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Determinantal Hypersurfaces

ARNAUD BEAUVILLE

To Bill Fulton

Introduction

(0.1) In this paper we discuss which homogeneous fornPbican be written

as the determinant of a matrix with homogeneous entries (possibly symmetric),
or the pfaffian of a skew-symmetric matrix. This question has been considered in
various particular cases (see the historical comments that follow), and we believe
that the general result is well-known to the experts; but we have been unable to
find it in the literature. The aim of this paper is to fill this gap.

We will discuss at the outset the general structure theorems; roughly, they show
that expressing a homogeneous form F as a determinant (resp. a pfaffian) is equiv-
alent to produce a line bundle (resp. a rank-2 vector bundle) of a certain type on
the hypersurface E 0. The rest of the paper consists of applications. We have
restricted our attention temoothhypersurfaces; in fact, we are particularly inter-
ested in the case when tgenericform of degree! in P" can be written in one of
the above forms. When this is the case, the moduli space of(p&ifs), where X
is a smooth hypersurface of degeea P" and E a rank-1 or rank-2 vector bundle
satisfying appropriate conditions, appears as a quotient of an open subset of a cer-
tain vector space of matrices; in particular, this moduli spacaiisational. This
is true, for instance, of the universal family of Jacobians of plane curves (Corol-
lary 3.6), and of intermediate Jacobians of cubic threefolds (Corollary 8.8).

Unfortunately, this situation does not occur very frequently: we will show that
only curves and cubic surfaces generically admit a determinantal equation. The
situation is slightly better for pfaffians: plane curves of any degree, surfaces of
degree< 15, and threefolds of degree 5 can be generically defined by a linear
pfaffian.

(0.2) Historical. CoMMENTS. The representation of curves and surfaces of
small degree as linear determinants is a classical subject. The case of cubic sur-
faces was already known by the middle of the last century [G]; other examples of
curves and surfaces are treated in [S]. The general homogeneous forms that can be
expressed as linear determinants are determined in [D]. A modern treatment for
plane curves appears in [CT]; the result has been rediscovered a number of times
since then.
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40 ARNAUD BEAUVILLE

The representation of the plane quartic as a symmetric determinant goes back
again to 1855 [H]; plane curves of any degree are treated in [Di]. Cubic and quar-
tic surfaces defined by linear symmetric determinants (“symmetroids”) have been
also studied early; see [Ca]. Surfaces of arbitrary degree are thoroughly treated in
[C1], and an overview of the use of symmetric resolutions can be found in [C2].

Finally, the only reference we know about pfaffians is Adler’s proof [AR,
Apx.V] that a generic cubic threefold can be written as a linear pfaffian.

(0.3) ConvenTIONS. We work over an arbitrary field, not necessarily alge-
braically closed. Unless explicitly stated, all geometric objects are defined over

AckNOWLEDGMENTS. | thank F. Catanese for his useful comments and F.-O.
Schreyer for providing the computer-aided proof of Propositions 7.6(b) and 8.9
(see Appendix).

1. General Results: Determinants

(1) LetF be a coherent sheaf d?'. We will say thatF is arithmetically

Cohen—MacaulayACM for short) if:

(a) F is Cohen—Macaulay—that is, th®,-moduleF, is Cohen—Macaulay for
everyx in P"; and

(b) H(P", F(j)) =0forl<i < dim(SuppF) —1landj eZ.

PutS" = k[Xo, ..., X,] = @,z HU(P", Opu()) (we will often drop the
superscript if there is no danger of confusion). Following EGA, we denote by
T.(F) theS-module@jez HO(P”, F(j)). The following well-known remark ex-
plains the terminology.

ProrosiTioN 1.2. The sheafF is ACM if and only if theS-moduleI,.(F) is
Cohen—Macaulay.

Proof. Let U := A" — {0}. The projectionp: U — P" is affine and satis-
fiesp,. Oy = @,ez Opx(j). TheS-modulel’,(F) defines a coherent sheafon
A"t1 whose restriction td/ is isomorphic top*F. Therefore, H(U, F) is iso-
morphic to@,€Z Hi(P", F(j)). The long exact sequence of local cohomology,

-+ — Hig A" F) — HA"L F) — HUF) — -,
implies that Hy (A", F) = H} (A"*L, F) = 0 and gives isomorphisms

PH (P, F(j)) = HG A" F) fori>1
jeZ
Thus, condition (b) ofl.1) |seqU|vaIentt0H) (F) = 0fori < dim(F), thatis, to

Fo being Cohen—Macaulay. On the other hand simeesmooth, condition (a) is
equivalent taF, being Cohen—Macaulay for alle U; hence the proposition.[]

Let us mention incidentally the following corollary, due to Horrocks.
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CoroLLARY 1.3. A locally free sheafF on P" with H (P", 7(j)) =0 for 1 <
i <n—1andj € Z splits as a direct sum of line bundles.

Proof. The S-moduleI".(F) is Cohen—Macaulay of maximal dimension and
hence projective. Itis therefore free asSagraded module; that is, isomorphic to
a direct sunb(dy) @ --- @ S(d,) [Bo, Sec. 8, Prop. 8]. Sincé& is the sheaf on
Proj(S) associated t&', (F), it is isomorphic toOpn(d1) ® - -- & Opn(d,). O

THEOREMA. LetF be an ACM sheaf oR” of dimensiom — 1. Then there exists
an exact sequence

L 4
0 — D Opnler) M, P Ori(d) — F — 0. (A1)

i=1 i=1

Conversely, leM: @i_, Opi(e;) — @Pi_, Op:(d;) be an injective homo-
morphism. Then the cokernel M is ACM and its support is the hypersurface
detM=0.

Proof. Suppose thafF is ACM of dimensionn — 1. The Cohen—Macaula§-
moduleT",(F) has projective dimension 1; by Hilbert's theorem [Bo, Sec. 8,
Cor. 3] it admits a free graded resolution of the form

L 12
0— @St — @S — T'u(F) — 0, (A2)
i=1 i=1
which gives (A1) by taking the associated sheavePbn
Conversely, suppose we are given the exact sequence (Al). The support of
F consists of the points of P" where Mx) is not injective, that is, where
det M(x) = 0. Since M is generically injective, this is a hypersurfac®ih
For everyx € P", the Op: .-moduleF, has projective dimensiog 1; hence it
has depth> dim Op» , — 1 = dim F, and thus it is Cohen—Macaulay. From (A1)
we deduce that HP”, F(j)) =0for1<i <n — 2; henceF is ACM. O

(1.4) The homomorphism M is given by a mat(ix;;) € M ¢(S), with m;; homo-
geneous of degre@; — ¢;); we will use the same letter M to denote this matrix.

(1.5) LetF be an ACM sheaf o?” of dimensionn — 1. We will always take
for (A2) aminimalgraded free resolution @, (F); this means that the images in
I'.(F) of the generators &(d;) (1 < i < £) form a minimal system of generators
of theS-modulel’,.(F). Such a resolution is unique up to isomorphism. The reso-
lution (A2) is minimal if and only if the matrixm;;) is zero moduldXo, ..., X,,),
that is, if and only ifm;; = 0 whenevetl; = ¢;.

With a slight abuse of terminology, we will refer to the corresponding exact
sequence (Al) as thrainimal resolutiorof the sheafF.

(1.6) The minimal resolution 0— L; — Ly - F — 0, with L; =
B, Opnle;) and Ly = @'_, Opa(d;), is unique up to isomorphism, but this
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isomorphism is not unique in generilis unique if max(e;) < min(d;) (in par-
ticular, in the linear case). Indeed, this condition implies that dopiL;) = O

and thus the map Eritly) — Hom(L o, F) is injective. Hence, the only auto-
morphism of Ly that induces the identity off is the identity. If, moreover, every
automorphism ofF is scalar, then we see that the only pairs of automorphisms
(P, Q) € Aut Lo x Aut L; such that PM= MQ are the pairga, 1) for A € k*.

(1.7) In this paper we will mainly use Theorem A in the following way. We will
start from an integral (usually smooth) hypersurface X and a vector bundle E of
rankr on X; then we will still say that E is ACM if it is so as aflp»-module, that

is, if H (X, F(j)) =0forl<i <n—2andj e Z. For such a sheaf, Theorem A
provides a minimal resolution (Al); localizing at the generic point of X and using
the structure theorem for matrices over a principal ring yields det B, where

F = 0 is an equation of XThis gives the following corollary.

CoroLLARY 1.8. Let X be a smooth hypersurface B given by an equation
F=0.

(a)LetL be a line bundle oiX, with H' (X, L(j)) =0for1<i <n—2and
all j € Z. ThenL admits a minimal resolution

¢ ¢
0— P Opiter) > P Opi(d) — L — 0
i=1 i=1
with F = det M.
(b) Conversely, leM = (m;;) € M(S), with m;; homogeneous of degree
(di —e) and F = detM. Then the cokernel ofM: @f:]_opn(el‘) —
@f:lOpn(d,-) is a line bundle. on X with the foregoing properties. O

(1.9) The apparent generality of this corollary is somewhat misleading: taking
for L the line bundleDx (j) gives rise to the trivial case= 1, M = (F). Thus, if
Pic(X) is generated by (1) then the hypersurface caot be defined by @ x ¢
determinant witt¢ > 1. So interesting situations occur only for curves and sur-
faces. In particular, we infer from the Noether—Lefschetz theorem that the generic
hypersurface of degrekin P” can be expressed in a nontrivial way as a determinant
onlyifn = 2orn = 3andd < 3. On the other hand, we will see in (3.1) and (6.4)
that any smooth plane curve or cubic surface can be defined by a linear determinant.

(1.10) Conersely, given integers andd;, one may ask whether a general ma-
trix (m;;) € M (S) with degm;; = d; — ¢; defines a smooth curve or surface. If
we order the numbers, d; so thate; < --- < ¢, anddy < --- < d,, a sufficient
condition is the inequalityl; > ¢;,1 for 1 <i < ¢. Indeed, we can consider the
matrix

FR G O . 0
0 F G - 0

M = : . t. . )
0 Fo1 Gea

G 0 .- 0 F
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where the entries are product of linear forms. Then detM can be written in the
form[]L; +[[P:, where L; and P are arbitrary linear forms. In this way we ob-
tain, for instance, the Fermat hypersurfacex¢ = 0inP? or P3. (If char(k) | d,
consider the surface (X3 + X4 4+ (X1 4+ X2) (X8 + X4 = 0)

The integers;, d; that occur in the minimal resolution are determined by the
S-modulel, (F); we will see some examples in the next sections. We will be par-
ticularly interested in the case where the ent¢ieg) are linear forms; in this case
we will say for short that the matrix M inear. There is a handy characterization
of the sheaves which give rise to linear matrices, as follows.

ProrosiTioN 1.11. Let F be a coherent sheaf d?". Then the following condi-
tions are equivalent

(i) there exists an exact sequence
0 — Opu(-D)! — 08, — F — 0;
(i) Fis ACM of dimensiom — 1, and
HO(P", F(-1) = H" X(P", F(1—n)) = 0.

Proof. In view of Theorem A the implication (i} (ii) is clear, so assume that
(i) holds. Then H(P", F(—i)) = 0 fori > 1; thatis,F is O-regular in the sense

of Mumford [Mu, lec. 14]. Again by [Mu], this implies thaF is spanned by its

global sections and that the natural map

HO(P", F(j)) ® HAP", Opu(1)) — HOP", F(j + 1)

is surjective forj > 0. Since H(P", F(—1)) = 0, this means that the multipli-
cation mapS ®; HO(P”, F) — T'.(F) is surjective, and therefore the minimal
resolution ofF takes the form

4
0— @Opn(ei) & Oén L> F—0
i=1
with ¢ = dim H%(P”", F). Since H(p) is bijective and H~1(P", F(1—n)) = 0,
we must have; = —1 for all ;. O

This result likewise can be reformulated, as follows.

CoroLLARY 1.12. Let X be a smooth hypersurface of degtkim P” given by an
equationF = 0.

(a) Let L be a line bundle oX with H (X, L(j)) =0forl1<i <n —2and
all j ez, and letH(X, L(=1)) = H* XX, L(1 — n)) = 0. Then there exists a
d x d linear matrixM such that- = det Mand also an exact sequence

0— Opi(=)¢ M 0d, — L — 0.

(b) Conversely, leM be ad x d linear matrix such that = det M. Then the
cokernel of M: Opn(-1)¢ — Ogn is a line bundleL on X with the foregoing
properties.
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2. General Results: Symmetric Determinants and Pfaffians

(2.1) We will now put extra data on our ACM sheaf. LEtbe a torsion-free
sheaf on an integral variety Xand let L be a line bundle on;Xa bilinear form
¢: F®oyxF — Lissaidto benvertibleif the associated homomorphism F —
Homo, (F, L) is an isomorphism. We will consider forms that aresymmetric
(¢ = 1), that is, such thdik = ¢«.

THEOREM B. Assume thatharn(k) # 2. Let X be an integral hypersurface of de-
greed in P", and letF be a torsion-free ACM sheaf of that is equipped with
an e-symmetric invertible forrdf @ F — Ox(d +t) (t € Z). ThenF admits a
resolution

0— Li(t) %> Lo — F —> 0, (B1)

whereL g = @ Op«(d;) andM is e-symmetriqi.e.,'M = ¢M).
Conversely, if a sheaf on X fits into the exact sequen¢Bl), then it is ACM,
torsion-free, and admits astsymmetric invertible forrF @ F — Ox(d + t).

Proof. Consider a minimal resolution
M p
0O—L—Lo—F—0

of F. Applying the functorom ., (x, Op-(t)) gives an exact sequence
0 — Ljp(t) =% L3(r) — Extb,, (F, Ox(1) — O

and the vanishing Ofxtégpn (F, Ox@®)) fori # 1.

Leti be the embedding of Xint®", and putF’ = Homo, (F, Ox(d+1)). Gro-
thendieck duality provides a canonical isomorphi:’sm}gp" (F, Ox(t)) =i, F'.
Thus the above exact sequence gives a minimal resolution éfghenoduleF”’,
and the isomorphism: F — F’ extends to an isomorphism of resolutions:

0— Ly % Ly 25 7 0
A
0 — L1 —% Lig) — F/ 0.

Applying the functorHom ., (x, Op«(t)) leads to another commutative diagram:

M r

0— L Lo F 0
el
0 — L0 —% Lig) —2 7/ 0.

Since'x = ek, we haveg o 'B = 'k o p = ¢q oA, which means that there exists a
map C: Lo — L} (7) such thatB — eA ='MC.
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Since’'BM ="M ‘A, we have
'MCM = (‘B — eAM = (AM) — e(AM) = —¢'M'CM

and thus the map’A= A + (¢/2) 'MC satisfies(A’'M) = ¢A'M. Moreover, we
still haveq o A’ = k o p, so A is an isomorphism. We have an exact sequence

0— L) S Lo L F— 0,

where M := A~1'M satisfiesM’ = ¢M".

Conversely, starting from the exact sequence (B1), Grothendieck duality im-
plies as above an isomorphism F — Hom (F, Ox(d + t)); applying again the
functorHomo,.(x, Opx(r)), We obtaink = ek. O

REMARK 2.2. The result remains valid in characteristic 2 under the extra hypoth-
esis maxe;) < min(d;). Indeed, using our notation, the relatign A = g o 'B
implies then directly A= B (1.6), and we can take M= A"1'M.

Catanese pointed out that his proof [C1] for symmetric surfaces extends read-
ily to the case considered here; it has the advantage of working equally well in
characteristic 2, without the restriction on the degrees.

(2.3) Assume again that m&x) < min(d;), and let
0P Y P F s 0

be another resolution (B1) ¢f. Then we have = ¢’ and a commutative diagram

0 L) —2> Lo —2» F 0
A
0 Pit) s Py —Ls F 0,

where the vertical arrows are isomorphisms.

We have AM= M’B and hence, since M and 'Mire e-symmetric, MA =
'BM’ and sBAM = M'AB. By (1.6) this implies thatAB = Al for somex €
k*. Multiplying A by a scalar yields M= AM ‘A. Thus, alle-symmetric matrices
providing a minimal resolution af are conjugate under the action of Alt).
In the same way, we see that every automorphistf finduced by a matrix A
Aut(L o) such that AMA = AM for somex € k*.

As before, let us rephrase Theorem B in the way we will mostly use it.

CoroLLARY 2.4. Assume thathank) # 2. Let X be an integral hypersurface
of degreed in P”, and letE be an ACM line bundle oX with E? = Ox(d + t)
(resp., an ACM rank vector bundle orX with determinantOx (d + ¢) ). There
exists a symmetri@resp. skew-symmetjienatrix M = (m;;) € M (S), with m;;
homogeneous of degrde+ d; — ¢, and an exact sequence

14 4
0— ®OP"(I —d,) ﬂ) @Opn(d,‘) — E — O,

i=1 i=1
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X is defined by the equatiatet M = 0 (resp.pf M = 0). If HO(X, E(-1)) =0
andr = —1, then the matriXM is linear and the exact sequence takes the form

0 — Opn(— l)’d — Opn —E—0

withr = rk E.

Proof. By assumption, E carries ansymmetric form E9 E — Ox(d + ) with

e = (—=1)"~% Then Theorem B provides the desired minimal resolution; by (1.7),
we have F= detM if r = 1 and P = detM = (pf M)2 if » = 2. Moreover, if

t = —1then we have H(X, E(L— n)) = HO(X, E(-1))* by Serre duality, so
the last assertion follows from Proposition 1.11. O

3. Plane Curves as Determinants

Let C be a smooth plane curve of degredefined by an equation £ 0. We de-
note byg = %(d —1)(d — 2) the genus of CAny line bundle L on C is ACM and
hence admits a minimal resolution (A1) with detMF.

The case of line bundles of degree- 1 follows directly from Corollaryl.12
(applied to L(1)) to yield the following.

ProposiTIoN 3.1.  (a)LetL be aline bundle of degree—1onCwithH(X, L) =
0. Then there exists & x d linear matrix M such thatF = det M and an exact
sequence

0— Op2(=2)¢ M Opo(—)? — L — 0.

(b) Conversely, leM be ad x d linear matrix such thatF = det M. Then the
cokernel ofM: Op2(—2)? — Op2(—=1)? is a line bundlel on C of degreeg — 1
with HO(X, L) =

(3.2) Let|Op2(d)|,m be the open subset of the projective sp@ee: (d)| param-
eterizing smooth plane curves of degreeFor§ € Z, let jj — |Op2(d)|sm be
the family of degrees-Jacobians7? parameterizes pairt€, L) of a smooth plane
curve of degree/ and a line bundle of degreeon C. Finally, we denote b,
the divisor injj’_1 consisting of pair§C, L) with HY(C, L) # 0. It is an ample
divisor, so its complement igf " is affine.

Let £, be the open subset of the vector space of linear matrice/\} (S%) such
that the equation det M= 0 defines a smooth plane curvg @ P2. By associating
to M the curve G and the line bundle J, := Coker[(’)pn( 2)4 LN Opn(—1)4]
on Gy, we define amorphism: £, — Jf = ©,. The group Glid) x GL(d)
acts on, by (P, Q) - M = PMQ%; this action factors through the quotieny G
of GL(d) x GL(d) by G,, embedded diagonally.

ProrosiTioN 3.3. The groupG, acts freely and properly of;, and the mor-
phismz induces an isomorphistfi; /G, — J& - ©,.
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Proof. This is proved, for instance, in [B3, Sec. 3]; let us give a proof based on
our present methods. Let ML, (P, Q) e GL(d) x GL(d), and M = PMQ%,
Then det M = det M up to a scalar, and we have a commutative diagram

0 — Op(-)¢ 2 04, s Ly — 0

Ql pl l? (3.3.2)

0— 04 X Op(-? — Lw —> 0;

thus, factors through a morphisii,; /G, — jdg’l — ®,. Conversely, if two
matrices M and Mgive rise to isomorphic pairs, then the minimal resolution of
Lwm and Ly are isomorphic and so we again have diagram (3.3.a), which shows
that M and M are conjugate under G Thus the orbits of Gin £, are isomor-

phic to the fibres ofr and hence are closed. Moreover, by (1.6) the stabilizer of
M in GL(d) x GL(d) reduces td5,, embedded diagonally, so,Gcts freely on

L 4. This proves our assertions. O

REMARK 3.4. A simpler birational presentation of the quotient @)\ L,/
GL(d) (and therefore ot7dg_l) is obtained as follows. LeD,; be the closed
subset ofC; consisting of matrices of the formo{; + X1M; + XoMy; itis iso-
morphic to an affine open subsetMdf; x M ;, whereM ,; denotes thé&-variety of

(d x d)-matrices. Then @D, is an open affine subset gf;, and the stabilizer of
D, in G, is PGL(d) acting onM , x M, by conjugation. We thus have an open
embeddingD,;/PGL(d) < GL(d)\L4/GL(d).

These quotients are of course unirational. It is a classical question to decide
whether they are rational: this would have interesting applications in algebra
(where the function field oD, /PGL(d) is known as the “center of the generic
division algebra”) and in geometiyD, /PGL(d) is birationally equivalent to the
moduli space of stable rankvector bundles oR? with ¢; = 0 andc, = d). The
rationality is known only ford < 4. We refer to [L] for an excellent survey of
these questions.

It is amusing to observe that the universal Jacolyignis rational [B3, 3.4]:
using the rational mag} --» Sym#(P?) which maps a general pai€, L) to
the unique element dt.|, we see that} is birational to a projective fibre bun-
dle over the rational variety SWoP?). Unfortunately, this does not seem to have
any implication on the more interesting question of the rationalitgigéfl.

We will now determine the minimal resolution of a generic line bundle L of arbi-
trary degree on a generic plane curve. Replacing L by for somer € Z, we
canassumethgt—1<degL<g—1+d.

ProrosiTioN 3.5. LetL be aline bundle of degree— 1+ p onC, withO < p <
d. Then the following conditions are equivalent.
(i) H%C, L(-=1) = HXC, L) = 0, and the natural map

ro: HYAC, L) ® H(C, Oc(1)) — HC, L(1))
is of maximal rank(that is, injective forp < 4 and surjective fop > £).
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(if) There is an exact sequence

)

0— Op2(-2)" 2 Ope(-)" 2 @O, — L — 0 if p<

NI NI

0— Op2(=2" " ® Opa(-1» 4 L 02, L —0 if p>
with detM = F.

The set of pairgC, L) satisfying these conditions is Zariski dense];ﬁ’”” (and
open ifk = k).

)

Proof. Assume that (i) holds. The natural maps
uj HAC,L(j) ® HAC, Oc(D)) - HAC, L(j + 1)

are surjective forj > 1 because HC, L) = 0 [Mu]; since H(C, L(-1)) = 0,
this means that th&*>-moduleT', (L) is generated by homogeneous elements of
degree 0 and 1. In other words, the minimal resolution of L takes the form

p+q
0 — €D Opa(ep) ~> Op2(~17 ® Of, — L — 0

i=1
for some integey > 0 (observe that dim {C, L) = p by Riemann—Roch). The
vanishing of H(C, L) and the minimality of the resolution imply € {—2, —1},
so we have

0— Op2(=2)"7 @ Opa(-1)" 5 Op2(-1)! @ 0%, — L — 0, (35.)

with r = 2p — d + ¢. After tensor product wittDp2(1), the cohomology exact
sequence gives

g = dim Cokerpu, r = dim Ker ug, (3.5.b)

from which (ii) follows.

If (ii) holds, we have the exact sequence (3.5.a) with O (if p < ) org =
0 (if p > £). By (3.5.b), 0 is of maximal rank; the vanishing of C, L (—1))
and H{(C, L) is clear.

LetV be the vector space of matrices M appearing in (ii), anddétdthe open
subset of matrices whose determinant defines a smooth curve; observg ithat V
non-empty by(1.10). As in(3.3), we have a morphism: Vo — ﬂ”””ﬂ since
property (i) is open in7dg’1+p, it follows thatz is dominant. The last assertion
of the proposition follows. O

We just also proved the following corollary.
CorOLLARY 3.6. The varietyJ? is unirational for all § € Z.

ExaMmpPLE 3.7. Consider the relative Jacobidg?. We haveg — 1= %d(d -3,
so if d is odd then7? is canonically isomorphic tong_l. Assumed = 2e, SO
that. 72 is canonically isomorphic tg7 . For (C, L) generic in7$ ™, the

minimal resolution of L takes the form
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0— Opa(—2)° 2> 04, — L — 0;

hence, the equation of C can be written as the determinant of a matrikMS?)

with quadratic entries. Writing such a matrix as ¥ ) X;X;M;;, we see as

in (3.4) that7 is birationally equivalent to the quotient b > by GL(e) acting

by conjugation. This quotient is birationally equivalent to a vector bundle over
M2/GL(e) [L]; in particular, we see that the variexyd0 is rational ford = 4, 6,

or 8.

4. Plane Curves as Symmetric Determinants

By Corollary 2.4, any line bundle L on C with82 = Oc¢(s) admits a symmetric
minimal resolution. There are (at least) two interesting applications.

(4.1) TuETA CHARACTERISTICS. Recall that aheta characteristion a smooth
curve C is a line bundle such thak®? = K ¢. We writeh%(«) := dim H(C, «).

ProrosiTION 4.2, Let C be a smooth plane curve defined by an equaien 0,
and letx be a theta characteristic o@.
(@) If K% ) = 0 thenk admits a minimal resolution

0— OPZ(_Z)d M, OPZ(_l)d — k — 0,

where the matrisM € M ,(5?) is symmetriqlinear) and detM = F.
(b) If K%k) = 1thenx admits a minimal resolution

0 — Op2(—2)" 3@ Op2(=3) 2 Op2(=) 2B Op2 — k —> 0,

with a symmetric matri € M 4—2(5% satisfyingdet M = F and of the form

Ly -+ Ligs Q:
M = ,
Lid—3 -+ La—z4-3 Qu-3
Q -+ Qu-3 H

where the form& ;;, Q;, andH are (respectivelylinear, quadratic, and cubic.
Conversely, the cokernel of a symmetric malflixas in(a) (resp.(b)) is a theta
characteristick on C with 2%(x) = 0 (resp.h%k) = 1).

Part (a) is well known and goes back essentially to Dixon [Di]. Part (b) is stated
(without proof), for instance, in [B1, 6.27]. Geometrically, when alar#£ 2,

(a) meansthat Cis the discriminant curve of a net of quadrie$ih, and (b) means

that C is the discriminant curve of the quadric bundle obtained by projecting the cu-
bic hypersurfacd_ U;U;L;; + > U;Q; +H = 0in the projective spade‘~! with
coordinates i ..., U;_3, Xg, X1, X2 from the subspace ¥= X; = X, = 0.

Proof. Part (a) follows directly from Corollary 2.4 (applied toE«(1)).

Let ¥ be a theta characteristic on @ith 2°k) = 1. Then H(C, k(1)) =
HO(C, k(—1)* = 0, soT',(x) is generated by its elements of degree 0, 1, and 2.
In view of (2.4), the minimal resolution af is of the form
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0— Opz(—l)q &) OpZ(—Z)p (&) OpZ(—g)
ﬂ) Op2(—2)? ® Op2(— 1)’ ® Op2 — k — 0

for some nonnegative integepsq. Since the resolution is minimal, the summand
Op2(—1)7 in the first term is mapped int®p2; this impliesq < 1, and in facty =

0 because otherwise the nonzero sectionwbuld be annihilated by some linear
form. This gives the form of the resolution (and of the matrix i part (b). O

Assume now that ch&k) = 0. (This works equally well in all characteristies

2, but references are lacking.) The moduli space of p@sc), where C is a
smooth plane curve of degrédeandx a theta characteristic on @Gas two compo-
nents corresponding to the parity/dl(«) plus one special component wheiis
odd, consisting of the pait&, O¢((d — 3)/2)) [B2, Prop. 3]; a general element
(C, k) in a nonspecial component satisfi€¥x) < 1.

CoroLLARY 4.3. Each component of the moduli space of smooth plane curves
with a theta characteristic is unirational.

REMARK 4.4. If k is algebraically closed, then any smooth curve admits a theta
characteristic L with (L) = 0; this follows (via the Riemann singularity theo-
rem) from the classical fact that the theta divisor of a principally polarized Abelian
variety cannot contain all points of order 2 (see e.g. [I, Ch. IV, Lemma11]). Thus
everysmooth plane curve can be defined by a symmetric linear determinant. Ac-
tually, every plane curve C admits such a representation: one reduces readily to
the case when C is integral; then Theorem B is applied to the shéafwhere

7. C' — Cis the normalization of C and L is a theta characteristic 6mvith

HO(C’, L) = 0. (This remark answers a question of F. Catanese.)

(4.5) HaLF-PErRIODS. We assume again that cligy = 0. Let us consider now
the moduli spac& ; of pairs(C, «), where C is a smooth plane curve of degree
d ande is ahalf-period,that is, a nontrivial line bundle on C with®? = Oc. If

d is odd then the magC, o) — (C, a((d — 3)/2)) gives an isomorphism dR ;
onto the above moduli space; we thus restrict to the cageegén—sayyl = 2e.

It follows then from [B2, Prop. 2] thaR , is irreducible.

ProrosITION 4.6. For (C, o) general inR 4, the line bundlex admits a minimal
resolution

0— Opa(—e — 1) M Ops(—e+1)° — « —> 0,

where the matrixM e M ,(S%) is symmetric(with quadratic entrie} and
detM=F.

Proof. Inview of Corollary 2.4, this amounts to saying that the line bundte-1)
satisfies the equivalent conditions of Proposition 3.5. As in that proposition, it suf-
fices to exhibit a symmetric matrix M M .(5%) with quadratic entries such that
the equation det M= 0 defines a smooth plane curve.

Start with a symmetric linear matrit.;;) € M .(S) such that the curvE defined
by det(L;;) = 0 is smooth (such a matrix exists by Proposition 4.2). Changing
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coordinates if necessary, we can assumelthiatransverse to the coordinate axes
and does not pass through the intersection point of any two axes. Consider the
coveringr : P2 — P2 given by (Xo, X1, X2) = (X3, X2, X2). The pull-back

of I by = is smooth by our hypotheses; it is defined by the determinant of the
symmetric matrix M= (L;;(X3, X2, X)) with quadratic entries. O

CoRrOLLARY 4.7. The moduli spac® , is unirational.

5. Plane Curves as Pfaffians

Again, any rank-2 vector bundle E on the plane curve C with determifigty)
for some integer admits a skew-symmetric resolution. Let us restrict our atten-
tion to the linear case. Corollary 2.4 applied tdEgives the following.

ProrosiTioN 5.1. Let C be a smooth plane curve of degréeand letE be a
rank-2 vector bundle orC with det EX K ¢ and HY(C, E) = 0. ThenE admits a
minimal resolution

0— Op2(=2% M Opa(-1% — E— 0,

where the matriyM € M ,,(S?) is linear skew-symmetric angf M = F.
Note that the condition AC, E) = 0 implies that E is semi-stable.

CoroLLARY 5.2. The moduli space of pair&C, E), whereC is a smooth plane
curve of degre@ and E is a semi-stable rank-vector bundle or€ with determi-
nantK ¢, is unirational.

This is not surprising in this case, since the fibres of the projectipfe(d)| are
already unirational.

(5.3) Another consequence of Proposition 5.1 is thdt# 4 and M is general
enough, then the corresponding vector bundle-£ Coker M is stable and there-
fore simple; that is, EndM) = k. This means in view of (2.3) that, given three
generic skew-symmetric matricessMM 1, M, € M 5,4 (k), the equation®\M ;A =

M; fori = 0,1, 2 imply A = +I.

6. Surfaces as Determinants

(6.1) Let S be a smooth surface of degteim P2 defined by an equation £

0. Let C be a curve in S and & Og(C). Using the exact sequence-§ Lt —

Os — Oc — 0and Serre duality, we see thatdACM if and only if Cis projec-

tively normal inP3; that is, the restriction map¥P3 Ops(j)) — HYC, Oc(j))

is surjective for everyj € Z. Since any line bundle is of the for@s(C) after

some twist, this characterizes the ACM line bundles ofilt&is, any projectively
normal curve contained in S gives rise to an expression of F as the determinant
of a matrix Me M (S%). Recall, however, that a hypersurface section of S gives
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the trivial case M= (F); a curve C defined i by two equations A= B = 0

produces a X 2-matrix M = (é E).

We will now restrict our study téinear determinants.

ProrosITION 6.2. LetC be a projectively normal curve ddof degree%d d-1
and genu%(d —2)(d —3)(2d +1). Then the line bundl®s(C) admits a minimal
resolution

0— Ops(-)? %> 0%y — Og(C) — 0

withdetM = F.

Conversely, leM e M 4(5%) be a linear matrix such thadet M = F. Then the
cokernel ofM: Ops(—1)? — Og3 is isomorphic taOg(C), whereC is a smooth
projectively normal curve o with the above degree and genus.

Proof. Let C be a curve on,Sand put L= Og(C). A straightforward Riemann—
Roch computation shows that the given condition on the degree and genus of C
is equivalent tox(L(—1) = x(L(—2)) = 0. If C is projectively normal then

the spaces HS, L()) vanish, by (6.1); therefore, the preceding condition is also
equivalent to H(S, L(—1)) = H?(S, L(—2)) = 0. This is exactly what we need

to apply Corollaryl.12.

Conversely, given a matrix Met L = Coker M in view of the foregoing we
need only prove that the linear systehj contains a smooth curve. This is ob-
vious in characteristic 0, since L is spanned by its global sections. In the general
case, we first observe that the restriction of L to any smooth hyperplane section
H of S is very ample: indeed, from the resolution-0 Opz(-)? — 0%, —

L|, — O we obtain H(H, L|,(—1) = 0 and hence HH, L|,,(—x —y)) =0
for all x, y € H. It follows that the linear systerflL| on S separates two points
x, y € S (possibly infinitely close) unless the lie, y) lies in S in other words,
the morphismy, : S — P41 defined by L| contracts finitely many lines and em-
beds the complement of these lines. Then a general hyperpl&iefcuts down

a smooth curve € |L|. O

(6.3) Under the hypotheses of Proposition 6.2, Grothendieck duality provides a
dual exact sequence

0— Ops(-? M 04, — L Yd-1) — 0

(see the proof of Theorem B); in other worttsg involutionM +— ‘M on the space
of linear matrices corresponds to the involutibn— L=(d — 1) on Pic(S).

As we have already pointed out, a general form of degrea P2 can be repre-
sented as a linear determinant only fbk 3, the only nontrivial case being =
3. There we find the following classical result [G].

CoroLLARY 6.4. Assume that is algebraically closed. A smooth cubic surface
can be defined by an equatidet M = 0, whereM is a3 x 3 linear matrix. There
are 72 such representation@ip to the action ofGL(3) x GL(3) by left and right
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multiplication), corresponding in a one-to-one way to the linear systems of twisted
cubics onS.

There are various ways of describing the set of linear systems of twisted cubics
on S: they also correspond to the birational morphisms 32, or to the sets
of six lines on S that do not intersect each other. In terms of these, the involu-
tion M — M corresponds to the Schéfli involution, which associates to such a
set{ly, ..., £g} the unique seft], ..., £5} such that the twelve lines, ejf forma
double-six that is, they satisfy; N ¢; = @ and/; ~£Jf =1fori # j.

As a consequence, the space of pé8s.), where S is a smooth cubic surface
anda a set of six non-intersecting lines,rigtional; as in (3.4), it is birational to
the quotient of(M3)2 by the group GI(3) acting by conjugation, and we know
that this quotient is rational.

In the case of a not necessarily algebraically closed field, we find the following
result of Segre [Se].

CoroLLARY 6.5. LetSbe a smooth cubic surface. The following conditions are
equivalent
(i) Scanbe defined by an equatidet M = 0, whereM is a3 x 3linear matrix;
(if) S contains a twisted cubic
(i) S admits a birational morphism tB?;
(iv) S contains a rational point and a sétlefined ovek) of six non-intersecting
lines.

Proof. The equivalence of (i), (ii), and (iii) follows from Proposition 6.2. The
implication (iii) = (iv) is clear. If (iv) holds, then the surface obtained from S
by blowing down the set of six non-intersecting lines is isomorphieeverk,
contains a rational point, and henceissomorphic toP?. O

CoroLLARY 6.6. A smooth quartic surface is determinantal if and only if it con-
tains a nonhyperelliptic curve of gen@sembedded i3 by a linear system of
degreeb.

Proof. The only point to check is that a curve C of genus 3 embeddé&d oy a
linear systenL | of degree 6 is projectively normal if and only if itis not hyperellip-
tic. Since H(C, L) = 0, the projective normality reduces (using the basepoint-
free pencil trick) to the surjectivity of the restriction mag (P2 Ops(2)) —

HO(C, L®?) or, equivalently (since both spaces have the same dimension), to its
injectivity. One checks that C is contained in a quadric if and only if it is hyper-
elliptic. O

(6.7) There is another approach to Proposition 6.2, which we will now sketch.
Given the linear matrix Mlet C be the divisor of the section of & Coker M
corresponding to the first basis vector(’og3. Using (6.3), we see easily that the
curve C is defined ifP® by the maximal minors of the matrix N obtained from M
by deleting the first row. Conversely, since C is projectively normal, it admits a
resolution
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-1 14
0 — @ Opa(e)) ~> @) Ops(di) 2> Ops — Oc — 0,
j=1 i=1

whereA is given by the maximal minors of ;Nvith some work one findé = d,
eg=---=¢y_1=—d,anddy = ---=d; = —(d —1). It follows easily that any
surface of degreé containing C is defined by the determinant of a linear matrix
obtained by adding one row to.N

(6.8) We will not consider surfaces defined by symmetric determinants, though
this is again a classical and rich story. See [C1] or [C2] for a modern treatment.

7. Surfaces as Pfaffians
From now on we assunahan k) = 0 (see Remark 7.3(a)).

(7.1) Again wewill restrict ourselves to the linear case—that is, to surfaces S
P2 defined by an equation pf M: 0, where M is a2d) x (2d) skew-symmetric
linear matrix.

Let Z be a finite reduced subschemeRSf of degreec (the degree of Z is by
definition dim, H%(Z, ©7)), and letl; be its homogeneous ideal . Then Z is
said to bearithmetically Gorensteiiif the algebraR := S/I; is Gorenstein. This
implies that there exists an integer N such that

(a) dimR, +dimRn_, =cforall peZ.

The integer N is uniquely determined: itis the largestinteger such thaRgdira c.
For lack of a better name, we will call it thedexof Z.

Assume thak = k. By [DGO, Thm. 5], the subscheme Z is arithmetically
Gorenstein if and only if it satisfies both (a) and

(b) Z has the Cayley—Bacharach property w.r.t. the linear sygtgn(N)|; that
is, for each point € Z, every element ofOp.(N)| containing Z— z con-
tains Z

In general, Z is arithmetically Gorenstein if and only if$% k has the same
property.

Let Z c P2 be a finite arithmetically Gorenstein subscheme contained in a
surface S of degred. Let Z; be the sheaf of ideals of Z i@s. Using the ex-
act sequence B~ Z; — Os — Oz — 0, property (a) forp = N gives
dimHYS, Zz(N)) = 1 Thus there exists a unique nontrivial extension (up to
automorphism)

0— Os—> E—>Tz(N—d+4) — 0.

We claim that E is locally free. To check this we can assumektisaalgebraically
closed; then (b) is equivalent to'¥8, Zz/(N)) = 0 for each proper subset Z-

Z, which implies our assertion by [GH]. We will say that E is the vector bundle
associated to Z
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ProposITION 7.2. Let Sbe a smooth surface of degréen P3. Then the follow-

ing conditions are equivalent

(i) Scan be defined by an equatiphM = 0, whereM is a skew-symmetric lin-
ear (2d) x (2d) matrix;

(if) S contains a finite arithmetically Gorenstein reduced subsch&rogindex
2d — 5, not contained in any surface of degrée- 2.

More precisely, under hypothedis), the rank2 vector bundleE associated t&

admits a minimal resolution

0 — Opn(—1% M (’),2;‘,1, — E— 0;
the degree oZ is $d(d — 1)(2d — 1).

Proof. If (i) holds then the vector bundle E=:Coker M is spanned by its global
sections. Let Z be the zero locus of a general section.dfigder (i) or (ii) we
have an exact sequence

0— OS —E—>7Z7;d-1) — 0. (72&)

In view of Proposition 2.4, we have to prove the equivalence of:
(1) EisACM and H(S, E(-1)) = 0;
(2) Zis arithmetically Gorenstein and%8, Z(d — 2)) = O.

Toward that end, we may assume that k. That E is locally free implies that
Z has the Cayley—Bacharach property w®p3(2d — 5)| [GH]. The sequence
(7.2.a) provides an isomorphism

HY(S, E(-D) => H%(S, Iz(d - 2))
and gives rise, for eache Z, to an exact sequence

0 — HYS, E(j)) — HYS, Z2(d — 1+ j)) = HZ(S, Os())).

Using the exact sequence & Z; — Os — Oz — 0, we can identify
HY(S, Zz(k)) with the cokernel of the restriction mag: HYS, Os(k)) —
H%(Z, Oz(k)); the map H(Z, Oz(d — 1+ j) — H*(S, Os(j)) deduced frond
is identified by Serre duality to the transpose pfs_ ;. Therefore, the vanishing
of HY(S, E(}j)) is equivalent to Imy,_1,; = Ker'ry_a—; = (Imry_q_;)*, that s,
to dimR,_11; = ¢ — dimR,_4_;. This proves the equivalence of (i) and (ii).
Under these equivalent conditions, we have Caed Z,(E); this number can
be computed, for instance, using Riemann—Rochgiit) = 24d. O

REMARKS 7.3. (@) We must restrict to the characteristic 0 case because we do not
know how to prove that the zero locus of a general section of E is smooth in char-
acteristicp. The same problem occurs in higher dimension as well.

(b) As in (6.7), we could follow another approach: Using the Buchsbaum—
Eisenbud theorem [BE], one shows thats generated by th€d — 2) x (2d — 2)
pfaffians extracted from a skew-symmetric lin€a# — 1) x (2d — 1) matrix N;
then X is defined by the pfaffian of the matr@xfC g) where C is a column of
linear forms.
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ExaMpLEs 7.4. For a cubic surface we have degZ5 and N= 1 If k = k
then a subset Z is arithmetically Gorenstein if and only if any four points in Z are
linearly independent, that is, Z is in general position.

For a quartic, the subset Z should have 14 points, not be contained in a quadric,
and satisfy the Cayley—Bacharach property wi€xs(3)|.

(7.5) Observe that, for each there exist smooth surfaces that are defined by
the pfaffian of a82d) x (2d) skew-symmetric linear matrix and therefore contain
a subset Z with the properties of the proposition. For instance, we could take M
(_?N g‘) where N is a linead x d matrix; we have pf M= detN and we can
choose N so that the surface det\0 is smooth (se€l.10)). The corresponding
vector bundle E is I L~1(d — 1), where L is the line bundle Coker;Nhe zero

set Z of a general section of E is the intersection of two curves on S of the type
described in Property 6.2 (see also (8.3)).

We will now investigate when a generic surface of degfemn be written as a
linear pfaffian.

ProposITION 7.6. Assume that is algebraically closed.

(a) Every cubic surface can be defined by a linear pfaffian.

(b) A general surface of degregin P2 can be defined by a linear pfaffian if
and only ifd < 15.

Proof. (a) follows from Proposition 7.2 and Example 7.4. %tbe the variety
of linear skew-symmetric matrices &M 24(S%) such that the equation pf M 0
defines a smooth surface B¥. Consider the map pfS, — |Ops(d)|. We have
dimS,;/GL(2d) = 4d(2d — 1) — 4d? = 4d(d — 1); an easy computation gives
4d(d — 1) < dim|Ops(d)| for d > 16, which gives the “only if” part of (b).

To prove the remaining part we use Adler’'s method [AR, Apx. V]—namely,
we prove that the differential of pf is surjective at a general matrix I9,. As
in [AR], a standard computation shows that this is equivalent to the fact that the
vector space P2 Ops(d)) is spanned by the forms X;;, where M; is the
pfaffian of the skew-symmetric matrix obtained from M by deleting the rows and
columns of index andj. This has been checked by F. Schreyer using the com-
puter algebra system Macaulay 2: a script is provided in the Appendix. O

We do not consider the proof of (b) as completely satisfactory, since it relies on
a computer checking which does not provide any clue regarding why the result
holds. The following lemma explains better the meaning of the result. Recall that
we associate to a matrix MS, the smooth surface\sdefined by pf M= 0 and

the vector bundle  := Coke{Opn(—1)¢ M, Og,] on Sy.

LEmMA 7.7. The pfaffian mapf: S; — |Ops(d)| is dominant if and only if
H2(Sw, Endo(En)) vanishes for a generd¥ in S;.

(As usual £ndp(E) denotes the bundle of traceless endomorphisms)of E
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Proof. We will restrict our attention to matrices M such thay; s simple(i.e.,
has only scalar endomorphisms). According to (2.3), this means that the only ma-
trices Ae M 4 (k) such that AMA = M are=I. The matrices M with this property
form an open subs&; of S;, which is non-empty by (5.3).

We consider the map pfS; — |Ops(d)|; its fibre at a point & |Ops(d)| is the
moduli space of simple ACM rank-2 vector bundles on S with det Bs(d — 1)
and H(S, E(—1)) = 0. A straightforward computation gives

dimS,/GL(2d) = dim|Ops(d)| — x(Endo(Ewn))
= dim|Opz(d)| + dim HY(Sw, Endo(Ewn))
— dim H2(Su, Endo(Ewn)) (7.7.a)

for any matrix Me Sj.

If H2(Swm, Endo(En)) = 0, then the moduli space of simple vector bundles on
Swm is smooth of dimension dimHSy, Endo(Ew)) at [En]. It then follows from
(7.7.a) that pf is dominant.

Conversely, assume that pf is dominant. Let S be a generic surface of degree
the fibre pf1(S) can be identified with an open subset of the moduli space of sim-
ple rank-2 bundles E on S with detE Os(d —1) andcz(E) = 2d(d —1)(2d —1).
Because it is smooth, this open subset is of dimension diB,Kndy(E)).
Comparing with (7.7.a) gives HS, Endo(E)) = 0. O

(7.8) Assertion (b) of Proposition 7.6 is therefore equivalent to the fact that, on
a general surface S of degréethe moduli space of ACM rank-2 vector bundles
with det E= Og(d — 1) and H(S, E(—1)) = 0 is smooth and of thexpected di-
mension-x(Endo(E)) for d < 15. We were not able to prove this directly except
in the obvious case af = 4, where the vanishing of HS, Endy(E)) follows

from Serre duality.

8. Threefolds as Linear Pfaffians

(8.1) Let us first briefly recall Serre’s construction. Let X be a projective mani-
fold of dimension> 3, and let E be a rank-2 vector bundle on X that is spanned
by its global sections; put & det E Then the zero locus of a general sectiaof

E is a submanifold V of codimension 2 in,>and there is an exact sequence

0— Oy — E— ZyL — 0;

it follows that Ky is isomorphic tqKy ®L) |V. Conversely, given a codimension-2
submanifold VC X and a line bundle L on X such thatk= (Kx ® L), there
exists a rank-2 vector bundle E and a sectianH(X, E) such that Zs) = V.
Moreover, if V is connected then the pakE, s) is uniquely determined up to iso-
morphism. We will refer to E as the vector bundle associated to V

Recall that a submanifold V 1" is said to bearithmetically Cohen—Macaulay
if the sheafOy is ACM andV is projectively normal. This implies in particular
that H(V, Oy) = k, so V is connected.
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ProrosiTiON 8.2. Let X be a smooth hypersurface of degeeen P" (n = 4 or
5). Then the following conditions are equivalent

(i) X can be defined by an equatighM = 0, whereM is a skew-symmetric
linear (2d) x (2d) matrix;
(if) X contains a codimensioR-submanifoldV that is arithmetically Cohen—
Macaulay, not contained in any hypersurface of degiee 2, and such that
Ky = 0v(2d —2—n).
More precisely under hypothesii), the rank2 vector bundld€E associated to
V admits a minimal resolution

0 — Opn(—1)% M, (’)%‘f, — E— 0;
the varietyV has degregd(d — 1)(2d — 1).

Proof. If (i) holds then the vector bundle E=:Coker M is spanned by its global
sections. LetV be the zero locus of a general section.df&der (i) or (ii) we
have an exact sequence

0— Ox—>E—)Iv(d—1)—)0

By Serre duality, E is ACM if and only if HX,E(j)) =0forl<i <n—3;
in view of the foregoing exact sequence, this is equivalent to V being arithmeti-
cally Cohen—Macaulay. Similarly, the conditiorP¢X, E(—1)) = 0 translates as
HO(X, Z(d — 2)) = 0; we conclude by Corollary 2.4.

The degree of V can be deduced for instance from (7.2) by restriction to a gen-
eral 3-dimensional linear subspace. O

(8.3) Note that there do indeed exist smooth threefolds and fourfolds satisfying
the equivalent conditions of Proposition 8.2. One way to see this is to consider
the vector spach 3, of skew-symmetri€2d) x (24) matrices and the universal
pfaffian hypersurfacg’; ¢ P(M %)) consisting of singular matrices. The singular
locus of ¥; has codimension 6 and consists of those matrices that are ofrank
2d — 4. Hence, fom < 5, a generid?” C P(M¥)) intersectst,; along a smooth
hypersurface ifP” defined by the vanishing of a linear pfaffian.

(8.4) THE CuBIC THREEFOLD

PrOPOSITION 8.5. If k = k, then every smooth cubic threefold can be defined by
an equatiompf M = 0, whereM is a skew-symmetric lined x 6 matrix.

As mentioned in the introduction, this result is due to Adler [AR, Apx.V] in the
case of aenericcubic threefold.

Proof. Let X be a smooth cubic threefold. In view of Proposition 8.2, we have to
prove that X contains a normal elliptic quintic curve. This is essentially in [MT,
Remark 4.9]; we sketch the argument since the result we need is not explicitly
stated there.

We first observe that X contains a nonnormal elliptic quintic curve C (i.e., con-
tained in a hyperplane); in fact, any smooth hyperplane section S of X contains
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finitely many 5-dimensional families of such curves (representB?dslown up
at six points and consider the linear system of plane cubics passing through four
of the six points). Varying the hyperplane section gives an 8-dimensional family
of nonnormal elliptic quintic curves in.S

Let C be one of these curves. Then the normal bundg, Nits into an exact
sequence

0— Oc(l) —> NC/V — NC/S —> O,

from which one deduces¥C, N¢,v) = 0and dim H(C, N¢,y) = 10. Therefore,
the Hilbert scheme of curves of degree 5 and arithmetic genus 0 in V is smooth
of dimension 10 at CThe general member of the component containing C is a
smooth elliptic quintic curve not contained in any hyperplane and thus projectively
normal. O

(8.6) By Proposition 2.4, a rank-2 vector bundle E on X is associated to a nor-
mal elliptic quintic if and only if F= E(—1) satisfies det = Ox and H(X, F) =

0; since Pi€X) = Z, this last condition means that F stable(with respect to
Ox(1)). Let My be the moduli space of stable ACM rank-2 vector bundles on X
with trivial determinant; it is smooth of dimension 5 [MT]. By a theorem of Druel
[Dr], this is also the moduli space of stable rank-2 vector bundles on Xawith

0 andc, = 2¢, where¢ denotes the class of a line it , Z); we will not need

this result here.

Let us now vary X and consider the spat¢ of pairs(X, F), where X is a
smooth element dfDp4(3)| and Fe Mx. By Proposition 8.5 we have a dominant
rational map from the space of linear skew-symmetric matricesNi(S*) onto
the spaceM, which is thereforaunirational.

(8.7) Thanksto [MT], this has the following nice consequence. We now assume
k = C. Let |Opa(3)|;n be the open subset ¢0p4(3)| parameterizing smooth
cubic threefolds. The intermediate Jacobians of cubic threefolds fit into a univer-
sal family 7 — |0pa(3)|sn. More generally, for each integérwe can define

a twisted intermediate Jacobiaf(d), which parameterizes 1-dimensional cy-
cles on X with cohomology clas¥; this is a principal homogeneous space under
the usual intermediate Jacobia®(¥). These spaces fit into a family* over
|Op4(3)|sm; While each 8(X) is isomorphic to 3(X), it is not clear that7* is iso-
morphic to.7. However, the class of a plane section is a canonical element in each
J(X), giving a section of the fibratio/® — |Op4(3)|,,; this provides canoni-

cal isomorphisms7* = 743 above|Op4(3)|,,. Note also that, fop € Z, the
multiplication map7* ZP, 7Pk s a finite étale covering, since it is so on each
fibre.

CoroLLARY 8.8. The intermediate Jacobiaf of the universal family of cubic
threefolds is unirational.

Proof. Associating to a paitX, F) in M, the class ot (F) defines a morphism
M — J? above|Ops(3)|,,. By [MT], this morphism is étale and hence dom-

inant; thus7? is unirational. Using the map$? >3, J8% = 7. we conclude
that.7 is unirational. O
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Let us now discuss the case of higher-degree threefolds.

ProrosiTION 8.9. Assume that is algebraically closed. A general threefold of
degreed in P# can be defined by a linear pfaffian if and only/if 5.

Proof. Let us denote again by, the space of linear skew-symmetric matrices
M € M 2, (5% such that the equation pf M= 0 defines a smooth hypersurface
Xm C P%. As before, the group G(24) acts freely and properly af;, and the
map pf:S; — |Opa(d)| factors throughS, /GL(2d).

An easy computation gives di8y/GL(2d) < dim|Opa(d)| ford > 6, so a
general threefold of degree 6 is not pfaffian. For = 4 and 5, one checks as in
Proposition 7.6 that the differential of pf at a generic matrix is surjective (see the
Appendix; ford = 4 this was also observed in [IM]). O

(8.10) Exactly as in Lemma 7.7, we find that the map §f:— |Opa(d)] is
dominant if and only if H(X v, Endo(Ew)) = 0 for M general inS,—that is, if

the moduli space of the vector bundles we are considering on a general quartic or
quintic threefold has the expected dimension. We see in particular that there is a
finite number of ways of representing a general quintic as a pfaffian; this number
is an instance of thgeneralized Casson invariagbnsidered by Thomas [T]. It
would be of course quite interesting to determine it.

9. Fourfolds as Linear Pfaffians

(9.1) Let us keep the notation of Proposition 8.9ffaurfoldsin P°. We find in

this case that dins;/GL(2d) < dim|Ops(d)| for d > 3, so a general hypersur-
face of degree= 3 in P° cannot be defined by the vanishing of a linear pfaffian

(a smooth hyperquadric can of course, since it is isomorphic to the Grassmannian
of lines inP2 in the Pliicker embedding). Fdr= 3, one finds dinS3/GL(6) =
dim|Ops(3)| — 1L

ProposITION 9.2.  (a)A (smooth) cubic fourfoldX ¢ P® is pfaffian if and only if
it contains a Del Pezzo surface of degtee

(b) Assumé = C. The mappf: S3/GL(6) — |Ops(3)| is generically injec-
tive. In particular, pfaffian cubic fourfolds form a hypersurface in the space of all
smooth cubic fourfolds.

The pfaffian cubics play a key role in the proof that the variety of lines contained
in a cubic fourfold is irreducible symplectic [BD]. Cubic fourfolds containing a
Del Pezzo surface of degree 5 have been considered by Fano [F].

Proof. Part (a) follows at once from Proposition 8.2, so let us prove part (b).
We introduce a 6-dimensional vector space V and the spa¢e Adif bilinear al-
ternate forms on Vwe will view S3 as an open subset of AW )8 = Alt (V) ®; k°.
The map pf:S3 — |Ops(3)| associates to a sextugiley, ..., ¢s) the hypersurface
pf(}; Xi¢:) = 0. The group GL(6) acts onS; through its action ok®; this action
commutes with the action of GV), and the map pfS3/GL(V) — |0ps(3)] is
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GL(6)-equivariant. The orbits of G(6) in S3 correspond to 6-dimensional sub-
spaces Lc Alt(V); to such a subspace is associated the isomorphism class of the
cubic hypersurface Xof degenerate forms iR(L). Since the action of G(6) is
generically free onOps(3)|, it is sufficient to prove that the isomorphism class of
X determines L (up to the action of GY)).

The orthogonal I of L in A?V is 9-dimensional; the locus of rank-2 bivec-
tors inP(L1) is a K3 surface S of genus 8 [BD]. By [M], a general K3 surface
of genus 8 is obtained in this way, and this representation is unique: the surface S
determines the space-Lc A2V (and therefore also the spaced Alt (V)) up to
the action of GI(V). So what we need to prove is th&ie cubicX | determines
theK3 surfaceS up to projective isomorphism.

We proved in [BD] that the variety F of lines contained ip ¥ a (complex) sym-
plectic manifold, isomorphic to the Hilbert schem@!SIn particular, the group
H2(F, Z) carries a canonical quadratic form, and there is a Hodge isometry

2 ~ 2 L
H(F,Z) = H“(S,Z) & Z34,

where H(S, Z) is endowed with the intersection form afds a class of type
(1, 1) and square-2. The polarization of F given by the embedding in the Grass-
mannianG(2, 6) corresponds to the clas$ 2 55, wherel is the polarization on
S deduced from the embedding=SP(L').

Let L and L be two subspaces of AN) that produce isomorphic cubics; let
(S,1) and(S,!") be the corresponding polarized K3 surfaces. We then have a
Hodge isometry

.2 x ~ 20 L_
0. HY(S, 2)® 725 = H(S,Z2)p 24,

which maps the class/2- 55 to the corresponding clasd’2- 5§’. Assume
that PidS) = ZI. Then we have Pi&') = ZI’, and¢ induces an isometry
Zl ®Z5 = ZI' ® 25, which maps 2 — 55 onto 2’ — 58’; an easy computa-
tion shows that this implieg(§) = ¢(§’). Thuse induces a Hodge isometry of
H2(S, Z) onto H(S', Z) mapping to /. By the Torelli theorem for K3 surfaces,
this implies thatS, /) and(S', I’) are isomorphic. O

Appendix:
Hypersurfaces Are Generically Pfaffian in the Expected Range

Frank-Olaf Schreyer

We prove by a Macaulay 2 computation that a generic surface of dégre&5

in P38, as well as a general threefold of degree 5 in P4, can be defined by the
pfaffian of a skew-symmetrici2x 2d matrix with linear entries (Propositions 7.6

and 8.9 in the text). As explained in the text, it is sufficient to prove that, for some
matrix M of this type, the space of homogeneous forms of dedriseequal to
m-pfaffians  (2d — 2, M), wherem is the ideal spanned by the coordinates and
pfaffians  (2d — 2, M) the ideal of submaximal pfaffians of MVe compute the
dimension of the latter space at randomly chosen skew symmetric matrices over a
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finite field using Macaulay 2 [GS]. The computation is within the range of contem-
porary computers. On the computer “alice” of the Mathematical Science Research
Institute at Berkeley, the following code was executed in about two hours of cpu
time. The output verifies the result.

isPrime(31991)
kk=2Z/31991 - this is a field

randomSkewMatrix = (e,S) -> (
-- returns a rando m e x e skew symmetric matrix
-- with linear entries in the ring S
N:=binomial(e,2);
R:=kk[t _0..t _(N-1)];
G:=genericSkewMatrix(R,t _0,e);
substitute(G,random(S ~{0},S*{N:-1 }))
) -- end randomSkewMatrix

subPfaffiansViaSyzygies = (M) -> (

-- This is an alternative to the command pfaffians(2d-2,M).
-- It returns the generators of the ideal of the 2d-2 pfaffians
-- of the linear 2d x 2d skew symmetric matrix M computed
-- using the structure theorem of [B-E]:
-- Under a mild genericity condition on the submatrix M1
-- the syzygies of the 2d-1 x 2d-1 skew matrix M1 are its 2d-1
-- principal pfaffians.
-- If the computation fails, then the standard way is used.
d:=lift((rank source M)/2,27);
syzygiesGivePfaffians=true; i:=0; S:=ring M;
J:=generators ideal0 _S;
while syzygiesGivePfaffians==true and (i<(2*d)) do (

-- take i-th 2d-1 x 2d-1 skew submatrix

M1:=transpose((transpose(M _{0..(i-1),(i+1)..(2*d-1) )
_{0..(i-1),(i+1)..(2*d-1) i

N1:=syz(M1,DegreeLimit=>d);

syzygiesGivePfaffians=((degrees source N1) == {{d}});

if syzygiesGivePfaffians==true then
J=(J|flatten(N1));
i=i+1;
)i
if syzygiesGivePfaffians then (mingens image J)
else (mingens image pfaffians(2*d-1,M))
) -- end subPfaffiansViaSyzygies

isDominant=(r,d) -> (
S:=kk[x _0..x _r]; M:=randomSkewMatrix(2*d,S);
J:=subPfaffiansViaSyzygies(M);
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N=syz(J,DegreeLimit=>d);

-- DegreeLimit=> d is carefully chosen to compute only
-- linear sysygies. From this the number of kk-linear
-- independent elements of degree d in the ideal

-- with generated by J can be computed:
cd=binomial(d+r,r)-(r+1)*rank(target N)+(rank source N);
cd==0) -- end isDominant

lowerBoundForDominantDegree = (r) -> (
dominant:=true; d:=2;
while dominant do
(d=d+1;dominant=isDominant(r,d););
d-1)

isDominant(5,3)
cd
time d4=lowerBoundForDominantDegree(4)
time d3=lowerBoundForDominantDegree(3)

Note that we used the method to compute pfaffians via syzygies, since this
is faster than the commarpdaffians(2*d-2,M) . The reason is that syzygy
computations are fast whereas tfaffian ~ command does not utilize much
special structure. For comments on the commands and the Macaulay 2 language,
refer to the on-line help.

Notice that the computation also shows that the closure of the scheme of pfaff-
ian cubic fourfolds form a hypersurface @ ps(3)|.
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