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1. Introduction

A general principle on smooth complete-intersection Calabi–Yau threefoldsX ⊆
P is that the obstruction theory for deforming families of rational curves on or
with X is essentially determined by the Abel–Jacobi map (see [C2]). This prin-
ciple can be generalized to families of nonrational curves as long as the Hilbert
scheme HilbP of these curves in the underlying projective spaceP is strongly un-
obstructed. However, Voisin has pointed out that this principle fails badly if HilbP

is obstructed. Indeed, she gave a beautiful counterexample for a family of nonra-
tional curves on quintic hypersurfacesX ⊆ P = P 4. The curveC in question is
just the generic projection of a canonical curve of genus 5 intoP3 ⊆ P4. (As we
shall see, containing such a curve imposes two conditions on the moduli ofX.) We
propose to examine the deformation theory of Voisin’s(C,X), our justification
being the beauty of the geometry and the lack of examples where the deformation
theory is understood in the obstructed case.

Concerning that deformation theory, a specific goal of this paper is the follow-
ing. Given a complete family of curves onX, one wishes to associate a refined
Gromov–Witten invariant, which should always be a nonnegative integer. (This
is because the expected dimension of the Hilbert scheme at a curveC ⊆ X, the
Euler characteristic of the normal bundleNC\X, is 0.) Again, this integer is often
computable when HilbP is strongly unobstructed (see [CK]). However, we know
of precious few examples where anything can be said in the obstructed case. Here
we bound this integer for the Voisin example.

This paper is organized as follows. In Section 2 we consider the geometry of the
Hilbert scheme of curves of degree 8 and genus 5 inP 4. In Section 3 we consider
those curves that lie in a hyperplane as well as the geometry of the quintic surfaces
S that contain them. In Section 4 we considerS as a hyperplane section of a quin-
tic threefoldX and study the structure of HilbX near the curves inS. Finally, in
Section 5 we bound the “refined Gromov–Witten invariant” for the relevant com-
ponent of HilbX. One word about notation: IfT ′ is a subscheme of the Hilbert
scheme of curves, thenCT ′ will denote the universal curve overT ′.
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paper and Aaron Bertram for his help on the geometry of the rank-2 vector bundles
used in our analysis.

2. The Curve

2.1. Canonical Curves of Genus 5

Let Ĉ be a reduced, irreducible, nonhyperelliptic curve of (arithmetic) genus 5,
canonically embedded inP 4.

Proposition 2.1. Either Ĉ is a complete intersection of quadrics orĈ lies on a
smooth cubic scroll. The latter occurs if and only if the curveĈ admits ag1

3.

Proof. The kernel of the map

Sym2H 0(ωĈ)→ H 0(ω2
Ĉ
)

has dimension at least 3, so thatĈ in contained in aP2 of quadrics. If the di-
mension of the base locus of this linear system is greater than 1 (i.e., ifĈ is not
a complete intersection of quadrics) then, sinceĈ does not lie in a hyperplane,
Ĉ must lie in a component of degree 3 that spansP 4. The only such surface is a
smooth cubic scroll.

Corollary 2.2. With Ĉ as before,H 1(NĈ\P 4) = 0.

Proof. For Ĉ a complete intersection of quadrics, this is elementary. So suppose
Ĉ lies on a cubic scroll̂B. We have an exact sequence

0→ NĈ\B̂ → NĈ\P 4 → NB̂\P 4 ⊗OĈ → 0. (1)

To prove the corollary, we will show that

h1(NĈ\B̂ ) = 0= h1(NB̂\P 4 ⊗OĈ).
The scrollB̂ is isomorphic to the Hirzebruch surfaceF1; letE be its exceptional
curve andF a fiber. Fromg(Ĉ ) = 5 and degĈ = 8, we conclude that

Ĉ ≡ 3E + 5F. (2)
Hence

degNĈ\B̂ = Ĉ2 = 21> 8= 2g(Ĉ )− 2

and thush1(NĈ\B̂ ) = 0.

Now, if we choose a quadricQ ⊃ B̂ then we have the exact sequence

0→ NB̂\Q ⊗OĈ → NB̂\P4 ⊗OĈ → NQ\P4 ⊗OĈ → 0.

But by (1), degNB̂\P4 ⊗ OĈ = 27. Hence, degNB̂\Q ⊗ OĈ = 11 > 8 =
2g(Ĉ )− 2, so that

h1(NB̂\Q ⊗OĈ) = 0= h1(NQ\P 4 ⊗OĈ).
Thush1(NB̂\P 4 ⊗OĈ) = 0.

As a consequence of the proof we have the following.



On an Example of Voisin 95

Corollary 2.3. LetQ ⊃ Ĉ be a quadric threefold that is smooth alongĈ. Then
H 1(NĈ\Q) = 0.

2.2. Curves inP3

Proposition 2.4. IfC ⊂ P3 is a subcanonically embedded, reduced, irreducible,
l.c.i. curve of genus5, thenH 1(NC\P3) = 0.

Proof. C must be the isomorphic image of its canonical modelĈ ⊂ P 4 under the
projectionπ : P 4 99K P3. Let I andJ be the ideal sheaves of the curves inP3 and
P 4, respectively. Then the natural mapπ∗ : I→ J passes to a map of conormal
sheaves and hence to a map of normal bundles

π∗ : NĈ\P 4 → NC\P3. (3)

At the smooth points of̂C, this map is induced by the surjectionTP 4 ⊗ OĈ →
TP3 ⊗ OC, so that the cokernel of (3) is torsion. The desired vanishing is now a
corollary of Corollary 2.2.

2.3. Submanifolds ofHilbP
4

From now on, HilbP
4

will denote the open subscheme of the Hilbert scheme of 1-
dimensional schemes of degree 8 and arithmetic genus 5 inP 4 that parameterizes
schemes that are reduced, irreducible, and have only singularities with embedding
dimension 2. LetQ′ be the variety of complete irreducible quadric threefolds (i.e.,
the blow-up of the projective space of quadrics along the locus of doubleP3s). We
let Q ′′ be the locus of pairs

(Ĉ,Q)∈HilbP
4 ×Q′

such thatĈ is canonically or subcanonically embedded inP 4 andQ is a complete
quadric containingĈ in its smooth locus. LetQ ′ denote the image ofQ ′′ under
the projection

HilbP
4 ×Q′ → HilbP

4
.

If C ∈Q ′ only spans aP3, then all the complete quadrics containingC are double
covers of theP3 branched along a quadric surface tangent toC at each intersection
point. ThusC is the projection of a canonical curvêC, and the set of branching
quadric surfaces for fixedC is given by the limiting linear series

lim
Ĉ→C
{P3 ∩Q : Q ⊇ Ĉ}.

HenceQ ′′ is fibered overQ′ and, by Corollary 2.3 and Riemann–Roch, all fibers
are smooth of dimension 24. Then the fibers ofQ ′′ → Q ′ are always Zariski open
dense subsets ofP2. Thus we have the following proposition.

Proposition 2.5. Q ′′ andQ ′ are smooth and of dimensions38and36, respec-
tively.
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On the other hand, letP′ be the locus of{C} ∈ HilbP
4

lying in (and therefore
spanning) aP3 ⊆ P 4. ThenP′ is fibered over(P 4)∨ and, by Proposition 2.4 and
Riemann–Roch, the fibers are smooth of dimension 32. In this case we conclude
as follows.

Proposition 2.6. P′ is smooth of dimension36.

Let
U ′ := P′ ∪Q ′, R′ := P′ ∩Q ′.

Then we have the following.

Proposition 2.7. The scheme
U ′ − R′

is smooth and locally closed inHilbP
4
. At {C} ∈R′, the embedding dimension of

HilbP
4

is 37. The schemeU ′ is locally open inHilbP
4

red and, near{C} ∈ R′ with
C smooth,R′ is a smooth reduced divisor along which the two components ofU ′

meet transversely.

Proof. Sinceh0(NC\P 4) = 36 when{C} ∈ (U ′ − R′), the first assertion is clear.
Suppose{C} ∈R′. From the sequence

0→ NC\P3 → NC\P 4 → OC(1)→ 0, (4)

we see that the imbedding dimensionh0(NC\P 4) of HilbP
4

at {C} is 37. Suppose
now thatC is smooth. Referring to (4), one component is given byP′ with tangent
space given by the preimage of

W := image
(
H 0(OP3(1))→ H 0(OC(1))

)
in H 0(NC\P4) and the other byQ ′ with tangent space given by the kernel of a
rank-1 map

H 0(NC\P 4)→ H 1(OC), (5)

constructed as follows. IfD1(OC(1)) is the sheaf of first-order differential opera-
tors on sections ofOC(1), thenH 1(D1(OC(1))) is the tangent space to the defor-
mation space of the pair(C,OC(1)) (see [AC]). This identification has the prop-
erty that a sectionα ∈ H 0(OC(1)) extends with the first-order deformationD ∈
H 1(D1(OC(1))) if and only if

D(α) = 0∈H 1(OC(1)).
Since the tangent space toQ ′ is characterized by the property thatall sections

in H 0(OC(1)) extend to first-order deformations along it, the canonically defined
subspace

K1= ker
(
H 1(D1(OC(1)))→ Hom(H 0(OC(1)),H 1(OC(1)))

)
defines the tangent space toQ ′. BecauseOC(1) = ωC, this subspace maps iso-
morphically ontoH 1(TC) via the symbol map in the short exact sequence



On an Example of Voisin 97

0→ H 1(OC)→ H 1(D1(OC(1)))→ H 1(TC)→ 0.

This defines a splitting

H 1(D1(OC(1))) = K1⊕H 1(OC).
Hence (5) is given as the composition

H 0(NC\P 4) −→ H 1(D1(OC(1))) projection−−−−−→ H 1(OC),
where the first map is induced from the commutative diagram of exact sequences

OC −−→ D1(OC(1)) −−→ TC∥∥∥ y y
OC −−→ OC ⊗D1(OP 4(1)) −−→ OC ⊗ TP4y y

NC\P 4 NC\P4

. (6)

To see that (5) is of rank1, note that it maps into the subspace ofH 1(D1(OC(1)))
on which the sections inW extend—that is, into the nullspace for the pairing

H 1(D1(OC(1)))⊗W → H 1(OC(1)).
This imposes dimW = 4 conditions onH 1(D1(OC(1))) = H 1(D1(ωC)), which
restrict to independent conditions on its summandH 1(OC).
As Voisin pointed out, something of interest occurs along the 35-dimensional sin-
gular locus

R′ = P′ ∩Q ′. (7)

2.4. Equations forC in P3

Suppose now that, for{C} ∈R′, Ĉ lies in the base locus of the system of quadrics
in P 4 generated by

cjx
2
0 + lj(x1, . . . , x4)x0 + qj(x1, . . . , x4), j = 0,1,2, (8)

with center of projection(1,0,0,0,0) not lying on the base locus. ThusC lies on
the cubic surfaceA given by the equation∣∣∣∣∣∣∣

c0 l0 q0

c1 l1 q1

c2 l2 q2

∣∣∣∣∣∣∣ ≡ 0 (9)

in theP3 given byx0 = 0. We normalize our basis so thatc1 = c2 = 0 andc0 =
1; then the cubic (9) becomes

l1q2 − l2q1= 0. (10)
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Lemma 2.8. For all {C} ∈R′, (10) is the unique cubic inP3 containingC.

Proof. If the base locus of the system (8) is a smooth cubic scrollB̂, then (10) is
the equation of the projection of that scroll intoP3 and

q1= a11l1+ a12l2, q2 = a21l1+ a22l2

for some linear formsajj ′ . Now Ĉ → C is an isomorphism onto a curve of degree
8 and genus 5, and we claim that (9) is the unique cubic containingC. To see this,
notice that the intersection of (9) with a second cubic would be of the formC+L,
whereL is a line meetingC in six points. The trigonal curveC is the image of a
plane quintic with a nodep under a map takingP2 blown up atp to the surface
(9), and soLmust be the double line of (9) or come from a line throughp or from
the exceptional curve. But none of those lines intersectC six times.

Also, since the center of projection does not lie onB̂, the projectionB̂ → A

is a finite birational morphism that maps a conicR in B̂ two-to-one onto the line
l1= l2 = 0 and has inverse

A→ P 4,

(x1, . . . , x4) 7→ (qj, lj x1, . . . , lj x4).

The surface
lj x0 + qj, j = 1,2

is the union ofB̂ and the plane containing the conicR.
Otherwise, (8) defines the canonical embeddingĈ of C. Using the Einstein

summation convention,H 0(IC,P3(3)) is given by homogeneous formsf jqj such
thatgjqj + f jlj ≡ 0. This can be solved forgj such that

gjcj ≡ 0 and gjlj + f jcj ≡ 0.

In normal form, this is given byf j such that

f jlj ≡ −g1q1− g2q2,

f 0 ≡ −g1l1− g2l2

for some constantsg1 andg2. Hence

f 1l1+ f 2l2 ≡ g1(l0l1− q1)+ g2(l0l2 − q2).

But, in the non–cubic-scroll case, the existence of a common solution of

l1= l2 = q1= q2 = 0

implies thatĈ → C is not an isomorphism.

By a somewhat more elaborate calculation we have the following.

Lemma 2.9. For all {C} ∈R′,

h1(IC,P3(4)) = 0.
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Proof. First of all,

h1(IC,P3(4)) = −χ(IC(4))+ h0(IC(4))+ h2(IC(4))

= χ(OC(4))− χ(OP3(4))+ h0(IC(4))

= 28− 35+ h0(IC,P3(4)).

So, to complete the proof we must show that

h0(IC,P3(4)) ≤ 7.

If Ĉ lies on a smooth cubic scroll̂B, then the projection

B̂ → A ⊆ P3

maps a conicR on B̂ two-to-one onto a (double) line onA. Any element of
H 0(IC,P3(4)) must vanish on this line, sinceC meets it in five points. Thus

h0(IC,P3(4)) ≤ 4+ h0(IĈ+R,B̂(4)).

But
Ĉ ≡ 3E + 5F and R ≡ E + F,

so that
IĈ+R,B̂(4) ≡ (4E + 8F )− (4E + 6F ) = 2F

and
h0(IĈ+R,B̂(4)) = 3.

In the non–cubic-scroll case, the fact that there is no common solution of

l1= l2 = q1= q2 = 0

implies thatA is smooth along the line

l1= l2 = 0.

Let Â denote the surface inP 4 given by

lj(x1, . . . , x4)x0 + qj(x1, . . . , x4), j = 1,2.

ThenÂ has a distinguished pointp = (1,0, . . . ,0), which is a smooth point of̂A
sinceC does not lie in a quadric. Then

h0(IC,P3(4)) ≤ 4+ h0(m4
p,Â(2)).

Since

H 0(OP4(2))→ H 0

( OP 4(2)

m4
p,P 4(2)

)
is surjective, we conclude that

h0(m4
p,Â(2)) = 15− 2− (1+ 2+ 3+ 4) = 3.

Thus, again we have
h0(IC,P3(4)) ≤ 7.
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Lemma 2.10. There is a Zariski-open neighborhoodU ′ of R′ in P′ such that, for
any schemeT ′ ⊆ U ′ for which there is a cubic surfaceAT ′ containingCT ′ , we
have

T ′ ⊆ R′.

Proof. For {C} ∈R′ with C not trigonal (i.e.,Ĉ does not lie on a cubic scroll),C
lies in a cubicA given by an equation

l1q2 − l2q1= 0

such that there is no common solution of

l1= l2 = q1= q2 = 0.

Thus the map
A→ P 4,

(x1, . . . , x4) 7→ (qj, lj x1, . . . , lj x4)
(11)

is everywhere well-defined. In fact, the morphism (11) has imageÂ and is an iso-
morphism except that it blows down the linel1 = l2 = 0 to the distinguished
point p. Sincep does not lie onĈ, (11) restricts to an isomorphism onC. By
Lemma 2.8, any sufficiently small deformation of{C} in P′ that lies in a cubic sur-
face gives a deformation of thelj andqj and hence a deformation of the map (11)
and thus a deformation of̂C ⊆ P 4 that projects to the deformation ofC. SinceĈ
is a canonical curve, we conclude that

{C} ∈R′.

If Ĉ lies on the cubic scroll̂B, then the projection map

B̂ → A

is finite and is an isomorphism except overl1= l2 = 0, over which a conicR in B̂
is mapped two-to-one. This map also restricts to an isomorphism onĈ. The map
(11) is given by

(x1, . . . , x4) 7→
(
ajj + aj(j±1)

lj±1

lj
, x1, . . . , x4

)
.

By Lemma 2.8, any deformationCT ′ ⊆ AT ′ gives deformationslj,T ′ , qj,T ′ for j =
1,2 and so yields a rational map

AT ′ → ÂT ′

restricting to an isomorphism onCT ′ → ĈT ′ whose inverse is a family of projec-
tions. ThusT ′ ⊆ R′.

Lemma 2.10 immediately implies the following improvement on Proposition 2.7.

Corollary 2.11. P′ andQ ′ meet transversely at all points ofR′.

Later we will also need the following result.
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Lemma 2.12. (i)For {C} ∈R′ such thatC is not trigonal,C is a Cartier divisor
of the cubicA and

NC\A(−1) = ωC.
(ii) For {C} ∈R′ such thatC is trigonal,

h1(NC\P3(−1)) = 0.

Proof. (i) Again use that

l1= l2 = q1= q2 = 0

has no common solutions. The morphism (11) has imageÂ and is an isomorphism
except that it blows down the linel1 = l2 = 0 to the distinguished pointp. Since
p does not lie onĈ, we have

NC\A = NĈ\Â = OC(2).
(ii) Consider the finite mapf : B̂ → P3 given by the restriction of the projec-

tion to the cubic scroll. We then have the exact sequence

0→ NĈ\B̂ → NC\P3 → OĈ ⊗Nf → 0,

where

Nf = f ∗TP3

TB̂
.

Now referring to (2), it follows that

degNĈ\B̂ = (3E + 5F )2 = 21

so thath1(NĈ\B̂ (−1)) = 0. Since degNC\P3 = 40, we also have

deg(OĈ ⊗Nf) = 19.

Also, the natural injection of line bundles

OĈ ⊗ f ∗N∨A\P3 → OĈ ⊗N∨f
has cokernel a skyscraper sheaf of length 5 corresponding to the five points of in-
tersection ofR andĈ. Sincef is of maximal rank except at two points, the torsion
summand ofOĈ ⊗ Nf has length≤ 2 and therefore its line bundle summand has
degree≥ 17, so that

h1(OĈ ⊗Nf (−1)) = 0.

3. The Surface

3.1. Quintics ContainingC

Now fix a smooth curveC ⊆ P3 ⊆ P 4 representing a general point in the setR′

of (7). By a fundamental theorem of Gruson–Lazarsfeld–Peskine [GLP], for any
nonrational reduced irreducible curveC of degree 8 spanningP3, the restriction
map



102 Herbert C lemens & Holger P. K ley

H 0(OP3(5))→ H 0(OC(5)) (12)

is surjective. This in turn implies that

dimH 0(IC(5)) = 20, (13)

whereIC is the ideal sheaf ofC in P3.

Proposition 3.1. C is contained in a smooth quintic surfaceS whose Picard
number is2.

Proof. The proof is based on the following construction.
As before, letĈ denote the canonical embedding ofC in P 4. Take a1-parameter

family of projectionsπt : Ĉ ⊆ P 4→ P3 with C = π1(Ĉ ) and such that the center
of the projectionπ0 is the vertex of a quadric cone containingĈ. Then(C0)red=
π0(Ĉ ) is a four-nodal curve, which is a(4,4)-curve on a smooth quadric surface
Q0. We write

(C0)red= Q0 ∩ V0

for some quartic surfaceV0 in P3. Thus

h0(I(C0)red(5)) = h0(OP3(3))+ h0(OP3(1)) = 24. (14)

The four nodes{p1, . . . , p4} are coplanar because the canonical linear system on
Ĉ is given by quadrics inP3 containing thepi; hence, ifp̂ij denotes the two points
of Ĉ abovepi for j = 1,2,

OĈ
(∑

p̂ij

)
= ωĈ.

However, no three points of{p1, . . . , p4} are collinear, sincêC is not hyperelliptic.
Thus thepi impose independent conditions on cubics inP3. So, if we denote by
C0 the curve over 0 in the flat family associated toπt(Ĉ ), thenC0 has embedded
points at thepi and all members of the linear system

30 = |IC0(5)| ⊆ |OP3(5)|
are singular at{p1, . . . , p4}; by (14), it follows that

h0(IC0(5)) = 24− 4= 20.

Now a general member of30 is a general member of a general pencil spanned
by the pair of reducible surfaces

Q0 ∪K0, V0 ∪H0,

whereK0 is a general cubic containing thepi andH0 is a hyperplane through
those pointspi at whichV0 is smooth. Since dim30 = 19, the only possibility is
therefore thatH0 is a general hyperplane andV0 is singular at all four pointspi.
In fact, the tangent cone of a general element of30 atpi is a general element of
the pencil of conics spanned by two conics of the form

xl(x, y, z), yz+ xm0(x, y, z),



On an Example of Voisin 103

wherel is a general andm0 is a fixed (unknown) linear form. Thus, the general
quintic surface containingC0 has only ordinary nodes at eachpi. We also see im-
mediately thatIC0(5) is generated by its global sections.

We are now ready to complete the proof of the Proposition. Let

3t = |ICt (5)| ⊆ |OP3(5)|.
Take a generic section of the family{3t } neart = 0 and call the family of quin-
tics {St }. By flatness,ICt (5) is generated by global sections and so, by Bertini’s
theorem,St is smooth fort 6= 0. In fact, if P̃t denotes the blow-up ofP3 alongCt
then the classical Lefschetz argument for hyperplane sections of the embedding

P̃t → P
(
H 0(ICt (5))

∨)
shows that the Picard number of the genericSt is equal to the Picard number of
P̃t , which is 2.

3.2. C Moves in a Pencil onS

We now have, for generic{C} ∈ R′, thatC lies in a smooth quintic surfaceS of
Picard number 2. By adjunction,

NC\S = OC (15)

so that, sinceS is regular,
h0(OS(C)) = 2. (16)

Let
p : S → S ′ := P(H 0(OS(C))∨

)
be the corresponding pencil.

Using Riemann–Roch, Serre duality, standard exact sequences, and the fact that
for no {C ′} ∈ |OS(C)| doesC ′ lie in a hyperplane, one calculates

h1(OS(C)) = 1, h2(OS(C)) = 0; (17)

h0(OS(2C)) = 3, h1(OS(2C)) = 6, h2(OS(2C)) = 0. (18)

We want the surjectivity of (12) for all fibers ofp, so we need the following lemma.

Lemma 3.2. All fibers ofp are reduced and irreducible.

Proof. Suppose not; that is, suppose that there exist

D1+D2 ∈ |OS(C)|
with D1 reduced and irreducible and that

1≤ k := D1 ·K ≤ 4,

whereK is a hyperplane section ofS. SinceC moves in a basepoint-free pencil,
it must be that

C ·D1= 0
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as well. One calculates that the intersection matrix of the divisorsC0, D1, andK
has determinant−64D2

1 and so, since the Picard number ofS is 2,

D2
1 = 0.

Therefore, by the genus formula,

2g(D1)− 2= D2
1 +D1 ·K = k.

Now k = 2 is impossible because there are no curves of genus 2 and degree 2, so
it must be that

k = 4 and g := g(D1) = 3;
in other words,D1 is a plane quartic. It follows that

K ≡ D1+ L
for some lineL in S. Plane quartics are canonically embedded, soh1(OD1(K)) =
1. Thus, using the exact sequence

0→ OS(L)→ OS(K)→ OD1(K)→ 0,

we conclude via Serre duality that

h0(OS(D1)) = h2(OS(L)) = 2.

But, sinceh0(OS(C0)) = 2, this would imply that all curvesC ′ ∈ |OS(C)| are of
the form

C ′ = D +D2 with D ≡ D1,

which contradicts the irreducibility ofC itself.

By Proposition 2.4 we thus have the following corollary.

Corollary 3.3. If S ⊇ C is generic, then

h1(ND\P3) = 0

for every fiberD ∈ |OS(C)|.
Because the mapping of ideal sheaves

ID\P3/I2
D\P3 → ID\S/I2

D\S
is surjective, the mapping

T{D}S ′ = Hom(ID\S/I2
D\S,OD)→ Hom(ID\P3/I2

D\P3,OD) ⊆ T{D}R′

is injective. We therefore conclude as follows.

Proposition 3.4. S ′ is a smooth subscheme ofR′.

Finally, for fixedP3, we need to understand the local structure of

N ′ := {(C, S)∈HilbP
3 × P(H 0(OS(5))

)
: C ⊆ S},

N ′′ := {(C, S)∈N ′ : OC(1) = ωC}
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nearS ′. Let
N2 := {S1 ∈P

(
H 0(OS(5))

)
: ρ(S1) = 2

}
be the subscheme of quintic surfaces nearS with Picard number 2, and let

N2,ω := image(N ′′ → N2).

Proposition 3.5. Suppose that the infinitesimal period mapping

H 0(OS(5))→ Hom(H 0(ωS),H
1(ωC))

is surjective at(C, S). ThenN2 is a smooth submanifold ofP
(
H 0(OS(5))

)
of

codimension4, andN ′ is the blow-up ofN2 along the smooth codimension-2 sub-
manifoldN2,ω with exceptional locusN ′′.

Proof. The first assertion is an immediate consequence of the classical Lefshetz
theorem. For the second, first notice that, forS1 nearby with Picard number 2 and
for the line bundleL that is the deformation ofc1(OS(C)),we haveχ(L) = 1 and,
by (17),h2(L) = 0; henceL has a section. LetC1 denote its zero scheme. Then,
by adjunction,

NC1\S1 = ωS1⊗ ω−1
C1
,

so that
h0(L) > 1 ⇐⇒ OC1⊗ ωS1 = ωC1.

Thus we locally have a birational morphismN ′ → N2 with fibers isomorphic to
P1. A classical theorem of Moishezon characterizing smooth blow-ups then com-
pletes the proof.

4. The Threefold

4.1. Quintics ContainingS

For genericC ∈R′ and genericS ⊇ C as in the previous section, we next let

X ⊇ S ⊇ C
be a generic quintic threefoldX ⊆ P 4 with hyperplane sectionS. ThenX is given
by an equation

F(x0, . . . , x4) = G(x1, . . . , x4)+ x0V̂ (x0, . . . , x4) = 0, (19)

whereS is given byG = 0. We wish to study HilbX in a neighborhood ofS ′, the
parameter space of the basepoint-free pencilS/S ′ with generic fiberC. We will
break this study into two parts: the studies of HilbX ∩ P′ and HilbX ∩Q ′. In the
next few subsections we will concentrate on HilbX ∩P′. Our main tool will be the
identification of two symmetric bilinear forms on

H 0(OP3(1)) = H 0(�2
S) ⊆ H 0(�1

C).

For l, l′ ∈H 0(OP3(1)), the first form is
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〈l, l′ 〉 :=
∫
C

τ ′(ω), (20)

whereω ∈H 0(�2
S) is the element given byl ∈H 0(OP3(1)) and whereτ ′ ∈H 1(TS)

is the Kodaira–Spencer class for the deformation ofS in X given by

x0 − εl′ = 0.

The second form is ∫
C

ω · θω ′, (21)

whereω,ω ′ ∈H 0(�1
C) are the elements given byl andl′ (respectively) and

θ ∈Ext1(�1
C,OC)

is the obstruction to splitting the sequence

0→ NC\S → NC\X → NS\X
∣∣
C
→ 0.

The form (21) of the pairing will later be shown to be nondegenerate. Hence
this identification will allow us to apply Proposition 3.5 to show that our special
surfacesS vary in a (generically) smooth set of codimension 6 inP

(
H 0(OP3(5))

)
.

So the set ofX ⊆ P 4 with a hyperplane section isomorphic to someS as before
will turn out to be smooth of codimension 6− 4= 2 in P

(
H 0(OP 4(5))

)
.

We begin by checking the coincidence of the two pairings (20) and (21). The
pencil of hyperplane sections ofX given byx0 − εxj has derivative

xjV(x1, . . . , x4) (22)

at ε = 0, where
V(x1, . . . , x4) := V̂ (0, x1, . . . , x4).

If

� :=
〈 4∑
j=0

xj
∂

∂xj

∣∣∣∣ dx1 . . . dx4

〉
then the holomorphic 2-forms onS are given by

res
l(x1, . . . , x4)�

G
,

so that the obstruction to extendingc1(C) to first order with a first-order deforma-
tion l′V of S in X is given by the quadratic form

〈l, l′ 〉 =
∫
C

res
ll′V�
G2

(23)

onH 0(OP3(1)).
To see that (20) and (21) coincide, we compute as in [G]. Consider the exact

sequences

0−→ �̂2
P3(S) −→ �2

P3(S)
d−→ �3

P3(2S) −→ 0

and
0−→ NC\S −→ NC\P3 −→ OC ⊗NS\P3 −→ 0
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giving rise to the commutative diagram

H 0(�3
P3(2S))

res−−→ H 0(�2
S ⊗NS\P3) −−→ H 1(�2

S ⊗NC\S)y y o
∥∥∥

H 1(�̂2
P3(S))

res−−→ H 1(�1
S) −−→ H 1(�1

C) .

So the pairing (23) is given by

H 0(OP3(1))⊗H 0(OP3(1))y1⊗V

H 0(�2
S)⊗H 0(NS\P3)y

H 0(�2
S)⊗H 1(NC\S)y
H 1(ωC)

(24)

and so coincides with (21).
One final remark (that will not be used in what follows): One might envision a

parallel study of the infinitesimal period map for the quadric sections ofX at the
complete quadric section 2P3

Q0
∩X, that is, the double cover ofS branched along

S ∩ {Q0 = 0} ⊆ P3.

More precisely, recall the spaceQ ′′ of pairs (curve, complete quadric) defined in
Section 2.3. Let

F(x0, . . . , x4) = G(x1, . . . , x4)

+ x0V(x1, . . . , x4)+ x2
0K(x1, . . . , x4)+ x3

0 · . . . , (25)

and let
x2

0 − ε(x0L0(x1, . . . , x4)+Q0(x1, . . . , x4))

be a path inQ ′′ passing through(C,2P3
Q0
). Taking resultants, we see that the de-

rivative of the corresponding quadric section ofX at ε = 0 projects intoP3 with
equation

Q0(V
2 − 2GK)− L0GV = 0. (26)

However, this infinitesimal period map seems harder to deal with, so we will han-
dle the neighborhood ofS ′ in Q ′ differently.

4.2. CharacterizingNC\X as an Element ofExt1(ωC,OC)
Again, forS ⊆ X generic and anyC in the distinguished pencil parameterized by
S ′, we consider the short exact sequence
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0 −−→ NC\S −−→ NC\X −−→ OC ⊗NS/X −−→ 0

o
∥∥∥ o

∥∥∥
OC ωC

(27)

of normal bundles. This sequence is characterized by an element of

Ext1(ωC,OC) = H 1(TC),

which we express in terms of the equation (25) definingX. From the Euler exact
sequences

0→ OC → OC ⊗D1(OP n(1))→ OC ⊗ TP n → 0

for n = 3,4, we obtain two commutative diagrams of exact sequences of left
OC-modules,

0 0y y
0 −−→ OC ⊗D1(OS(1)) −−→ OC ⊗D1(OX(1)) −−→ OC(1) −−→ 0y y ∥∥∥
0 −−→ OC ⊗D1(OP3(1)) −−→ OC ⊗D1(OP 4(1)) −−→ OC(1) −−→ 0yψ3

yψ4

OC ⊗NS\P3 OC ⊗NX\P 4y y
0 0 (28)

and

0 −−→ OC ⊗D1(OS(1)) −−→ OC ⊗D1(OX(1)) −−→ OC(1) −−→ 0y y ∥∥∥
0 −−→ NC\S −−→ NC\X −−→ OC(1) −−→ 0y y

0 0

.

(29)

Referring to (28), the vertical mapsψn are given by

ψ3

(
α1

∂

∂x1
+ · · · + α4

∂

∂x4

)
= α1

∂G

∂x1
+ · · · + α4

∂G

∂x4
,

ψ4

(
α0

∂

∂x0
+ α1

∂

∂x1
+ · · · + α4

∂

∂x4

)
= α0V + α1

∂G

∂x1
+ · · · + α4

∂G

∂x4
.
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A simple diagram chase, together with the fact that the exact sequence given by
the middle row of (28) is split, yields the following.

Proposition 4.1. The extension class giving(27) is the image ofV under the
composition

Hom(OP3(1),OP3(5))→ Ext1(OC(1),OC ⊗D1(OS(1)))
→ Ext1(OC(1), NC\S) (30)

induced by the diagrams(28)and (29). (Of course,Ext1 here refers to extensions
with respect to the leftOC-module structure onOC ⊗D1(OS(1)).)
We next wish to explore which elements of Ext1(OC(1), NC\S) = Ext1(ωC,OC) =
H 1(TC) occur as we varyV ∈H 0(OP3(4)).

Lemma 4.2. The dimension of the cokernel of(30) is≤ 1and, for generic{C} ∈
S ′, the mapping(30) is surjective.

Proof. We factor the mapping (30) as follows:

H 0(OP3(4))→ H 0(OC(4)) (31)

gives
Hom(OP3(1),OP3(5))→ Hom(OP3(1),OC(5))

followed by
Hom(OP3(1),OC(5))→ Ext1(OC(1), NC\S) (32)

coming from the short exact sequence

0→ Hom(OC(1), NC\S)→ Hom(OC(1), NC\P3)

→ Hom(OC(1),OC ⊗NS\P3)→ 0.

By Lemma 2.9, the map (31) is surjective.
The cokernel of (32) isH 1(NC\P3(−1)). Recall thatC lies on an irreducible

cubic surfaceA ⊆ P3 given by (10). IfC is nontrigonal then the exact sequence

0→ NC\A(−1)→ NC\P3(−1)→ OC(2)→ 0

in Lemma 2.12 gives

h1(NC\P3(−1)) ≤ h1(NC\A(−1)).

Yet by the same lemma we have

NC\A(−1) = ωC.
If C is trigonal, then Lemma 2.12 yields

h1(NC\P3(−1)) = 0.

Since the genericS ′ must contain some trigonal curves, the proof is complete.
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Corollary 4.3. (i) For genericV ∈ Hom(OP3(1),OP3(5)) = H 0(OP3(4)),
the pairing(23) is of maximal rank.

(ii) There is a Zariski open setZ ′ ⊆ P′ such thatS ′ ⊆ Z′, and we have a
scheme-theoretic equality

S ′ = HilbX ∩ Z′.

Proof. (i) The image

image
(
H 0(OP3(4))→ H 1(TC)

)
of the map (30) in Proposition 4.1 has codimension≤ 1. However, by (24) the
pairing (23) is given by the map

H 0(OP3(1))⊗H 0(OP3(1))⊗H 0(OP3(4))yinclusion⊗(30)

H 0(ωC)⊗H 0(ωC)⊗H 1(TC)y
H 0(ω2

C)⊗H 1(TC)y
H 1(ωC) .

Since no quadric inP3 containsC, the mapping

Sym2H 0(OP3(1))→ H 0(ω2
C)

is injective and so
H 1(TC)→ Sym2H 0(OP3(1))∨

takes the image ofH 0(OP3(4)) onto a subspace of codimension≤ 1. However,
the degenerate quadratic forms in Sym2H 0(OP3(1))∨ are an irreducible quartic
hypersurface which therefore cannot contain a hyperplane.

(ii) Now the cohomological obstruction to deformingc1(C) ∈ H 1,1(S) to first
order with a deformation of the hyperplane sectionS in X is exactly the pairing
(23) considered as a map

H 0(OP3(1))→ Hom(H 0(ωS),H
1(ωC)).

Hence, for genericV, this map is injective. Soc1(C) is obstructed to first order
for every first-order deformation ofS in X. So the only first-orders deformations
of curves onS ′ staying inside HilbX ∩ P′ stay insideS.

Our next step is to recall the analysis in [B] of the structure of the space

P(H 1(TC)) = P(H 0(ω2
C)
∨)

of vector bundle extensions ofωC byOC. For any effective divisorD onC, we
let

k(D) = ker
(
H 1(TC)→ H 1(TC(D))

)
.
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The subspace
P(k(D)) ⊆ P(H 1(TC))

is defined by equations spanning the subspaceH 0(ω2
C(−D)) of H 0(ω2

C).

Proposition 4.4. An extension

0→ OC → N → ωC → 0

lies inP(k(D)) if and only ifN has a quotient of the formωC(−D).
Proof. Consider the bundleN ′ containingN that is generated byN and rational
sectionss of OC with div(s)+D ≥ 0. The extension

0→ OC(D)→ N ′ → ωC → 0

is the image of the extension in the proposition under the map

H 1(TC)→ H 1(TC(D)).

The image extension is split if and only if there is a map

ωC(−D)→ N ⊆ N ′

for which the composition

ωC(−D)→ N → ωC

has cokernelCD.

Proposition 4.5.
h0(N ) > 1

if and only if there exists aD > 0 such thatN has a subbundleωC(−D) with
h0(ωC(−D)) > 0.

Proof. Let t denote a nontrivial section ofOC ⊆ N. If h0(N ) > 1 there is a sec-
tion s of N whose saturationL = OC(D) is a sub–line bundleL of N such that
the natural map

OC + L→ N

is generically surjective. (HereD is given by the zeros ofs.) SinceN is nonsplit,
the cokernel of this map is a skyscraper sheaf of positive degree and so, replac-
ing s by a linear combination ofs andt if necessary, we can assume thats has a
zero and so degL > 0. The nontrivial section ofOC gives a nontrivial section of
the quotient line bundleN/L whose divisorD ′ is such thatD +D ′ is a canonical
divisor. Conversely, if

N → ωC(−D)
then the kernel isOC(D) and so has a section.

The last two propositions tell us that the subvariety

B = {N ∈P(H 1(TC)) : h0(N ) > 1}
is given as follows. Let
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b : C → P(H 0(ω2
C)
∨) = P(H 1(TC)) = P11

denote the bi-canonical embedding. For each proper subsetD of a canonical divi-
sor ofC, k(D) defined as before is the linear span of the setb(D), andB is simply
the union of thek(D) for all D such that there exists aD ′ > 0 with D + D ′ ∈
|ωC |. Thus

dimB ≤ 4+ 6= 10.

Hence the genericN ∈P(H 1(TC)) hash0(N ) = 1 and so, by Lemma 4.2, we con-
clude as follows.

Proposition 4.6. For C ⊆ S ⊆ X generic, the standard inclusion

H 0(NC\S)→ H 0(NC\X)

is an isomorphism of1-dimensional vector spaces.

4.3. HilbX at GenericC

We now consider the diagram

S ′ ×X q−−→ Xyp
S ′

and let1 ⊆ S ′ ×X denote the incidence variety of the family of curvesS ′ onX.
Notice thatq maps1 isomorphically ontoS ⊆ X and, under that identification,
p : 1→ S ′ is simply the fibrationS/S ′. From the short exact sequence

0→ N1\S ′×S → N1\S ′×X → q∗NS\X → 0 (33)

we have the map
µV : p∗q∗NS\X → R1p∗N1\S ′×S (34)

of bundles, which is given at a point{C} ∈ S ′ as the map

H 0(OC ⊗NS\X)→ H 1(NC\S),

that is, the map
H 0(ωC)→ H 1(OC)

given by the extension data of the exact sequence

0→ OC → NC\X → ωC → 0. (35)

Lemma 4.7. For genericS ⊆ X, the following statements hold.

(i) Hilb X is given at generic{C} by the reduced schemeS ′.
(ii) The Fitting scheme given by the locus at whichµ is not of maximal rank has

length2; in fact, it has length1 at two distinct points ofS ′ that can be taken
to be outside any pre-given finite subset ofS ′.
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Proof. (i) We have by Proposition 4.6 thatµ can be made to be fiberwise injective
at any{C} ∈ S ′. ThusH 0(NC\S)→ H 0(NC\X) is an isomorphism.

(ii) By Porteous’s formula, the desired length is given by

c1(R
1p∗N1\S ′×S)− c1(p∗q∗NS\X).

Now
N1\S ′×S = p∗N1′\S ′×S ′ = p∗OS ′(2),

so that

p∗N1\S ′×S = OS ′(2)⊗ p∗OS,
R1p∗N1\S ′×S = OS ′(2)⊗ R1p∗OS.

Also,
q∗NS\X = ωS = ωS/S ′ ⊗ p∗OS ′(−2).

Sincep∗ωS/S ′ = (R1p∗OS)∨, we have

p∗q∗NS\X = (R1p∗N1\S ′×S)∨.
Now

h0(R1p∗OS)+ h1(p∗OS) = h1(OS) = 0

and
h1(R1p∗OS) = h2(OS) = 4,

so

R1p∗OS =
5⊕
j=1

OS ′(−aj )

with eachaj > 0 and
∑

j aj = 9. Hencec1(R
1p∗N1\S ′×S) = 5 · 2− 9= 1.

Since no fiber ofS/S ′ lies in a hyperplane, we know that

p∗ωS =
5⊕
j=1

OS ′(aj − 2)

can have no global sections with zeros. Thus

p∗ωS = OS ′(−1)⊕
4⊕
j=1

OS ′ (36)

and so the mapµ given in (34) becomes

µV : OS ′(−1)⊕
4⊕
j=1

OS ′ A−→ OS ′(1)⊕
4⊕
j=1

OS ′ , (37)

where

A =
(
a B

tB C

)
=


a b1 b2 b3 b4

b1 c11 c12 c13 c14

b2 c21 c22 c23 c24

b3 c31 c32 c33 c34

b4 c41 c42 c43 c44
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for some constant symmetric matrixC, vectorB of linear forms, and quadratic
form a. Now detC 6= 0, since it is the determinant of the quadratic form (24). So,
after change of basis ofH 0(p∗ωS), the mapA can be rewritten as

A =
(
a 0

0 I

)
, (38)

whereI is the identity matrix. Let

L ∼= OS ′(−1) ⊆ p∗ωS
denote the line bundle summand corresponding to the factora. We then have the
commutative diagram

p∗q∗NS\X ⊗ p∗q∗NS\X −−→ R1p∗ωS/S ′y1⊗A
∥∥∥

p∗q∗NS\X ⊗ R1p∗N1\S ′×S −−→ R1p∗ωS/S ′

a⊗a−1

∥∥∥ ∥∥∥
p∗ωS/S ′ ⊗ R1p∗OS −−→ R1p∗ωS/S ′xa xa
p∗ωS ⊗ R1p∗OS −−→ R1p∗ωS

restricts to
L2 a−→ R1p∗ωS/S ′ ∼= OS ′ .

Finally, by (38) the Fitting divisor onS ′ depends linearly on the choice ofV and
corresponds to a linear series of degree 2 without basepoints.

So, by Lemma 4.7,S ′ is not an isolated subscheme of HilbX but must have at least
two embedded points alongS ′ and seemingly could have other components of
positive dimension meetingS ′. Since all nearby (reduced, irreducible) curves are
either canonically embedded or lie in aP3, any other positive-dimensional com-
ponent (as a reduced variety) would have to lie inP′ or Q ′. As we will see at the
beginning of the next section, such positive-dimensional components do not exist.

5. Main Theorem and Numerical Invariants

Theorem 5.1. For genericS ⊆ X as before, there is a Zariski open neighbor-
hoodU ′ of S ′ in HilbP

4
such that

HilbX ∩ U ′ = S ′ ∪ C1,2 ∪ C2,2,

where{C1} and {C2} are (general) points ofS ′ and, at eachCi, there is an ana-
lytic isomorphism

(HilbX ∩ U ′){Ci } ∼= Spec
C[x, y]

{xy, y2} .
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Furthermore,
HilbX ∩ U ′ ∩ P′ = S ′.

Proof. We have already seen in Corollary 4.3 that

HilbX ∩ P′ = S ′.
By Lemma 4.7, we have locally

(HilbX ∩ U ′){C} = (S ′){C}
at all {C} ∈ S ′ except possibly at two points{C1}, {C2} onS ′. At eachCi,

dim
H 0(NC\X)
H 0(NC\S)

= 1. (39)

Again we will argue by specialization. We consider the family of quinticsXδ,ε
in P 4 given by

Fδ,ε = G+ δx0V + εx2
0K. (40)

Notice thatS ⊆ X0 is stationary under the deformationXδ,ε of X0.

The Hilbert scheme ofX0,0 is easy. It is simply given by the sectionsω of the
normal bundleH 0(NS\X0,0) = H 0(ωC) for each{C} ∈ S ′. The curveĈ = (C, ω)
in X0,0 deforms to first order with the first-order deformationXδ,0 if and only if

ωV ∈
4∑
j=1

H 0(ωC) · ∂G
∂xj

,

that is, if and only if (referring now to (34) and (37)) we have

µV (ω) = 0∈H 1(NC\S).

ThusC = Ci. Since the Fitting ideal ofµV is reduced at each{Ci}, the subscheme
of the Hilbert scheme ofX0,0 which deforms to first order in the directionXδ,0 is
precisely the (reduced) union ofS ′ and a copy of the 1-dimensional kernel of

µV : H 0(ωCi )→ H 1(NCi\S)

for i = 1,2. Denote the families of curves corresponding to these last two com-
ponents asCi,∞/SpecC[t ]. (Notice that their first-order deformations in the di-
rectionXδ,0 lie in Q ′.) SinceXδ,0 ∼= Xδ,ε modulox2

0, the subschemeCi,2 of Ci,∞
over Spec(C[t ]/{t 2}) deforms (and continues to lie inQ ′) over all of

Xδ,ε

{δ2, ε2} . (41)

The obstruction to deforming the subschemeCi,3 of Ci,∞ over (41) is the image
of the elementx2

0K under the natural map

H 0(NX0,0\P 4)→ R1p∗(NCi,3\I ′×X0),

whereI ′ = Spec(C[t ]/{t3}). By construction, this image vanishes modulot 2 and
so produces an element of the vector space
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t 2R1p∗(NC3,i\I ′×X0)

{t3} = H 1(NCi\X0,0)

= H 0(OCi ⊗NX0,0\P4)

imageH 0(NCi\P4)
+H 1(OC ⊗NS\X0,0)

= H 0(OCi (5))
imageH 0(NCi\P 4)

+H 1(OC ⊗NS\X0,0).

Now, by varying the center of projection (and hence the elementω) and varying
the choice ofK, it is easy to see that the expressionsω2K generate the entire vec-
tor spaceH 0(OCi (5)) so that, for generic (41),CCi,3 is obstructed. Settingδ = ε
we conclude that, for the first-order deformation ofX0,0 in the family

Fε = G+ ε(x0V + x2
0K),

only the scheme
S ′ ∪ C1,2 ∪ C2,2 (42)

deforms (and that this first-order deformation lies inQ ′). Since we know that

h0(NCi\Xδ,ε ) = 2

for δ 6= 0 andε 6= 0, we conclude that (42) must give HilbXδ,ε ∩ U ′ for genericδ
andε. (Note, however, that we can not conclude that the first-order deformations
Ci,2 of Ci continue to lie inQ′ for genericX = Xδ,ε.)
So, forF as in (19), the zero scheme ofp∗q∗F

∣∣
U ′∩Q ′ is the smooth (reduced)

curveS ′ possibly together with simple embedded points at the{Ci} for i = 1,2.
By intersection theory as in [F], the normal coneCQ ′ associated to the section
p∗q∗F

∣∣
U ′∩Q ′ of the vector bundle

EU ′∩Q ′ = p∗q∗OX(5)
is given by a subbundleC ⊆ ES ′ of co-rank 1 possibly together with the entire
fiberEi of ES ′ at the two points{Ci}.

Referring to the componentsP′ andQ ′ of U ′ defined in Section 2, let

P ⊆ P′ × P 4, Q ⊆ Q ′ × P 4, U ⊆ U ′ × P 4

be the universal curves. For the standard map

U
q−−→ P4yp

U ′,
the surjectivity of (12) implies that

E = p∗q∗OP 4(5)

is a vector bundle that is generated by the linear space of sections

{p∗q∗F ′ : F ′ ∈H 0(OP4(5))}.
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Because there is anF ′ ∈ H 0(OP4(5)) nearF such that zeros(p∗q∗F ′)
∣∣
S ′ are

given locally by a deformation ofS ′ that meetsS ′ transversely at{C}, it follows by
Theorem 5.1 and Sard’s theorem that, given any analytic neighborhood of{F } in
P(H 0(OP 4(5))), the general sectionF ′ in that neighborhood has the property that
p∗q∗F ′ has reduced simple zeros onP′ and reduced simple zeros onQ ′. Since a
simple constant count shows that generically none of these lie onR′, we have es-
tablished that, for a general deformationX ′ ofX that is sufficiently near toX, the
components of HilbX supported inS ′ contribute a finite nonnegative numbernP′

of infinitesimally rigid curves fromP′ as well as a finite nonnegative numbernQ ′

of infinitesimally rigid curves fromQ ′ to the Hilbert scheme HilbX
′
of X ′.

Theorem 5.2.
nP′ = 1.

Proof. This is an immediate concequence of Proposition 3.5 and Corollary 4.3.
More precisely, for genericS ⊆ X we have seen in Corollary 4.3 that the 4-
dimensional set of hyperplane sections ofX meetN2 transversely at{S} ∈N2,ω.

If G ′ is chosen as in the previous proof, the deformation

Fδ = G+ δG′ + x0V̂ = 0

still has the property that the period map (23)

H 2,0(Sδ)→ H 1,1(Sδ)

is of maximal rank for smallδ. Therefore, all of HilbXδ nearS ′ lies in HilbSδ . But
as we have seen,

c1(Cδ) 6= ωSδ
so thath0(OSδ (Cδ)) = 1.

The final goal of this paper is to estimatenQ ′ . Again by intersection theory,nQ ′

is the intersection of the normal coneCQ ′ associated to the sectionp∗q∗F of the
vector bundle

EQ ′ = p∗q∗OX(5)
with the zero section. Since the zero scheme ofp∗q∗F

∣∣
Q ′ is the smooth (reduced)

curveS ′ possibly together with simple embedded points at the{Ci} for i = 1,2,
it follows that the normal coneCQ ′ is simply a subbundle

C ⊆ ES ′
of co-rank 1 possibly together with the entire fiberEi of ES ′ at each of the two
points{Ci}. Hence, by intersection theory (see[F]) we haveeither

nQ ′ = c1(ES ′)− c1(C)

if the embedded points at the{Ci} do not lie inQ ′ or

nQ ′ = c1(ES ′)− c1(C)+ 2

if they do.
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To computec1(ES ′) we use that, sinceS ′ = P1, ES ′ is a sum of line bundles.
But

h0(ES ′) = h0(OS(5)) = 4 · 5 · 5
2
+ 5= 55,

h1(ES ′) = h1(OS(5)) = 0,

so that
c1(ES ′) = 55− rank(ES ′) = 19.

To computec1(C), consider the deformation

Fδ = G+ δx0V̂

under whichX deforms to the cone overS andC deforms to the normal coneC0

of
J ′ := Q ′ ∩ HilbX0

in EQ ′ . Now
S ′ ⊆ J ′

and, nearS ′, J ′ is smooth (reduced) of dimension 6 and so, nearS ′, C0 is a sub-
bundle ofEJ ′ of co-rank 6. Thus

c1(C) = c1(NS ′\C0) = c1(C0)
∣∣
S ′ + c1(NS ′\J ′).

Now from the split exact sequence

0→ N1\S ′×S → N1\S ′×X0 → q∗NS\X0 → 0

and the proof of Lemma 4.7, we have

c1(NS ′\J ′) = c1(p∗N1\S ′×X0)− c1(TS ′) = c1(p∗N1\S ′×S)+ c1(p∗OS(1))− 2

= 2−1− 2= −1.

On the other hand,
C 0

∣∣
S ′ = NJ ′\Q ′

∣∣
S ′ .

Hence, if we letP′0 ⊆ P′ denote the curves lying in thefixedP3 given by the equa-
tion x0 = 0, then the natural projection map from(1,0, . . . ,0) gives a morphism

Q ′ → R′0 := P′0 ∩ R′

such thatJ ′ is the inverse image ofS ′. SinceNS ′\R′0 is generated by global sec-
tions,h1(NS ′\R′0) = 0 and so we have

c1(NJ ′\Q ′
∣∣
S ′) = c1(NS ′\R′0)

= h0(NS ′\R′0)− rank(NS ′\R′0)
= (55− 6)− (31−1) = 19.

Thus we conclude as follows.

Theorem 5.3.
1≤ nQ ′ ≤ 3.
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We wish, of course, to computenQ ′ exactly for genericF. Yet despite repeated at-
tempts we have not been able to determine whether the entire scheme HilbX ∩U ′

remains insideQ ′.
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