj ∈ τa+1. In view of (2.14), we have(∑

ρ : iρj

lρ −
∑
ρ : jρi

lρ

)
m(τ)∈ IB. (2.18)

But if jρi, thenlρm(τ)∈ IB because of (2.15). Among the terms withiρj there is
onelσ . For all otherρ, lρ cannot dividem(τ) since other divisors puti andj in
the same part of the respective partition. Therefore,lρm(τ) either belongs toIB or
is good. So finally (2.18) allows us to expresslσm(τ) as a sum of good monomials
and an element ofIB :
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lσm(τ) = −
∑

ρ 6=σ, iρj
m(ρ ∗ τ)modIB,

where the terms for whichρ ∗ τ is not defined must be interpreted as zero. More
precisely, there are two types of nonvanishing terms. One corresponds to all 2-
partitionsα of τa such thati ∈ τa1,which we will write asiα. Another corresponds
to 2-partitionsβ of τa+1 with j belonging to the second part,βj :

lσm(τ) = −
∑
α : iα

m(τ(α))−
∑
β :βj

m(τ(β))modIB. (2.19)

Notice that there are several ways to write the right-hand side, depending on the
choice ofi, j. Hence good monomials are not linearly independent moduloIB.

(ii) σ breaksτ at τa. By the foregoing analysis, this means that

lσm(τ) = m(σ ∗ τ) = m(τ(α)) (2.20)

for an appropriate partitionα of τa.

(iii) σ does not breakτ. In this case, let(τb, τb+1) be a bad pair forσ. Then,
from (2.12) it follows that there existi, j ∈ B such thatiσj andjσ (a)i. Hence
lσm(τ) is divisible byr(2)(σ, σ (a)) and

lσm(τ) = 0 modIB.

2.8.2. Linear Combinations of Good Monomials Belonging to IB. Let
τ = (τ1, . . . , τN) be a partition ofB. Choosea ≤ N such that|τa| ≥ 2 and choose
two elementsi, j ∈ τa, i 6= j. For any ordered 2-partitionα = (τa1, τa2) of τa,
denote byτ(α) the induced(N +1)-partition ofB as before:

(τ1, . . . , τa−1, τa1, τa2, τa+1, . . . , τN).

Finally, put
r
(1)
ij (τ, a) :=

∑
α : iαj

m(τ(α))−
∑
α : jαi

m(τ(α)). (2.21)

Choosing forτ the trivial 1-partition yields (2.14), so these elements span the inter-
section ofIB with the space of good monomials of degree 1.

Generally, allr(1)ij (τ, a)belong toIB. In fact, keeping the same notation, consider

r
(1)
ij m(τ) =

(∑
ρ : iρj

lρ −
∑
ρ : jρi

lρ

)
m(τ)∈ IB. (2.22)

Arguing as before, we see that the summand corresponding toρ in (2.18) either
belongs toIB or is a good monomial, and the latter happens exactly for those par-
titionsρ that are of the typeτ(α) with eitheriαj or jαi. Hence (2.21) lies inIB.
This proves our claim.

2.9. Theorem. Elements(2.21)span the intersection ofIB with the space gen-
erated by good monomials.
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Proof. Define the linear spaceH∗B to be generated by the symbolsµ(τ) for all
partitions ofB that satisfy analogs of the linear relations (2.21): for all(τ, τa, i, j)

as before, we have ∑
α : iαj

µ(τ(α))−
∑
α : jαi

µ(τ(α)) = 0. (2.23)

2.9.1. Technical Lemma. There exists an(obviously unique) structure of an
H ∗B -module onH∗B with the following multiplication table.

(i) If σ breaksτ betweenτa and τa+1, then for any choice ofi ∈ τa and j ∈
τa+1 we have

lσµ(τ) = −
∑
α : iα

µ(τ(α))−
∑
β :βj

µ(τ(β)) (2.24)

(cf. (2.19)).
(ii) If σ breaksτ at τa, then

lσµ(τ) = µ(σ ∗ τ) (2.25)

(cf. (2.20)).
(iii) If σ does not breakτ, then

lσµ(τ) = 0. (2.26)

Our proof of this lemma consists of the direct verification that the prescriptions
(2.24)–(2.26) are compatible with all relations that we have postulated. Unfortu-
nately, such strategy requires the painstaking case-by-case treatment of a long list
of combinatorially distinct situations, which we relegate to the Appendix.

2.9.2. Deduction of Theorem 2.9 from the Technical Lemma. Since ele-
ments (2.21) belong toIB, there exists a surjective linear maps : H∗B → H ∗B,
µ(τ) 7→ m(τ). Now denote by1 the elementµ(ε), whereε is the 1-partition.
Thent : m(σ) 7→ m(σ)1 is a linear mapH ∗B → H∗B. From (2.25) one easily de-
duces thatm(τ)1= µ(τ), sos andt are mutually inverse. Therefore, (2.22) span
the linear relations between the images of good monomials inH ∗B .

According to Theorem 2.4.1,H∗B, in light of its structure as anH ∗B -module, is
a combinatorial model of the homology moduleH∗(L̄B, k). The generatorsµ(τ)
correspond to [̄Lτ ]∗.

3. Pencils of Flat Connections and
the Commutativity Equations

3.1. Notation. LetM be a (super)manifold over a fieldk of characteristic 0 in
one of the standard categories (smooth, complex analytic, schemes, formal, . . . ).

We use the conventions spelled out in [M, I.1]. In particular, differentials in the
de Rham complex(�∗M, d ) and connections are odd. This determines our sign
rules; parity of an objectx is denoted̃x.
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LetF be a locally free sheaf (of sections of a vector bundle) onM, and let∇0

be a connection onF, that is, an oddk-linear operatorF → �1
M ⊗ F satisfying

the Leibniz identity

∇0(ϕf ) = dϕ ⊗ f + (−1)ϕ̃ϕ∇0f, ϕ ∈OM, f ∈F . (3.1)

This operator extends to a unique operator on the�∗M -module�∗M ⊗ F, denoted
again by∇0 and satisfying the same identity (3.1) for anyϕ ∈ �M. Any other
connection differential∇ restricted toF has the form∇0 + A, whereA : F →
�1
M ⊗ F is an oddOM -linear operator:A(ϕf ) = (−1)ϕ̃ϕA(f ). Any connec-

tion naturally extends to the whole tensor algebra generated byF, in particular, to
End F .

The connection∇0 is calledflat if and only if∇2
0 = 0. A pencil of flat connec-

tions is a line in the space of connections∇λ := ∇0 + λA such that∇2
λ = 0 (λ is

an even parameter). In the smooth, analytic, or formal category,∇0 is flat if and
only if F locally admits a basis of flat sectionsf, ∇0f = 0.

3.2. Proposition. ∇0+ λA is a pencil of flat connections if and only if the fol-
lowing two conditions are satisfied.

(i) Everywhere locally onM, we have

A = ∇0B (3.2)

for someB ∈ End F .
(ii) Such an operatorB satisfies the quadratic differential equation

∇0B ∧ ∇0B = 0. (3.3)

Proof. Calculating the coefficient ofλ in ∇2
λ = 0, we obtain∇0A = 0. But the

complex�∗M ⊗ F is the resolution of the sheaf of flat sections Ker∇0 ⊂ F . This
furnishes (i); (ii) means the vanishing of the coefficient ofλ2.

3.2.1. Remarks. (a) WriteB as a matrix in a basis of∇0-flat sections ofF whose
entries are local functions onM. Then (3.3) becomes

dB ∧ dB = 0. (3.4)

These equations, written in local coordinates(t i) onM, were called “t-part of the
t-t∗ equations” by S. Cecotti and C. Vafa. Losev [L1] suggested calling them the
commutativity equations.

(b) If ∇0ϕ0 = 0, then

(∇0 + λ∇0B)(e−λBϕ0) = 0.

3.2.2. Pencils of Flat Connections Related to Frobenius Manifolds.
Any solution to the associativity equations produces a pencil of flat connections.

To explain this we will use the geometric language due to B. Dubrovin (and the
notation of [M, I.1.5]). Consider a Frobenius manifold(M, g, B) where

B : TM ⊗OM TM → TM
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is a (super)commutative associative multiplication on the tangent sheaf satisfying
the potentiality condition andg is an invariant flat metric (no positivity condition
is assumed, only symmetry and nondegeneracy). Denote by∇0 the Levi–Civita
connection ofg. Finally, denote byA the operator obtained from the Frobenius
multiplication inTM [M, I.1.4). In other words, consider the pencil of connections
onF = TM whose covariant derivatives are

(∇0 + λA)X(Y ) := ∇0,X(Y )+ λX B Y.
This pencil is flat (see [M, Thm. I.1.5, p. 20). In fact,B written in a basis of∇0-flat
coordinates and the respective flat vector fields is simply the matrix of the sec-
ond derivatives of a local potential8 (with one subscript raised). This is the first
structure connection ofM.

This pencil admits an infinite-dimensional deformation: one should take the
canonical extension of the potential to the large phase space and consider the
coordinates with gravitational descendants as parameters of the deformation.

Another family of flat connections, this time on thecotangentsheaf of a
Frobenius manifoldM admitting an Euler vector fieldE (see [M, pp. 23–24]),
is defined as follows. Denote the scalar product on vector fieldsǧλ(X, Y ) :=
g((E − λ)−1 B X, Y ). The inverse form induces a pencil of flat metrics on the
cotangent sheaf, whose Levi–Civita connections do not, however, form a pencil
of flat connections in our sense (see [D1, Apx. D] and [D3] for a general discus-
sion of such setup). This is the second structure connection ofM.

3.2.3. Flat Coordinates and Gravitational Descendants. One can show
that 1-forms onM flat with respect to the dualized first structure connection are
closed and therefore locally exact. Their integrals are calleddeformed flat coordi-
nates.In [D2, Ex. 2.3 and Thm. 2.2] Dubrovin gives explicit formal series inλ (z
in his notation) for suitably normalized deformed flat coordinates. Coefficients of
these series involve some correlators with gravitational descendants, namely those
for which the nontrivial operatorsτp are applied at only one point. In [KM2] and
[M, VI.7.2, p. 278] it was shown that two-point correlators of this kind determine
a linear operator in the large phase space that transforms the modified correlators
with descendants into nonmodified ones (in any genus). This is important because
a priori only modified correlators are defined for an arbitrary cohomological field
theory in the sense of [KM1], which is not necessarily the quantum cohomology
of a manifold.

3.2.4. Pencils of Flat Connections in a Global Setting. Pencils of flat
connections appear also in the context of Simpson’s non-abelian Hodge theory.
Briefly, consider a smooth projective manifoldM overC. One can define two mod-
uli spaces, Mod1 and Mod2. The first one classifies flat connections (on variable
vector bundlesF with vanishing rational Chern classes) with semisimple Zariski
closure of the monodromy group. The second one classifies semistable Higgs pairs
(F,A),whereA is an operator as in 3.1, satisfying only the conditionA∧A = 0.
(In fact, one should consider only smooth points of the respective moduli spaces.)
Hitchin, Simpson, Fujiki, and colleagues established that Mod1 and Mod2 are
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canonically isomorphic asC∞-manifolds, but their complex structuresI, J are
different and together withK = IJ produce a hypercomplex manifold.

P. Deligne has shown that the respective twistor space is precisely the moduli
space of the pencils of flat connections onM (where the Higgs complex structure
corresponds to the pointλ = ∞ in our notation). For details, see [S].

3.3. Formal Solutions to the Commutativity Equations and the Homol-
ogy of L̄n. In [KM1] and [KM3] it was shown that formal solutions to the asso-
ciativity equations are cyclic algebras over the cyclic genus-0 homology modular
operad(H∗(M̄0,n+1)) (see also [M,III.4]). The main goal of this section is to
show the similar role of the homology of the spacesL̄n in the theory of commu-
tativity equations. This was discovered and discussed on a physical level in [L1;
L2]. Here we supply precise mathematical statements with proofs.

Unlike the case of the associativity equations, here we must deal with modules
over an algebra (depending explicitly on the base space) rather than with alge-
bras over an operad. The main ingredient of the construction is the direct sum of
the homology spaces of allL̄n endowed with the multiplication coming from the
boundary morphisms. We work with the combinatorial models of these spaces de-
fined in 2.9.1.

We start with some preparations. LetV = ⊕∞
n=1Vn be a graded associative

k-algebra (without identity) in the category of vectork-superspaces over a fieldk.
We will call it anS-algebraif, for eachn, an action of the symmetric groupSn on
Vn is given such that the multiplication mapVm⊗Vn→ Vm+n is compatible with
the action ofSm × Sn embedded in an obvious way intoSm+n.

If V is anS-algebra then the sum of subspacesJn spanned by(1− s)v (s ∈Sn,
v ∈Vn) is a double-sided ideal inV. Hence the sum of the coinvariant spacesVSn =
Vn/Jn is a graded ring, which we denoteVS. If V andW are twoS-algebras, then
the diagonal part of their tensor product

⊕∞
n=1Vn ⊗Wn is anS-algebra as well.

Let T be a vector superspace (hereafter assumed to be finite-dimensional). Its
tensor algebra (without the rank-0 part) is anS-algebra.

As a less trivial example, considerH∗ :=⊕∞n=1H∗n, where we writeH∗n for
H∗{1, ...,n}. The multiplication law is given by what become the boundary mor-
phisms in the geometric setting: ifτ (1) resp.τ (2)) is a partition of{1, . . . , m} (resp.
of {1, . . . , n}), then

µ(τ (1))µ(τ (2)) = µ(τ (1) ∪ τ (2)), (3.5)

where the concatenated partition of{1, . . . , m, m+1, . . . , m+ n} is defined in an
obvious way, shifting all the components ofτ (2) bym.

Our main protagonist is the algebra of coinvariants of the diagonal tensor prod-
uct of these examples:

H∗T :=
( ∞⊕
n=1

H∗n ⊗ T ⊗n
)

S
. (3.6)

We now fixT and another vector superspaceF and assume that the ground field
k has characteristic 0.
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3.3.1. Theorem. There is a natural bijection between the set of representations
ofH∗T in F and the set of pencils of flat connections on the trivial bundle whose
space of∇0-flat sections is identified withF on the formal completion ofT at the
origin.

This bijection will be precisely defined and discussed: see Proposition 3.6.1. Be-
fore passing to this definition and the proof of the theorem, we will give a down-
to-earth coordinate-dependent description of the representations ofH∗T .

3.4. Matrix Correlators. Fix T and choose its parity homogeneous basis
(1a | a ∈ I ), whereI is a finite set of indices.

For anyn ≥ 1, the spaceH∗n ⊗ T ⊗n is spanned by the elements

µ(τ (n))⊗1a1⊗ · · · ⊗1an, (3.7)

whereτ (n) runs over all partitions of{1, . . . , n} while (a1, . . . , an) runs over all
maps{1, . . . , n} 7→ I : i → ai. In view of Theorem 2.9, all linear relations be-
tween these elements are spanned by the following ones: choose(a1, . . . , an) and
(τ (n), τ (n)r , i 6= j ∈ τ (n)r ); then∑

α : iαj

µ(τ (n)(α))⊗1a1⊗ · · · ⊗1an

−
∑
α : jαi

µ(τ (n)(α))⊗1a1⊗ · · · ⊗1an = 0, (3.8)

where the summation is taken over all 2-partitionsα of τ (n)r separatingi andj.
The action of a permutationi 7→ s(i) on (3.7) is defined by

s
(
µ(τ (n))⊗1a1⊗ · · · ⊗1an

)
= ε(s, (ai))µ(s(τ (n)))⊗1as(1) ⊗ · · · ⊗1as(n) . (3.9)

Hereε(s, (ai)) = ±1 is the sign of the permutation induced bys on the subfamily
of the odd1ai , ands(τ (n)) is defined as follows:

s(i)∈ s(τ (n))r ⇐⇒ i ∈ τ (n)r . (3.10)

Finally, the multiplication rule between the generators in the diagonal tensor
product is given by

µ(τ (m))⊗1a1⊗ · · · ⊗1am · µ(τ (n))⊗1b1⊗ · · · ⊗1bn

= µ(τ (m) ∪ τ (n))⊗1a1⊗ · · · ⊗1am ⊗1b1⊗ · · · ⊗1bn. (3.11)

Any linear representationK : H∗T → EndF can be described as a linear repre-
sentation of the diagonal tensor product satisfying additional symmetry restric-
tions. To spell it out explicitly, we define thematrix correlatorsof K as the fol-
lowing family of endomorphisms ofF :

τ (n)〈1a1 . . . 1an〉 := K(µ(τ (n))⊗1a1⊗ · · · ⊗1an). (3.12)

3.4.1. Claim. Matrix correlators of any representation satisfy the following
relations.
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(i) Sn-symmetry:

s−1(τ (n))〈1a1 . . . 1an〉 = ε(s, (ai))τ (n)〈1as(1) . . . 1as(n)〉. (3.13)

(ii) Factorization:

(τ (m) ∪ τ (n))〈1a1 . . . 1am1b1 . . . 1bn〉
= τ (m)〈1a1 . . . 1am〉 · τ (n)〈1b1 . . . 1bn〉. (3.14)

(iii) Linear relations:∑
α : iαj

τ (n)(α)〈1a1 . . . 1an〉 −
∑
α : jαi

τ (n)(α)〈1a1 . . . 1an〉 = 0. (3.15)

Conversely, any family of elements ofEndF defined for alln, (a1, . . . , an), and
τ (n) and satisfying(3.13)–(3.15)consists of matrix correlators of a well-defined
representationK : H∗T → EndF.

In fact, we obtain (3.13) by applyingK to (3.9) written fors−1(τ (n)) in place ofτ (n),
becauseK, coming fromH∗T, vanishes on the image of 1− s. Moreover, (3.14)
implies compatibility with the multiplication of the generators. Finally, (3.15) is
a necessary and sufficient condition for the extendability of the system of matrix
correlators to a linear mapK.

Notice that we can replace EndF by an arbitrary associative superalgebra overk.

3.5. Top Matrix Correlators. Define thetop matrix correlatorsof K as the
subfamily of correlators corresponding to the identical partitionsε(n) of {1, . . . , n}:

〈1a1 . . . 1an〉 := ε(n)〈1a1 . . . 1an〉.
3.5.1. Proposition. Top matrix correlators satisfy the relations

〈1a1 . . . 1an〉 = ε(s, (ai)) 〈1as(1) . . . 1as(n)〉 (3.16)

and∑
σ : iσj

ε(σ, (ak))

〈 ∏
k∈σ1

1ak

〉
·
〈 ∏
k∈σ2

1ak

〉

−
∑
σ : jσi

ε(σ, (ak))

〈 ∏
k∈σ1

1ak

〉
·
〈 ∏
k∈σ2

1ak

〉
= 0, (3.17)

whereσ runs over2-partitions of {1, . . . , n}. We choose additionally an arbitrary
ordering of both partsσ1, σ2 determining the ordering of1s in the angular brack-
ets, and we compensate this choice by the±1-factor ε(σ, (ak)).

Conversely, any family of elements〈1a1 . . . 1an〉 ∈EndF defined for alln and
(a1, . . . , an) and satisfying(3.16)and (3.17)is the family of top matrix correlators
of a well-defined representationK : H∗T → EndF.

Proof. Clearly, (3.16) is a particular case of (3.13). To derive (3.17), we apply
(3.15) to the identical partitionτ (n) = ε(n) and then replace each term by the
double product of top correlators using (3.14).
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Conversely, assume that we are given〈1a1 . . . 1an〉 satisfying (3.16) and
(3.17). There is a unique way to extend this system to a family of elements
τ (n)〈1a1 . . . 1an〉 defined for allN -partitionsτ (n) and satisfying the factorization
property (3.14) and at least a part of the symmetry relations (3.13):

τ (n)〈1a1 . . . 1an〉 := ε(τ (n), (ak))
r=N∏
r=1

〈 ∏
k∈τ (n)r

1ak

〉
. (3.18)

Here, as in (3.17), we choose arbitrary orderings of eachτ (n)r and compensate
by appropriate sign so that the result does not depend on the choices made. All
the relations (3.13) become automatically satisfied with this definition. In fact,
the left-hand side of (3.13) puts intos−1(τ (n))r thosei for which s(i) ∈ τ (n)r (see
(3.10)), so that the expression of both sides of (3.13) through the top correlators
consists of the same groups taken in the same order. The equality of the signs is
left to the reader.

It remains to check that (3.18) satisfy the linear relations (3.15). Recall now
that to write a concrete relation (3.15) down we chooseτ (n), r, i, j ∈ τ (n)r , and
(a1, . . . , an) and then sum over 2-partitionsα of τ (n)r . Hence, replacing each term
on the left-hand side of (3.15) by the prescriptions (3.18) yields

r−1∏
p=1

〈 ∏
k∈τ (n)p

1ak

〉

·
( ∑
α : iαj

±
〈 ∏
k∈α1

1ak

〉
·
〈 ∏
k∈α2

1ak

〉
−
∑
α : jαi

±
〈 ∏
k∈α1

1ak

〉
·
〈 ∏
k∈α2

1ak

〉)

·
N∏

q=r+1

〈 ∏
k∈τ (n)q

1ak

〉
.

This expression vanishes because its middle term is an instance of (3.17).

3.6. Precise Statement and Proof of Theorem 3.3.1. Assume that we are
given a representationK : H∗T → EndF. We will produce from it a formal solu-
tion to the commutativity equations using only its top correlators. Let(xa) be the
basis of formal coordinates onT dual to(1a). Put

B =
∞∑
n=1

∑
(a1, ...,an)

xan . . . xa1

n!
〈1a1 . . . 1an〉 ∈ k [[ x]] ⊗ EndF. (3.19)

3.6.1. Proposition. (a)We have

dB ∧ dB = 0. (3.20)

(b) Conversely, let1(a1, . . . , an) ∈ EndF be a family of linear operators de-
fined for alln ≥ 1 and all maps{1, . . . , n} → I : i 7→ ai. Assume that the parity
of 1(a1, . . . , an) coincides with the sum of the parities of1ai and that, for any
s ∈Sn,
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1(as(1), . . . , as(n)) = ε(s, (ai))1(a1, . . . , an).

Finally, assume that the formal series

B =
∞∑
n=1

∑
(a1, ...,an)

xan . . . xa1

n!
1(a1, . . . , an)∈ k [[ x]] ⊗ EndF (3.21)

satisfies the equations(3.20). Then there exists a well-defined representation
K : H∗T → EndF such that1(a1, . . . , an) are the top correlators〈1a1 . . . 1an〉
of this representation.

Notice that any even element ofk [[ x]] ⊗ EndF without constant term can be
uniquely written in the form (3.21).

Proof. Clearly, the equationsdB ∧ dB = 0 written for the series (3.21) are
equivalent to a family of bilinear relations between the symmetric matrix-valued
tensors1(a1 . . . an). In view of Proposition 3.5.1, it remains only to check that
this family of relations is equivalent to the family (3.17). This is a straightforward
exercise.

4. StacksL̄g;A,B and the Extended Modular Operad

4.1. Introduction. The basic topological operad(M̄0;n+1, n ≥ 2) of quantum
cohomology lacks then = 1 term, which usually is formally defined as a point.
We argued elsewhere (cf. [MZ, Sec. 7] and [M, VI.7.6]) that it would be very de-
sirable to find a nontrivial DM-stack that could play the role ofM̄0;2. There are
several tests that such an object should pass.

(a) It must be a semigroup (because for any operadP, the operadic multiplica-
tion makes a semigroup ofP(1)).

(b) It must be a part of an extended genus-0 operad—say,(L̃0;n+1, n ≥ 1) geomet-
rically related to(M̄0;n+1, n ≥ 2) in such a way that the theory of Gromov–
Witten invariants with gravitational descendants could be formulated in this
new context. In particular, it must geometrically explain two-point correla-
tors with gravitational descendants.

(c) In turn, the extended genus-0 operad must be a part of an extended modular
operad containing moduli spaces of arbitrary genus in such a way that alge-
bras over classical modular operads produce extended algebras.

In this section we will try to show that the space

L̃0;2 :=
∐
n≥1

L̄n (4.1)

passes at least a part of these tests. (Another candidate that might be interesting is
lim proj L̄n with respect to the forgetful morphisms.)

4.2. Semigroup Structure. The semigroup structure is defined as the union
of boundary (clutching) morphisms
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b := (bn1,n2) : L̃0;2 × L̃0;2→ L̃0;2, (4.2)

where
bn1,n2 : L̄n1 × L̄n2 → L̄n1+n2

gluesx∞ of the first curve tox0 of the second curve and renumbers the black points
of the second curve, keeping their order (cf. [MZ, Sec. 7]). This is the structure
that induced our multiplication onH∗ in 3.3.

4.3. Extended Operads. In (4.2), only white points{x0, x∞} are used to de-
fine the operadic composition whereas the black ones serve only to stabilize the
strings ofP1s that would otherwise be unstable. This is a key observation for our
attempt to define an extended operad.

A natural idea would be to proceed as follows. Denote byM̄g;A,B the stack of
stable(A,B)-pointed curves of genusg (see Definition1.1). Check that it is a
DM-stack. PutM̃g;m+1 := ∐n≥0 M̄g;m+1,n and define the operadic compositions
via boundary maps, using only white points as before. (Here and in the sequel we
sometimes writen instead of{1, . . . , n}.)

However, it seems that this object is too big for our purposes and that it must be
replaced by a smaller stack that we will define inductively by using the construc-
tion of 1.3, which we will here call simply the adjoining of a generic black point.
The components of this stack will be defined inductively.

If g ≥ 2 andm ≥ 0 then we start withM̄g;m = M̄g;m,∅ and addn generic black
points, one in turn. Denote the resulting stack byL̄g;m,n.

Forg = 1 we should add one more sequence of stacks, corresponding tom = 0.
Since we want to restrict ourselves to Deligne–Mumford stacks, we start atM̄1;0,1
identified withM̄1;1 (see 1.2(a)) and add black points to obtain the sequenceL̄1;0,n
(n ≥ 1). These spaces are needed to serve as targets for the clutching morphisms
gluingx0 to x∞ on the same curve of genus zero.

Finally, for g = 0 we obtain our series of spacesL̄n = L̄0;2,n (n ≥ 1) and,
moreover,L̄0;m,n for all m ≥ 3 andn ≥ 0.

4.3.1. Combinatorial Types of Fibers. Let us recall that the combinatorial
types of classical (semi)stable curves with (only white) points labeled by a finite
setA are isomorphism classes of graphs, whose vertices are labeled by “genera”
g ≥ 0 and whose tails are bijectively labeled by elements ofA. Stability means
that vertices of genus 0 bound at least three flags and that vertices of genus 1
bound at least one flag. Graphs can have edges with only one vertex—that is, sim-
ple loops. See [M,III.2] for more details.

Starting with such a graph0 (or rather with its geometric realization) we can
obtain an infinite series of graphs, which will turn out to be exactly combina-
torial types of (semi)stable(A,B)-pointed curves that are fibers of the families
described previously. Namely, subdivide edges and tails of0 by a finite set of
new vertices of genus 0 (on each edge or tail, this set may be empty). If a tail
was subdivided, move the respective label (fromA) to the newly emerged tail.
Distribute the black tails labeled by elements ofB arbitrarily among the old and
the new vertices. Call the resulting graph astringy stable combinatorial typeif it
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becomes stable after repainting black tails into white ones. Clearly, new vertices
depict strings ofP1s stabilized by black points and eventually two special points
on the end components.

4.3.2. Theorem. (a) L̄g;m,n is the Deligne–Mumford stack classifying(m, n)-
pointed curves of genusg of stringy stable combinatorial types. It is proper and
smooth.

(b) Therefore, one can define boundary morphisms gluing two white points of
two different curves,

L̄g1;m1+1,n1 × L̄g2;m2+1,n2 → L̄g1+g2;m1+m2+1,n1+n2,

and gluing two white points of the same curve,

L̄g;m+1,n→ L̄g+1,m−1;n

such that the locally finite DM-stacks

L̃g,m+1 :=
∐
n≥0

L̄g;m+1,n

will form components of a modular operad.

Statement (a) can be proved in the same way as the respective statement 2.2(a).
It remains to see whether one can develop an extension of the Gromov–Witten

invariants, preferably with descendants, to this context. Remark 3.2.3 seems
promising in this respect.

Appendix. Proof of the Technical Lemma

We break the proof into several steps whose content is indicated in the title of the
corresponding subsection. As advice for the reader who might care to check the
details: the most daunting task is to convince oneself that none of the alternatives
has been inadvertently omitted.

A.1. The Right-Hand Side of(2.24)Does Not Depend on the Choice ofi, j

We must check that a different choice leads to the same answer modulo relations
(2.23). We can pass from one choice to another by consecutively replacing only
one element of the pair. Consider, say, the passage from(i, j) to (i ′, j). Form the
difference of the right-hand sides of (2.24) written for(i ′, j) and for(i, j).

In this difference, the terms corresponding to the partitionsβ will cancel. The
remaining terms will correspond to the partitionsα of τa that separatei and i ′.
Their difference will vanish inH∗B because of (2.23).

A.2. Multiplications bylσ Are Compatible with
Linear Relations(2.23)betweenµ(τ)

Choose and fix one linear relation (2.23), that is, a quadruple(τ, τa, i, j ∈ τa),
i 6= j. Choose also a 2-partitionσ. We want to check that, after multiplying the
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left-hand side of (2.23) bylσ according to the prescriptions (2.23)–(2.26), we will
have zero modulo all relations of the type (2.23). There are several basic cases to
consider.

(i) σ breaksτ at τb, b 6= a. Then putτ ′ = σ ∗ τ. After multiplication we will
again have (2.23) written forτ ′ and one of its componentsτa.

(ii) σ breaksτ at τa. Let (τa1, τa2) be the induced partition; it is now fixed.
We must analyzelσµ(τ(α)) for variable 2-partitionsα of τa with iαj or jαi.

Thoseα that do not break(τa1, τa2) will contribute zero because of (2.26).
Thoseα that do break(τa1, τa2) will produce a 3-partition ofτa, say(τa11, τa12,

τa2) or else(τa1, τa21, τa22). Finally, there will be oneα that is induced byσ—that
is, anα that coincides with(τa1, τa2). We must show that the sum total of the re-
spective terms vanishes. However, the pattern of cancellation will depend on the
positions ofi andj. In order to present the argument more concisely, we will first
introduce the numeration of all possible positionswith respect to a variableα as
follows. Partitions that break(τa1, τa2) with iαj :

(I) i ∈ τa11, j ∈ τa12;
(II) i ∈ τa11, j ∈ τa2;

(III) i ∈ τa1, j ∈ τa22;
(IV) i ∈ τa21, j ∈ τa22.

Partitions that break(τa1, τa2) and satisfyjαi will be denoted similarly but with a
prime, so that(III ′) means(III) with the positions ofi andj reversed.

Now we will explain the patterns of cancellation depending on the positions of
i, j with respect toσ. Recall that this latter data is fixed and determined by the
choices we made at the beginning of this subsection.

If i, j ∈ τa1 then the only nonvanishing terms are of the types (I) and (I′). Their
sum over allα will vanish because of (2.23). Similarly, ifi, j ∈ τa2 then (IV) and
(IV ′) will cancel, and everything else will vanish.

Finally, assume thati ∈ τa1 andj ∈ τa2; that is,σ separatesi, j. Then we may
have nonvanishing terms of types(II) and (III) aswell as terms coming from (the
partition of τa induced by)σ, which must be treated using the formula (2.24),
applied however to(τ1, . . . , τa−1, τa1, τa2, τa+1, . . . ) in place ofτ. Half of these
latter terms (withi ∈ τa11) will cancel(II), whereas the other half (withj ∈ τa22)

will cancel(III).
The case ofj ∈ τa1 andi ∈ τa2 is treated similarly.

(iii) σ breaksτ betweenτb and τb+1. In this caseσ breaks anyτ(α) in (2.23)
between two neighbors as well. A contemplation will convince the reader that
only the casesb = a − 1 andb = a may present non-obvious cancellations. Let
us treat the first one; the second one is simpler.

For α = (τa1, τa2) we will calculate each termlσµ(τ(α)) using a formula of
the type (2.24), first choosing somek ∈ τa−1 andl ∈ τa1 (in place ofi, j of (2.24):
these letters are already bound). The choice ofk does not matter, but we will
choosel = i if iαj andl = j if jαi. For iαj we then have
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lσµ(τ(α)) = lσµ(. . . τa−1τa1τa2 . . . )

= −
∑

β : k∈τa−1,1

µ(. . . τa−1,1τa−1,2τa1τa2 . . . )

−
∑

γ : i∈τa12

µ(. . . τa−1τa11τa12τa2 . . . ), (A.1)

whereβ runs over 2-partitions ofτa−1 andγ runs over 2-partitions ofτa1. Write
down a similar expression forjαi (with the choicel = j). The second sum in this
expression will term-by-term cancel the second sum in (A.1), because our choices
forcei ∈ τa12 andj ∈ τa2 in both cases.

If we sum first overα, then we will see that the first two sums cancel modulo
relations (2.23) because our choices implyi ∈ τa1 andj ∈ τa2 in the first sum of
(A.1) and the reverse relation in the first sum written forjαi.

(iv) σ does not breakτ. In this case we choose a bad pair(τb, τb+1) for σ and
τ (see Lemma 2.4.2(iii)). One easily sees that, ifa 6= b anda 6= b + 1, then it
remains a bad pair forσ andτ(α) for anyα in (2.23). Therefore,lσ annihilates
all terms of (2.23) in view of (2.26). We will show that in the exceptional cases
we still can find a bad pair forσ andτ(α), but it will depend onα = (τa1, τa2),

which does not change the remaining argument.
Assume thatb = a; that is, assumeτa \ σ1 6= ∅ andτa+1∩ σ1 6= ∅ (see (2.12)).

Then(τa2, τa+1) is a bad pair forσ andτ(α) unlessτa2 ⊂ σ1, in which caseσ1

cannot containτa1 so that(τa1, τa2) form a bad pair. Similarly, ifb = a − 1 then
τa−1, τa1 will be a bad pair unlessτa1∩ σ1= ∅, in which case(τa1, τa2) will be a
bad pair.

By this time we have checked that multiplications bylσ are well-defined linear
operators on the spaceH∗B. We will now prove that they pairwise commute and
therefore define an action ofRB uponH∗B.

A.3. Multiplications bylσ Pairwise Commute

We start by fixingτ, σ (1), andσ (2). We want to check that

lσ (1) (lσ (2)µ(τ )) = lσ (2) (lσ (1)µ(τ )).
We may and will assume thatσ (1) 6= σ (2). The following alternatives can occur
for σ (1) andσ (2) separately:

(i) σ (1) breaksτ at τa;
(ii) σ (1) breaksτ betweenτa andτa+1;

(iii) σ (1) does not breakτ ;
(i ′) σ (2) breaksτ at τb;

(ii ′) σ (2) breaksτ betweenτb andτb+1;
(iii ′) σ (2) does not breakτ.

We will have to consider the combined alternatives(i)(i ′), (i)(ii ′), . . . , (iii)(iii ′)
in turn. The symmetry ofσ (1) andσ (2) allows us to discard a few of them.
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Subcase(i)(i ′). We will first assume thata 6= b, saya < b. Denote byα (resp.
β) the partition induced byσ (1) (resp.σ (2)) on τa (resp.τb). Then

lσ (1) (lσ (2)µ(τ )) = lσ (2) (lσ (1)µ(τ )) = µ(τ(α)(β)) = µ(τ(β)(α)).
Now assume thata = b. If α breaksβ then we will again have the desired equal-
ity, becauseα ∗ β = β ∗ α. If α does not breakβ then both sides will vanish.

Having treated this subcase, we add one more remark that will be used in Sec-
tion A.5. Namely,α does not breakβ exactly whenσ (1) does not breakσ (2).
Therefore, iflσ (1) lσ (2) is one of the quadratic generators ofIB then consecutive
multiplication by the respective elements annihilatesµ(τ).

Subcase(i)(ii ′). If a 6= b anda 6= b + 1, then the modifications induced in
τ by the two multiplications are made in mutually disjoint places and therefore
commute as before. Consider now the casea = b (the casea = b +1 is similar).

Denote by(τa1, τa2) the partition induced byσ on τa. Then we have

lσ (1)µ(τ ) = µ(. . . τa−1τa1τa2τa+1 . . . ) = µ(τ ′).
Clearly,σ (2) breaksτ ′ betweenτa2 andτa+1 so that, after choosingi ∈ τa2 and
j ∈ τa+1, we have

lσ (2) (lσ (1)µ(τ )) = −
∑
α : iα

µ(τ ′(α))−
∑
β :βj

µ(τ ′(β)), (A.2)

whereα runs over 2-partitions ofτa2 andβ runs over 2-partitions ofτa+1.

On the other hand, with the same choice ofi, j we have

lσ (2)µ(τ ) = −
∑
γ : iγ

µ(τ(γ ))−
∑
β :βj

µ(τ(β)), (A.3)

whereγ runs over 2-partitions ofτa andβ runs over 2-partitions ofτa+1. After
multiplication of (A.3) bylσ (1) , the second sum in (A.3) will become the second
sum of (A.2). In the first sum, only partitionsδ breaking(τa1, τa2) will survive,
and they will produce exactly the first sum in (A.2).

Subcase(i)(iii ′). Hereσ (1) breaksτ atτa, and there exists a bad pair(τb, τb+1)

for σ (2) andτ. Sincelσ (2)µ(τ ) = 0, it remains to check thatlσ (2) (lσ (1)µ(τ )) = 0.
But lσ (1)µ(τ ) = µ(τ ′) as in the previous subcase, so it remains to find a bad pair
for σ (2) andτ ′.

If a 6= b andg 6= b + 1, then(τb, τb+1) will be such a bad pair. Ifa = b, de-
note by(τa1, τa2) the partition ofτa induced byσ (1). If τa2 is not contained inσ (2)

then(τa2, τa+1) will form a bad pair; otherwise, this role will pass to(τa1, τa2).

Finally, consider the case whena = b+1. In the previous notation, ifσ (2)1 ∩τa1 6=
∅ then(τa−1, τa1) is the bad pair we are looking for, otherwise, we should take
(τa1, τa2).

Subcase(ii)(ii ′). Hereσ (1) (resp.σ (2)) breaksτ betweena anda + 1 (resp.
betweenb andb +1), anda 6= b.

If a 6= b − 1 anda 6= b + 1, then the modifications induced inτ by σ (1) and
σ (2) do not interact and the respective multiplications commute.
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By symmetry, it remains to consider the casea = b−1. Choosei ∈ τa andj ∈
τa+1. Summing first over partitionsα = (τa1, τa2) andβ = (τa+1,1, τa+1,2), we
have

lσ (1)µ(τ ) = −
∑
α : iα

µ(. . . τa1τa2 . . . )−
∑
β :βj

µ(. . . τa+1,1τa+1,2 . . . ).

Nowσ (2) will break the terms of the first (resp. second) sum betweenτa+1 andτa+2

(resp. betweenτa+1,2 andτa+2). In order to multiply each term of these sums by
lσ (2) , we choose the samej ∈ τa+1 and somel ∈ τa+2. In (A.4) we also sum over
2-partitionsβ = (τa+1,1, τa+1,2) andγ = (τa+2,1, τa+2,2) in the first two sums. In
the second two sums, the respective notation isβ ′ = (τa+1,2,1, τa+1,2,2):

lσ (2) (lσ (1)µ(τ )) =
∑
α : iα
β : jβ

µ(. . . τa1τa2τa+1,1τa+1,2 . . . )

+
∑
α : iα
γ : γl

µ(. . . τa1τa2τa+1τa+2,1τa+2,2 . . . )

+
∑
β :βj
β ′ : jβ ′

µ(. . . τa+1,1τa+1,2,1τa+1,2,2τa+2 . . . )

+
∑
β :βj
γ : γl

µ(. . . τa+1,1τa+1,2τa+2,1τa+2,2 . . . ). (A.4)

On the other hand, with the same notation we have

lσ (2)µ(τ ) = −
∑
β : jβ

µ(. . . τa+1,1τa+1,2 . . . )−
∑
γ : γl

µ(. . . τa+2,1τa+2,2 . . . )

and

lσ (1) (lσ (2)µ(τ )) =
∑
α : iα
β : jβ

µ(. . . τa1τa2τa+1,1τa+1,2 . . . )

+
∑
β : jβ
β ′′ :β ′′j

µ(. . . τa+1,1,1τa+1,1,2τa+1,2 . . . )

+
∑
α : iα
γ : γl

µ(. . . τa1τa2τa+1τa+2,1τa+2,2 . . . )

+
∑
β :βj
γ : γl

µ(. . . τa+1,1τa+1,2τa+2,1τa+2,2 . . . ), (A.5)

whereβ ′′ = (τa+1,1,1, τa+1,1,2). Three of the four sums in (A.4) and (A.5) obvi-
ously coincide. The third sum in (A.4) coincides with the second sum in (A.5)
because both are taken over 3-partitions ofτa+1 with j in the middle part.
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Subcase(ii)(iii ′). Hereσ (1) breaksτ betweena anda + 1, but σ (2) does not
breakτ. We must check thatlσ (2) (lσ (1)µ(τ )) = 0 by finding a bad pair forσ (2) and
for each term on the right-hand side of

lσ (1)µ(τ ) = −
∑
α : iα

µ(. . . τa1τa2 . . . )−
∑
β :βj

µ(. . . τa+1,1τa+1,2 . . . ).

Denote by(τb, τb+1) a bad pair forσ (2) andτ. As in the subcase(i)(iii ′), it will
remain the bad pair unlessb ∈ {a − 1, a, a + 1} and will change somewhat in the
exceptional cases.

More precisely, ifb = a − 1 then, for the terms of the second sum,(τa−1, τa)

will be bad. For the first sum, ifσ (2)1 ∩τa1 6= ∅ then the bad pair will be(τa−1, τa1);
otherwise, it will be(τa1, τa2).

If b = a then, for the terms of the first sum,(τa2, τa+1)will be bad. For the sec-
ond sum, ifσ (2)1 ∩ τa+1,1 6= ∅ then the bad pair will be(τa, τa+1,1); otherwise, it
will be (τa+1,1, τa+1,2).

Finally, if b = a + 1 then, for the terms of the first sum,(τa+1, τa+2) will be
bad. For the second sum, the bad pair will be(τa+1,2, τa+2).

In the last remaining subcase of (iii)(iii ′), both multiplications produce zero.
To complete the proof of the technical lemma, it remains only to check that the

elements (2.14) and (2.15) generatingIB annihilateH∗B.

A.4. Elementsr(1)ij AnnihilateH∗B

Fix i, j and a partitionτ. If τ does not separatei andj then we havei, j ∈ τa for
somea, in which case

r
(1)
ij µ(τ) =

( ∑
σ : iσj

lσ −
∑
σ : jσi

lσ

)
µ(τ)

=
∑
α : iαj

µ(τ(α))−
∑
α : jαi

µ(τ(α)), (A.6)

whereα runs over partitions ofτa. This expression vanishes because of (2.23).
Assume now thatτ separatesi andj ; say,i ∈ τa andj ∈ τb with a < b. In this

case,lσµ(τ) = 0 for all σ with jσi. The remaining terms of (A.6) vanish unless
σ breaksτ at someτc, a ≤ c ≤ b, or else betweenτc andτc+1 for a ≤ c ≤ b−1.
In the latter cases, each term corresponding to oneσ can be replaced by a sum of
terms corresponding to the 2-partitionsαc of τc with the help of (2.24) and (2.25).

Let us choosekc ∈ τc for all a ≤ c ≤ b, so thatka = i andkb = j. The result-
ing expression may be spelled out as∑

σ : iσj

lσµ(τ) =
c=b∑
c=a

′
( ∑
αc : kcαc

+
∑

αc :αckc

)
µ(τ(αc))

−
c=b−1∑
c=a

( ∑
αc : kcαc

+
∑

αc+1:αc+1kc+1

)
µ(τ(αc+1)),
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where the prime at the first RHS sum indicates that the terms withαai andjαb
should be skipped.

All the terms of this expression cancel.

A.5. Elementsr(2)(σ (1), σ (2)) AnnihilateH∗B
These elements correspond to the pairs(σ (1), σ (2)) that do not break each other. If
at least one of them (say,σ (1)) does not breakτ either, thenlσ (1)µ(τ ) = 0 so that
r(2)(σ (1), σ (2))µ(τ) = 0. If both σ (1) andσ (2) breakτ, a contemplation will con-
vince the reader that they must breakτ at one and the same componentτa. This
is the subcase(i)(i ′) of Section A.3, and we made the relevant comment there.

References

[Da] V. I. Danilov, The geometry of toric varieties,Uspekhi Mat. Nauk 33 (1978),
85–134, 247.

[D1] B. A. Dubrovin, Geometry of 2D topological field theories,Lecture Notes in
Math., 1620, pp. 120–348, Springer, Berlin, 1996.

[D2] , Painlevé transcendents in two-dimensional topological field theory,
preprint.

[D3] , Flat pencils of metrics and Frobenius manifolds,preprint.
[F] W. Fulton, Introduction to toric varieties,Ann. of Math. Stud.,131,Princeton

Univ. Press, Princeton, NJ, 1993.
[GS] I. M. Gelfand and V. V. Serganova,Combinatorial geometries and the strata

of a torus on homogeneous compact manifolds,Uspekhi Mat. Nauk 42 (1987),
107–134, 287.

[K1] M. M. Kapranov,The permutoassociahedron, MacLane’s coherence theorem
and asymptotic zones for the KZ equation,J. Pure Appl. Algebra 85 (1993),
119–142.

[K2] , Chow quotients of Grassmannians. I,Adv. Soviet Math., 16, pp. 29–
110, Amer. Math. Soc., Providence, RI, 1993.

[Ke] S. Keel, Intersection theory of moduli spaces of stable N-pointed curves of
genus zero,Trans. Amer. Math. Soc. 330 (1992), 545–574.

[Kn1] F. F. Knudsen,Projectivity of the moduli space of stable curves. II. The stacks
Mg,n, Math. Scand. 52 (1983),161–199.

[Kn2] , The projectivity of the moduli space of stable curves. III. The line
bundles onMg,n and a proof of projectivity ofM̄g,n in characteristic 0,Math.
Scand. 52 (1983), 200–212.

[KM1] M. Kontsevich and Y. I. Manin,Gromov–Witten classes, quantum cohomology,
and enumerative geometry,Comm. Math. Phys. 164 (1994), 525–562.

[KM2] , Relations between the correlators of the topological sigma-model
coupled to gravity,Comm. Math. Phys. 196 (1998), 385–398.

[KM3] , Quantum cohomology of a product (with Appendix by R. Kaufmann),
Invent. Math. 124 (1996), 313–339.

[L1] A. Losev, Commutativity equations, operator-valued cohomology of the
“sausage” compactification of(C∗)N/C∗ and SQM,preprint.

[L2] , Passing from solutions to commutativity equations to solutions to
associativity equations and background independence for gravitational
descendents,preprint.



472 A. Losev & Y. Manin

[M] Y. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces,
Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999.

[MZ] Y. I. Manin, and P. Zograf,Invertible cohomological field theories and Weil–
Petersson volumes,Ann. Inst. Fourier (Grenoble) (to appear).

[S] C. Simpson,The Hodge filtration on non-abelian cohomology,preprint.

A. Losev Y. Manin
Institute of Theoretical and Max-Planck-Institut für Mathematik

Experimental Physics Bonn
Moscow Germany
Russia

manin@mpim-bonn.mpg.de


